[go: up one dir, main page]

TW201733943A - Glass, glass raw material for press molding, optical element blank, and optical element - Google Patents

Glass, glass raw material for press molding, optical element blank, and optical element Download PDF

Info

Publication number
TW201733943A
TW201733943A TW105135661A TW105135661A TW201733943A TW 201733943 A TW201733943 A TW 201733943A TW 105135661 A TW105135661 A TW 105135661A TW 105135661 A TW105135661 A TW 105135661A TW 201733943 A TW201733943 A TW 201733943A
Authority
TW
Taiwan
Prior art keywords
glass
content
optical element
refractive index
total content
Prior art date
Application number
TW105135661A
Other languages
Chinese (zh)
Other versions
TWI765868B (en
Inventor
Tomoaki Negishi
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58771199&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201733943(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of TW201733943A publication Critical patent/TW201733943A/en
Application granted granted Critical
Publication of TWI765868B publication Critical patent/TWI765868B/en

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

To provide glass having the Abbe number [nu]d of 39.5 to 41.5, satisfying a relation of nd ≥ 2.0927-0.0058*[nu]d, capable of stably supplying and contributing to weight saving of an optical element. There is provided glass which is an oxide glass having, by cation%, total content of B ion+Si ion of 43 to 65%, total content of La ion, Y ion, Gd ion and Yb ion of 25 to 50%, total content of Nb ion, Ti ion, Ta ion and W ion of 3 to 12%, content of Zr ion of 2 to 8%, each cation ratio in a predetermined range and the Abbe number [nu]d in a range of 39.5 to 41.5 and refractive index nd satisfying the above-mentioned relation to the Abbe number [nu]d.

Description

玻璃、壓製成型用玻璃材料、光學元件坯件和光學元件 Glass, glass materials for press molding, optical component blanks and optical components

本發明關於一種玻璃、壓製成型用玻璃材料、光學元件坯件和光學元件。 The present invention relates to a glass, a glass material for press molding, an optical element blank, and an optical element.

藉由將由高折射率低色散玻璃形成的透鏡與由超低色散玻璃形成的透鏡等進行組合而製成膠合透鏡,從而能夠校正色像差並且使光學系統的緊湊化成為可能。因此,高折射率低色散玻璃作為構成攝像光學系統、投影機等投影光學系統的光學元件而佔有非常重要的位置。這樣的高折射率低色散玻璃,記載於例如專利文獻1~20中。 By combining a lens formed of a high refractive index low-dispersion glass with a lens formed of ultra-low dispersion glass or the like to form a cemented lens, it is possible to correct chromatic aberration and to make the optical system compact. Therefore, the high refractive index low dispersion glass occupies a very important position as an optical element constituting a projection optical system such as an imaging optical system or a projector. Such a high refractive index low dispersion glass is described in, for example, Patent Documents 1 to 20.

[先前技術文獻] [Previous Technical Literature]

[專利文獻] [Patent Literature]

專利文獻1:日本特開2007-063071號公報。 Patent Document 1: Japanese Laid-Open Patent Publication No. 2007-063071.

專利文獻2:日本特開2007-230835號公報。 Patent Document 2: Japanese Laid-Open Patent Publication No. 2007-230835.

專利文獻3:日本特開2007-249112號公報。 Patent Document 3: Japanese Laid-Open Patent Publication No. 2007-249112.

專利文獻4:日本特開2007-261826號公報。 Patent Document 4: Japanese Laid-Open Patent Publication No. 2007-261826.

專利文獻5:日本特開2003-267748號公報。 Patent Document 5: Japanese Laid-Open Patent Publication No. 2003-267748.

專利文獻6:日本特開2009-203083號公報。 Patent Document 6: Japanese Laid-Open Patent Publication No. 2009-203083.

專利文獻7:日本特開2011-230992號公報。 Patent Document 7: Japanese Laid-Open Patent Publication No. 2011-230992.

專利文獻8:日本特開2012-025638號公報。 Patent Document 8: Japanese Laid-Open Patent Publication No. 2012-025638.

專利文獻9:日本特開昭54-090218號公報。 Patent Document 9: Japanese Laid-Open Patent Publication No. SHO 54-090218.

專利文獻10:日本特開昭56-160340號公報。 Patent Document 10: Japanese Laid-Open Patent Publication No. SHO 56-160340.

專利文獻11:日本特開2001-348244號公報。 Patent Document 11: Japanese Laid-Open Patent Publication No. 2001-348244.

專利文獻12:日本特開2008-001551號公報。 Patent Document 12: Japanese Laid-Open Patent Publication No. 2008-001551.

專利文獻13:日本特表2013-536791號公報。 Patent Document 13: Japanese Laid-Open Patent Publication No. 2013-536791.

專利文獻14:WO10/053214。 Patent Document 14: WO10/053214.

專利文獻15:日本特開2012-180278號公報。 Patent Document 15: Japanese Laid-Open Patent Publication No. 2012-180278.

專利文獻16:日本特開2012-236754號公報。 Patent Document 16: Japanese Laid-Open Patent Publication No. 2012-236754.

專利文獻17:日本特開2014-084235號公報。 Patent Document 17: Japanese Laid-Open Patent Publication No. 2014-084235.

專利文獻18:日本特開2014-062025號公報。 Patent Document 18: Japanese Laid-Open Patent Publication No. 2014-062025.

專利文獻19:日本特開2014-062026號公報。 Patent Document 19: Japanese Laid-Open Patent Publication No. 2014-062026.

專利文獻20:日本特開2011-93780號公報。 Patent Document 20: Japanese Laid-Open Patent Publication No. 2011-93780.

對於光學元件用玻璃,為了示出光學特性的分佈,廣泛地使用光學特性圖(或也可稱為阿貝圖表)。光學特性圖以如下方式作成:取阿貝數(Abbe number,νd)在橫軸,取折射率(nd)在縱軸,阿貝數(νd)從橫軸的右側向左側增加,折射率從縱軸的下方向上方增加。應予說明的是,以下只要沒有特別的記載,折射率、阿貝數是指對於氦的d線(波長587.56nm)的折射率(nd)、對於氦的d線(波長587.56nm)的阿貝數(νd)。 For the glass for optical elements, an optical characteristic map (or may also be referred to as an Abbe chart) is widely used in order to show the distribution of optical characteristics. The optical characteristic map is prepared in such a manner that the Abbe number (νd) is on the horizontal axis, the refractive index (nd) is on the vertical axis, and the Abbe number (νd) is increased from the right side to the left side of the horizontal axis. The vertical direction of the vertical axis increases. In addition, unless otherwise indicated, the refractive index and Abbe number refer to the refractive index (nd) of the d line (wavelength 587.56 nm) of 氦, and the d line (wavelength of 587.56 nm) of 氦. Bay number (νd).

光學特性圖中,高折射率低色散玻璃(高nd高νd玻璃)的光學特性一般示出當阿貝數變小時折射率增加、當阿 貝數增加時折射率降低的所謂的向右上升的分佈。這可認為是由於以下的原因。 In the optical characteristic diagram, the optical characteristics of the high refractive index low dispersion glass (high nd high νd glass) generally show that when the Abbe number becomes smaller, the refractive index increases, and when The so-called rightward rising distribution of the refractive index decreases as the number of bayons increases. This can be considered for the following reasons.

高折射率低色散玻璃大多含有氧化硼和氧化鑭等稀土氧化物。在這樣的玻璃中,為了在不減少阿貝數的情況下提高折射率,則要提高稀土類氧化物的含量。但是,在現有技術的高折射率低色散玻璃中,當提高稀土氧化物的含量時,玻璃的熱穩定性下降,在製造玻璃的過程中玻璃會顯示出失透傾向。因此,在先前技術的高折射率低色散的玻璃中,難以在抑制為了用作光學元件材料的玻璃的失透的同時使阿貝數和折射率一同提高。這點被認為是先前技術的高折射率低色散玻璃在光學特性圖中示出上述這樣分佈的原因。 High refractive index low dispersion glass mostly contains rare earth oxides such as boron oxide and cerium oxide. In such a glass, in order to increase the refractive index without reducing the Abbe number, the content of the rare earth oxide is increased. However, in the prior art high refractive index low dispersion glass, when the content of the rare earth oxide is increased, the thermal stability of the glass is lowered, and the glass exhibits a tendency to devitrify during the process of producing the glass. Therefore, in the prior art high refractive index low dispersion glass, it is difficult to suppress the Abbe number and the refractive index together while suppressing the devitrification of the glass used as the material of the optical element. This is considered to be the reason why the prior art high refractive index low dispersion glass shows the above distribution in the optical characteristic diagram.

另一方面,在光學系統的設計中,折射率高、阿貝數也大(色散低)的玻璃是對於色像差的校正、光學系統的高功能化、緊湊化極其有效的光學元件用材料。因此,在光學特性圖上設定向右上升的直線,提供這條直線上和比直線折射率高(圖上位於直線左側的區域)的玻璃的意義非常大。 On the other hand, in the design of the optical system, the glass having a high refractive index and a large Abbe number (low dispersion) is an optical element material which is extremely effective for correcting chromatic aberration, high function of an optical system, and compactness. . Therefore, setting a straight line rising to the right on the optical characteristic map provides a very large meaning on the straight line and the glass having a higher refractive index than the straight line (the area on the left side of the line on the drawing).

從以上的方面出發,阿貝數(νd)為39.5~41.5、相對於該阿貝數、折射率(nd)為用2.0927-0.0058×νd求得的值以上的玻璃即滿足nd2.0927-0.0058×νd的關係的玻璃是在光學系統中有用的高折射率低色散玻璃。 From the above aspects, the Abbe number (νd) is 39.5 to 41.5, and the glass having a value equal to or higher than the Abbe number and the refractive index (nd) of 2.0927 to 0.0058 × νd satisfies nd. A glass having a relationship of 2.0927-0.0058 x νd is a high refractive index low dispersion glass useful in an optical system.

相對於此,在專利文獻1~20所記載的玻璃中,阿貝數(νd)的範圍為39.5~41.5、滿足nd2.0927-0.0058×νd的關係的高折射率低色散玻璃包含釓(Gd)、鉭(Ta)的任一的成分。然而,雖然Gd、Ta都是稀少而價格昂貴的元素,但 是近年在各種產業領域中的需求正在增加,因此相對於市場的需求而供給不足。因此,從高折射率低色散玻璃的穩定供給的觀點出發,期望在高折射率低分散玻璃中降低Gd、Ta的含量。 On the other hand, in the glass described in Patent Documents 1 to 20, the Abbe number (νd) ranges from 39.5 to 41.5, and satisfies nd. The high refractive index low dispersion glass having a relationship of 2.0927 to 0.0058 x νd contains any of strontium (Gd) and strontium (Ta). However, although both Gd and Ta are rare and expensive elements, demand in various industrial fields is increasing in recent years, and thus supply is insufficient relative to market demand. Therefore, from the viewpoint of stable supply of high refractive index low dispersion glass, it is desirable to reduce the content of Gd and Ta in the high refractive index low dispersion glass.

另外,構成攝像光學系統、投影機等投影光學系統的光學元件期望輕量化。這是因為將光學元件輕量化關係到安裝該光學元件的攝像光學系統、投影光學系統的輕量化。例如,當將重的光學元件安裝在自動對焦式的照相機中時,驅動自動對焦時的電耗增加,電池會快速消耗。相對於此,如果將光學元件進行輕量化,則能夠降低驅動自動對焦時的電耗,延長電池的壽命。 Further, an optical element constituting a projection optical system such as an imaging optical system or a projector is expected to be lighter. This is because the optical element is lightweight and related to the weight reduction of the imaging optical system and the projection optical system in which the optical element is mounted. For example, when a heavy optical component is mounted in an auto-focusing camera, power consumption when driving autofocus increases, and the battery is quickly consumed. On the other hand, if the optical element is made lighter, the power consumption at the time of driving the autofocus can be reduced, and the life of the battery can be prolonged.

但是,本發明人認為,專利文獻1~20中記載的玻璃中使用阿貝數(νd)的範圍為39.5~41.5、滿足nd2.0927-0.0058×νd的關係的高折射率低色散玻璃而製作的光學元件有變重的傾向。這是因為,在專利文獻1~20中記載的用於高折射率低色散化的組成調整中,有玻璃的比重增大的傾向。 However, the present inventors believe that the range of the Abbe number (νd) used in the glasses described in Patent Documents 1 to 20 is 39.5 to 41.5, which satisfies nd. An optical element produced by a high refractive index low dispersion glass having a relationship of 2.0927 to 0.0058 x νd tends to become heavy. This is because, in the composition adjustment for high refractive index and low dispersion described in Patent Documents 1 to 20, the specific gravity of the glass tends to increase.

本發明的一個方式的目的在於提供一種阿貝數(νd)為39.5~41.5、滿足nd2.0927-0.0058×νd的關係、能夠穩定供給且能有助於光學元件的輕量化的玻璃。 An object of one aspect of the present invention is to provide an Abbe number (νd) of 39.5 to 41.5, satisfying nd A relationship between 2.0927 and 0.0058 × νd, a glass that can be stably supplied and contributes to weight reduction of an optical element.

本發明的一個方式關於一種玻璃,為氧化物玻璃,以陽離子%表示,B3+和Si4+的合計含量為43~65%;La3+、Y3+、Gd3+和Yb3+的合計含量為25~50%;Nb5+、Ti4+、Ta5+和W6+的合計含量為3~12%;Zr4+含量為2~8%;B3+和Si4+的合 計含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}為0.70~1.42;B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}為5.80~7.70;W6+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}為0.50以下;Zn2+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}為0.17以下;La3+含量含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}為0.50~0.95;Y3+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}為0.10~0.50;Gd3+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}為0.10以下;Ta5+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}為0.2以下;阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)相對於阿貝數(νd)滿足下述(1)式:nd2.0927-0.0058×νd。 One aspect of the present invention relates to a glass which is an oxide glass represented by a cation %, and a total content of B 3+ and Si 4+ is 43 to 65%; La 3+ , Y 3+ , Gd 3+ , and Yb 3+ The total content is 25~50%; the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is 3~12%; Zr 4+ content is 2~8%; B 3+ and Si 4+ The ratio of the total amount of cations to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is {(B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ + Yb 3+ )} is 0.70 to 1.42; the ratio of the total content of B 3+ and Si 4+ to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is {(B 3+ +Si) 4+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 5.80 to 7.70; the total content of W 6+ is relative to Nb 5+ , Ti 4+ , Ta 5+ and W 6+ The content of the cation ratio {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 0.50 or less; the Zn 2+ content is relative to La 3+ , Y 3+ , Gd 3+ and Yb 3+ cations total content ratio {Zn 2+ / (La 3+ + Y 3+ + Gd 3+ + Yb 3+)} is 0.17 or less; the content of La 3+ content with respect to the La 3+, Y 3+, The cation ratio of the total content of Gd 3+ and Yb 3+ is {La 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.50-0.95; the content of Y 3+ is relative to La 3+ The cation ratio of the total content of Y 3+ , Gd 3+ and Yb 3+ is {Y 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.10~0.50; Gd 3+ content The cation ratio {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} with respect to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is 0.10 or less; Cation ratio of Ta 5+ content relative to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ {Ta 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} It is 0.2 or less; the Abbe number (νd) ranges from 39.5 to 41.5, and the refractive index (nd) satisfies the following formula (1) with respect to the Abbe number (νd): nd 2.0927-0.0058×νd.

上述玻璃是在阿貝數(νd)的範圍為39.5~41.5中滿足nd2.0927-0.0058×νd的關係的玻璃,包含Gd3+的各種成分(亦即La3+、Y3+、Gd3+、Yb3+)的合計含量和包含Ta5+的各種成分(亦即Nb5+、Ti4+、Ta5+、W6+)的合計含量在上述的範圍中,滿足在分母或分子中包含Gd3+、Ta5+的上述陽離子比。因此,在玻璃組成中,Gd、Ta所占的比率降低。上述玻璃藉由在滿 足這樣的合計含量和陽離子比的組成中進行滿足上述的含量、合計含量和陽離子比的組成調整,從而能夠實現高的熱穩定性(難失透的性質)和低比重化。利用經過低比重化的玻璃,能夠使由該玻璃形成的光學元件輕量化。 The above glass satisfies nd in the range of Abbe number (νd) of 39.5 to 41.5. a glass having a relationship of 2.0927-0.0058×νd, comprising a total content of various components of Gd 3+ (ie, La 3+ , Y 3+ , Gd 3+ , and Yb 3+ ) and various components including Ta 5+ (ie, The total content of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ ) is in the above range, and satisfies the above cation ratio including Gd 3+ and Ta 5+ in the denominator or the molecule. Therefore, in the glass composition, the ratio of Gd and Ta is lowered. By adjusting the composition satisfying the above-described content, total content, and cation ratio in a composition satisfying such a total content and a cation ratio, the glass can achieve high thermal stability (difficult to devitrify property) and low specific gravity. . The optical element formed of the glass can be made lighter by the glass having a low specific gravity.

根據本發明的一個方式,能夠提供具有在光學系統中有用的光學特性、能夠穩定供給、且可有助於光學元件的輕量化的玻璃。進而,根據本發明的一個方式,能夠提供由上述玻璃形成的壓製成型用玻璃材料、光學元件坯件和光學元件。 According to an aspect of the present invention, it is possible to provide a glass which has optical characteristics useful in an optical system, can be stably supplied, and contributes to weight reduction of an optical element. Further, according to one aspect of the present invention, it is possible to provide a glass material for press molding, an optical element blank, and an optical element which are formed of the above glass.

圖1是在比較例6中評價的玻璃的照片。 1 is a photograph of a glass evaluated in Comparative Example 6.

圖2是將實施例1的各玻璃和比較例1~4的各玻璃的阿貝數(νd)取在橫軸、將根據後述的(A)式計算出的值A取在縱軸的圖表。 2 is a graph in which the Abbe number (νd) of each of the glass of Example 1 and each of Comparative Examples 1 to 4 is taken on the horizontal axis, and the value A calculated according to the formula (A) described later is taken on the vertical axis. .

[玻璃] [glass]

本發明的一個方式的玻璃是一種氧化物玻璃,其具有上述玻璃組成,阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)相對於阿貝數(νd)滿足上述(1)式。 The glass of one embodiment of the present invention is an oxide glass having the above glass composition, the Abbe number (νd) is in the range of 39.5 to 41.5, and the refractive index (nd) satisfies the above with respect to the Abbe number (νd) (1) )formula.

以下,對上述玻璃的細節進行說明。 Hereinafter, the details of the above glass will be described.

本發明中的玻璃組成能夠藉由例如ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)等 方法進行定量。藉由ICP-AES求得的分析值有時包含分析值的±5%左右的測定誤差。此外,本說明書和本發明中,構成成分的含量為0%、不包含或者不導入意味著基本上不含該構成成分,指的是該構成成分的含量為雜質水平程度以下。 The glass composition in the present invention can be, for example, ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) or the like. The method is quantified. The analysis value obtained by ICP-AES sometimes includes a measurement error of about ±5% of the analysis value. Further, in the present specification and the present invention, the content of the constituent component is 0%, and the inclusion or non-introduction means that the constituent component is substantially not contained, and the content of the constituent component is not more than the impurity level.

本發明中,對於陽離子成分用陽離子%來表示玻璃組成。像公知的那樣,陽離子%是將玻璃中包含的全部的陽離子成分的合計含量設為100%的百分率。 In the present invention, the glass component is represented by the cationic component % of the cationic component. As is well known, the cation % is a percentage in which the total content of all the cation components contained in the glass is 100%.

以下,只要沒有特別的記載,陽離子成分的含量、多種陽離子成分的含量的合計(合計含量)用陽離子%表示。進而,在陽離子%表示中,將陽離子成分彼此的含量(也包含多種陽離子成分的合計含量)的比稱為陽離子比。 Hereinafter, the total content (total content) of the content of the cationic component and the content of the plurality of cationic components is represented by the cationic % unless otherwise specified. Further, in the cation % expression, the ratio of the content of the cation components (including the total content of the plurality of cation components) is referred to as a cation ratio.

以下,關於數值範圍,有時將(更佳)較佳的下限和(更佳)較佳的上限示於表中記載。在表中,越記載於下方的數值越佳,記載於最下方的數值最佳。此外,只有沒有特別的記載,(更佳)較佳的下限是指記載值以上的值(更佳)較佳,(更佳)較佳的上限是指記載值以下的值(更佳)較佳。能夠使表中的(更佳)較佳的下限的列記載的數值和(更佳)較佳的上限的列記載的數值任意地組合來規定數值範圍。 Hereinafter, with respect to the numerical range, the (better) preferred lower limit and (better) preferred upper limit are sometimes shown in the table. In the table, the numerical value described below is better, and the numerical value described at the bottom is the best. Further, unless otherwise specified, the (better) preferred lower limit means that the value above the value (better) is better, and the (better) preferred upper limit means the value below the value (better). good. The numerical value range can be arbitrarily combined with the numerical values described in the column of the (better) preferred lower limit in the table and the numerical values described in the column of the (better) preferred upper limit.

<玻璃組成> <glass composition>

B3+、Si4+是玻璃的網絡形成成分。當B3+和Si4+的合計含量(B3++Si4+)為43%以上時,能夠提高玻璃的熱穩定性,抑制製造中的玻璃的晶化。另一方面,當B3+的含量和Si4+的合計含量為65%以下時,能夠抑制折射率(nd)的降低,因此能製作具有上述的光學特性的玻璃。因此,上述玻璃中的B3+和Si4+ 的合計含量的範圍設為43~65%。B3+和Si4+的合計含量的較佳的下限和較佳的上限如下表1所示。 B 3+ and Si 4+ are network forming components of glass. When the total content (B 3+ + Si 4+ ) of B 3+ and Si 4+ is 43% or more, the thermal stability of the glass can be improved, and the crystallization of the glass during production can be suppressed. On the other hand, when the content of B 3+ and the total content of Si 4+ are 65% or less, the decrease in the refractive index (nd) can be suppressed, so that the glass having the above optical characteristics can be produced. Therefore, the range of the total content of B 3+ and Si 4+ in the above glass is set to 43 to 65%. A preferred lower limit and a preferred upper limit of the total content of B 3+ and Si 4+ are shown in Table 1 below.

La3+、Y3+、Gd3+和Yb3+是具有抑制阿貝數(νd)的減少並且提高折射率的作用的成分。此外,這些成分也具有改善玻璃的化學耐久性、耐候性、提高玻璃化轉變溫度的作用。 La 3+ , Y 3+ , Gd 3+ , and Yb 3+ are components having an effect of suppressing a decrease in the Abbe number (νd) and increasing the refractive index. Further, these components also have an effect of improving the chemical durability, weather resistance, and glass transition temperature of the glass.

當La3+、Y3+、Gd3+和Yb3+的合計含量(La3++Y3++Gd3++Yb3+)為25%以上時,能夠抑制折射率(nd)的降低,因此能夠製作具有上述的光學特性的玻璃。進而也能夠抑制玻璃的化學耐久性、耐候性的降低。另外,當玻璃化轉變溫度(glass transition temperature,Tg)降低時,對玻璃進行機械加工(切斷、切削、研磨、拋光等)時玻璃變得易於破損(機械加工性降低),但是當La3+、Y3+、Gd3+和Yb3+的合計含量為25%以上時,能夠抑制玻璃化轉變溫度的降低,因此也能夠提高機械加工性。另一方面,當La3+、Y3+、Gd3+和Yb3+的各成分的合計含量為50%以下時,能夠提高玻璃的熱穩定性,因此也能夠抑制製造玻璃時的晶化、降低熔融玻璃時的原料的熔融殘留。此外,還能夠抑制比重的上升。因此,在上述玻璃中,La3+、Y3+、Gd3+和Yb3+的合計含量的範圍設為25~50%。La3+、Y3+、Gd3+和Yb3+的 合計含量的較佳的下限和較佳的上限如下表2所示。 When the total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ (La 3+ + Y 3+ + Gd 3+ + Yb 3+ ) is 25% or more, the refractive index (nd) can be suppressed. Since it is lowered, it is possible to produce a glass having the above optical characteristics. Further, it is also possible to suppress chemical durability and deterioration of weather resistance of the glass. In addition, when the glass transition temperature (Tg) is lowered, the glass is easily broken (machineability is lowered) when the glass is machined (cut, cut, polished, polished, etc.), but when La 3 When the total content of + , Y 3+ , Gd 3+ and Yb 3+ is 25% or more, the decrease in the glass transition temperature can be suppressed, so that the machinability can be improved. On the other hand, when the total content of each component of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ is 50% or less, the thermal stability of the glass can be improved, and therefore, the crystallization at the time of glass production can be suppressed. And the melting residue of the raw material when the molten glass is lowered. In addition, it is also possible to suppress an increase in the specific gravity. Therefore, in the above glass, the range of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is set to 25 to 50%. A preferred lower limit and a preferred upper limit of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ are shown in Table 2 below.

Nb5+、Ti4+、Ta5+和W6+是具有提高折射率的作用的成分,藉由使其適量含有,從而還具有改善玻璃的熱穩定性的作用。當Ti4+、Nb5+、Ta5+和W6+的合計含量(Nb5++Ti4++Ta5++W6+)為3%以上時,能夠維持熱穩定性並且實現上述的光學特性。 另一方面,當Nb5+、Ti4+、Ta5+和W6+的合計含量為12%以下時,能夠抑制熱穩定性的降低和阿貝數(νd)的降低。因此,在上述玻璃中,Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍設為3~12%。Nb5+、Ti4+、Ta5+和W6+的合計含量的較佳的下限和較佳的上限如下表3所示。 Nb 5+ , Ti 4+ , Ta 5+ and W 6+ are components having an effect of increasing the refractive index, and by containing them in an appropriate amount, they also have an effect of improving the thermal stability of the glass. When the total content of Ti 4+ , Nb 5+ , Ta 5+ , and W 6+ (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ ) is 3% or more, thermal stability can be maintained and the above can be achieved. Optical properties. On the other hand, when the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is 12% or less, it is possible to suppress a decrease in thermal stability and a decrease in Abbe number (νd). Therefore, in the above glass, the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is in the range of 3 to 12%. A preferred lower limit and a preferred upper limit of the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ are shown in Table 3 below.

Zr4+是具有提高折射率的作用的成分,藉由使其適量含有,從而還具有改善玻璃的熱穩定性的作用。此外,Zr4+ 也具有藉由提高玻璃化轉變溫度從而在進行機械加工時使玻璃不易破損的作用。為了良好地得到這些效果,在上述玻璃中,將Zr4+的含量設為2%以上。另一方面,當Zr4+的含量為8%以下時,能改善玻璃的熱穩定性,因此能夠抑制玻璃製造時的晶化、玻璃熔融時的熔融殘留的產生。因此,上述玻璃中的Zr4+含量的範圍設為2~8%。Zr4+含量的較佳的下限和較佳的上限如下表4所示。 Zr 4+ is a component having an effect of increasing the refractive index, and has an effect of improving the thermal stability of the glass by containing it in an appropriate amount. Further, Zr 4+ also has an effect of making the glass less susceptible to breakage during mechanical processing by increasing the glass transition temperature. In order to obtain these effects favorably, the content of Zr 4+ is set to 2% or more in the above glass. On the other hand, when the content of Zr 4+ is 8% or less, the thermal stability of the glass can be improved. Therefore, it is possible to suppress the occurrence of crystallization during the production of the glass and the occurrence of the melt residue during the glass melting. Therefore, the range of the Zr 4+ content in the above glass is set to 2 to 8%. The preferred lower limit and preferred upper limit of the Zr 4+ content are shown in Table 4 below.

為了實現阿貝數(νd)為39.5~41.5、折射率(nd)和阿貝數(νd)滿足上述(1)式的關係的光學特性,較佳在上述玻璃中將Zr4+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Zr4+含量/(Nb5++Ti4++Ta5++W6+)}的範圍設為0.48~2.20。從抑制玻璃化轉變溫度的降低(由此改善機械加工性)的觀點出發,亦較佳上述陽離子比的範圍為0.48~2.20。此外,從熱穩定性的提高和玻璃的低色散化的觀點出發,亦較佳上述陽離子比為0.48以上。另一方面,從熔解性的改善和晶化的抑制的觀點出發,亦較佳上述陽離子比為2.20以下。陽離子比{Zr4+含量/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和更佳的上限如下表5所示。 In order to achieve an optical property in which the Abbe number (νd) is 39.5 to 41.5, the refractive index (nd), and the Abbe number (νd) satisfy the relationship of the above formula (1), it is preferred to compare the Zr 4+ content in the above glass. The ratio of the cation ratio of {Zr 4+ content/(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} of the total content of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ is set to 0.48. ~2.20. From the viewpoint of suppressing a decrease in the glass transition temperature (and thereby improving machinability), the range of the above cation ratio is preferably 0.48 to 2.20. Further, from the viewpoint of improvement in thermal stability and low dispersion of glass, the cation ratio is preferably 0.48 or more. On the other hand, from the viewpoint of improvement in meltability and suppression of crystallization, the cation ratio is preferably 2.20 or less. A more preferred lower limit and a higher upper limit of the cation ratio {Zr 4+ content / (Nb 5 + + Ti 4 + + Ta 5 + + W 6+ )} are shown in Table 5 below.

為了實現改善玻璃的熱穩定性並且阿貝數(νd)為39.5~41.5、折射率(nd)和阿貝數(νd)滿足上述(1)式的關係的光學特性,在上述玻璃中,將B3+和Si4+的合計含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{B3++Si4+/(La3++Y3++Gd3++Yb3+)}設為0.70~1.42。當陽離子比((B3++Si4+)/(La3++Y3++Gd3++Yb3+))為0.70以上時,能夠改善玻璃的熱穩定性,因此能夠抑制玻璃的失透。此外,也能夠抑制玻璃的比重的增大。另一方面,如果陽離子比((B3++Si4+)/(La3++Y3++Gd3++Yb3+))為1.42以下時,能夠實現上述的光學特性。陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限如下表6所示。 In order to achieve an improvement in the thermal stability of the glass and an Abbe's number (νd) of 39.5 to 41.5, a refractive index (nd) and an Abbe number (νd) satisfying the optical characteristics of the above relationship (1), in the above glass, The cation ratio of the total content of B 3+ and Si 4+ to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ {B 3+ +Si 4+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is set to 0.70~1.42. When the cation ratio ((B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ +Yb 3+ ))) is 0.70 or more, the thermal stability of the glass can be improved, and thus the glass can be suppressed. Destruction. Further, it is also possible to suppress an increase in the specific gravity of the glass. On the other hand, when the cation ratio ((B 3+ + Si 4+ ) / (La 3+ + Y 3+ + Gd 3+ + Yb 3+ ))) is 1.42 or less, the above optical characteristics can be achieved. A preferred lower limit and a preferred upper limit of the cation ratio {(B 3+ + Si 4+ ) / (La 3+ + Y 3+ + Gd 3+ + Yb 3+ )} are shown in Table 6 below.

為了實現改善玻璃的熱穩定性並且抑制折射率(nd)的降低的上述的光學特性,在上述玻璃中,將B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為7.70以下。 In order to achieve the above optical characteristics for improving the thermal stability of the glass and suppressing the decrease in the refractive index (nd), in the above glass, the total content of B 3+ and Si 4+ is relative to Nb 5+ , Ti 4+ , Ta The cation ratio {(B 3+ + Si 4+ ) / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} of the total content of 5+ and W 6+ is set to 7.70 or less.

為了抑制阿貝數(νd)的減少並且改善玻璃的熱穩定性,將陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為5.80以上。進而,從低比重化的觀點出發,亦較佳陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為5.80以下。 In order to suppress the decrease in the Abbe number (νd) and improve the thermal stability of the glass, the cation ratio {(B 3+ + Si 4+ ) / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} Set to 5.80 or more. Further, from the viewpoint of low specific gravity, the cation ratio {(B 3+ +Si 4+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is preferably 5.80 or less.

陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和較佳的上限如下表7所示。 A preferred lower limit and a preferred upper limit of the cation ratio {(B 3+ + Si 4+ ) / (Nb 5 + + Ti 4 + + Ta 5 + + W 6+ )} are shown in Table 7 below.

為了改善玻璃的熱穩定性來抑制玻璃的晶化並且使玻璃低比重化,將W6+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}設為0.50以下。此外,從玻璃的高折射率化、著色降低的觀點出發,亦較佳陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}為0.50以下。陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和更佳的上限如下表8所示。 In order to improve the thermal stability of the glass to suppress the crystallization of the glass and the glass of a low specific gravity, the W 6+ content of the Nb 5+, the total cation content of Ti 4+, Ta 5+, and W 6+ ratio {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is set to 0.50 or less. Further, from the viewpoint of high refractive index and coloration of the glass, the cation ratio {W 6+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} is preferably 0.50 or less. A preferred lower limit and a higher upper limit of the cation ratio {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 8 below.

為了改善玻璃的熱穩定性來抑制玻璃的晶化並且實現上述的光學特性,在上述玻璃中,將Zn2+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}設為0.17以下。此外,從抑制玻璃化轉變溫度的降低(由此改善機械加工性)和提高化學耐久性的觀點出發,亦較佳陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}為0.17以下。從改善熔融性的觀點出發,陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}較佳為0%以上,更佳大於0%。陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限如下表9所示。 In order to improve the thermal stability of the glass to suppress the crystallization of the glass and achieve the above optical characteristics, in the above glass, the content of Zn 2+ is relative to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ . The cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is set to 0.17 or less. Further, from the viewpoint of suppressing a decrease in glass transition temperature (thus improving machinability) and improving chemical durability, a preferred cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ + ) is also preferable. Yb 3+ )} is 0.17 or less. From the viewpoint of improving the meltability, the cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is preferably 0% or more, more preferably more than 0%. A preferred lower limit and a preferred upper limit of the cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 9 below.

在作為稀土元素的鑭(La)、釔(Y)、釓(Gd)和鐿(Yb)中,Gd屬於重稀土元素,從玻璃的穩定供給的觀點出發,是 要求降低玻璃中的含量的成分。此外,Gd也是原子量大、使玻璃的比重增加的成分。 Among lanthanum (La), yttrium (Y), yttrium (Gd), and yttrium (Yb) which are rare earth elements, Gd is a heavy rare earth element, and from the viewpoint of stable supply of glass, A component that requires a reduction in the content of the glass. Further, Gd is also a component having a large atomic weight and increasing the specific gravity of the glass.

Yb也屬於重稀土元素、且原子量大。此外,Yb在近紅外區域具有吸收。另一方面,單鏡頭反光式照相機用的交換透鏡、監控攝像機的透鏡期望在近紅外區域的光線透射率高。因此,為了成為對於這些透鏡的製作有用的玻璃,期望降低Yb的含量。 Yb is also a heavy rare earth element and has a large atomic weight. In addition, Yb has absorption in the near-infrared region. On the other hand, the interchangeable lens for a single-lens reflex camera and the lens of the surveillance camera are expected to have high light transmittance in the near-infrared region. Therefore, in order to become a glass useful for the production of these lenses, it is desirable to reduce the content of Yb.

與此相對,La、Y對近紅外區域的光線透射率沒有不良影響,藉由相對於稀土元素的合計含量進行適量分配,從而改善熱穩定性並且抑制比重的增大,是對於提供高折射率低色散玻璃有用的成分。 On the other hand, La and Y have no adverse effect on the light transmittance of the near-infrared region, and are appropriately distributed with respect to the total content of the rare earth elements, thereby improving thermal stability and suppressing an increase in specific gravity, in order to provide a high refractive index. A useful component of low dispersion glass.

因此,在上述玻璃中,較佳對於La3+,將La3+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}的範圍設為0.50~0.95。陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限如下表10所示。 Therefore, in the glass, it is preferable for La 3+, La 3+ content relative to the total content of cations La 3+, Y 3+, Gd 3+ and Yb 3+ ratio {La 3+ / (La 3 The range of + +Y 3+ +Gd 3+ +Yb 3+ )} is set to 0.50 to 0.95. A preferred lower limit and a preferred upper limit of the cation ratio {La 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 10 below.

此外,對於Y3+,將Y3+的含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)} 的範圍設為0.10~0.50。陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限如下表11所示。 In addition, Y 3+, the content of Y 3+ cations with respect to the total content of La 3+, Y 3+, Gd 3+ and Yb 3+ ratio {Y 3+ / (La 3+ + Y 3+ + The range of Gd 3+ + Yb 3+ )} is set to 0.10 to 0.50. A preferred lower limit and a preferred upper limit of the cation ratio {Y 3+ /(La 3 ++Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 11 below.

如上述記載,從玻璃的穩定供給的觀點出發,Gd3+是應該降低在玻璃中的含量的成分。在上述玻璃中,Gd3+的含量藉由La3+、Y3+、Gd3+和Yb3+的合計含量和相對於該合計含量的Gd3+含量來確定。從穩定供給具有上述的光學特性的高折射率低色散玻璃的觀點出發,在上述玻璃中,將Gd3+的含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}設為0.10以下。滿足上述陽離子比也有助於玻璃的低比重化。陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限如下表12所示。 As described above, Gd 3+ is a component which should be reduced in the amount of glass from the viewpoint of stable supply of glass. In the glass, by the content of Gd 3+ is La 3+, Y 3+, and the total content of Gd 3+ and Yb 3+ 3+ content with respect to the total content of Gd is determined. From the viewpoint of stably supplying the high refractive index low dispersion glass having the above optical characteristics, the content of Gd 3+ in the above glass is relative to the total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ . The cation ratio {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is set to 0.10 or less. Satisfying the above cation ratio also contributes to the low specific gravity of the glass. The preferred lower limit and preferred upper limit of the cation ratio {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 12 below.

對於La3+、Y3+、Gd3+和Yb3+的合計含量以及La3+ 含量、Y3+含量、Gd3+含量相對於該合計含量的陽離子比,如上所述。La3+、Y3+、Gd3+、Yb3+的各成分的含量的較佳的下限和較佳的上限如下表13~16所示。另外,對於Y3+含量,從改善玻璃的熱穩定性和熔融性的觀點出發,亦較佳為下表14所示的下限。 The cation ratio of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ and the La 3+ content, the Y 3+ content, and the Gd 3+ content to the total content is as described above. The preferred lower limit and the preferred upper limit of the content of each component of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ are shown in Tables 13 to 16 below. Further, the Y 3+ content is preferably a lower limit shown in Table 14 below from the viewpoint of improving the thermal stability and the meltability of the glass.

對於Nb5+、Ti4+、Ta5+和W6+,藉由使其適當含有,從而發揮提高折射率、改善玻璃的熱穩定性的作用。但是,Ta5+雖然具有提高折射率的作用,但是是極其昂貴的成分。因此,從玻璃的穩定供給的觀點出發,不是較佳積極地使用Ta5+。此外,當Ta5+的含量多時,熔融玻璃時原料變得容易熔融殘留。此外,玻璃的比重增加。因此,Ta5+是應該降低含量的成分。因此,不是較佳積極地使用Ta5+。為了改善玻璃的熱穩定性並且謀求高折射率低色散化和削減Ta的使用量,對於Ta5+,將Ta5+的含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}設為0.2以下。陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和較佳的上限如下表17所示。 For Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ , by appropriately containing them, the refractive index is improved and the thermal stability of the glass is improved. However, although Ta 5+ has an effect of increasing the refractive index, it is an extremely expensive component. Therefore, from the viewpoint of stable supply of glass, Ta 5+ is not preferably used actively. Further, when the content of Ta 5+ is large, the raw material becomes easily melted and remains when the glass is molten. In addition, the specific gravity of the glass increases. Therefore, Ta 5+ is a component that should be reduced in content. Therefore, Ta 5+ is not preferably used actively. In order to improve the thermal stability of the glass and to achieve high refractive index and low dispersion and to reduce the amount of Ta used, for Ta 5+ , the content of Ta 5+ is relative to Nb 5+ , Ti 4+ , Ta 5+ and W 6+ . The cation ratio {Ta 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} of the total content is set to 0.2 or less. A preferred lower limit and a preferred upper limit of the cation ratio {Ta 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 17 below.

此外,對於Nb5+,為了提供為了能夠穩定供給玻璃而降低Gd3+、Ta5+的含量、較佳與Gd3+、Ta5+一同降低Yb3+的含量並且熱穩定性優異的高折射率低色散玻璃,在考慮Nb5+、Ti4+、Ta5+、W6+的上述作用的基礎上,較佳將Nb5+的含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}設為0.2以上。此外,與Ta5、W6+相比,Nb5+是具有能夠在不使比重增大的情況下提高折射率的傾向的成分。因此,為了抑制比重的增大,較佳使陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}增大。陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和較佳的上限如下表18所示。 Further, in order to provide Nb 5+ , it is preferable to reduce the content of Gd 3+ and Ta 5+ in order to stably supply the glass, and it is preferable to reduce the content of Yb 3+ together with Gd 3+ and Ta 5+ and to have high thermal stability. refractive index of low-dispersion glass, in consideration of the above-described effect of Nb 5+, Ti 4+, Ta 5+ , W 6+ is based on the content of Nb 5+ preferred with respect to Nb 5+, Ti 4+, Ta 5 The cation ratio {Nb 5+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} of the total content of + and W 6+ is set to 0.2 or more. Further, Nb 5+ is a component having a tendency to increase the refractive index without increasing the specific gravity as compared with Ta 5 and W 6+ . Therefore, in order to suppress an increase in specific gravity, it is preferred to increase the cation ratio {Nb 5+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )}. The lower limit and the preferred upper limit of the cation ratio {Nb 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 18 below.

進而,從防止高色散化的觀點和著色的觀點出發,較佳將Ti4+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Ti4+/(Nb5++Ti4++Ta5++W6+)}設為0.6以下。陽離 子比{Ti4+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和更佳的上限如下表19所示。 Further, from the viewpoint of preventing the high dispersion and coloring of view, the preferred content of Ti 4+ with respect Nb 5+, Ti 4+ cations, the total content of Ta 5+, and W 6+ ratio {Ti 4+ / (Nb 5+ + Ti 4 ++Ta 5+ + W 6+ )} is set to 0.6 or less. A preferred lower limit and a higher upper limit of the cation ratio {Ti 4+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 19 below.

為了維持玻璃的熱穩定性並且抑制阿貝數(νd)的降低,較佳將La3+、Y3+、Gd3+和Yb3+的合計含量(La3++Y3++Gd3++Yb3+)相對於Nb5+、Ti4+、Ta5+和W6+的合計含量(Nb5++Ti4++Ta5++W6+)的陽離子比{(La3++Y3++Gd3++Yb3+)/(Nb5++Ti4++Ta5++W6+)}的下限設為下表20所示的較佳的下限的值。 In order to maintain the thermal stability of the glass and suppress the decrease in the Abbe number (νd), the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is preferably (La 3+ +Y 3+ +Gd 3 ) + +Yb 3+ ) relative to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ ) cation ratio {(La 3 The lower limit of + +Y 3+ +Gd 3+ +Yb 3+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is set to a value of a preferred lower limit shown in Table 20 below.

另一方面,為了抑制折射率降低並且維持玻璃的熱穩定性,較佳將陽離子比{(La3++Y3++Gd3++Yb3+)/(Nb5++Ti4++Ta5++W6+)}的上限設為下表20所示的較佳的上限的值。 On the other hand, in order to suppress the refractive index reduction and maintain the thermal stability of the glass, it is preferred to have a cation ratio {(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )/(Nb 5+ +Ti 4+ + The upper limit of Ta 5+ + W 6+ )} is set to a value of a preferred upper limit shown in Table 20 below.

對於上述玻璃的玻璃組成,以下將進一步進行說明。 The glass composition of the above glass will be further described below.

對於作為玻璃的網絡形成成分的B3+和Si4+的合計含量等,如上所述。對於B3+和Si4+,B3+比Si4+改善熔融性的作用更優異,但熔融時容易揮發。另一方面,Si4+具有改善玻璃的化學耐久性、耐候性、機械加工性的作用,具有提高熔融時的玻璃的黏性的作用。 The total content of B 3+ and Si 4+ as a network forming component of glass is as described above. For B 3+ and Si 4+ , B 3+ is more excellent than Si 4+ in improving the meltability, but is easily volatilized during melting. On the other hand, Si 4+ has an effect of improving chemical durability, weather resistance, and machinability of glass, and has an effect of improving the viscosity of glass at the time of melting.

對於包含B3+和La3+等稀土元素的高折射率低分散玻璃,一般熔融時的玻璃的黏性低。但是,當熔融時的玻璃的黏性低時,變得容易晶化。對於玻璃製造時的晶化,相比於無定形狀態(非晶質狀態)晶化的狀態更穩定,其是藉由構成玻璃的離子在玻璃中移動而以具有晶體結構的方式進行排列從而發生。因此,藉由對B3+和Si4+的各成分的含量的比率進行調整以使熔融時的黏性增高,從而使上述離子不易以具有晶體結構的方式進行排列,能夠進一步抑制玻璃的晶化、進一步改善玻璃的耐失透性。 For a high refractive index low-dispersion glass containing a rare earth element such as B 3+ and La 3+ , the viscosity of the glass at the time of melting is generally low. However, when the viscosity of the glass at the time of melting is low, it becomes easy to crystallize. The crystallization at the time of glass production is more stable than the state of crystallization in an amorphous state (amorphous state), which is formed by arranging crystal ions in the glass to have a crystal structure. . Therefore, by adjusting the ratio of the content of each component of B 3+ and Si 4+ so as to increase the viscosity at the time of melting, it is difficult to arrange the ions so as to have a crystal structure, and it is possible to further suppress the crystal of the glass. Further improve the resistance to devitrification of the glass.

從以上的觀點出發,B3+的含量相對於B3+和Si4+的合計含量的陽離子比{B3+/(B3++Si4+)}的較佳的下限和較佳的上限如下表21所示。從改善玻璃的熔融性的觀點出發,亦較佳設為下表所示的下限以上。此外,從提高熔融時的玻璃的黏性的方面考慮,較佳設為下表中所示的上限以下。進而,為了降低因熔融時的揮發引起的玻璃組成的變動和由此引起的光學特性的變動,此外從改善玻璃的化學耐久性、耐候性和機械加工性中的一個以上的觀點出發,亦較佳設為下表所示的上限以下。 From the above viewpoint, the content of B 3+ and B 3+ cations with respect to the total content of Si 4+ preferred lower limit of the ratio of {B 3+ / (B 3+ + Si 4+)} and preferred The upper limit is shown in Table 21 below. From the viewpoint of improving the meltability of the glass, it is also preferably set to a lower limit or more as shown in the following table. Further, from the viewpoint of improving the viscosity of the glass at the time of melting, it is preferably set to be equal to or less than the upper limit shown in the following table. Further, in order to reduce fluctuations in the glass composition due to volatilization during melting and variations in optical characteristics caused thereby, it is also improved from one or more of chemical durability, weather resistance, and machinability of the glass. It is set below the upper limit shown in the table below.

從改善玻璃的耐失透性、熔融性、成型性、化學耐久性、耐候性、機械加工性等的觀點出發,對於B3+含量、Si4+含量,各自的較佳的下限和較佳的上限如下表22~23所示。 From the viewpoint of improving the devitrification resistance, the meltability, the moldability, the chemical durability, the weather resistance, the machinability, and the like of the glass, a preferred lower limit and a preferable ratio of the B 3+ content and the Si 4+ content are preferable. The upper limit is shown in Tables 22~23 below.

Zn2+具有在熔融玻璃時促進玻璃原料的熔融的作用,亦即改善熔融性的作用。此外,也具有對折射率(nd)、阿貝數(νd)進行調整、使玻璃化轉變溫度降低的作用。從抑制阿 貝數(νd)的降低、改善玻璃的熱穩定性、抑制玻璃化轉變溫度的降低(由此改善機械加工性)、玻璃的低比重化的觀點出發,較佳將Zn2+的含量除以B3+和Si4+的合計含量的值即陽離子比{Zn2+/(B3++Si4+)}設為0.15以下。另外,在上述玻璃中Zn是可以包含也可以不包含的任選成分,因此較佳陽離子比{Zn2+/(B3++Si4+)}為0以上,但為了使熔融性提高、容易地製作均質的玻璃,更佳使玻璃含有Zn而將陽離子比{Zn3+/(B3++Si4+)}設為大於0。陽離子比{Zn2+/(B3++Si4+)}的更佳的下限和更佳的上限如下表24所示。 Zn 2+ has an effect of promoting melting of the glass raw material when the glass is molten, that is, an effect of improving the meltability. Further, it also has an effect of adjusting the refractive index (nd) and the Abbe number (νd) to lower the glass transition temperature. From the viewpoint of suppressing the decrease in the Abbe number (νd), improving the thermal stability of the glass, suppressing the decrease in the glass transition temperature (the mechanical workability), and the low specific gravity of the glass, it is preferred to use Zn 2+ . The value of the content divided by the total content of B 3+ and Si 4+ , that is, the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} is set to 0.15 or less. Further, since Zn may or may not contain optional components in the glass, the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} is preferably 0 or more, but in order to improve the meltability, It is easy to produce a homogeneous glass, and it is more preferable that the glass contains Zn and the cation ratio {Zn 3+ /(B 3+ +Si 4+ )} is set to be larger than zero. A lower limit and a higher upper limit of the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} are shown in Table 24 below.

從改善玻璃的熔融性、熱穩定性、成型性及機械加工性等、實現上述的光學特性的觀點出發,Zn2+含量的較佳的下限和較佳的上限如下表25所示。 The lower limit and the preferred upper limit of the Zn 2+ content are as shown in Table 25 from the viewpoint of improving the meltability, heat stability, moldability, and machinability of the glass to achieve the above optical characteristics.

從進一步改善玻璃的熱穩定性、抑制玻璃化轉變溫度的降低(由此改善機械加工性)、改善化學耐久性的觀點來看,較佳Zn2+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Zn2+/(Ti4++Nb5++Ta5++W6+)}為1.0以下。另一方面,由於Zn是任選成分,因此較佳陽離子比{Zn2+/(Nb5++Ti4++Ta5++W6+)}的下限為0,但是從提高熔融性的觀點出發,更佳大於0。考慮到以上的方面,陽離子比{Zn2+/(Ti4++Nb5++Ta5++W6+)}的更佳的下限和更佳的上限如下表26所示。 From the viewpoint of further improving the thermal stability of the glass, suppressing the decrease in the glass transition temperature (thus improving the machinability), and improving the chemical durability, the Zn 2+ content is preferably relative to Nb 5+ , Ti 4+ , The cation ratio {Zn 2+ /(Ti 4+ +Nb 5+ +Ta 5+ +W 6+ )} of the total content of Ta 5+ and W 6+ is 1.0 or less. On the other hand, since Zn is an optional component, the lower limit of the preferred cation ratio {Zn 2+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 0, but from the viewpoint of improving the meltability From the point of view, it is better than 0. In view of the above aspects, a lower limit and a higher upper limit of the cation ratio {Zn 2+ /(Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )} are shown in Table 26 below.

對於Nb5+、Ti4+、Ta5+、W6+,在考慮到上述作用、效果的基礎上,將Nb5+、Ti4+、Ta5+、W6+各成分的含量的較佳的範圍示於下表27~30。 For Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ , the contents of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ are compared based on the above effects and effects. The preferred range is shown in Tables 27~30 below.

接著,對以上說明了的成分以外的任選成分進行說明。 Next, optional components other than the components described above will be described.

Li+使玻璃化轉變溫度降低的作用強,因此當其含量變多時,示出機械加工性降低的傾向。此外,也示出化學耐久性、耐候性降低的傾向。因此,較佳將Li+含量設為5%以下。Li+的含量的較佳的下限和更佳的上限如下表31所示。Li+的含 量也可以為0%。 Since Li + has a strong effect of lowering the glass transition temperature, when the content thereof is increased, the mechanical workability tends to be lowered. Moreover, the tendency of chemical durability and weather resistance to fall is also shown. Therefore, it is preferable to set the Li + content to 5% or less. A preferred lower limit and a higher upper limit of the content of Li + are shown in Table 31 below. The content of Li + may also be 0%.

Na+、K+、Rb+、Cs+均具有改善玻璃的熔融性的作用,但當這些的含量增加時,示出玻璃的熱穩定性、化學耐久性、耐候性、機械加工性降低的傾向。因此,較佳Na+、K+、Rb+、Cs+的各含量的下限和上限分別如下表32~35所示。 Na + , K + , Rb + , and Cs + all have an effect of improving the meltability of the glass. However, when the content of these increases, the thermal stability, chemical durability, weather resistance, and machinability of the glass tend to decrease. . Therefore, the lower limit and the upper limit of the respective contents of Na + , K + , Rb + and Cs + are preferably as shown in Tables 32 to 35 below.

從維持玻璃的熱穩定性、化學耐久性、耐候性、機械加工性並且改善玻璃的熔融性的觀點出發,Li+、Na+和K+的合計含量(Li++Na++K+)的較佳的下限和較佳的上限如下表36所示。 The total content of Li + , Na + and K + (Li + +Na + +K + ) is maintained from the viewpoint of maintaining thermal stability, chemical durability, weather resistance, machinability, and improvement of glass meltability of the glass. The preferred lower limit and preferred upper limit are shown in Table 36 below.

Mg2+、Ca2+、Sr2+、Ba2+均是具有改善玻璃的熔融性的作用的成分。但是,當這些成分的含量增加時,玻璃的熱穩定性降低,示出失透的傾向。因此,這些成分的各自的含量 分別較佳設為下表37~40所示的下限以上、上限以下。 Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ are all components having an effect of improving the meltability of the glass. However, when the content of these components is increased, the thermal stability of the glass is lowered, showing a tendency to devitrification. Therefore, the content of each of these components is preferably set to be equal to or higher than the lower limit and lower limit shown in the following Tables 37 to 40, respectively.

此外,從維持玻璃的熱穩定性的觀點出發,較佳Mg2+、Ca2+、Sr2+和Ba2+的合計含量(Mg2++Ca2++Sr2++Ba2+)設為下表41所示的下限以上、上限以下。 Further, from the viewpoint of maintaining the thermal stability of the glass, the total content of Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ is preferably (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ ). It is set to the lower limit or more and the upper limit or less shown in Table 41 below.

Al3+是具有改善玻璃的化學耐久性、耐候性作用的成分。但是,當Al3+的含量增加時,有時示出折射率(nd)降低的傾向、玻璃的熱穩定性降低的傾向、熔融性降低的傾向。考慮以上的方面,較佳Al3+含量設為下表42所示的下限以上、上限以下。 Al 3+ is a component having an effect of improving the chemical durability and weather resistance of the glass. However, when the content of Al 3+ is increased, the refractive index (nd) tends to decrease, the thermal stability of the glass tends to decrease, and the meltability tends to decrease. In view of the above, the Al 3+ content is preferably set to be equal to or higher than the lower limit and lower than the upper limit shown in Table 42 below.

Ga3+、In3+、Sc3+、Hf4+是均具有提高折射率(nd)的作用的成分。但是這些成分價格昂貴,不是從得到上述光學玻璃方面考慮必需的成分。因此,Ga3+、In3+、Sc3+、Hf4+的各含量較佳設為下表43~46所示的下限以上、上限以下。 Ga 3+ , In 3+ , Sc 3+ , and Hf 4+ are components each having an effect of increasing the refractive index (nd). However, these components are expensive and are not essential components in view of obtaining the above optical glass. Therefore, the respective contents of Ga 3+ , In 3+ , Sc 3+ , and Hf 4+ are preferably set to be equal to or higher than the lower limit and lower limit shown in the following Tables 43 to 46.

Lu3+具有提高折射率(nd)的作用,但也是會使玻璃 的比重增加的成分。此外,Lu和Gd、Yb一樣是重稀土元素,因此較佳降低Lu的含量。從以上的方面出發,Lu3+含量的較佳的下限和較佳的上限如下表47所示。 Lu 3+ has an effect of increasing the refractive index (nd), but is also a component that increases the specific gravity of the glass. Further, Lu is a heavy rare earth element like Gd and Yb, and therefore it is preferable to reduce the content of Lu. From the above aspects, the preferred lower limit and the preferred upper limit of the Lu 3+ content are shown in Table 47 below.

Ge4+具有提高折射率(nd)的作用,但是在通常使用的玻璃成分中是極其昂貴的成分。從降低玻璃的製造成本的觀點出發,Ge4+含量的較佳的下限和較佳的上限如下表48所示。 Ge 4+ has an effect of increasing the refractive index (nd), but is an extremely expensive component among commonly used glass components. From the viewpoint of lowering the manufacturing cost of the glass, a preferred lower limit and a preferred upper limit of the Ge 4+ content are shown in Table 48 below.

Bi3+是提高折射率(nd)並且使阿貝數(νd)降低的成分。此外,也是易於使比重、著色增大的成分。為了製作具有上述的光學特性且著色少、比重低的玻璃,Bi3+含量的較佳的下限和較佳的上限如下表49所示。 Bi 3+ is a component that increases the refractive index (nd) and lowers the Abbe number (νd). Further, it is also a component which is easy to increase the specific gravity and coloration. In order to produce a glass having the above optical characteristics and having less coloration and a low specific gravity, a preferred lower limit and a preferred upper limit of the Bi 3+ content are shown in Table 49 below.

為了良好地得到以上說明的各種作用、效果,以上記載的陽離子成分的各含量的合計(合計含量)較佳大於95%,更佳大於98%,進一步較佳大於99%,更進一步較佳大於99.5%。 In order to satisfactorily obtain the various actions and effects described above, the total content (total content) of each of the cationic components described above is preferably more than 95%, more preferably more than 98%, still more preferably more than 99%, still more preferably more than 99.5%.

在以上記載的陽離子成分以外的陽離子成分中,P5+是使折射率(nd)降低的成分,也是使玻璃的熱穩定性降低的成分,但是如果導入極少量,則有時使玻璃的熱穩定性提高。為了製作具有上述的光學特性並且熱穩定性優異的玻璃,P5+含量的較佳的下限和較佳的上限如下表50所示。 In the cation component other than the cation component described above, P 5+ is a component which lowers the refractive index (nd) and is a component which lowers the thermal stability of the glass. However, if a small amount is introduced, the heat of the glass may be caused. Increased stability. In order to produce a glass having the above optical characteristics and excellent thermal stability, a preferred lower limit and a preferred upper limit of the P 5+ content are shown in Table 50 below.

Te4+是提高折射率(nd)的成分,但是也是具有毒性的成分,因此較佳減少Te4+的含量。Te4+含量的較佳的下限和較佳的上限如下表51所示。 Te 4+ is a component that raises the refractive index (nd), but is also a toxic component, so it is preferable to reduce the content of Te 4+ . A preferred lower limit and a preferred upper limit of the Te 4+ content are shown in Table 51 below.

另外,上述各表中記載有(更佳)較佳的下限或0%的成分亦較佳含量為0%。對於多種成分的合計含量也是同樣的。 Further, in each of the above tables, a (better) preferred lower limit or a 0% component is also preferably present in an amount of 0%. The same is true for the total content of various components.

對於以上記載的各種陽離子成分,本發明人經過多次的研究,著眼於考慮各陽離子成分給予玻璃的色散(阿貝數)的影響各自不同。而且,本發明人進一步反復研究,結果認為,對各陽離子成分規定考慮了給予玻璃的色散的影響的係數以使由下述(A)式算出的值A的範圍成為8.5000~11.000的方式進行組成調整對於實現阿貝數(νd)為39.5~41.5、折射率(nd)和阿貝數(νd)滿足上述(1)式的關係的光學特性是較佳的。 The present inventors have conducted a number of studies on various cationic components described above, and have focused on the effects of the dispersion (Abbe number) imparted to each glass by the respective cationic components. Furthermore, the present inventors have further studied and determined that the coefficient of the influence of the dispersion of the glass is given to each of the cation components so that the range of the value A calculated by the following formula (A) is 8.5000 to 11.000. It is preferable to adjust the optical characteristics for satisfying the relationship of the above formula (1) such that the Abbe number (νd) is 39.5 to 41.5, the refractive index (nd), and the Abbe number (νd).

(A)式A=0.01×Si4+含量+0.01×B3+含量+0.05×La3+含量+0.07×Y3+含量+0.07×Yb3+含量+0.085×Zn2+含量+0.3×Zr4+含量 +0.5×Ta5+含量+0.8×Nb5+含量+0.9×W5+含量+0.95×Ti4+含量 (A) Formula A = 0.01 × Si 4 + content + 0.01 × B 3 + content + 0.05 × La 3 + content + 0.07 × Y 3 + content + 0.07 × Yb 3 + content + 0.085 × Zn 2+ content + 0.3 × Zr 4+ content +0.5×Ta 5+ content+0.8×Nb 5+ content+0.9×W 5+ content+0.95×Ti 4+ content

由上述(A)式算出的值A的更佳的下限和更佳的上限如下表52所示。 A more preferable lower limit and a higher upper limit of the value A calculated by the above formula (A) are shown in Table 52 below.

此外,在以上記載的各種陽離子成分中,Gd3+儘管發揮著提高折射率的作用但使比重增加的作用大。相對於此,在發揮提高折射率作用的成分中,Nb5+和Ti4+是該作用特別大的成分。進而,Nb5+和Ti4+不僅能夠大幅提高折射率而且是使比重增加的作用小的成分。為了抑制比重的增大並且大幅提高折射率,上述玻璃較佳在以陽離子%表示的玻璃組成中由下述式(B)算出的值B為-1.000以上。此外,從高折射率低色散化的觀點出發,較佳由下述式(B)算出的值B為6.720以下。 Further, among the various cationic components described above, Gd 3+ exerts a function of increasing the refractive index but has a large effect of increasing the specific gravity. On the other hand, among the components exhibiting an effect of increasing the refractive index, Nb 5+ and Ti 4+ are components having a particularly large effect. Further, Nb 5+ and Ti 4+ are not only capable of greatly increasing the refractive index but also a component having a small effect of increasing the specific gravity. In order to suppress an increase in the specific gravity and to increase the refractive index, the glass preferably has a value B of -1.000 or more calculated from the following formula (B) in the glass composition represented by the cation %. Further, from the viewpoint of high refractive index and low dispersion, the value B calculated by the following formula (B) is preferably 6.720 or less.

式(B)B=0.567×(Ti4+含量+Nb5+含量)-1.000×Gd3+含量 Formula (B) B = 0.567 × (Ti 4 + content + Nb 5 + content) - 1.000 × Gd 3 + content

由(B)式算出的值B的更較佳的下限和更佳的上限如下53表所示。 A more preferable lower limit and a more preferable upper limit of the value B calculated by the formula (B) are shown in Table 53 below.

Pb、As、Cd、Tl、Be、Se各自具有毒性。因此,較佳不含有這些元素,亦即,不將這些元素作為玻璃成分導入玻璃中。 Each of Pb, As, Cd, Tl, Be, and Se is toxic. Therefore, it is preferred not to contain these elements, that is, these elements are not introduced into the glass as a glass component.

U、Th、Ra均是放射性元素。因此,較佳不含有這些元素,亦即,不將這些元素作為玻璃成分導入玻璃中。 U, Th, and Ra are all radioactive elements. Therefore, it is preferred not to contain these elements, that is, these elements are not introduced into the glass as a glass component.

V、Cr、Mn、Fe、Co、Ni、Cu、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ce或使玻璃的著色增大,或成為螢光的發生源,不是較佳作為使光學元件用的玻璃含有的元素。因此,較佳不含有這些元素,亦即,不將這些元素作為玻璃成分導入玻璃中。 V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Ce or increase the color of the glass, or become a source of fluorescence It is not preferable as an element contained in the glass for optical elements. Therefore, it is preferred not to contain these elements, that is, these elements are not introduced into the glass as a glass component.

Sb、Sn是作為澄清劑發揮功能的能夠任選地添加的元素。 Sb and Sn are elements which can be optionally added as a clarifying agent.

在將Sb的添加量換算為Sb2O3,將Sb2O3以外的玻璃成分的含量的合計作為100質量%時,Sb的添加量較佳的範圍為0~0.11質量%,更佳的範圍為0.01~0.08質量%,進一步較佳的範圍為0.02~0.05質量%。 When the amount of addition of Sb is converted to Sb 2 O 3 and the total content of the glass components other than Sb 2 O 3 is 100% by mass, the amount of Sb added is preferably in the range of 0 to 0.11% by mass, more preferably The range is from 0.01 to 0.08% by mass, and a further preferred range is from 0.02 to 0.05% by mass.

在將Sn的添加量換算為SnO2,將SnO2以外的玻璃成分的含量的合計作為100質量%時,Sn的添加量較佳的範圍為0~0.5質量%,更佳的範圍為0~0.2質量%,進一步較佳的範圍為0質量%。 When the amount of addition of Sn is converted to SnO 2 and the total content of the glass components other than SnO 2 is 100% by mass, the amount of Sn added is preferably in the range of 0 to 0.5% by mass, and more preferably in the range of 0 to 0.5% by mass. 0.2% by mass, and a further preferred range is 0% by mass.

以上,對陽離子成分進行了說明。接下來,對陰離子成分進行說明。 The cationic component has been described above. Next, the anion component will be described.

上述玻璃是氧化物玻璃,因此作為陰離子成分包含O2-。O2-含量的較佳的下限如下表54所示。 The glass is an oxide glass, so as an anionic component comprising O 2-. A preferred lower limit of the O 2- content is shown in Table 54 below.

作為O2-以外的陰離子成分,可以例示F-、Cl-、Br-、I-。但是,F-、Cl-、Br-、I-均在玻璃的熔融中容易揮發。由於這些成分的揮發,有玻璃的特性變動而玻璃的均質性降低、熔融設備的消耗變得顯著的傾向。因此,較佳將F-、Cl-、Br-和I-的合計含量控制在從100陰離子%中減去O2-的含量的量。 Examples of the anion component other than O 2− are F , Cl , Br , and I . However, F - , Cl - , Br - , and I - are all easily volatilized in the melting of the glass. Due to the volatilization of these components, the characteristics of the glass fluctuate, the homogeneity of the glass is lowered, and the consumption of the melting equipment tends to be remarkable. Therefore, it is preferred to control the total content of F - , Cl - , Br - and I - to an amount obtained by subtracting the content of O 2- from 100 anions %.

應予說明的是,像公知的那樣,陰離子%是指將玻璃中所包含的全部的陰離子成分的合計含量設為100%的百分率。 In addition, as a well-known thing, an anion % is a percentage which makes the total content of all the anion components contained in glass into 100 %.

<玻璃特性> <glass characteristics>

(玻璃的光學特性) (Optical properties of glass)

上述玻璃是阿貝數(νd)的範圍為39.5~41.5、且折射率nd相對於阿貝數(νd)滿足下述(1)式的玻璃。 The glass is a glass having an Abbe number (νd) in the range of 39.5 to 41.5 and having a refractive index nd satisfying the following formula (1) with respect to the Abbe number (νd).

nd2.0927-0.0058×νd Nd 2.0927-0.0058×νd

阿貝數(νd)為39.5以上的玻璃作為光學元件的材料在校正色像差方面是有效的。另一方面,當阿貝數(νd)大於41.5時,如果不使折射率降低的話,則玻璃的熱穩定性顯著降低,在製造玻璃的過程中變得容易失透。阿貝數(νd)的較佳的下限和較佳的上限如下表55所示。 A glass having an Abbe number (νd) of 39.5 or more is effective as a material of an optical element in correcting chromatic aberration. On the other hand, when the Abbe number (νd) is more than 41.5, if the refractive index is not lowered, the thermal stability of the glass is remarkably lowered, and it becomes easy to devitrify during the process of producing glass. The preferred lower limit and preferred upper limit of the Abbe number (νd) are shown in Table 55 below.

上述玻璃的折射率(nd)相對於阿貝數(νd)滿足(1)式。阿貝數(νd)的範圍為39.5~41.5且折射率(nd)滿足(1)式的玻璃是在光學系統的設計中利用價值高的玻璃。 The refractive index (nd) of the above glass satisfies the formula (1) with respect to the Abbe number (νd). A glass having an Abbe number (νd) in the range of 39.5 to 41.5 and having a refractive index (nd) satisfying the formula (1) is a glass having high value in the design of an optical system.

折射率(nd)的上限由玻璃組成自然而然地確定。為了得到改善熱穩定性、不易失透的玻璃,較佳折射率(nd)滿足下述(2)式。 The upper limit of the refractive index (nd) is naturally determined by the composition of the glass. In order to obtain a glass which is improved in thermal stability and is not easily devitrified, the refractive index (nd) preferably satisfies the following formula (2).

(2)式nd2.1270-0.0058×νd (2) Formula nd 2.1270-0.0058×νd

相對於阿貝數(νd)的折射率(nd)的較佳的下限和更佳的上 限如下表56所示。 a preferred lower limit and a better upper limit of the refractive index (nd) relative to the Abbe number (νd) The limits are shown in Table 56 below.

此外,折射率(nd)亦較佳為下表57所示的下限以上、上限以下。 Further, the refractive index (nd) is also preferably a lower limit or more and an upper limit or less as shown in the following Table 57.

(部分色散特性) (partial dispersion characteristics)

從校正色像差的觀點出發,上述玻璃較佳是在將阿貝數(νd)固定時相對部分色散小的玻璃。 From the viewpoint of correcting chromatic aberration, the glass is preferably a glass having a relatively small partial dispersion when the Abbe number (νd) is fixed.

在此,相對部分色散(Pg,F)使用在g線、F線、c線中的各折射率(ng)、折射率(nF)、折射率(nc),用(ng-nF)/(nF-nc)表示。 Here, the relative partial dispersion (Pg, F) uses each refractive index (ng), refractive index (nF), and refractive index (nc) in the g-line, the F-line, and the c-line, and (ng-nF)/( nF-nc) indicates.

從提供適合於高階的色像差校正的玻璃的觀點出發,上述玻璃的相對部分色散(Pg,f)的較佳的下限和較佳的上限如下表58所示。 From the viewpoint of providing a glass suitable for high-order chromatic aberration correction, a preferred lower limit and a preferred upper limit of the relative partial dispersion (Pg, f) of the above glass are shown in Table 58 below.

(玻璃化轉變溫度) (glass transition temperature)

上述玻璃的玻璃化轉變溫度沒有特別的限定,較佳為640℃以上。藉由將玻璃化轉變溫度設為640℃以上,從而在對玻璃進行切斷、切削、研磨、拋光等機械加工時,能夠使玻璃不易破損。此外,可以不大量含有使玻璃化轉變溫度降低的作用強的Li、Zn等成分,因此即使減少Gd、Ta的含量,進一步還減少Yb的含量,也容易提高熱穩定性。 The glass transition temperature of the above glass is not particularly limited, but is preferably 640 ° C or higher. By setting the glass transition temperature to 640 ° C or higher, it is possible to make the glass less likely to be broken when the glass is subjected to mechanical processing such as cutting, cutting, polishing, and polishing. Further, since a component such as Li or Zn having a strong effect of lowering the glass transition temperature is not contained in a large amount, even if the content of Gd or Ta is reduced, the content of Yb is further reduced, and the thermal stability is easily improved.

另一方面,當玻璃化轉變溫度過高時,必須在高溫對玻璃進行退火,退火爐顯著消耗。此外,將玻璃進行成型時,必須以高的溫度進行成型。成型所使用的模具的消耗變得顯著。 On the other hand, when the glass transition temperature is too high, the glass must be annealed at a high temperature, and the annealing furnace is significantly consumed. Further, when molding glass, it is necessary to mold at a high temperature. The consumption of the mold used for molding becomes remarkable.

從改善機械加工性、減輕對退火爐、成型模的負擔的觀點出發,玻璃化轉變溫度的較佳的下限和較佳的上限如下表59所示。 From the viewpoint of improving the machinability and reducing the burden on the annealing furnace and the molding die, a preferred lower limit and a preferred upper limit of the glass transition temperature are shown in Table 59 below.

(玻璃的比重) (specific gravity of glass)

在構成光學系統的光學元件(透鏡)中,根據構成透鏡的玻璃的折射率和透鏡的光學功能面(要控制的光線的入射、出射面)的曲率決定屈光力。當要使光學功能面的曲率增大時,透鏡的厚度也增加。結果透鏡變重。相對於此,如果使用折射率高的玻璃,則即使光學功能面的曲率不增大,也能夠得到大的屈光力。 In the optical element (lens) constituting the optical system, the refractive power is determined according to the refractive index of the glass constituting the lens and the curvature of the optical functional surface (incidence and exit surface of the light to be controlled) of the lens. When the curvature of the optical functional surface is to be increased, the thickness of the lens also increases. As a result, the lens becomes heavy. On the other hand, if a glass having a high refractive index is used, a large refractive power can be obtained even if the curvature of the optical functional surface is not increased.

由此,只要能夠抑制玻璃的比重的增加並且提高折射率,就能夠使具有固定的屈光力的光學元件的輕量化。 Thereby, as long as the increase in the specific gravity of the glass can be suppressed and the refractive index is increased, the optical element having a fixed refractive power can be made lighter.

關於折射率(nd)對於屈光力的作用,藉由取玻璃的比重(d)相對於從玻璃的折射率(nd)中減去真空中的折射率1的值(nd-1)的比,從而能夠作為謀求光學元件的輕量化時的指標。亦即,將d/(nd-1)作為謀求將光學元件輕量化時的指標,藉由降低該值,從而能夠謀求透鏡的輕量化。 Regarding the effect of the refractive index (nd) on the refractive power, by taking the ratio of the specific gravity (d) of the glass to the value (nd-1) of the refractive index 1 in the vacuum from the refractive index (nd) of the glass, It can be used as an indicator for reducing the weight of optical components. In other words, by using d/(nd-1) as an index for reducing the weight of the optical element, by reducing the value, it is possible to reduce the weight of the lens.

上述玻璃引起比重增加的Gd、Ta的佔有的比率少,此外也能夠減少Yb的佔有的比率,因此既是高折射率低色散的玻璃,又能夠低比重化。因此,上述玻璃的d/(nd-1)能夠為例如5.70以下。但是,當使d/(nd-1)過度減少時,玻璃的熱穩定性示出降低的傾向。因此,較佳將d/(nd-1)設為5.00以上。d/(nd-1)的更較佳的下限和更較佳的上限如下表60所示。 In the glass, the ratio of the Gd and Ta which are increased in specific gravity is small, and the ratio of the occupation of Yb can be reduced. Therefore, the glass is high in refractive index and low in dispersion, and can be made low in specific gravity. Therefore, the d/(nd-1) of the above glass can be, for example, 5.70 or less. However, when d/(nd-1) is excessively reduced, the thermal stability of the glass shows a tendency to decrease. Therefore, it is preferable to set d/(nd-1) to 5.00 or more. A more preferred lower limit and a more preferred upper limit of d/(nd-1) are shown in Table 60 below.

進而,上述玻璃的比重(d)的較佳的下限和較佳的上限如下表61所示。從由該玻璃形成的光學元件的輕量化的觀點出發,較佳將比重(d)設為下表61所示的上限以下。此外,為了進一步改善玻璃的熱穩定性,較佳將比重設為下表61所示的下限以上。 Further, a preferred lower limit and a preferred upper limit of the specific gravity (d) of the above glass are shown in Table 61 below. From the viewpoint of weight reduction of the optical element formed of the glass, the specific gravity (d) is preferably set to be equal to or less than the upper limit shown in Table 61 below. Further, in order to further improve the thermal stability of the glass, it is preferred to set the specific gravity to be equal to or higher than the lower limit shown in the following Table 61.

(液相線溫度) (liquidus temperature)

液相線溫度是玻璃的熱穩定性的指標之一。為了抑制玻璃製造時的晶化、失透,較佳液相線溫度(LT)為1350℃以下,更佳為1330℃以下,進一步較佳為1300℃以下,更進一步較佳為1250℃以下。液相線溫度(LT)的下限作為一個例子為1100℃以上,但較佳較低的溫度,沒有特別的限定。 The liquidus temperature is one of the indicators of the thermal stability of the glass. In order to suppress crystallization and devitrification during glass production, the liquidus temperature (LT) is preferably 1350 ° C or lower, more preferably 1330 ° C or lower, further preferably 1300 ° C or lower, and still more preferably 1250 ° C or lower. The lower limit of the liquidus temperature (LT) is, for example, 1100 ° C or more, but is preferably a lower temperature, and is not particularly limited.

對於以上說明的本發明的一個方式的玻璃,其折射率(nd)和阿貝數(νd)大,作為光學元件用的玻璃材料是有用的。進而,藉由進行前面記載的組成調整,從而還能夠使玻璃均質化和低比重化。因此,上述玻璃適合於作為形成更輕量的光學元件的光學玻璃。 The glass of one embodiment of the present invention described above has a large refractive index (nd) and an Abbe number (νd), and is useful as a glass material for optical elements. Further, by performing the composition adjustment described above, it is also possible to homogenize the glass and reduce the specific gravity. Therefore, the above glass is suitable as an optical glass for forming a lighter weight optical element.

<玻璃的製造方法> <Method of Manufacturing Glass>

上述玻璃能夠藉由如下方式得到:以可得到目標的玻璃組 成的方式稱量、調配作為原料的氧化物、碳酸鹽、硫酸鹽、硝酸鹽、氫氧化物等,充分混合製成混合批料,在熔融容器內進行加熱、熔融,進行脫泡、攪拌,製造均質且不含泡沫的熔融玻璃,將其成型。具體而言,能夠使用公知的熔融法進行製作。上述玻璃是具有上述的光學特性的高折射率低色散玻璃並且熱穩定性優異,因此能夠使用公知的熔融法、成型法穩定地製造。 The above glass can be obtained by: obtaining a target glass group The method is to weigh and mix oxides, carbonates, sulfates, nitrates, hydroxides, etc. as raw materials, and mix them thoroughly to form a mixed batch, which is heated and melted in a melting vessel to perform defoaming and stirring. A homogeneous, foam-free molten glass is produced and molded. Specifically, it can be produced by a known melting method. Since the glass is a high refractive index low dispersion glass having the above optical characteristics and is excellent in thermal stability, it can be stably produced by a known melting method or molding method.

[壓製成型用玻璃材料、光學元件坯件及它們的製造方法] [Glass material for press molding, optical element blank, and method for producing the same]

本發明的另一個方式關於下述者。 Another aspect of the present invention relates to the following.

一種由上述的玻璃形成的壓製成型用玻璃材料。 A glass material for press molding formed of the above glass.

一種由上述的玻璃形成的光學元件坯件。 An optical element blank formed from the above glass.

根據本發明的另一個方式,可提供下述者。 According to another aspect of the present invention, the following may be provided.

一種具有將上述的玻璃成型為壓製成型用玻璃材料的步驟的壓製成型用玻璃材料的製造方法。 A method for producing a glass material for press molding having a step of molding the above-described glass into a glass material for press molding.

一種具有藉由將上述的壓製成型用玻璃材料使用壓製成型模進行壓製成型而製作光學元件坯件的步驟的光學元件坯件的製造方法。 A method of producing an optical element blank having a step of producing an optical element blank by press-molding the above-mentioned glass material for press molding using a press molding die.

一種具有將上述的玻璃成型為光學元件坯件的步驟的光學元件坯件的製造方法。 A method of manufacturing an optical element blank having the step of molding the above-described glass into an optical element blank.

光學元件坯件是與設為目標的光學元件的形狀近似、在光學元件形狀上增加了拋光餘量(藉由拋光而除去的表面層)、根據需要增加了研磨餘量(藉由研磨而除去的表面層)的光學元件母材。藉由將光學元件坯件的表面研磨、拋光,從 而製作完成了光學元件。在一個方式中,能夠藉由對將上述玻璃進行適量熔融而得到的熔融玻璃壓製成型的方法(被稱為直接壓製法),從而製作光學元件坯件。在另一個方式中,也能夠藉由對將上述玻璃適量熔融而得到的熔融玻璃進行固化從而製作光學元件坯件。 The optical element blank is similar to the shape of the target optical element, and the polishing allowance is added to the shape of the optical element (the surface layer removed by polishing), and the polishing allowance is increased as needed (removed by grinding) The surface layer of the optical element base material. By grinding and polishing the surface of the optical element blank The optical component was completed. In one embodiment, an optical element blank can be produced by a method of press molding a molten glass obtained by appropriately melting the glass (referred to as a direct pressing method). In another aspect, the optical element blank can also be produced by curing the molten glass obtained by appropriately melting the glass.

此外,在另一個方式中,能夠藉由製作壓製成型用玻璃材料,將製作的壓製成型用玻璃材料進行壓製成型而製作光學元件坯件。 Further, in another embodiment, the glass material for press molding can be produced by press-forming the produced glass material for press molding to produce an optical element blank.

壓製成型用玻璃材料的壓製成型能夠藉由將加熱而呈軟化狀態的壓製成型用玻璃材料用壓製成型模進行壓製的公知的方法進行。加熱、壓製成型均能夠在大氣中進行。能夠藉由壓製成型後進行退火來降低玻璃內部的應力,從而得到均質的光學元件坯件。 The press molding of the glass material for press molding can be carried out by a known method of pressing a glass material for press molding which is softened by heating with a press molding die. Both heating and press molding can be carried out in the atmosphere. The stress inside the glass can be reduced by annealing after press molding to obtain a homogeneous optical element blank.

壓製成型用玻璃材料除了以原樣的狀態提供給用於光學元件坯件製作的壓製成型的被稱為壓製成型用玻璃料滴的壓製成型用玻璃材料以外,還包含施加切斷、研磨、拋光等機械加工、經過壓製成型用玻璃料滴而供給到壓製成型的壓製成型用玻璃材料。作為切斷方法,有在玻璃板的表面的想要切斷的部分使用被稱為刻劃的方法形成槽,從形成的槽的面的背面對槽的部分施加局部壓力,在槽的部分切斷玻璃板的方法;用切斷刃切斷玻璃板的方法等。此外,作為研磨、拋光方法可舉出滾筒拋光等。 The glass material for press molding is supplied to the glass material for press molding, which is called a glass gob for press molding, which is used for press forming of an optical element blank, in the same manner, and includes cutting, grinding, polishing, and the like. The glass material for press molding is supplied to a press-molding glass material by mechanical processing and through a glass gob for press molding. As a cutting method, a groove is formed in a portion to be cut on the surface of the glass sheet by a method called scribing, and a partial pressure is applied to a portion of the groove from the back surface of the surface of the formed groove, and a portion of the groove is cut. A method of cutting a glass sheet; a method of cutting a glass sheet with a cutting blade, and the like. Further, as the polishing and polishing method, barrel polishing or the like can be mentioned.

壓製成型用玻璃材料能夠藉由例如將熔融玻璃澆鑄到鑄模中,成型成玻璃板,將該玻璃板切斷成多個玻璃片從 而製作。或者,也能夠將適量的熔融玻璃進行成型而製作壓製成型用玻璃料滴。還能夠藉由將壓製成型用玻璃料滴再加熱、軟化而進行壓製成型從而製作光學元件坯件。將玻璃再加熱、軟化、進行壓製成型而製作光學元件坯件的方法相對於直接壓製法被稱為再加熱壓製法。 The glass material for press molding can be formed into a glass plate by, for example, casting molten glass into a mold, and the glass plate is cut into a plurality of glass sheets. And making. Alternatively, an appropriate amount of molten glass can be molded to produce a glass gob for press molding. It is also possible to produce an optical element blank by press-molding the glass gob for press molding by reheating and softening. The method of producing an optical element blank by reheating, softening, and press-molding the glass is referred to as a reheat pressing method with respect to the direct pressing method.

[光學元件及其製造方法] [Optical element and its manufacturing method]

本發明另一個方式關於由上述的玻璃形成的光學元件。 Another aspect of the invention relates to an optical element formed from the above-described glass.

上述光學元件使用上述的玻璃製作。在上述光學元件中,也可以在玻璃表面形成例如防反射膜等多層膜等一層以上的塗層膜。 The above optical element is produced using the above glass. In the above optical element, one or more coat films such as a multilayer film such as an antireflection film may be formed on the surface of the glass.

此外,根據本發明的一個方式,還提供具有藉由將上述的光學元件坯件進行研磨及/或拋光而製作光學元件的步驟的光學元件的製造方法。 Further, according to an aspect of the present invention, there is provided a method of manufacturing an optical element having a step of producing an optical element by polishing and/or polishing the above-described optical element blank.

在上述光學元件的製造方法中,研磨、拋光只要應用公知的方法即可,能夠藉由在加工後對光學元件表面充分洗淨、使其乾燥等來得到內部質量和表面品質高的光學元件。像這樣,能夠得到由上述玻璃形成的光學元件。作為光學元件,能夠例示球面透鏡、非球面透鏡、微透鏡等各種的透鏡、棱鏡等。 In the method for producing an optical element, it is only necessary to apply a known method for polishing and polishing, and an optical element having high internal quality and surface quality can be obtained by sufficiently washing the surface of the optical element after processing, drying it, or the like. In this way, an optical element formed of the above glass can be obtained. As the optical element, various lenses, prisms, and the like such as a spherical lens, an aspherical lens, and a microlens can be exemplified.

此外,由上述玻璃形成的光學元件作為構成膠合光學元件的透鏡也是合適的。作為膠合光學元件,能夠例示將透鏡彼此進行膠合的膠合光學元件(膠合透鏡)、將透鏡和棱鏡進行膠合的膠合光學元件等。例如,膠合光學元件可以藉由以下方式製作:將膠合的2個光學元件的膠合面以形狀成為反轉 形狀的方式進行精密地加工(例如球面拋光加工),塗布膠合透鏡的黏接所使用的紫外線固化型黏接劑,使其貼合後,藉由透鏡照射紫外線,使黏接劑固化。為了製作這樣的膠合光學元件,較佳上述玻璃。藉由使用阿貝數(νd)不同的多種玻璃分別製作膠合的多個的光學元件、將它們進行膠合,從而能夠製成適合於色像差的校正的元件。 Further, an optical element formed of the above glass is also suitable as a lens constituting a cemented optical element. As the glue optical element, a glue optical element (glued lens) that bonds lenses to each other, a glue optical element that bonds a lens and a prism, and the like can be exemplified. For example, a glued optical element can be fabricated by reversing the glued surface of the glued two optical elements. The shape is precisely processed (for example, spherical polishing), and the ultraviolet-curable adhesive used for bonding the cemented lens is applied, and after bonding, the lens is irradiated with ultraviolet rays to cure the adhesive. In order to produce such a glued optical element, the above glass is preferred. By arranging a plurality of glued optical elements by using a plurality of glasses having different Abbe numbers (νd), and bonding them together, it is possible to form an element suitable for correction of chromatic aberration.

對於玻璃組成的定量分析的結果,有時,玻璃成分以氧化物基準表示,玻璃成分的含量以質量%表示。這樣用氧化物基準以質量%表示的組成能夠按照例如下述的方法換算成以陽離子%、陰離子%表示的組成。 As a result of quantitative analysis of the glass composition, the glass component is represented by an oxide standard, and the content of the glass component is represented by mass%. The composition represented by mass% in terms of oxides can be converted into a composition represented by cation % and anion % according to, for example, the following method.

玻璃中含有N種玻璃成分的情況下,將第k種的玻璃組成用A(k)mOn表示。其中,k為1以上、N以下的任意整數。 When the glass contains N kinds of glass components, the glass composition of the kth type is represented by A(k) m O n . Here, k is an arbitrary integer of 1 or more and N or less.

A(k)是陽離子、O是氧、m和n是以化學計量法確定的整數。例如,基於氧化物基準表示為B2O3的情況下,m=2、n=3;表示為SiO2的情況下,m=1、n=2。 A(k) is a cation, O is oxygen, and m and n are integers determined by stoichiometry. For example, when the oxide standard is represented by B 2 O 3 , m=2 and n=3; when it is represented by SiO 2 , m=1 and n=2.

接著,將A(k)mOn的含量用X(k)[質量%]表示。在此,將A(k)的原子量設為P(k)、將氧原子O的原子序數設為Q時,A(k)mOn的形式上的分子量R(k)為R(k)=P(k)×m+Q×n。 Next, the content of A(k) m O n is represented by X(k) [% by mass]. Here, when the atomic weight of A(k) is P(k) and the atomic number of oxygen atom O is Q, the molecular weight R(k) of A(k) m O n is R(k). = P(k) × m + Q × n.

進而,當B=100/{Σ[m×X(k)/R(k)]}時,陽離子成分A(k)s+的含量(陽離子%)為(X(k)/R(k))×m×B(陽離子%)。在此,Σ是指從k=1至N的m×X(k)/R(K)的合計。m根據k變化。s是2n/m。 Further, when B=100/{Σ[m×X(k)/R(k)]}, the content (cation %) of the cationic component A(k) s+ is (X(k)/R(k)) × m × B (cation %). Here, Σ means the total of m × X (k) / R (K) from k = 1 to N. m varies according to k. s is 2n/m.

此外,分子量R(k)只要使用將小數點後第4位四捨五入而表示到小數點後第3位的值進行計算即可。應予說明的是,對於一些玻璃成分、添加劑採用氧化物基準表示的分子量如下表 62表示。 Further, the molecular weight R(k) may be calculated by rounding off the fourth decimal place and expressing the value to the third decimal place. It should be noted that the molecular weights expressed by the oxide standard for some glass components and additives are as follows: 62 said.

實施例 Example

以下,基於實施例對本發明進行進一步說明。但是,本發明並不限定於實施例所示的方式。 Hereinafter, the present invention will be further described based on examples. However, the present invention is not limited to the embodiment shown in the embodiment.

(實施例1) (Example 1)

以可得到具有下表所示的組成的玻璃的方式,稱量作為原料的氧化物、硼酸等化合物,充分混合,製作批量原料。 A compound such as an oxide or a boric acid as a raw material is weighed so that a glass having a composition shown in the following table can be obtained, and sufficiently mixed to prepare a batch raw material.

將該批量原料放入鉑坩堝中,連同坩堝一起加熱到1350~1450℃,歷經2~3小時,將玻璃熔融、澄清。將熔融玻璃進行攪拌而均質化後,將熔融玻璃澆鑄到經過預熱的成型模,放置冷卻至玻璃化轉變溫度附近後,立刻將玻璃連同成型模一起放入退火爐內。然後,在玻璃化轉變溫度附近進行約1小時的退火。進行了退火後,在退火爐內放置冷卻至室溫。 The batch of raw materials was placed in a platinum crucible and heated together with hydrazine to 1350 to 1450 ° C. After 2 to 3 hours, the glass was melted and clarified. After the molten glass was stirred and homogenized, the molten glass was cast into a preheated molding die, left to cool to near the glass transition temperature, and immediately placed in the annealing furnace together with the molding die. Then, annealing was performed for about 1 hour near the glass transition temperature. After annealing, it was placed in an annealing furnace and cooled to room temperature.

觀察像這樣製作的玻璃,結果沒有發現晶體的析出、氣泡、條紋、原料的熔融殘留。由此,能夠製作均質性高的玻璃。 When the glass produced in this manner was observed, no precipitation of crystals, bubbles, streaks, and melting of the raw material were observed. Thereby, it is possible to produce a glass having high homogeneity.

(比較例1~4) (Comparative examples 1 to 4)

以可得到具有下表所示的比較例1~4的各組成的玻璃的方式,稱量作為原料的氧化物、硼酸等化合物,充分混合,製作批量原料,除此之外,用與實施例1同樣的方法得到玻璃。 In the form of a glass having a composition of each of Comparative Examples 1 to 4 shown in the following Table, a compound such as an oxide or a boric acid as a raw material was weighed and sufficiently mixed to prepare a batch raw material, and the examples were used. 1 The same method was used to obtain glass.

比較例1的組成是將專利文獻20的玻璃No.11的組成換算成以陽離子%表示的玻璃組成的組成。 The composition of Comparative Example 1 is a composition in which the composition of the glass No. 11 of Patent Document 20 is converted into a glass composition represented by a cationic %.

比較例2是將專利文獻20的玻璃No.25的組成換算成以陽離子%表示的玻璃組成的組成。 Comparative Example 2 is a composition in which the composition of the glass No. 25 of Patent Document 20 is converted into a glass composition represented by a cationic %.

比較例3是將專利文獻20的玻璃No.45的組成換算成以陽離子%表示的玻璃組成的組成。 In Comparative Example 3, the composition of the glass No. 45 of Patent Document 20 was converted into a composition of a glass composition represented by a cationic %.

比較例4是將專利文獻20的玻璃No.49的組成換算成以陽離子%表示的玻璃組成的組成。 In the comparative example 4, the composition of the glass No. 49 of the patent document 20 is converted into the composition of the glass composition represented by the cationic %.

對得到的玻璃的玻璃特性用以下所示的方法進行了測定。測定結果如下表所示。 The glass characteristics of the obtained glass were measured by the method shown below. The measurement results are shown in the table below.

(1)折射率(nd)、折射率(nF)、折射率(nc)、折射率(ng)、阿貝數(νd) (1) Refractive index (nd), refractive index (nF), refractive index (nc), refractive index (ng), Abbe number (νd)

對於以-30℃/小時的降溫速度進行降溫而得到的玻璃,根據日本光學玻璃工業會標準的折射率測定法,對折射率(nd)、折射率(nF)、折射率(nc)、折射率(ng)進行測定。使用折射率(nd)、折射率(nF)、折射率(nc)的各測定值算出阿貝數(νd)。 The glass obtained by cooling at a temperature drop rate of -30 ° C / hour is subjected to refractive index (nd), refractive index (nF), refractive index (nc), and refractive index according to the refractive index measurement method of the Japan Optical Glass Industry Association standard. The rate (ng) was measured. The Abbe number (νd) was calculated using each measured value of the refractive index (nd), the refractive index (nF), and the refractive index (nc).

(2)玻璃化轉變溫度(Tg) (2) Glass transition temperature (Tg)

使用差示掃描熱量分析裝置(DSC),以10℃/分鐘的升溫速 度進行測定。 Using a differential scanning calorimeter (DSC) at a rate of 10 ° C / min The degree was measured.

(3)比重 (3) Specific gravity

採用阿基米德法進行測定。 The measurement was carried out by the Archimedes method.

(4)相對部分色散(Pg,F) (4) Relative partial dispersion (Pg, F)

根據由上述(1)測定的nF、nc、ng的值算出。 It is calculated from the values of nF, nc, and ng measured by the above (1).

(5)液相線溫度 (5) liquidus temperature

將玻璃放入已加熱到規定溫度的爐內,保持2小時,冷卻後,用100倍的光學顯微鏡觀察玻璃內部,根據晶體的有無來決定液相線溫度。 The glass was placed in a furnace heated to a predetermined temperature and held for 2 hours. After cooling, the inside of the glass was observed with a 100-fold optical microscope, and the liquidus temperature was determined depending on the presence or absence of crystals.

(實施例2) (Example 2)

使用實施例1得到的各種玻璃,製作壓製成型用玻璃塊(玻璃料滴)。將該玻璃塊在大氣中加熱、軟化、用壓製成型模進行壓製成型,製作透鏡坯件(光學元件坯件)。將製作的透鏡坯件從壓製成型模取出,進行退火,進行含拋光的機械加工,製作由實施例1製作的各種玻璃形成的球面透鏡。 Using the various glasses obtained in Example 1, a glass block for press molding (glass gob) was produced. The glass block was heated and softened in the atmosphere, and press-molded by a press molding die to prepare a lens blank (optical element blank). The produced lens blank was taken out from the press molding die, annealed, and subjected to polishing including polishing to prepare a spherical lens formed of various glasses produced in Example 1.

(實施例3) (Example 3)

將所需量的在實施例1中製作的熔融玻璃用壓製成型模進行壓製成型,製作透鏡坯件(光學元件坯件)。將製作的透鏡坯件從壓製成型模取出,進行退火,進行含拋光的機械加工,製作由實施例1製作的各種玻璃形成的球面透鏡。 The required amount of the molten glass produced in Example 1 was compression-molded by a press molding die to prepare a lens blank (optical element blank). The produced lens blank was taken out from the press molding die, annealed, and subjected to polishing including polishing to prepare a spherical lens formed of various glasses produced in Example 1.

(實施例4) (Example 4)

對將在實施例1中製作的熔融玻璃進行固化而製成的玻璃塊(光學元件坯件)進行退火,進行含拋光的機械加工,製作由實施例1製作的各種玻璃形成的球面透鏡。 A glass block (optical element blank) obtained by curing the molten glass produced in Example 1 was annealed, and subjected to polishing including polishing to prepare a spherical lens formed of various glasses produced in Example 1.

(實施例5) (Example 5)

將在實施例2~4中製作的球面透鏡與由其它種類的玻璃形成的球面透鏡貼合,製作膠合透鏡。 The spherical lenses produced in Examples 2 to 4 were bonded to a spherical lens formed of other kinds of glass to produce a cemented lens.

(比較例6) (Comparative Example 6)

本發明的一個方式的玻璃的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}為0.17以下。 The cation ratio of {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} of the glass of one embodiment of the present invention is 0.17 or less.

相對於此,日本特開2014-62026號公報的表1中所示的No.6的玻璃的上述陽離子比為0.578。在該日本特開2014-62026號公報的表1所示的No.6的玻璃的玻璃組成中,顯示如果單單 僅進行降低陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}的組成調整則難以抑制晶體析出的情況,因此製作了以下記載的玻璃。 On the other hand, the cation ratio of the glass of No. 6 shown in Table 1 of JP-A-2014-62026 is 0.578. In the glass composition of the glass of No. 6 shown in Table 1 of JP-A-2014-62026, it is shown that only the reduction of the cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3 ) is performed. The composition adjustment of + +Yb 3+ )} is difficult to suppress the precipitation of crystals, and thus the glass described below was produced.

在日本特開2014-62026號公報的表1所示的No.6的玻璃中,對Zn2+進行減量,以其他成分的含量的平衡沒有大的變化的方式將減少的量分配到其他成分,進行如下表64中所示的組成調整,製作了2種玻璃(組成調整1、組成調整2)。表64中的玻璃成分彼此的比是陽離子比。具體而言,調配玻璃原料,在鉑坩堝中放入170g的調配原料,在1400℃進行2小時的熔融、澄清。對熔融玻璃進行攪拌而均質化後,將熔融玻璃澆鑄到經過預熱的成型模中,放置冷卻至玻璃化轉變溫度附近後,立刻將玻璃連同成型模一起放入退火爐中。然後,在玻璃化轉變溫度附近進行約1小時的退火。進行了退火後,在退火爐內放置冷卻至室溫。 In the glass of No. 6 shown in Table 1 of JP-A-2014-62026, Zn 2+ is reduced, and the amount of reduction is distributed to other components so that the balance of the contents of other components is not largely changed. The composition adjustment shown in the following Table 64 was carried out, and two types of glass (composition adjustment 1, composition adjustment 2) were produced. The ratio of the glass components in Table 64 to each other is a cation ratio. Specifically, a glass raw material was prepared, and 170 g of a raw material was placed in a platinum crucible, and melted and clarified at 1400 ° C for 2 hours. After the molten glass was agitated and homogenized, the molten glass was cast into a preheated molding die, left to cool to near the glass transition temperature, and immediately placed in an annealing furnace together with the molding die. Then, annealing was performed for about 1 hour near the glass transition temperature. After annealing, it was placed in an annealing furnace and cooled to room temperature.

之後,觀察了玻璃的內部。 After that, the inside of the glass was observed.

圖1是在比較例6中評價的玻璃的照片。從圖1可以明顯的看出,玻璃中析出了大量晶體,白濁而失去了透明性。 1 is a photograph of a glass evaluated in Comparative Example 6. It can be clearly seen from Fig. 1 that a large amount of crystals are precipitated in the glass, which is cloudy and loses transparency.

相對於此,對於本發明的一個方式的玻璃,藉由進行陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}等的前面詳述的組成調整,從而能夠抑制晶體析出。 On the other hand, in the glass of one embodiment of the present invention, the composition adjustment described in detail above, such as {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )}, is performed. Thereby, crystal precipitation can be suppressed.

圖2是將實施例1的各玻璃和比較例1~4的各玻璃的阿貝數(νd)取在橫軸、將由上述(A)式算出的值A取在縱軸的圖表。 2 is a graph in which the Abbe number (νd) of each of the glasses of Example 1 and each of Comparative Examples 1 to 4 is taken on the horizontal axis, and the value A calculated by the above formula (A) is taken on the vertical axis.

如圖2所示,由上述(A)式算出的值A顯示出與阿貝數良好的相關關係。從該結果能夠確認,進行基於值A的組成調整對於調整阿貝數是較佳的。 As shown in FIG. 2, the value A calculated by the above formula (A) shows a good correlation with the Abbe number. From this result, it was confirmed that the composition adjustment based on the value A is preferable for adjusting the Abbe number.

最後,對上述的各個方式進行總結。 Finally, summarize the various ways mentioned above.

根據一個方式,能夠提供一種玻璃,其為氧化物 玻璃,B3+和Si4+的合計含量為43~65%,La3+、Y3+、Gd3+和Yb3+的合計含量為25~50%,Nb5+、Ti4+、Ta5+和W6+的合計含量為3~12%,Zr4+含量為2~8%,B3+和Si4+的合計含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}為0.70~1.42,B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}為5.80~7.70,W6+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}為0.50以下,Zn2+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}為0.17以下,La3+含量含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}為0.50~0.95,Y3+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}為0.10~0.50,Gd3+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}為0.10以下,Ta5+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}為0.2以下,阿貝數(νd)的範圍為39.5~41.5,且折射率(nd)相對於阿貝數(νd)滿足上述(1)式。 According to one embodiment, it is possible to provide a glass which is an oxide glass, the total content of B 3+ and Si 4+ is 43 to 65%, and the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is 25~50%, the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is 3~12%, Zr 4+ content is 2~8%, and the total content of B 3+ and Si 4+ is relative The ratio of cations to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is {(B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ +Yb 3+ ) } is a ratio of cations of 0.70 to 1.42, the total content of B 3+ and Si 4+ to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ {(B 3+ +Si 4+ )/ (Nb 5+ + Ti 4+ + Ta 5+ + W 6+)} is 5.80 ~ 7.70, W 6+ content of the Nb 5+, the total cation content of Ti 4+, Ta 5+, and W 6+ ratio {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 0.50 or less, and the total Zn 2+ content is relative to La 3+ , Y 3+ , Gd 3+ , and Yb 3+ . cation content ratio {Zn 2+ / (La 3+ + Y 3+ + Gd 3+ + Yb 3+)} is 0.17, La 3+ content relative to the content of La 3+, Y 3+, Gd 3+, and The cation ratio of the total content of Yb 3+ is {La 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.50-0.95, and the content of Y 3+ is relative to La 3+ , Y 3+ , Gd 3+ The cation ratio of the total content of Yb 3+ to {Y 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.10 to 0.50, and the Gd 3+ content is relative to La 3+ and Y 3 The cation ratio of the total content of + , Gd 3+ and Yb 3+ is {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.10 or less, and the content of Ta 5+ is relative to Nb 5 The cation ratio of the total content of + , Ti 4+ , Ta 5+ and W 6+ is {Ta 5+ /(Nb 5+ + Ti 4+ +Ta 5+ +W 6+ )} is 0.2 or less, and the Abbe number ( The range of νd) is 39.5 to 41.5, and the refractive index (nd) satisfies the above formula (1) with respect to the Abbe number (νd).

上述玻璃是滿足(1)式的玻璃,是在光學系統中有用的高折射率低色散玻璃。上述玻璃由於降低了玻璃組成中Gd、Ta所佔有的比例,因此能夠穩定供給,且藉由滿足上述的含量、合計含量和陽離子比,從而能夠得到高的熱穩定性,能夠低比重化。 The above glass is a glass satisfying the formula (1) and is a high refractive index low dispersion glass useful in an optical system. Since the glass has a reduced ratio of Gd and Ta in the glass composition, the glass can be stably supplied, and by satisfying the above-described content, total content, and cation ratio, high thermal stability can be obtained, and the specific gravity can be reduced.

在一個方式中,對於上述玻璃,較佳在以陽離子%表示的玻璃組成中由上述(A)式算出的值A的範圍為8.5000~11.0000。 In one embodiment, in the glass composition represented by the cation %, the value A calculated by the above formula (A) is preferably 8.5000 to 11.0000.

在一個方式中,對於上述玻璃,較佳在以陽離子%表示的玻璃組成中,由上述(B)式算出的值B的範圍為-1.000~6.720。 In one embodiment, in the glass composition represented by the cation %, the value B calculated by the above formula (B) is in the range of -1.000 to 6.720.

在一個方式中,較佳上述玻璃中的Zr4+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Zr4+含量/(Nb5++Ti4++Ta5++W6+)}的範圍為0.48~2.20。 In one embodiment , the cation ratio of the Zr 4+ content in the above glass to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is preferably {Zr 4+ content / (Nb 5+ + Ti) The range of 4+ +Ta 5+ +W 6+ )} is 0.48~2.20.

在一個方式中,上述玻璃的比重為5.20以下。 In one embodiment, the specific gravity of the glass is 5.20 or less.

由以上說明的玻璃能夠製作壓製成型用玻璃材料、光學元件坯件和光學元件。亦即,根據另一個方式,可提供由上述玻璃形成的壓製成型用玻璃元件、光學元件坯件和光學元件。 The glass material for press molding, the optical element blank, and the optical element can be produced from the glass described above. That is, according to another aspect, a glass member for press molding, an optical element blank, and an optical element formed of the above glass can be provided.

此外,根據另一個方式,還可提供具有將上述玻璃成型為壓製成型用玻璃材料的步驟的壓製成型用玻璃材料的製造方法。 Further, according to another aspect, a method for producing a glass material for press molding having a step of molding the glass into a glass material for press molding may be provided.

進而,根據另一個方式,還可提供具有藉由將上述壓製成型用玻璃材料使用壓製成型模進行壓製成型而製作光學元件坯件的步驟的光學元件坯件的製造方法。 Further, according to another aspect, a method of manufacturing an optical element blank having a step of producing an optical element blank by press-molding the above-mentioned glass material for press molding using a press molding die can be provided.

進而,根據另一個方式,還可提供具有將上述玻璃成型為光學元件坯件的步驟的光學元件坯件的製造方法。 Further, according to another aspect, a method of manufacturing an optical element blank having the step of molding the above-described glass into an optical element blank can also be provided.

進而,根據另一個方式,還可提供具有藉由將上述光學元件坯件進行研磨及/或拋光而製作光學元件的步驟的 光學元件的製造方法。 Further, according to another aspect, it is also possible to provide a step of fabricating an optical element by grinding and/or polishing the above-mentioned optical element blank. A method of manufacturing an optical element.

應該認為,這次公開的實施形態在所有的方面都是例示而非限制性的。本發明的範圍不是藉由上述的說明而是藉由申請專利範圍的範圍來表示,意圖包含與申請專利範圍的範圍均等的意思和範圍內的全部的變更。 It is to be understood that the embodiments disclosed herein are illustrative and not restrictive. The scope of the present invention is defined by the scope of the claims and the scope of the claims and the scope of the claims.

例如,藉由對於上述例示的玻璃組成進行說明書中記載的組成調整,從而能夠得到本發明的一個方式的玻璃。 For example, the glass of one embodiment of the present invention can be obtained by performing the composition adjustment described in the specification for the glass composition exemplified above.

此外,當然能夠使說明書中例示或作為較佳的範圍記載的事項的2個以上進行任意地組合。 In addition, it is of course possible to arbitrarily combine two or more of the items described in the specification or as the items described in the preferred range.

[產業利用性] [Industry Utilization]

本發明在各種光學元件的製造領域中是有用的。 The invention is useful in the field of manufacture of various optical components.

Claims (12)

一種玻璃,為氧化物玻璃,其中以陽離子%表示,B3+和Si4+的合計含量為43~65%;La3+、Y3+、Gd3+和Yb3+的合計含量為25~50%;Nb5+、Ti4+、Ta5+和W6+的合計含量為3~12%;Zr4+含量為2~8%;B3+和Si4+的合計含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}為0.70~1.42;B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}為5.80~7.70;W6+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}為0.50以下;Zn2+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}為0.17以下;La3+含量含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}為0.50~0.95;Y3+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}為0.10~0.50;Gd3+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}為0.10以下;Ta5+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}為0.2以下; 阿貝數(νd)的範圍為39.5~41.5,且折射率nd相對於阿貝數(νd)滿足下述(1)式:(1)式nd2.0927-0.0058×νd。 A glass, which is an oxide glass, wherein the total content of B 3+ and Si 4+ is 43 to 65%, and the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is 25 ~50%; the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is 3~12%; Zr 4+ content is 2~8%; the total content of B 3+ and Si 4+ is relative to The ratio of cations of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ to {(B 3+ +Si 4+ )/(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} a ratio of cations of 0.70 to 1.42; total content of B 3+ and Si 4+ to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ {(B 3+ +Si 4+ )/( Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 5.80 to 7.70; cation ratio of W 6+ content relative to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 0.50 or less; the total content of Zn 2+ relative to La 3+ , Y 3+ , Gd 3+ and Yb 3+ The cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.17 or less; the La 3+ content is relative to La 3+ , Y 3+ , Gd 3+ and Yb 3+ cations total content ratio {La 3+ / (La 3+ + Y 3+ + Gd 3+ + Yb 3+)} is 0.50 ~ 0.95; Y 3+ content with respect to the La 3+, Y 3+, Gd 3+ and Yb 3+ The total cation ratio of {Y 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.10-0.50; the Gd 3+ content is relative to La 3+ , Y 3+ , Gd 3 The cation ratio of the total content of + and Yb 3+ is {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is 0.10 or less; the content of Ta 5+ is relative to Nb 5+ , Ti 4 The cation ratio of the total content of + , Ta 5+ and W 6+ is {Ta 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 0.2 or less; the range of Abbe number (νd) It is 39.5 to 41.5, and the refractive index nd satisfies the following formula (1) with respect to the Abbe number (νd): (1) Formula nd 2.0927-0.0058×νd. 如申請專利範圍第1項所述之玻璃,其中在以陽離子%表示的玻璃組成中,由下述(A)式算出的值A的範圍是8.5000~11.0000:(A)式A=0.01×Si4+含量+0.01×B3+含量+0.05×La3+含量+0.07×Y3+含量+0.07×Yb3+含量+0.085×Zn2+含量+0.3×Zr4+含量+0.5×Ta5+含量+0.8×Nb5+含量+0.9×W5+含量+0.95×Ti4+含量。 The glass according to claim 1, wherein in the glass composition represented by the cation %, the value A calculated by the following formula (A) ranges from 8.5000 to 11.0000: (A) Formula A = 0.01 × Si 4+ content+0.01×B 3+ content+0.05×La 3+ content+0.07×Y 3+ content+0.07×Yb 3+ content+0.085×Zn 2+ content+0.3×Zr 4+ content+0.5×Ta 5 + content + 0.8 × Nb 5 + content + 0.9 × W 5 + content + 0.95 × Ti 4 + content. 如申請專利範圍第1或2項所述之玻璃,其中在以陽離子%表示的玻璃組成中,由下述(B)式算出的值B的範圍是-1.000~6.720:(B)式B=0.567×(Ti4+含量+Nb5+含量)-1.000×Gd3+含量。 The glass according to claim 1 or 2, wherein in the glass composition represented by the cation %, the value B calculated by the following formula (B) ranges from -1.000 to 6.720: (B) Formula B = 0.567 × (Ti 4 + content + Nb 5 + content) - 1.000 × Gd 3 + content. 如申請專利範圍第1或2項所述之玻璃,其中Zr4+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Zr4+含量/(Nb5++Ti4++Ta5++W6+)}的範圍為0.48~2.20。 The application of a glass or two of the scope of patent 1, wherein the Zr 4+ content relative to the total content of Nb 5+, Ti 4+, Ta 5+, and W 6+ ratio {Zr 4+ cation content / (Nb The range of 5+ + Ti 4+ + Ta 5+ + W 6+ )} is 0.48 to 2.20. 如申請專利範圍第3項所述之玻璃,其中Zr4+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Zr4+含量/(Nb5++Ti4++Ta5++W6+)}的範圍為0.48~2.20。 The application of paragraph 3 of the glass patentable scope, wherein the content of Zr 4+ with respect to Nb 5+, the total cation content of Ti 4+, Ta 5+, and W 6+ content ratio of Zr 4+ {/ (Nb 5+ The range of +Ti 4+ + Ta 5+ + W 6+ )} is 0.48 to 2.20. 如申請專利範圍第1或2項所述之玻璃,其中比重為5.20以下。 The glass according to claim 1 or 2, wherein the specific gravity is 5.20 or less. 如申請專利範圍第3項所述之玻璃,其中比重為5.20以下。 The glass according to claim 3, wherein the specific gravity is 5.20 or less. 如申請專利範圍第4項所述之玻璃,其中比重為5.20以下。 The glass according to claim 4, wherein the specific gravity is 5.20 or less. 如申請專利範圍第5項所述之玻璃,其中比重為5.20以下。 The glass according to claim 5, wherein the specific gravity is 5.20 or less. 一種壓製成型用玻璃材料,由申請專利範圍第1至5項中任一項所述之玻璃形成。 A glass material for press molding, which is formed from the glass according to any one of claims 1 to 5. 一種光學元件坯件,由申請專利範圍第1至5項中任一項所述之玻璃形成。 An optical element blank formed of the glass of any one of claims 1 to 5. 一種光學元件,由申請專利範圍第1至5項中任一項所述之玻璃形成。 An optical element formed from the glass of any one of claims 1 to 5.
TW105135661A 2015-11-06 2016-11-03 Glass, glass materials for press molding, optical element blanks and optical elements TWI765868B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-218950 2015-11-06
JP2015218950 2015-11-06
JP2016073338A JP6366628B2 (en) 2015-11-06 2016-03-31 Glass, glass material for press molding, optical element blank, and optical element
JP2016-073338 2016-03-31

Publications (2)

Publication Number Publication Date
TW201733943A true TW201733943A (en) 2017-10-01
TWI765868B TWI765868B (en) 2022-06-01

Family

ID=58771199

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105135661A TWI765868B (en) 2015-11-06 2016-11-03 Glass, glass materials for press molding, optical element blanks and optical elements

Country Status (2)

Country Link
JP (1) JP6366628B2 (en)
TW (1) TWI765868B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784608A (en) * 2018-10-11 2023-03-14 Hoya株式会社 Optical glass, glass material for press molding, optical element blank, and optical element
TWI838410B (en) * 2018-10-11 2024-04-11 日商Hoya股份有限公司 Optical glass, glass raw materials for press molding, optical element blanks, and optical elements

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170488B2 (en) * 2018-10-11 2022-11-14 Hoya株式会社 Optical glass, glass materials for press molding, optical element blanks and optical elements
CN117425627A (en) * 2021-06-07 2024-01-19 日本光硝子株式会社 Optical glass, optical element, optical system, junction lens, interchangeable lens for camera, objective lens for microscope, and optical device
CN115304269A (en) * 2022-08-26 2022-11-08 成都光明光电股份有限公司 Optical glass
CN115321813A (en) * 2022-08-26 2022-11-11 成都光明光电股份有限公司 Optical glass and optical element
CN115385570A (en) * 2022-08-26 2022-11-25 成都光明光电股份有限公司 High refractive index optical glass
CN117658446A (en) * 2022-08-26 2024-03-08 成都光明光电股份有限公司 High-refraction low-dispersion optical glass
CN115466051A (en) * 2022-08-26 2022-12-13 成都光明光电股份有限公司 Optical Glass, Glass Preforms and Optical Components

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5800766B2 (en) * 2011-10-28 2015-10-28 株式会社オハラ Optical glass, preform and optical element
JP6069217B2 (en) * 2011-11-08 2017-02-01 Hoya株式会社 Optical glass, glass material for press molding, optical element and method for producing the same
JP5977335B2 (en) * 2012-03-26 2016-08-24 Hoya株式会社 Optical glass and use thereof
CN103241941A (en) * 2013-05-22 2013-08-14 成都赛林斯科技实业有限公司 Optical glass
JP5979723B2 (en) * 2013-07-31 2016-08-31 株式会社オハラ Optical glass and optical element
JP2015127277A (en) * 2013-12-27 2015-07-09 株式会社オハラ Manufacturing method for optical glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784608A (en) * 2018-10-11 2023-03-14 Hoya株式会社 Optical glass, glass material for press molding, optical element blank, and optical element
TWI838410B (en) * 2018-10-11 2024-04-11 日商Hoya股份有限公司 Optical glass, glass raw materials for press molding, optical element blanks, and optical elements
TWI838409B (en) * 2018-10-11 2024-04-11 日商Hoya股份有限公司 Optical glass, glass raw materials for press molding, optical element blanks, and optical elements

Also Published As

Publication number Publication date
JP6366628B2 (en) 2018-08-01
TWI765868B (en) 2022-06-01
JP2017088476A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
TWI765868B (en) Glass, glass materials for press molding, optical element blanks and optical elements
JP6603449B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP6738243B2 (en) Glass, glass material for press molding, optical element blank and optical element
TWI610900B (en) Glass, glass material for press molding, optical component blanks and optical components
CN105461219B (en) Glass, glass materials for press molding, optical element blanks and optical elements
JP7514351B2 (en) Glass, glass materials for press molding, optical element blanks, and optical elements
TWI756192B (en) Glass, glass materials for press molding, optical element blanks and optical elements
JP6693726B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP2018172282A (en) Glass, glass blank for press-forming, optical element blank, and optical element
JP2018039729A (en) Glass, glass blank for press-forming, optical element blank, and optical element
TW202028141A (en) Optical glass, glass material for press molding, optical element blank, and optical element
JP6678008B2 (en) Glass, glass material for press molding, optical element blank, and optical element
TWI887211B (en) Optical glass, glass raw materials for press molding, optical element blanks, and optical elements
JP6626907B2 (en) Glass, glass material for press molding, optical element blank, and optical element
TW202033465A (en) Optical glass, glass material for press molding, optical element blank, and optical element
CN111039563A (en) Optical glass, glass material for press molding, optical element blank, and optical element