[go: up one dir, main page]

TW201805129A - Calibration method for robot arm calibration system comprising a robot, a camera and a calibration member to define the coordinates and a rotation axis - Google Patents

Calibration method for robot arm calibration system comprising a robot, a camera and a calibration member to define the coordinates and a rotation axis Download PDF

Info

Publication number
TW201805129A
TW201805129A TW105125104A TW105125104A TW201805129A TW 201805129 A TW201805129 A TW 201805129A TW 105125104 A TW105125104 A TW 105125104A TW 105125104 A TW105125104 A TW 105125104A TW 201805129 A TW201805129 A TW 201805129A
Authority
TW
Taiwan
Prior art keywords
calibration
robot arm
coordinate
robotic arm
camera
Prior art date
Application number
TW105125104A
Other languages
Chinese (zh)
Other versions
TWI617405B (en
Inventor
馮兆平
Original Assignee
達觀科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 達觀科技有限公司 filed Critical 達觀科技有限公司
Priority to TW105125104A priority Critical patent/TWI617405B/en
Publication of TW201805129A publication Critical patent/TW201805129A/en
Application granted granted Critical
Publication of TWI617405B publication Critical patent/TWI617405B/en

Links

Landscapes

  • Manipulator (AREA)

Abstract

Provided is a calibration method for a robot arm calibration system, the robot arm calibration system includes a robot arm, a camera and a calibration member, the camera has a field of view, the calibration member has a calibration mark. The calibration method includes: controlling the robot arm to grab and move the calibration member, and driving the calibration mark of the calibration member to coincide with the reference mark within the field of view, and recording the coordinate of the robot arm as a first coordinate; controlling the robot arm to rotate to drive the calibration member for rotation by a predetermined angle in a calibration plane; controlling the movement of the robot arm to drive the calibration mark of the calibration member to coincide with the reference mark in the field of view, and recording the coordinate of the robot arm as a second coordinate; and according to the first coordinate and the second coordinate, the rotation axis of the robot arm on the calibration plane is calculated, so as to complete the calibration of the robot arm.

Description

機械手臂校正系統的校正方法Calibration method of robotic arm correction system

本發明係與校正方法有關;特別是指一種機械手臂校正系統的校正方法。The invention relates to a calibration method; in particular, it relates to a calibration method for a robotic arm calibration system.

隨著科技的進步,利用機械手臂實現自動化生產、組裝等流程,已普遍見於現今的生產線當中。其中,由於操控機械手臂所使用的機械座標系與攝影機所攝取之影像的影像座標系並不相同,因此,若欲應用機械手臂進行自動化生產、組裝之前,需先對機械手臂之機械座標系與攝影機的影像座標系進行適當轉換,即,機械手臂的校正。With the advancement of science and technology, the use of robotic arms to realize automated production and assembly processes has been commonly found in today's production lines. Among them, the mechanical coordinate system used to control the robotic arm is not the same as the image coordinate system of the image captured by the camera. Therefore, if you want to use the robotic arm for automated production and assembly, you need to adjust the mechanical coordinate system of the robotic arm and The image coordinates of the camera are appropriately converted, that is, the calibration of the robot arm.

其中,請配合圖1所示,茲介紹目前業界常見的校正方式之一,其校正方式在於:於機械手臂1的夾爪中心處標記有一校正點1a,接著,於攝影機的視野範圍2移動該機械手臂1,並於該攝影機所攝取的影像中對應該機械手臂1之校正點1a的移動軌跡分別標記出三個標記點3a、3b、3c;於後,再以該等標記點3a~3c計算出該機械手臂1的旋轉軸心,藉以實現對該機械手臂的校正。Among them, please refer to FIG. 1 to introduce one of the common correction methods in the industry. The correction method is as follows: a correction point 1a is marked at the center of the gripper claw of the robot arm 1, and then the camera is moved in the field of view 2 of the camera The robotic arm 1 and three moving points 3a, 3b, and 3c corresponding to the correction points 1a of the robotic arm 1 in the image captured by the camera are respectively marked; then, these marked points 3a to 3c are further marked. The rotation axis of the robot arm 1 is calculated, so as to realize the correction of the robot arm.

然而,當所需校正的機械手臂較為大型時,請參圖2所示,受限於攝影機的視野範圍4有限,且於校正時,機械手臂5的擺動範圍不可超出視野範圍4,因此,於進行機械手臂5的校正時,該機械手臂5能擺動的幅度較小,以至於其所取得之標記點6a~6c所算出之機械手臂5的旋轉軸心便會較為不準確,亦即,與該機械手臂5實際上之旋轉軸心會產生相當的誤差。再者,當機械手臂較為大型時,欲以習用機械手臂校正方式進行校正時,由於其機械手臂所需的活動空間較大,對於某些空間較為狹窄的場合中,是不利於此校正方式之進行的。However, when the robotic arm to be calibrated is relatively large, please refer to Figure 2. The field of view 4 restricted by the camera is limited, and the swing range of the robotic arm 5 cannot exceed the field of view 4 during calibration. When the robot arm 5 is calibrated, the amplitude of the robot arm 5 can be smaller, so that the rotation axis of the robot arm 5 calculated by the obtained marking points 6a to 6c will be relatively inaccurate, that is, the The actual axis of rotation of the robot arm 5 will cause considerable errors. Furthermore, when the robotic arm is relatively large, and it is intended to perform calibration with the conventional robotic arm calibration method, the robotic arm requires a large space for movement, which is not conducive to this calibration method in some narrow spaces. ongoing.

換言之,習知的機械手臂校正方式仍有許多不便利性以及需要改善的地方。In other words, the conventional robotic arm calibration method still has many inconveniences and needs improvement.

有鑑於此,本發明之目的在於提供一種機械手臂校正系統的校正方法,可準確且快速地對機械手臂進行校正。In view of this, an object of the present invention is to provide a calibration method for a robotic arm calibration system, which can accurately and quickly calibrate a robotic arm.

緣以達成上述目的,本發明提供的一種機械手臂校正系統的校正方法,該機械手臂校正系統包括有一機械手臂、一攝影機以及一校正件,其中,該攝影機具有一視野範圍,該校正件具有一校正標記;該校正方法包含有以下步驟:A、控制該機械手臂抓取該校正件;B、控制該機械手臂移動,帶動該校正件移動至該攝影機的視野範圍內,並使得該校正件的校正標記與該視野範圍中的一參考標記重合;C、記錄步驟B中該機械手臂於其機械手臂座標系上的座標為一第一座標;D、控制該機械手臂旋轉,帶動該校正件於一校正平面上旋轉一預定角度;E、控制該機械手臂移動,帶動該校正件移動至該攝影機的視野範圍內,並使得該校正件的校正標記與該視野範圍中的該參考標記重合;F、記錄步驟E中該機械手臂於機械手臂座標系上的座標為一第二座標;G、依據該第一座標以及該第二座標,計算出該機械手臂於該校正平面上的旋轉軸心。In order to achieve the above-mentioned object, the present invention provides a calibration method for a robotic arm calibration system. The robotic arm calibration system includes a robotic arm, a camera, and a calibration member. The camera has a field of view and the calibration member has a Calibration mark; the calibration method includes the following steps: A. Control the robotic arm to grab the calibration piece; B. Control the robotic arm to move, move the calibration piece to the field of view of the camera, and make the calibration piece The calibration mark coincides with a reference mark in the field of view; C. Record the coordinate of the robot arm on the coordinate system of the robot arm in step B as a first coordinate; D. Control the rotation of the robot arm to drive the calibration part to Rotate a predetermined angle on a calibration plane; E. Control the movement of the robotic arm to move the calibration element to the field of view of the camera and make the calibration mark of the calibration element coincide with the reference mark in the field of vision; F In step E, the coordinate of the robot arm on the coordinate system of the robot arm is a second coordinate; G. According to the A second coordinate scale and calculates the rotation axis of the robot on the calibration plane.

本發明之效果在於,藉由控制機械手臂抓取校正件,對齊校正標記與視野範圍中的參考標記,以及控制機械手臂旋轉,以帶動校正件於一校正平面旋轉,並再度帶動校正件之校正標記與參考標記重合,便可快速且有效地取得該機械手臂於該校正平面上的旋轉軸心。The effect of the present invention is that by controlling the robotic arm to grasp the calibration part, aligning the calibration mark with the reference mark in the field of view, and controlling the robotic arm to rotate, to drive the calibration part to rotate on a calibration plane, and to drive the calibration part again The mark coincides with the reference mark, and the axis of rotation of the robot arm on the calibration plane can be obtained quickly and efficiently.

為能更清楚地說明本發明,茲舉一較佳實施例並配合圖式詳細說明如後。請參圖3所示,為應用有本發明一較佳實施例之機械手臂校正系統100的基本架構圖,該機械手臂校正系統100包括有一基座10、一機械手臂20、一攝影機30、一校正平台40、一中控電腦50以及一校正件60(參圖4所示)。In order to explain the present invention more clearly, a preferred embodiment is described in detail below with reference to the drawings. Please refer to FIG. 3, which is a basic structural diagram of a robotic arm calibration system 100 to which a preferred embodiment of the present invention is applied. The robotic arm calibration system 100 includes a base 10, a robotic arm 20, a camera 30, a The calibration platform 40, a central control computer 50, and a calibration member 60 (see FIG. 4).

該機械手臂20為多軸、多關節機械手臂,於本實施例中,係以六軸機械手臂為例,該機械手臂20具有一第一端22以及一第二端24,其第一端22係固定於該基座10上,其第二端24係為一自由端,且具有一夾爪26(圖4參照)可供抓取工件。其中,該機械手臂20係與該中控電腦50訊號連接及/或電性連接,並受該中控電腦50的控制而可依據一機械手臂座標系作動。其中,所述的機械手臂座標系可以是直角座標型、圓柱座標型、極座標型等座標系,而為便於說明,於本實施例當中,茲以直角型機械手臂座標系為例。另外,於其他實際實施上,該機械手臂20並不以六軸機械手臂為限,亦可以是三軸、四軸或是四軸以外的機械手臂。The robot arm 20 is a multi-axis, multi-joint robot arm. In this embodiment, a six-axis robot arm is taken as an example. The robot arm 20 has a first end 22 and a second end 24. The first end 22 The second end 24 is fixed to the base 10, and the second end 24 is a free end, and has a clamping jaw 26 (refer to FIG. 4) for grasping the workpiece. The robotic arm 20 is connected to the central control computer 50 by signal and / or electrical connection, and is controlled by the central control computer 50 to act according to a coordinate system of the robotic arm. Wherein, the coordinate system of the robot arm may be a coordinate system such as a rectangular coordinate type, a cylindrical coordinate type, a polar coordinate type, etc., and for convenience of explanation, in this embodiment, a rectangular robot coordinate system is taken as an example. In addition, in other practical implementations, the robot arm 20 is not limited to a six-axis robot arm, and may be a three-axis, a four-axis, or a robot arm other than a four-axis.

該攝影機30係可設置於一承載架(圖未示)上,並可受控制而調整其攝影角度與攝影範圍(或稱視野範圍)。例如,於本實施例當中,該攝影機30係與該中控電腦50訊號連接及/或電性連接,並可受該中控電腦50的控制而可調整其攝影角度,或者稱之可被調整其光軸方向,例如,於本實施例當中,所述的攝影機30的光軸係正對於該校正平台40的一平面,並與該平面垂直,且該攝影機30係對於該平面進行攝影而於該平面上界定有一視野範圍32(如圖4所示)。其中,於本實施例當中,所述校正平台40的平面係平行於世界座標系統當中的XY平面,而所述之攝影機30的光軸係平行於世界座標系統當中的Z軸,而垂直於該XY平面,藉以進行該機械手臂20繞著平行於Z軸之旋轉軸旋轉之旋轉軸心的校正,但於其他實施例當中,並不以此為限。The camera 30 can be set on a carrier (not shown) and can be controlled to adjust its shooting angle and shooting range (or field of view). For example, in this embodiment, the camera 30 is signal-connected and / or electrically connected to the central control computer 50, and can be controlled by the central control computer 50 to adjust its shooting angle, or it can be adjusted The optical axis direction, for example, in this embodiment, the optical axis system of the camera 30 is perpendicular to a plane of the calibration platform 40 and is perpendicular to the plane, and the camera 30 photographs the plane and A field of view 32 is defined on this plane (as shown in Figure 4). In this embodiment, the plane of the correction platform 40 is parallel to the XY plane in the world coordinate system, and the optical axis of the camera 30 is parallel to the Z axis in the world coordinate system and perpendicular to the The XY plane is used to correct the rotation axis of the robot arm 20 about a rotation axis parallel to the Z axis, but in other embodiments, it is not limited to this.

該校正平台40主要用以提供一低雜訊的背景,以供攝影機30進行拍攝,於其他實際實施上,並非以該校正平台40為實施的必要構成要件。The correction platform 40 is mainly used to provide a low-noise background for the camera 30 to shoot. In other practical implementations, the correction platform 40 is not a necessary constituent element for the implementation.

該中控電腦50主要係用以控制該機械手臂20以及該攝影機30的作動,亦即,依據機械手臂座標系控制機械手臂20於世界座標系中移動,並可接收該機械手臂20的回饋訊號(例如:觸碰回饋、壓力回饋訊號等);以及可接收該攝影機30所拍攝之視野範圍32內的影像進行處理,例如,依據該視野範圍32建立出對應的攝影機影像座標系。The central control computer 50 is mainly used to control the operation of the robot arm 20 and the camera 30, that is, to control the robot arm 20 to move in the world coordinate system according to the robot arm coordinate system, and to receive feedback signals from the robot arm 20 (For example, touch feedback, pressure feedback signals, etc.); and can receive images in the field of view 32 captured by the camera 30 for processing, for example, establish a corresponding camera image coordinate system based on the field of view 32.

於後茲說明本發明之機械手臂系統之校正方法的一實施例,請參圖4所示,首先,步驟A:透過該中控電腦50控制該機械手臂20的夾爪26抓取該校正件60。其中,該校正件60係具有一校正標記62,以供校準之用,例如於本實施例當中,所述的校正件60茲以概呈平板狀的物件為例,且該校正標記62係設置於該校正件60的一平面上,而所述的校正標記62為一圓圈,但於其他實施例當中,並不以此為限。另外,於本實施例當中,該機械手臂20的夾爪26係抓取校正件60的一邊緣位置,且相對遠離該校正標記62的位置,如此一來,於校正進行時,所述的機械手臂20較不致擋住所述攝影機30的取像路徑,以避免攝影機30無法有效拍攝出校正標記62,致使校正標記62的位置無法有效地被辨識的情況發生。Hereinafter, an embodiment of the calibration method of the robot arm system of the present invention will be described. Please refer to FIG. 4. First, step A: The central control computer 50 controls the gripper 26 of the robot arm 20 to grasp the calibration piece. 60. The calibration element 60 has a calibration mark 62 for calibration purposes. For example, in this embodiment, the calibration element 60 is a flat-shaped object as an example, and the calibration mark 62 is provided. On a plane of the correction member 60, the correction mark 62 is a circle, but in other embodiments, it is not limited to this. In addition, in this embodiment, the gripper 26 of the robotic arm 20 grasps an edge position of the calibration member 60 and is relatively far from the position of the calibration mark 62. As a result, the mechanism described above is used for calibration. The arm 20 is less likely to block the image capturing path of the camera 30, so as to avoid the situation where the camera 30 cannot effectively capture the correction mark 62 and the position of the correction mark 62 cannot be effectively identified.

接著,步驟B:控制該機械手臂20移動,並帶動該校正件60移動至該攝影機30的視野範圍32內,並使得該校正件60的校正標記62與該視野範圍32中的一參考標記34重合。其中,所述的該參考標記34係指供校正件60之校正標記62進行對位、校準的標記,其係可由使用者透過該中控電腦50於攝影機30的影像座標系上自由選擇,換言之,該參考標記34可以是該視野範圍32上的特定的點或區塊,或是基於其影像座標系上的特定座標。Next, step B: control the robotic arm 20 to move, and drive the correction member 60 to move into the field of view 32 of the camera 30, and make the correction mark 62 of the correction member 60 and a reference mark 34 in the field of view 32 coincide. Wherein, the reference mark 34 refers to a mark for alignment and calibration of the correction mark 62 of the correction member 60, which can be freely selected by the user on the image coordinate system of the camera 30 through the central control computer 50, in other words The reference mark 34 may be a specific point or block on the field of view 32 or based on a specific coordinate on its image coordinate system.

而於本實施例中,所述的參考標記34係位於該攝影機30之視野範圍32的攝影中心位置處,亦即,位於接近該攝影機30之光軸通過處,其中,選擇在攝影中心標記有該參考標記34的優點在於,該攝影機30所攝取的影像在接近光軸處所產生的像差等誤差是最低的,如此一來,便可獲得較為精準的校正結果。另外,於一實施例中,為更進一步提升校正的準確性,於步驟B當中,更可進一步控制該機械手臂20旋轉,以使得該校正件60具有該校正標記62的平面與該攝影機30的光軸垂直,或使得該校正件60具有該校正標記62的平面與該視野範圍32所處之平面平行,藉以使得攝影機30可較為準確、正確地擷取該校正標記62,並利於校正標記62與參考標記34之間的對齊與重合作業。In this embodiment, the reference mark 34 is located at a photographing center position of the field of view 32 of the camera 30, that is, near the optical axis passing of the camera 30, where the photographing center is marked with The advantage of the reference mark 34 is that the errors caused by the image captured by the camera 30 near the optical axis are the lowest, so that a more accurate correction result can be obtained. In addition, in an embodiment, in order to further improve the accuracy of the correction, in step B, the robot arm 20 can be further controlled to rotate so that the plane of the correction member 60 having the correction mark 62 and the plane of the camera 30 The optical axis is vertical, or the plane of the correction element 60 having the correction mark 62 is parallel to the plane of the field of view 32, so that the camera 30 can accurately and correctly capture the correction mark 62 and facilitate the correction mark 62. Alignment and re-cooperation with reference mark 34.

接著,於該校正件60的校正標記62與參考標記34重合後,執行步驟C:記錄前述步驟B中,該機械手臂20於其機械手臂座標系上的座標為一第一座標。例如,於本實施例當中,係以中控電腦50擷取該機械手臂20的座標並記錄為第一座標(X1 ,Y1 ,Z1 ,Rx1 ,Ry1 ,Rz1 )(或稱第一座標值)。Next, after the calibration mark 62 and the reference mark 34 of the calibration member 60 are overlapped, step C is performed: In step B described above, the coordinate of the robot arm 20 on the coordinate system of the robot arm is a first coordinate. For example, in this embodiment, the coordinates of the robot arm 20 are captured by the central control computer 50 and recorded as the first coordinates (X 1 , Y 1 , Z 1 , Rx 1 , Ry 1 , Rz 1 ) (or called First token).

接著,執行步驟D:控制該機械手臂20旋轉,帶動該校正件60於一校正平面上旋轉一預定角度。舉例而言,於本實施例當中,所述的校正平面係依據該機械手臂20所需校正之旋轉軸心來決定,例如,於本實施例當中,係進行機械手臂的Z軸旋轉軸心的校正,因此,所述的校正平面係以世界座標系統中的XY平面為例。另外,於本實施例當中,較佳者,所述的預定角度係選用180度,如圖6所示,為機械手臂20受控制而旋轉,並帶動該校正件60於校正平面上旋轉180度的示意圖,此時,該校正件60之校正標記62係偏離了該參考標記34。Next, step D is executed: the robot arm 20 is controlled to rotate, and the correction member 60 is driven to rotate a predetermined angle on a correction plane. For example, in this embodiment, the correction plane is determined according to the rotation axis of the robot arm 20, for example, in this embodiment, the Z axis rotation axis of the robot arm is adjusted. The correction is therefore based on the XY plane in the world coordinate system as an example. In addition, in this embodiment, preferably, the predetermined angle is selected as 180 degrees. As shown in FIG. 6, the robotic arm 20 is controlled to rotate and drives the correction member 60 to rotate 180 degrees on the calibration plane. At this time, the correction mark 62 of the correction member 60 is deviated from the reference mark 34.

接著,請參圖7所示,執行步驟E:控制機械手臂20移動,以帶動該校正件60移動至該攝影機30的視野範圍32內,並使得該校正件60的校正標記62與視野範圍32中的該參考標記34重合。Next, as shown in FIG. 7, execute step E: control the robotic arm 20 to move the correction member 60 to move within the field of view 32 of the camera 30, and make the correction mark 62 and the field of view 32 of the correction member 60. The reference mark 34 in is coincident.

接著,於該校正件60的校正標記62與參考標記34重合後,執行步驟F:記錄前述步驟E中,該機械手臂20於其機械手臂座標系上的座標為一第二座標。例如,於本實施例當中,係以中控電腦50擷取該機械手臂20的座標並記錄為第二座標(X2 ,Y2 ,Z2 ,Rx2 ,Ry2 ,Rz2 )(或稱第二座標值)。Then, after the calibration mark 62 and the reference mark 34 of the calibration member 60 are overlapped, step F is performed: In step E described above, the coordinate of the robot arm 20 on the coordinate system of the robot arm is a second coordinate. For example, in this embodiment, the coordinates of the robot arm 20 are captured by the central control computer 50 and recorded as the second coordinates (X 2 , Y 2 , Z 2 , Rx 2 , Ry 2 , Rz 2 ) (or called Second coordinate value).

最後,執行步驟G:依據該第一座標以及該第二座標,計算出該機械手臂20於該校正平面上的旋轉軸心。例如,於本實施例當中,由於機械手臂20所進行校正的校正平面係為XY平面,並且該機械手臂20於步驟D中旋轉時的旋轉軸係平行於Z軸,是以,其機械手臂20於XY平面上旋轉的旋轉軸心的座標係與第一座標(X1 ,Y1 ,Z1 ,Rx1 ,Ry1 ,Rz1 )以及第二座標(X2 ,Y2 ,Z2 ,Rx2 ,Ry2 ,Rz2 )共線,且該旋轉軸心的座標係為第一座標與第二座標的中點,亦即,可求得該旋轉軸心於XY平面或者沿平行於Z軸之旋轉軸旋轉的旋轉軸心為(

Figure TW201805129AD00001
,
Figure TW201805129AD00002
,
Figure TW201805129AD00003
,
Figure TW201805129AD00004
,
Figure TW201805129AD00005
,
Figure TW201805129AD00006
)。藉此,透過本發明之機械手臂係統的校正方法,便可快速且有效地找出機械手臂20於特定平面(如本實施例當中的XY平面)上進行旋轉的旋轉軸心,藉以完成機械手臂的校正。Finally, step G is performed: the rotation axis of the robot arm 20 on the calibration plane is calculated according to the first coordinate and the second coordinate. For example, in this embodiment, since the correction plane of the robotic arm 20 is an XY plane, and the rotation axis of the robotic arm 20 when rotating in step D is parallel to the Z axis, so the robotic arm 20 The coordinate system of the rotation axis rotating on the XY plane is the first coordinate (X 1 , Y 1 , Z 1 , Rx 1 , Ry 1 , Rz 1 ) and the second coordinate (X 2 , Y 2 , Z 2 , Rx 2 , Ry 2 , Rz 2 ) are collinear, and the coordinate system of the rotation axis is the midpoint between the first coordinate and the second coordinate. The rotation axis of the rotation axis is (
Figure TW201805129AD00001
,
Figure TW201805129AD00002
,
Figure TW201805129AD00003
,
Figure TW201805129AD00004
,
Figure TW201805129AD00005
,
Figure TW201805129AD00006
). Thereby, through the calibration method of the robot arm system of the present invention, the rotation axis center of the robot arm 20 rotating on a specific plane (such as the XY plane in this embodiment) can be quickly and efficiently found, thereby completing the robot arm. Correction.

值得一提的是,於其他實際實施上,若欲進行機械手臂20在其他平面上旋轉的旋轉軸心時,例如:進行機械手臂20以平行於X(Y)軸的旋轉軸進行旋轉之旋轉軸心的校正,則可調整攝影機30的光軸平行於世界座標系統當中的X(Y)軸,調整校正平台40的平面平行於世界座標系統中的YZ(XZ)平面,並以YZ(XZ)平面作為本發明之校正方法中的校正平面進行校正,同樣可快速且準確地獲得機械手臂20在YZ(XZ)平面上旋轉的旋轉軸心座標。 另外,前述使得校正件於一校正平面上旋轉一預定角度的步驟中,所述的預定角度並不以180度為限,於一實施例當中,亦可以30度、60度或90度等其他角度當作該預定角度,據以對機械手臂進行校正。另外,當選擇旋轉180度以外的預定角度時,便可將第一座標與第二座標視為一等腰三角形兩底角的端點座標,而該預定角度則為該等腰三角形的頂角(頂點內角),藉此,在得知等腰三角形兩底角的端點座標以及頂角之後,便可求得該等腰三角形的頂點座標,而該頂點座標便是機械手臂在平行於該等腰三角形之平面的旋轉軸心座標了。It is worth mentioning that, in other practical implementations, if the axis of rotation of the robot arm 20 on other planes is to be rotated, for example, the robot arm 20 is rotated by a rotation axis parallel to the X (Y) axis For the axis correction, the optical axis of the camera 30 can be adjusted to be parallel to the X (Y) axis in the world coordinate system, and the plane of the adjustment and correction platform 40 can be parallel to the YZ (XZ) plane in the world coordinate system. The plane is corrected as the correction plane in the correction method of the present invention, and the rotation axis coordinates of the robot arm 20 rotating on the YZ (XZ) plane can also be obtained quickly and accurately. In addition, in the foregoing step of causing the correction member to rotate a predetermined angle on a correction plane, the predetermined angle is not limited to 180 degrees, and in one embodiment, it may also be 30 degrees, 60 degrees, or 90 degrees. The angle is used as the predetermined angle to correct the robot arm. In addition, when a predetermined angle other than 180 degrees is selected, the first and second coordinates can be regarded as the endpoint coordinates of the two bottom angles of an isosceles triangle, and the predetermined angle is the top angle of the isosceles triangle. (Inner angle of the vertex), so that after knowing the endpoint coordinates and apex angle of the two bottom corners of the isosceles triangle, the vertex coordinates of the isosceles triangle can be obtained, and the vertex coordinates are the parallel movement of the robot arm The axis of rotation of the plane of the isosceles triangle is coordinated.

再一提的是,習用機械手臂的校正方法,多半是以機械手臂本身的末端點(類似於本實施例中的第二端)作為機械手臂移動、旋轉時供攝影機拍攝的校正標記,然而,上述方式在機械手臂旋轉時,機械手臂本身容易擋住設置於自身的校正標記,而使得攝影機無法有效辨識與追蹤校正標記的所在之處。反觀本發明之校正方法,是以機械手臂另外抓取一設有校正標記的校正件,因此,且該校正件在多個方向與視角上都是突出於機械手臂的,而不容易被機械手臂所遮蔽,因此,在進行校正時,較不易導致攝影機無法追蹤、辨識校正標記的情況發生,而具有較少校正條件之限制的優點。It is also mentioned that the calibration method of the conventional robotic arm mostly uses the end point of the robotic arm (similar to the second end in this embodiment) as the calibration mark for the camera to shoot when the robotic arm moves and rotates. However, In the above method, when the robot arm rotates, the robot arm itself can easily block the calibration mark provided on itself, so that the camera cannot effectively identify and track the location of the calibration mark. In contrast, the correction method of the present invention uses a robotic arm to grab another correction piece provided with a correction mark. Therefore, the correction piece protrudes from the robotic arm in multiple directions and viewing angles, and is not easy to be grasped by the robotic arm. Therefore, during the correction, it is less likely that the camera cannot track and recognize the correction marks, and has the advantage of less restrictions on the correction conditions.

以上所述僅為本發明較佳可行實施例而已,本發明之機械手臂系統之校正方法並不僅局限於僅針對機械手臂在XY、YZ、XZ平面上旋轉之旋轉軸心的校正,於其他實際實施上,舉凡應用本發明說明書及申請專利範圍所為之等效變化,理應包含在本發明之專利範圍內。The above description is only the preferred and feasible embodiment of the present invention. The calibration method of the robotic arm system of the present invention is not limited to the calibration of the rotation axis of the robotic arm in the XY, YZ, and XZ planes. In practice, the equivalent changes in applying the description of the present invention and the scope of patent application should be included in the patent scope of the present invention.

1‧‧‧機械手臂
1a‧‧‧校正點
2‧‧‧視野範圍
3a、3b、3c‧‧‧標記點
4‧‧‧視野範圍
5機械手臂
6a、6b、6c‧‧‧標記點
[本發明]
100‧‧‧機械手臂校正系統
10‧‧‧基座
20‧‧‧機械手臂
22‧‧‧第一端
24‧‧‧第二端
26‧‧‧夾爪
30‧‧‧攝影機
32‧‧‧視野範圍
34‧‧‧參考標記
40‧‧‧校正平台
50‧‧‧中控電腦
60‧‧‧校正件
62‧‧‧校正標記
1‧‧‧ robotic arm
1a‧‧‧correction point
2‧‧‧field of vision
3a, 3b, 3c‧‧‧‧marked points
4‧‧‧ field of view
5 robotic arm
6a, 6b, 6c ‧‧‧ marked points [the present invention]
100‧‧‧ Robotic Arm Calibration System
10‧‧‧ base
20‧‧‧ Robotic arm
22‧‧‧ the first end
24‧‧‧ the second end
26‧‧‧Jaw
30‧‧‧Camera
32‧‧‧field of vision
34‧‧‧Reference mark
40‧‧‧ Calibration platform
50‧‧‧ Central Control Computer
60‧‧‧correction
62‧‧‧correction mark

圖1為習知校正機械手臂的示意圖。 圖2為習知校正機械手臂的示意圖。 圖3為本發明一較佳實施例之機械手臂校正系統的架構圖。 圖4至圖7為進行本發明上述較佳實施例之校正方法的示意圖。Figure 1 is a schematic diagram of a conventional calibration robot arm. Figure 2 is a schematic diagram of a conventional calibration robot arm. FIG. 3 is a structural diagram of a robotic arm correction system according to a preferred embodiment of the present invention. FIG. 4 to FIG. 7 are schematic diagrams of performing the calibration method of the foregoing preferred embodiment of the present invention.

34‧‧‧參考標記 34‧‧‧Reference mark

60‧‧‧校正件 60‧‧‧correction

62‧‧‧校正標記 62‧‧‧correction mark

Claims (7)

一種機械手臂校正系統的校正方法,該機械手臂校正系統包括有一機械手臂、一攝影機以及一校正件,其中,該攝影機具有一視野範圍,該校正件具有一校正標記;該校正方法包含有以下步驟: A、控制該機械手臂抓取該校正件; B、控制該機械手臂移動,帶動該校正件移動至該攝影機的視野範圍內,並使得該校正件的校正標記與該視野範圍中的一參考標記重合; C、記錄步驟B中該機械手臂於其機械手臂座標系上的座標為一第一座標; D、控制該機械手臂旋轉,帶動該校正件於一校正平面上旋轉一預定角度; E、控制該機械手臂移動,帶動該校正件移動至該攝影機的視野範圍內,並使得該校正件的校正標記與該視野範圍中的該參考標記重合; F、記錄步驟E中該機械手臂於機械手臂座標系上的座標為一第二座標; G、依據該第一座標以及該第二座標,計算出該機械手臂於該校正平面上的旋轉軸心。A calibration method for a robotic arm calibration system. The robotic arm calibration system includes a robotic arm, a camera, and a calibration piece. The camera has a field of view and the calibration piece has a calibration mark. The calibration method includes the following steps: : A. Control the robotic arm to grab the correction piece; B. Control the robotic arm to move, move the correction piece to the field of view of the camera, and make the correction mark of the correction piece and a reference in the field of view The marks are coincident; C. The coordinate of the robot arm on the coordinate system of the robot arm in the recording step B is a first coordinate; D. Control the rotation of the robot arm to drive the calibration member to rotate a predetermined angle on a calibration plane; E Control the movement of the robot arm, drive the correction element to move into the field of view of the camera, and make the correction mark of the correction element coincide with the reference mark in the field of vision; F. Record step E. The coordinate on the arm coordinate system is a second coordinate; G. According to the first coordinate and the second coordinate, Calculate the axis of rotation of the robot arm on the calibration plane. 如請求項1所述之機械手臂校正系統的校正方法,其中該參考標記係位於該攝影機之視野範圍的攝影中心。The calibration method of the robotic arm calibration system according to claim 1, wherein the reference mark is located at a photographing center of a field of view of the camera. 如請求項1所述之機械手臂校正系統的校正方法,其中該校正平面係與該攝影機的光軸垂直。The calibration method of the robotic arm calibration system according to claim 1, wherein the calibration plane is perpendicular to the optical axis of the camera. 如請求項1所述之機械手臂校正系統的校正方法,其中該機械手臂係抓取該校正件的邊緣位置,且遠離該校正標記的所在位置。The calibration method of the robotic arm calibration system according to claim 1, wherein the robotic arm grasps an edge position of the calibration member and is far away from a position of the calibration mark. 如請求項1所述之機械手臂校正系統的校正方法,其中,該校正件具有一平面,該校正標記設置於該平面上;於步驟B當中,更包含控制該機械手臂旋轉,使得該校正件的該平面垂直於該攝影機的光軸。The calibration method of the robotic arm calibration system according to claim 1, wherein the calibration member has a plane, and the calibration mark is disposed on the plane; in step B, it further includes controlling the robot arm to rotate so that the calibration member The plane is perpendicular to the optical axis of the camera. 如請求項1所述之機械手臂校正系統的校正方法,其中該預定角度為180度。The calibration method of the robotic arm calibration system according to claim 1, wherein the predetermined angle is 180 degrees. 如請求項1所述之機械手臂校正系統的校正方法,其中於步驟G中,該機械手臂於該校正平面上之旋轉軸心的座標為該第一座標與該第二座標的中點。The calibration method of the robotic arm calibration system according to claim 1, wherein in step G, a coordinate of a rotation axis of the robotic arm on the calibration plane is a midpoint between the first coordinate and the second coordinate.
TW105125104A 2016-08-08 2016-08-08 Correction method for robot arm correction system TWI617405B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105125104A TWI617405B (en) 2016-08-08 2016-08-08 Correction method for robot arm correction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105125104A TWI617405B (en) 2016-08-08 2016-08-08 Correction method for robot arm correction system

Publications (2)

Publication Number Publication Date
TW201805129A true TW201805129A (en) 2018-02-16
TWI617405B TWI617405B (en) 2018-03-11

Family

ID=62014275

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105125104A TWI617405B (en) 2016-08-08 2016-08-08 Correction method for robot arm correction system

Country Status (1)

Country Link
TW (1) TWI617405B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754888B (en) * 2020-01-21 2022-02-11 財團法人工業技術研究院 Calibrating method and calibrating system
CN114174006A (en) * 2019-07-19 2022-03-11 西门子(中国)有限公司 Robot eye calibration method, device, computing equipment, medium and product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12075024B2 (en) 2021-12-20 2024-08-27 Industrial Technology Research Institute System and method for computing relative rotation and relative translation of back-to-back cameras

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639884A (en) * 1979-08-29 1981-04-15 Kobe Steel Ltd Method and device for correcting partial operation of cp control type industrial robot
JP5545534B2 (en) * 2010-04-19 2014-07-09 株式会社安川電機 Robot teaching reproduction device, teaching reproducing method, and teaching data creation method
JP2014065100A (en) * 2012-09-25 2014-04-17 Denso Wave Inc Robot system and method for teaching robot
EP3221095B1 (en) * 2014-11-21 2020-08-19 Seiko Epson Corporation Robot and robot system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174006A (en) * 2019-07-19 2022-03-11 西门子(中国)有限公司 Robot eye calibration method, device, computing equipment, medium and product
CN114174006B (en) * 2019-07-19 2024-03-05 西门子(中国)有限公司 Robot hand-eye calibration method, device, computing equipment, medium and product
US12042942B2 (en) 2019-07-19 2024-07-23 Siemens Ltd., China Robot hand-eye calibration method and apparatus, computing device, medium and product
TWI754888B (en) * 2020-01-21 2022-02-11 財團法人工業技術研究院 Calibrating method and calibrating system
US11289303B2 (en) 2020-01-21 2022-03-29 Industrial Technology Research Institute Calibrating method and calibrating system

Also Published As

Publication number Publication date
TWI617405B (en) 2018-03-11

Similar Documents

Publication Publication Date Title
JP6966582B2 (en) Systems and methods for automatic hand-eye calibration of vision systems for robot motion
TWI672206B (en) Method and apparatus of non-contact tool center point calibration for a mechanical arm, and a mechanical arm system with said calibration function
CN106426172B (en) A kind of scaling method and system of industrial robot tool coordinates system
CN111452040B (en) System and method for associating machine vision coordinate space in a pilot assembly environment
JP6429473B2 (en) Robot system, robot system calibration method, program, and computer-readable recording medium
US9517563B2 (en) Robot system using visual feedback
JP5815761B2 (en) Visual sensor data creation system and detection simulation system
JP2009269110A (en) Assembly equipment
CN107443377B (en) Sensor-robot coordinate system conversion method and robot eye calibration method
CN109318234B (en) A calibration method suitable for visual servo plugging and unplugging operations
CN111369625B (en) Positioning method, positioning device and storage medium
US20160184996A1 (en) Robot, robot system, control apparatus, and control method
CN106003021A (en) Robot, robot control device, and robotic system
CN106003020A (en) Robot, robot control device, and robotic system
WO2020252632A1 (en) Coordinate system calibration method, device, and computer readable medium
WO2021012122A1 (en) Robot hand-eye calibration method and apparatus, computing device, medium and product
CN104924309A (en) Robot system, calibration method and position correction method of robot system
CN112008696A (en) Industrial robot system based on vision
CN111618843B (en) Robot system and control method
CN112720458B (en) System and method for online real-time correction of robot tool coordinate system
CN107756391B (en) Correction method of mechanical arm correction system
CN111618844B (en) Robot system and control method
JP2012101306A (en) Apparatus and method for calibration of robot
TWI617405B (en) Correction method for robot arm correction system
JP2009125839A (en) Weld teaching position correction system