TW201809371A - Electrochemical machining electrode and its manufacturing method having an oxidation insulating layer fixed to the metal layer to prolong service life - Google Patents
Electrochemical machining electrode and its manufacturing method having an oxidation insulating layer fixed to the metal layer to prolong service life Download PDFInfo
- Publication number
- TW201809371A TW201809371A TW105129659A TW105129659A TW201809371A TW 201809371 A TW201809371 A TW 201809371A TW 105129659 A TW105129659 A TW 105129659A TW 105129659 A TW105129659 A TW 105129659A TW 201809371 A TW201809371 A TW 201809371A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- substrate
- metal layer
- electrochemically
- insulating layer
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 68
- 239000002184 metal Substances 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000003754 machining Methods 0.000 title abstract description 24
- 230000003647 oxidation Effects 0.000 title abstract description 5
- 238000007254 oxidation reaction Methods 0.000 title abstract description 5
- 239000010410 layer Substances 0.000 claims abstract description 159
- 239000000758 substrate Substances 0.000 claims abstract description 73
- 239000011247 coating layer Substances 0.000 claims abstract description 24
- 239000006104 solid solution Substances 0.000 claims abstract description 24
- 230000001590 oxidative effect Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 48
- 239000000843 powder Substances 0.000 claims description 34
- 230000008569 process Effects 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 22
- 238000007747 plating Methods 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 230000004888 barrier function Effects 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 238000001816 cooling Methods 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 12
- 239000000110 cooling liquid Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 3
- 238000005459 micromachining Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- FXNGWBDIVIGISM-UHFFFAOYSA-N methylidynechromium Chemical compound [Cr]#[C] FXNGWBDIVIGISM-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000001652 electrophoretic deposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000009700 powder processing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
本發明係有關於一種電化學加工電極及其製造方法,其尤指一種具良好固著性之絕緣層的電化學加工電極及其製造方法。The present invention relates to an electrochemically-processed electrode and a method for manufacturing the same, and more particularly, to an electrochemically-processed electrode with a good fixation insulating layer and a method for manufacturing the same.
隨著各類零組件的發展逐漸趨向於精微化,國內外相繼提出微加工技術與系統。製造商為能夠依據使用者之需求構建出具特殊幾何形體之產品,遂有微電化學加工技術衍生而出。微電化學加工(Electrochemical Micro-Machining EMM)亦稱微電解加工(Electrolytic Micro-Machining),其工作原理同電化學加工,可運用於傳統機械加工中難以進行之特殊幾何形狀加工,或者是針對特殊材質(硬質金屬、特殊金屬)進行加工,俾使產品形狀、品質能夠符合需求。同時微電化學加工之加工產品較為精密,可運用於國防、航太、醫療、半導體等領域。With the development of various types of components gradually moving towards miniaturization, micro-machining technologies and systems have been proposed at home and abroad. Manufacturers are able to build products with special geometries according to the needs of users, and they are derived from microelectrochemical machining technology. Electrochemical Micro-Machining EMM is also known as Electrolytic Micro-Machining. Its working principle is the same as electrochemical machining. It can be applied to special geometric shapes that are difficult to perform in traditional machining, or for special Material (hard metal, special metal) is processed so that the shape and quality of the product can meet the requirements. At the same time, the processed products of microelectrochemical processing are more precise and can be used in the fields of national defense, aerospace, medical, semiconductor and so on.
經查一般電化學加工電極會披覆有絕緣層,其披覆於加工電極之非加工區域,以隔離電場而避免加工電極之非加工區域對工件進行電化學加工,且可提高電流從加工電極之欲加工處流出的精確度,而降低雜散電解效應。由於一般電化學加工電極之尺寸較大,因此可採用較厚之絕緣層加以隔離電場,而維持加工電極之良好加工精度。反觀,微電化學加工之工件、加工刀具(電極)的尺寸較為精微,因此相較於傳統電化學加工所遭遇之問題亦有所差異。於電化學反應發生之工件金屬移除效應中,因加工範圍僅達數微米至厘米之間,且存在著多種物理/化學衝擊效應,致使加工電極之絕緣層容易遭受破壞、剝離,進而造成加工產品之良率不佳,以及加工電極之使用壽命縮減等問題。It has been found that the general electrochemical processing electrode is covered with an insulating layer, which is coated on the non-processed area of the processing electrode to isolate the electric field and prevent the non-processed area of the processing electrode from electrochemically processing the workpiece, and can increase the current from the processing electrode. The precision of the outflow to be processed is reduced, and the stray electrolysis effect is reduced. Due to the large size of general electrochemical processing electrodes, a thicker insulating layer can be used to isolate the electric field, and maintain good processing accuracy of the processing electrodes. In contrast, the dimensions of workpieces and machining tools (electrodes) for microelectrochemical machining are more subtle, so the problems encountered in traditional electrochemical machining are also different. In the metal removal effect of the workpiece due to the electrochemical reaction, because the processing range is only a few micrometers to centimeters, and there are various physical / chemical impact effects, the insulating layer of the processing electrode is vulnerable to damage and peeling, which causes processing. The product yield is not good, and the service life of the processing electrode is reduced.
為提升加工產品之精度,以及延長電化學加工電極之使用壽命,本發明人遂針對電化學加工電極進行改善。俾提升加工電極之絕緣層的固著性,以在進行電化學加工過程中,避免加工電極之絕緣層剝離,而造成雜散電解之問題,如此可維持加工精度與加工電極之使用壽命。In order to improve the accuracy of the processed products and prolong the service life of the electrochemical processing electrodes, the inventors have improved the electrochemical processing electrodes.俾 Improve the fixation of the insulating layer of the processing electrode, in order to avoid the peeling of the insulating layer of the processing electrode during the electrochemical processing, which causes the problem of stray electrolysis, so that the processing accuracy and the service life of the processing electrode can be maintained.
本發明之一目的係提供一種電化學加工電極及其製造方法,其於一基體上形成一披覆層,披覆層包含一固溶層以及一金屬層,並氧化金屬層而形成一氧化絕緣層,藉由固溶層固著金屬層於基體,如此提升氧化絕緣層之固著性,進而可提升加工精度,以及提升電化學加工電極之使用壽命。An object of the present invention is to provide an electrochemical machining electrode and a manufacturing method thereof. A coating layer is formed on a substrate, the coating layer includes a solid solution layer and a metal layer, and the metal layer is oxidized to form an oxide insulation. Layer, the metal layer is fixed to the substrate by the solid solution layer, so that the fixation of the oxidized insulating layer is improved, thereby improving the processing accuracy and the service life of the electrochemical processing electrode.
本發明之一目的係提供一種電化學加工電極及其製造方法,其藉由形成一填補層於氧化絕緣層,而填補氧化絕緣層之多孔結構,如此可降低氧化絕緣層發生剝離。An object of the present invention is to provide an electrochemically-processed electrode and a method for manufacturing the same. By forming a filling layer on the oxidized insulating layer, the porous structure of the oxidized insulating layer is filled, so that the oxidized insulating layer can be peeled off.
本發明為一種電化學加工電極之製造方法,其包含提供一基體;形成一披覆層於該基體,該披覆層包含一固溶層以及一金屬層,該固溶層固著該金屬層於該基體;氧化該金屬層而形成一氧化絕緣層於表面。The invention is a method for manufacturing an electrochemically processed electrode, which comprises providing a substrate; forming a coating layer on the substrate, the coating layer comprising a solid solution layer and a metal layer, and the solid solution layer fixes the metal layer On the substrate; oxidizing the metal layer to form an oxide insulating layer on the surface.
另外,本發明之電化學加工電極包含一基體;一披覆層,其位於該基體,且包含一固溶層以及一金屬層,該固溶層固著該金屬層於該基體;一氧化絕緣層,其由該金屬層氧化所形成而位於表面。In addition, the electrochemical machining electrode of the present invention includes a substrate; a coating layer located on the substrate, and comprising a solid solution layer and a metal layer, the solid solution layer fixes the metal layer on the substrate; an oxide insulation A layer formed by oxidizing the metal layer and located on a surface.
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合詳細之說明,說明如後:In order to make the reviewing committee members have a better understanding and understanding of the features of the present invention and the effects achieved, I would like to provide detailed descriptions with examples and cooperation, as follows:
參閱第一圖,其為本發明之電化學加工電極運用於電化學加工裝置之示意圖。如圖所示,電化學加工裝置透過一進給裝置3之一夾持元件30夾持一加工電極1,以帶動加工電極1往一工件2移動,以進行電化學加工,例如對工件2作表面移除加工或者鑽孔加工。工件2係置放於一電解液槽體4,一電解液供應模組40提供一電解液402於加工電極1與工件2之間,以對工件2進行電化學加工,電解液402則回收於電解液槽體4。此外,一電源供應器5之負極與夾持元件30電性連接,而正極與工件2電性連接,以供應電源至加工電極1與工件2,而進行電化學加工。Refer to the first figure, which is a schematic diagram of an electrochemical machining electrode applied to an electrochemical machining device according to the present invention. As shown in the figure, the electrochemical machining device clamps a machining electrode 1 through a clamping element 30 of a feeding device 3 to drive the machining electrode 1 to a workpiece 2 for electrochemical machining, for example, for the workpiece 2 Surface removal or drilling. The workpiece 2 is placed in an electrolyte tank 4. An electrolyte supply module 40 provides an electrolyte 402 between the processing electrode 1 and the workpiece 2 to perform electrochemical processing on the workpiece 2. The electrolyte 402 is recovered in Electrolytic solution body 4. In addition, the negative electrode of a power supply 5 is electrically connected to the clamping element 30, and the positive electrode is electrically connected to the workpiece 2 to supply power to the processing electrode 1 and the workpiece 2 for electrochemical processing.
參閱第二圖,其為本發明之電化學加工電極之第一實施例的截面圖。如圖所示,本發明之電化學加工電極1包含一基體10、一披覆層12與一氧化絕緣層16,披覆層12位於基體10,披覆層12包含一固溶層122以及一金屬層124,固溶層122固著金屬層124於基體10,氧化絕緣層16係由部分金屬層124氧化所形成而位於表面。固溶層122之生成係基體10之部分材料與金屬層124之部分材料互溶,而位於基體10與金屬層124之間。由於固溶層122係金屬層124與基體10固溶所形成,所以藉由固溶層122致使可提高金屬層124與基體10之固著力,如此相對提高氧化絕緣層16與基體10之固著力,也就可以提升加工電極1對工件2進行電化學加工之精度以及提升加工電極1之使用壽命。Refer to the second figure, which is a cross-sectional view of a first embodiment of an electrochemically-processed electrode of the present invention. As shown in the figure, the electrochemical machining electrode 1 of the present invention includes a substrate 10, a coating layer 12 and an oxide insulating layer 16, the coating layer 12 is located on the substrate 10, and the coating layer 12 includes a solid solution layer 122 and a The metal layer 124 and the solid solution layer 122 fix the metal layer 124 to the substrate 10, and the oxidizing and insulating layer 16 is formed by oxidizing a part of the metal layer 124 and is located on the surface. The generation of the solid solution layer 122 is that part of the material of the substrate 10 and part of the metal layer 124 are mutually soluble, and are located between the substrate 10 and the metal layer 124. Since the solid solution layer 122 is formed by the solid solution of the metal layer 124 and the substrate 10, the solid solution layer 122 can improve the adhesion between the metal layer 124 and the substrate 10, so that the adhesion between the oxide insulating layer 16 and the substrate 10 is relatively improved Therefore, the precision of electrochemical machining of the workpiece 2 by the machining electrode 1 and the service life of the machining electrode 1 can be improved.
另外,氧化絕緣層16係位於加工電極1之非加工區域,加工電極1之加工區域是不具有氧化絕緣層16,舉例來說,若加工電極1是用於利用端面進行電化學加工,例如鑽孔,如此加工電極1之端面是不具有氧化絕緣層16,而金屬層124或者基體10裸露於加工電極1之端面。基體10之材料係選自金屬單質、金屬合金、碳化鎢或者其他導電材料,金屬層124之材料選自可以被氧化之材料,例如鋁、鈦、鎂等,氧化絕緣層16可為氧化鋁層、氧化鈦層或者氧化鎂層等,但並不以此為限。In addition, the oxidized insulating layer 16 is located in the non-processed area of the processed electrode 1. The processed area of the processed electrode 1 does not have the oxidized insulating layer 16. For example, if the processed electrode 1 is used for electrochemical processing using an end surface, such as drilling The end surface of the electrode 1 processed in this way does not have the oxide insulating layer 16, and the metal layer 124 or the substrate 10 is exposed on the end surface of the processed electrode 1. The material of the base body 10 is selected from metal simple materials, metal alloys, tungsten carbide or other conductive materials. The material of the metal layer 124 is selected from materials that can be oxidized, such as aluminum, titanium, magnesium, etc. The oxidized insulating layer 16 may be an aluminum oxide layer. , Titanium oxide layer or magnesium oxide layer, but it is not limited thereto.
請一併參閱第三圖,其為本發明之電化學加工電極之製造方法之第一實施例的流程圖。如圖所示,本發明之電化學加工電極之製造方法,首先如步驟S10所示,提供基體10;之後,如步驟S30所示,形成披覆層12於基體10,披覆層12包含固溶層122以及金屬層124,固溶層122固著金屬層124於基體10;以及如步驟S50所示,氧化部分金屬層124而形成氧化絕緣層16於表面。此外,使用者可依據加工需求而去除位於加工電極1之加工區域的氧化絕緣層16,而讓相對於加工區域之金屬層124或者基體10裸露於加工電極1之表面,以對工件2進行電化學加工。換言之,氧化絕緣層16是位於加工電極1之非加工區域。Please also refer to the third figure, which is a flowchart of a first embodiment of a method for manufacturing an electrochemically-processed electrode according to the present invention. As shown in the figure, the method for manufacturing an electrochemically-processed electrode of the present invention firstly provides a substrate 10 as shown in step S10; then, as shown in step S30, a coating layer 12 is formed on the substrate 10, and the coating layer 12 includes a solid The dissolution layer 122 and the metal layer 124, the solid solution layer 122 fixes the metal layer 124 on the substrate 10; and as shown in step S50, a part of the metal layer 124 is oxidized to form an oxide insulating layer 16 on the surface. In addition, the user can remove the oxide insulating layer 16 located in the processing area of the processing electrode 1 according to the processing requirements, and expose the metal layer 124 or the substrate 10 opposite to the processing area on the surface of the processing electrode 1 to electrify the workpiece 2 Learn to process. In other words, the oxide insulating layer 16 is located in a non-processed region of the processed electrode 1.
復參閱第二、三圖,並一併參閱第四圖,其為本發明之電化學加工電極進行熱浸鍍製程之一實施例的示意圖。本發明形成披覆層12於基體10之方式,係可採用熱浸鍍製程。於本發明之一實施例中,基體10之材料可為燒結碳化鎢,以鈷作為黏接金屬,而將碳化鎢晶粒黏合形成,而金屬層124之材料為鋁。如第四圖所示,一進給裝置60之一夾持元件602夾持基體10,並於一爐體62中加熱熔解一鋁錠,而形成一鋁熔液622。利用進給裝置60往下帶動基體10,而將基體10浸泡於爐體62中,使鋁熔液622披覆於基體10,之後往上帶動基體10離開爐體62,如此反覆進行,即可形成披覆層12於基體10。披覆於基體10之金屬層124與基體10以熱擴散方式相互固溶,而形成固溶層122於基體10與金屬層124之間,而有著合金性質並且提供固著金屬層124於基體10之能力。Referring again to the second and third figures, and referring to the fourth figure together, it is a schematic diagram of an embodiment of a hot dip plating process for an electrochemically processed electrode of the present invention. In the method for forming the coating layer 12 on the substrate 10 in the present invention, a hot dip plating process can be adopted. In one embodiment of the present invention, the material of the substrate 10 may be sintered tungsten carbide, cobalt is used as a bonding metal, and tungsten carbide crystal grains are bonded together, and the material of the metal layer 124 is aluminum. As shown in the fourth figure, a holding element 602 of a feeding device 60 holds the substrate 10 and heats and melts an aluminum ingot in a furnace body 62 to form an aluminum melt 622. The feeding device 60 is used to drive the substrate 10 downward, and the substrate 10 is immersed in the furnace body 62, so that the aluminum melt 622 is coated on the substrate 10, and then the substrate 10 is driven upward to leave the furnace body 62. A coating layer 12 is formed on the substrate 10. The metal layer 124 coated on the substrate 10 and the substrate 10 are solid-solved with each other in a thermal diffusion manner, and a solid solution layer 122 is formed between the substrate 10 and the metal layer 124. The metal layer 124 has an alloy property and provides a fixed metal layer 124 on the substrate 10. Ability.
基體10置於熱浸鍍熔液(金屬熔液、鋁熔液622)中,其表面接觸高溫會氧化而形成氧化膜,氧化膜會影響熱浸鍍熔液披覆於基體10。因此,基體10進行熱浸鍍製程之前,係可先進行一前處理作業,如第五圖之步驟S12所示,遂先行將基體10之表面塗佈一第一助熔劑,以利於進行熱浸鍍製程之效果。此外,由於金屬於爐體62中加熱,其表面與空氣接觸後亦會形成氧化膜,此氧化膜會影響金屬熔液披覆於基體10之效果,因此如第五圖之步驟S14所示,可於熱浸鍍熔液(金屬熔液、鋁熔液622)加入一第二助熔劑以去除表面氧化膜。The substrate 10 is placed in a hot dip plating solution (metal melt, aluminum melt 622), and its surface will oxidize to form an oxide film in contact with high temperature. The oxide film will affect the hot dip plating solution to cover the substrate 10. Therefore, before the substrate 10 is subjected to the hot-dip plating process, a pre-treatment operation may be performed. As shown in step S12 in the fifth figure, the surface of the substrate 10 is first coated with a first flux to facilitate hot dipping. Effect of plating process. In addition, since the metal is heated in the furnace body 62, an oxide film will also be formed on the surface of the metal body in contact with the air. This oxide film will affect the effect of the metal melt coating on the substrate 10. Therefore, as shown in step S14 of the fifth figure, A second flux can be added to the hot-dip plating solution (metal solution, aluminum solution 622) to remove the surface oxide film.
復參閱第二、三圖,並一併參閱第六圖,其為本發明之電化學加工電極進行粉浴製程之一實施例的示意圖。本發明形成披覆層12於基體10之方式係可採用粉浴製程。基體10置入一粉浴爐70之一粉浴腔室702,粉浴腔室702中有與基體10進行粉浴製程之一粉浴粉末73,粉浴粉末73係為金屬粉末、鹵化物活性劑及惰性填充劑等依比例調和而成。一氣體輸入口704連通於粉浴腔室702,而可通以保護性氣體(例如,氬Ar)於粉浴腔室702,防止基體10在粉浴過程中氧化。保護性氣體則可從連通於粉浴腔室702之一氣體輸出口706排出。粉浴爐70置放於一熱處理爐75,以對粉浴爐70進行加熱,使粉浴粉末73之鹵化物活化劑在高溫下分解,並與金屬粉末形成金屬鹵化物氣體,其會形成氣相擴散,之後還原反應使金屬脫離鹵化物沉積在基體10,沉積於基體10之金屬會與基體10相互固溶擴散,如此即形成披覆層12。Referring again to the second and third figures, and also to the sixth figure, it is a schematic diagram of an embodiment of the powder bath manufacturing process of the electrochemical processing electrode of the present invention. The method for forming the coating layer 12 on the substrate 10 according to the present invention is a powder bath process. The base body 10 is placed in a powder bath chamber 702, which is a powder bath furnace 70. The powder bath chamber 702 contains a powder bath powder 73, which is a powder bath process with the base body 10. The powder bath powder 73 is a metal powder and a halide activity. Agents and inert fillers are blended in proportion. A gas input port 704 is connected to the powder bath chamber 702, and a protective gas (for example, argon Ar) can be passed to the powder bath chamber 702 to prevent the substrate 10 from being oxidized during the powder bath. The protective gas can be discharged from a gas output port 706 connected to the powder bath chamber 702. The powder bath furnace 70 is placed in a heat treatment furnace 75 to heat the powder bath furnace 70 to decompose the halide activator of the powder bath powder 73 at a high temperature and form a metal halide gas with the metal powder, which will form a gas. The phase is diffused, and then the reduction reaction causes the metal to be separated from the halide and deposited on the substrate 10. The metal deposited on the substrate 10 and the substrate 10 are dissolved and diffused with each other, so that the coating layer 12 is formed.
復參閱第六圖,設置一感溫棒708於粉浴腔室702,其係用於感測粉浴腔室702內之溫度變化,以便於監測與調節基體10與粉浴粉末73進行粉浴製程之溫度。此外,粉浴爐70具有一冷卻腔室710,其用於冷卻粉浴腔室702,其位於粉浴腔室702之外圍,即粉浴腔室702位於冷卻腔室710內,一冷卻液輸入口712連通於冷卻腔室710,用於通以冷卻液,一冷卻液輸出口714連通於冷卻腔室710,以用於排放冷卻液。Referring again to the sixth figure, a temperature sensing rod 708 is set in the powder bath chamber 702, which is used to sense the temperature change in the powder bath chamber 702, so as to monitor and adjust the base 10 and the powder bath powder 73 for the powder bath. Process temperature. In addition, the powder bath furnace 70 has a cooling chamber 710 for cooling the powder bath chamber 702, which is located on the periphery of the powder bath chamber 702, that is, the powder bath chamber 702 is located in the cooling chamber 710, and a cooling liquid is input. The port 712 is connected to the cooling chamber 710 for passing a cooling liquid, and a cooling liquid output port 714 is connected to the cooling chamber 710 for discharging the cooling liquid.
復參閱第二、三圖,並一併參閱第七圖,其為本發明之電化學加工電極進行微弧氧化製程之一實施例的示意圖。形成披覆層12於基體10後,遂往下進行氧化金屬層124而生成氧化絕緣層16之作業。於本發明之一實施例中,可進行微弧氧化製程或者是退火氧化製程,使披覆層12之部分金屬層124氧化而生成氧化絕緣層16於表面。然而,氧化金屬層124之製程甚多,而並非僅能利用此兩種製程生成氧化絕緣層16。Referring again to the second and third figures, and also to the seventh figure, it is a schematic diagram of one embodiment of the micro-arc oxidation process of the electrochemical machining electrode of the present invention. After the coating layer 12 is formed on the substrate 10, the operation of oxidizing the metal layer 124 to form the oxide insulating layer 16 is performed. In one embodiment of the present invention, a micro-arc oxidation process or an annealing oxidation process may be performed to oxidize a part of the metal layer 124 of the coating layer 12 to generate an oxidized insulating layer 16 on the surface. However, there are many manufacturing processes of the metal oxide layer 124, and the oxide insulating layer 16 cannot be generated by using only these two processes.
本發明以第七圖之微弧氧化裝置作說明,微弧氧化裝置包含電源供應器5,電源供應器5之正極與加工電極1電性連接,加工電極1置放於一電解液槽體80,電解液槽體80容置有一電解液82,電源供應器5之負極與電解液槽體80電性連接。藉由電源供應器5提供電源至電解液槽體80與加工電極1,以進行微弧氧化製程,俾使部分金屬層124氧化而形成氧化絕緣層16。另外,電解液槽體80設置於一冷卻槽體90中,冷卻槽體90之一側設置一冷卻液輸入口902,冷卻槽體90之另一側設置一冷卻液輸出口904。藉由冷卻液輸入口902將冷卻液92注入於冷卻槽體90中,以對電解液槽體90進行冷卻,再透過冷卻液輸出口904將冷卻液92排出於冷卻槽體90外。The invention is illustrated by the micro-arc oxidation device in the seventh figure. The micro-arc oxidation device includes a power supply 5. The positive electrode of the power supply 5 is electrically connected to the processing electrode 1. The processing electrode 1 is placed in an electrolyte tank 80. The electrolytic solution tank 80 contains an electrolytic solution 82, and the negative electrode of the power supply 5 is electrically connected to the electrolytic solution tank 80. The power supply 5 provides power to the electrolytic solution tank 80 and the processing electrode 1 to perform a micro-arc oxidation process, and a part of the metal layer 124 is oxidized to form an oxidized insulating layer 16. In addition, the electrolyte tank 80 is disposed in a cooling tank 90, a cooling liquid input port 902 is provided on one side of the cooling tank 90, and a cooling liquid output port 904 is provided on the other side of the cooling tank 90. The cooling liquid 92 is injected into the cooling tank 90 through the cooling liquid input port 902 to cool the electrolyte tank 90, and then the cooling liquid 92 is discharged out of the cooling tank 90 through the cooling liquid output port 904.
參閱第八A圖以及第八B圖,其分別為本發明之電化學加工電極之第二實施例的截面圖,以及氧化絕緣層之多孔結構的示意圖。如圖所示,本發明之加工電極1更可包含一填補層18,其形成於氧化絕緣層16,因生成氧化絕緣層16之過程可能會導致氧化絕緣層16具有一多孔結構162(如八B圖所示),為填補氧化絕緣層16之多孔結構162,以增加氧化絕緣層16之強度,遂形成填補層18覆蓋於氧化絕緣層16上。Refer to FIG. 8A and FIG. 8B, which are respectively a cross-sectional view of a second embodiment of an electrochemical machining electrode of the present invention, and a schematic view of a porous structure of an oxide insulating layer. As shown in the figure, the processing electrode 1 of the present invention may further include a filling layer 18 formed on the oxidized insulating layer 16. Due to the process of generating the oxidized insulating layer 16, the oxidized insulating layer 16 may have a porous structure 162 (such as As shown in FIG. 8B), in order to fill the porous structure 162 of the oxide insulating layer 16 to increase the strength of the oxide insulating layer 16, a filling layer 18 is formed to cover the oxide insulating layer 16.
參閱第八C圖,其為本發明之電化學加工電極之製造方法之第二實施例的流程圖。如圖所示,此實施例與第一實施例之差異在於,更包含步驟S70,形成填補層18於氧化絕緣層16,填補層18覆蓋氧化絕緣層16,以填補多孔結構162。形成填補層18之方式可採用沸水封孔製程或者是電泳沉積製程。Refer to FIG. 8C, which is a flowchart of a second embodiment of a method for manufacturing an electrochemically-processed electrode according to the present invention. As shown in the figure, the difference between this embodiment and the first embodiment is that step S70 is further included to form a filling layer 18 on the oxide insulating layer 16, and the filling layer 18 covers the oxide insulating layer 16 to fill the porous structure 162. The method for forming the filling layer 18 may be a boiling water sealing process or an electrophoretic deposition process.
參閱第九A圖,其為本發明之電化學加工電極之第三實施例的截面圖。如圖所示,本發明之加工電極1更可包含一阻隔層11,其位於基體10之表面。經由阻隔層11之設置,能夠避免金屬層124之材料與基體10之材料過度互溶,而避免金屬層124之金屬純度不佳。Refer to FIG. 9A, which is a cross-sectional view of a third embodiment of the electrochemically-processed electrode of the present invention. As shown in the figure, the processed electrode 1 of the present invention may further include a barrier layer 11 located on the surface of the substrate 10. Through the arrangement of the barrier layer 11, the material of the metal layer 124 and the material of the base body 10 can be prevented from being excessively miscible, and the metal purity of the metal layer 124 can be avoided.
參閱第九B圖,其為本發明之電化學加工電極之製造方法之第三實施例的流程圖。如圖所示, 此實施例與第一實施例之差異在於,形成披覆層12於基體10之前,更可包含步驟S11,形成阻隔層11於基體10,形成阻隔層11之方式係可採用電鍍製程形成阻隔層11,而阻隔層11之材料可選自於鎳、鉻碳,或者鎳及鉻碳。Refer to FIG. 9B, which is a flowchart of a third embodiment of a method for manufacturing an electrochemically-processed electrode according to the present invention. As shown in the figure, the difference between this embodiment and the first embodiment is that before forming the cover layer 12 before the substrate 10, it may further include step S11, forming the barrier layer 11 on the substrate 10, and forming the barrier layer 11 by using The barrier layer 11 is formed by an electroplating process, and the material of the barrier layer 11 may be selected from nickel, chromium carbon, or nickel and chromium carbon.
綜上所述,本發明之電化學加工電極及其製造方法,係可使加工電極之氧化絕緣層具有良好之固著力,於進行電化學加工時,不易剝離、脫落。另外,基體上形成之阻隔層係可避免金屬層之材料與基體之材料過度互溶。再者,針對優化氧化絕緣層所形成之填補層,係能夠覆蓋氧化絕緣層之多孔結構,以增加氧化絕緣層之強度。於此,本發明之電化學加工電極於進行電化學加工時,因氧化絕緣層與基體之固著力佳,而降低氧化絕緣層之剝離,故能維持工件之加工良率,同時亦能延展加工電極之使用壽命。In summary, the electrochemical processing electrode and the manufacturing method thereof of the present invention can make the oxidized insulating layer of the processing electrode have a good fixing force, and it is not easy to peel off and fall off during electrochemical processing. In addition, the barrier layer formed on the substrate can prevent the material of the metal layer and the material of the substrate from being excessively miscible. Furthermore, the filling layer formed by optimizing the oxidized insulating layer can cover the porous structure of the oxidized insulating layer to increase the strength of the oxidized insulating layer. Here, when the electrochemical processing electrode of the present invention is subjected to electrochemical processing, due to the good adhesion between the oxide insulating layer and the substrate, the peeling of the oxide insulating layer is reduced, so that the processing yield of the workpiece can be maintained and the processing can be extended. Electrode life.
鑑此,本發明確實已經達於突破性之結構,而具有改良之發明內容,同時又能夠達到產業上利用性與進步性,當符合專利法之規定,爰依法提出發明專利申請,懇請 鈞局審查委員授予合法專利權,至為感禱。In view of this, the present invention has indeed reached a groundbreaking structure, with improved contents of the invention, and at the same time, it can achieve industrial applicability and progress. When it complies with the provisions of the Patent Law, it will file an application for an invention patent in accordance with the law. The examiner granted the legal patent right.
1‧‧‧加工電極
10‧‧‧基體
11‧‧‧阻隔層
12‧‧‧披覆層
122‧‧‧固溶層
124‧‧‧金屬層
16‧‧‧氧化絕緣層
162‧‧‧多孔結構
18‧‧‧填補層
2‧‧‧工件
3‧‧‧進給裝置
30‧‧‧夾持元件
4‧‧‧電解液槽體
40‧‧‧電解液供應模組
402‧‧‧電解液
5‧‧‧電源供應器
60‧‧‧進給裝置
602‧‧‧夾持元件
62‧‧‧爐體
622‧‧‧鋁熔液
70‧‧‧粉浴爐
702‧‧‧粉浴腔室
704‧‧‧氣體輸入口
706‧‧‧氣體輸出口
708‧‧‧感溫棒
710‧‧‧冷卻腔室
712‧‧‧冷卻液輸入口
714‧‧‧冷卻液輸出口
73‧‧‧粉浴粉末
75‧‧‧熱處理爐
80‧‧‧電解液槽體
82‧‧‧電解液
90‧‧‧冷卻槽體
902‧‧‧冷卻液輸入口
904‧‧‧冷卻液輸出口
92‧‧‧冷卻液1‧‧‧ processing electrode
10‧‧‧ Matrix
11‧‧‧ barrier
12‧‧‧ Coating
122‧‧‧Solid solution layer
124‧‧‧metal layer
16‧‧‧ oxide insulation
162‧‧‧ porous structure
18‧‧‧ filling layer
2‧‧‧ Workpiece
3‧‧‧feeding device
30‧‧‧ clamping element
4‧‧‧ electrolyte tank
40‧‧‧ Electrolyte supply module
402‧‧‧electrolyte
5‧‧‧ Power Supply
60‧‧‧Feeding device
602‧‧‧ clamping element
62‧‧‧furnace
622‧‧‧Aluminum Melt
70‧‧‧ Powder Bath Furnace
702‧‧‧ powder bath chamber
704‧‧‧Gas inlet
706‧‧‧Gas outlet
708‧‧‧Thermal Stick
710‧‧‧cooling chamber
712‧‧‧Coolant input port
714‧‧‧Coolant outlet
73‧‧‧ powder bath powder
75‧‧‧Heat treatment furnace
80‧‧‧ electrolyte tank
82‧‧‧ Electrolyte
90‧‧‧ cooling tank
902‧‧‧Coolant input port
904‧‧‧Coolant outlet
92‧‧‧ Coolant
第一圖:其為本發明之電化學加工電極運用於電化學加工裝置之示意圖; 第二圖:其為本發明之電化學加工電極之第一實施例的截面圖; 第三圖:其為本發明之電化學加工電極之製造方法之第一實施例的流程圖; 第四圖:其為本發明之電化學加工電極進行熱浸鍍製程之一實施例的示意圖; 第五圖:其為本發明之電化學加工電極進行熱浸鍍製程之前處理的流程圖; 第六圖:其為本發明之電化學加工電極進行粉浴製程之一實施例的示意圖; 第七圖:其為本發明之電化學加工電極進行微弧氧化製程之一實施例的示意圖; 第八A圖:其為本發明之電化學加工電極之第二實施例的截面圖; 第八B圖:其為本發明之電化學加工電極之第二實施例之氧化絕緣層之多孔結構的示意圖; 第八C圖:其為本發明之電化學加工電極之製造方法之第二實施例的流程圖; 第九A圖:其為本發明之電化學加工電極之第三實施例的截面圖;以及 第九B圖:其為本發明之電化學加工電極之製造方法之第三實施例的流程圖。The first figure: it is a schematic diagram of the electrochemical processing electrode of the present invention applied to an electrochemical processing device; the second figure: it is a cross-sectional view of the first embodiment of the electrochemical processing electrode of the present invention; the third figure: it is The flowchart of the first embodiment of the method for manufacturing the electrochemically-processed electrode of the present invention; FIG. 4 is a schematic diagram of an embodiment of the hot-dip plating process of the electrochemically-processed electrode of the present invention; The flow chart of the process of the electrochemical processing electrode of the present invention before the hot dip plating process; FIG. 6 is a schematic diagram of an embodiment of the powder processing process of the electrochemical processing electrode of the present invention; FIG. 7 is a diagram of the present invention Schematic diagram of one embodiment of the micro-arc oxidation process of an electrochemically processed electrode; FIG. 8A is a cross-sectional view of a second embodiment of the electrochemically-processed electrode of the present invention; FIG. 8B is a schematic view of the present invention Schematic diagram of the porous structure of the oxidized insulating layer of the second embodiment of the electrochemically-processed electrode; Figure 8C: It is a flowchart of the second embodiment of the method of manufacturing an electrochemically-processed electrode of the present invention; Figure 9A: Its hair A cross-sectional view of a third embodiment of an electrochemically-processed electrode; and FIG. 9B is a flowchart of a third embodiment of a method of manufacturing an electrochemically-processed electrode of the present invention.
1‧‧‧加工電極 1‧‧‧ processing electrode
10‧‧‧基體 10‧‧‧ Matrix
12‧‧‧披覆層 12‧‧‧ Coating
122‧‧‧固溶層 122‧‧‧Solid solution layer
124‧‧‧金屬層 124‧‧‧metal layer
16‧‧‧氧化絕緣層 16‧‧‧ oxide insulation
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105129659A TWI612183B (en) | 2016-09-12 | 2016-09-12 | Electrochemical processing electrode and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105129659A TWI612183B (en) | 2016-09-12 | 2016-09-12 | Electrochemical processing electrode and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI612183B TWI612183B (en) | 2018-01-21 |
TW201809371A true TW201809371A (en) | 2018-03-16 |
Family
ID=61728494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105129659A TWI612183B (en) | 2016-09-12 | 2016-09-12 | Electrochemical processing electrode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI612183B (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3821756B2 (en) * | 2002-07-01 | 2006-09-13 | 独立行政法人科学技術振興機構 | Metal-based resistance heating element and manufacturing method thereof |
-
2016
- 2016-09-12 TW TW105129659A patent/TWI612183B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI612183B (en) | 2018-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4523139B2 (en) | Electrochemical system and method for stripping metal coatings | |
US8197661B1 (en) | Method for fabricating sputter targets | |
CN107636206A (en) | Method for manufacturing chrome-plated parts and chrome-plating device | |
US20210156041A1 (en) | Metallic coating and method of application | |
EP2652178B1 (en) | Electrochemical deposition apparatus | |
JP2012504192A (en) | Alloy coating apparatus and metal riding method | |
KR20160009816A (en) | Silicon wafer slicing device using wire electric discharge machining | |
RU2149929C1 (en) | Process of microplasma electrolytic machining of surface of current-conducting materials | |
JPWO2016017432A1 (en) | Backing plate in which corrosion-resistant metal and Mo or Mo alloy are diffusion-bonded, and sputtering target-backing plate assembly including the backing plate | |
TW201809371A (en) | Electrochemical machining electrode and its manufacturing method having an oxidation insulating layer fixed to the metal layer to prolong service life | |
CN1675398A (en) | Metal material and method for production thereof | |
CA2781967C (en) | Method for roughening metal surfaces and article manufactured thereby | |
CN107858711A (en) | Metallic matrix electro-plating method | |
Taylor et al. | A pulse/pulse reverse electrolytic approach to electropolishing and through-mask electroetching | |
Jiang et al. | Effect of pulse current parameters on microstructure of tungsten coating electroplated from Na2WO4–WO3–NaPO3 | |
Fratila-Apachitei et al. | Electrode temperature evolution during anodic oxidation of AlSi (Cu) alloys studied in the wall-jet reactor | |
CN102787335B (en) | Titanium alloy pretreatment method | |
TWI783968B (en) | Aluminum plating at low temperature with high efficiency | |
JP6500683B2 (en) | Method of surface modification of titanium base material | |
CN104962911A (en) | Novel process technology method for improving corrosion resistance of magnesium alloy | |
JP2006336050A (en) | Anodization apparatus for metallic component | |
JP6808503B2 (en) | Member joining method | |
CN105618878A (en) | Flexible bundling conductive grinding head electrolytic grinding synchronous arc discharge strengthened combined working method | |
JP6510900B2 (en) | Bonding material for semiconductor device and method of manufacturing the same | |
RU2821036C1 (en) | Method for electrolytic-plasma polishing of part in alternating magnetic field |