[go: up one dir, main page]

TW201733942A - Glass, glass raw material for press molding, optical element blank, and optical element - Google Patents

Glass, glass raw material for press molding, optical element blank, and optical element Download PDF

Info

Publication number
TW201733942A
TW201733942A TW105135659A TW105135659A TW201733942A TW 201733942 A TW201733942 A TW 201733942A TW 105135659 A TW105135659 A TW 105135659A TW 105135659 A TW105135659 A TW 105135659A TW 201733942 A TW201733942 A TW 201733942A
Authority
TW
Taiwan
Prior art keywords
glass
content
refractive index
optical element
cation
Prior art date
Application number
TW105135659A
Other languages
Chinese (zh)
Other versions
TWI756192B (en
Inventor
Tomoaki Negishi
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of TW201733942A publication Critical patent/TW201733942A/en
Application granted granted Critical
Publication of TWI756192B publication Critical patent/TWI756192B/en

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

There is provided glass which is oxide glass having, by cation%, total content of B3+, Si4+, La3+, Y3+, Gd3+, Yb3+, Nb5+, Ti4+, Ta5+, W6+, Zr4+, Zn2+, Mg2+, Ca2+, Sr2+, Ba2+, Li+, Na+, K+, Al3+ and Bi3+ of 90% or more, the Abbe number [nu]d in a range of 39.5 to 41.5, a refractive index nd satisfying a relation of (nd ≥ 2.0927-0.0058*[nu]d) to the Abbe number [nu]d and total D of values obtained by multiplying the contents of the cation components by specific factor of 0.032 to 0.090 respectively satisfying (D ≤ 6.242*nd-6.8042).

Description

玻璃、壓製成型用玻璃材料、光學元件坯件和光學元件 Glass, glass materials for press molding, optical component blanks and optical components

本發明關於一種玻璃、壓製成型用玻璃材料、光學元件坯件和光學元件。 The present invention relates to a glass, a glass material for press molding, an optical element blank, and an optical element.

藉由將由高折射率低色散玻璃形成的透鏡與由超低色散玻璃形成的透鏡等進行組合而製成膠合透鏡,從而能夠校正色像差並且使光學系統的緊湊化成為可能。因此,高折射率低色散玻璃作為構成攝像光學系統、投影機等投影光學系統的光學元件而佔有非常重要的位置。這樣的高折射率低色散玻璃記載於例如專利文獻1~20中。 By combining a lens formed of a high refractive index low-dispersion glass with a lens formed of ultra-low dispersion glass or the like to form a cemented lens, it is possible to correct chromatic aberration and to make the optical system compact. Therefore, the high refractive index low dispersion glass occupies a very important position as an optical element constituting a projection optical system such as an imaging optical system or a projector. Such high refractive index low dispersion glass is described, for example, in Patent Documents 1 to 20.

[先前技術文獻] [Previous Technical Literature]

[專利文獻] [Patent Literature]

專利文獻1:日本特開2007-063071號公報。 Patent Document 1: Japanese Laid-Open Patent Publication No. 2007-063071.

專利文獻2:日本特開2007-230835號公報。 Patent Document 2: Japanese Laid-Open Patent Publication No. 2007-230835.

專利文獻3:日本特開2007-249112號公報。 Patent Document 3: Japanese Laid-Open Patent Publication No. 2007-249112.

專利文獻4:日本特開2007-261826號公報。 Patent Document 4: Japanese Laid-Open Patent Publication No. 2007-261826.

專利文獻5:日本特開2003-267748號公報。 Patent Document 5: Japanese Laid-Open Patent Publication No. 2003-267748.

專利文獻6:日本特開2009-203083號公報。 Patent Document 6: Japanese Laid-Open Patent Publication No. 2009-203083.

專利文獻7:日本特開2011-230992號公報。 Patent Document 7: Japanese Laid-Open Patent Publication No. 2011-230992.

專利文獻8:日本特開2012-025638號公報。 Patent Document 8: Japanese Laid-Open Patent Publication No. 2012-025638.

專利文獻9:日本特開昭54-090218號公報。 Patent Document 9: Japanese Laid-Open Patent Publication No. SHO 54-090218.

專利文獻10:日本特開昭56-160340號公報。 Patent Document 10: Japanese Laid-Open Patent Publication No. SHO 56-160340.

專利文獻11:日本特開2001-348244號公報。 Patent Document 11: Japanese Laid-Open Patent Publication No. 2001-348244.

專利文獻12:日本特開2008-001551號公報。 Patent Document 12: Japanese Laid-Open Patent Publication No. 2008-001551.

專利文獻13:日本特表2013-536791號公報。 Patent Document 13: Japanese Laid-Open Patent Publication No. 2013-536791.

專利文獻14:WO10/053214。 Patent Document 14: WO10/053214.

專利文獻15:日本特開2012-180278號公報。 Patent Document 15: Japanese Laid-Open Patent Publication No. 2012-180278.

專利文獻16:日本特開2012-236754號公報。 Patent Document 16: Japanese Laid-Open Patent Publication No. 2012-236754.

專利文獻17:日本特開2014-084235號公報。 Patent Document 17: Japanese Laid-Open Patent Publication No. 2014-084235.

專利文獻18:日本特開2014-062025號公報。 Patent Document 18: Japanese Laid-Open Patent Publication No. 2014-062025.

專利文獻19:日本特開2014-062026號公報。 Patent Document 19: Japanese Laid-Open Patent Publication No. 2014-062026.

專利文獻20:日本特開2011-93780號公報。 Patent Document 20: Japanese Laid-Open Patent Publication No. 2011-93780.

對於光學元件用的玻璃,為了示出光學特性的分佈,廣泛地使用光學特性圖(或者也稱為阿貝圖表)。光學特性圖將阿貝數(Abbe number,νd)取在橫軸、將折射率(nd)取在縱軸,以阿貝數(νd)自橫軸的右側向左側依次增加、折射率自縱軸的下方向上方依次增加的方式作成。應予說明的是,以下只要沒有特別的記載,折射率、阿貝數是指對於氦的d線(波長587.56nm)的折射率(nd)、對於氦的d線(波長587.56nm)的阿貝數(νd)。 For the glass for optical elements, an optical characteristic map (or also referred to as an Abbe chart) is widely used in order to show the distribution of optical characteristics. The optical characteristic map takes the Abbe number (νd) on the horizontal axis, the refractive index (nd) on the vertical axis, and increases the Abbe number (νd) from the right side of the horizontal axis to the left side, and the refractive index self-vertical. A method in which the lower direction of the shaft is sequentially increased is sequentially formed. In addition, unless otherwise indicated, the refractive index and Abbe number refer to the refractive index (nd) of the d line (wavelength 587.56 nm) of 氦, and the d line (wavelength of 587.56 nm) of 氦. Bay number (νd).

光學特性圖中,高折射率低色散玻璃(高nd高νd玻璃)的光學特性一般顯示出當阿貝數變小時折射率增加、當 阿貝數增加時折射率降低的所謂的向右上升的分佈。這可認為是由於以下的理由。 In the optical characteristic diagram, the optical characteristics of high refractive index low dispersion glass (high nd high νd glass) generally show an increase in refractive index when the Abbe number becomes smaller, when The so-called rightward rising distribution of the refractive index decreases as the Abbe number increases. This can be considered for the following reasons.

高折射率低色散玻璃大多含有氧化硼和氧化鑭等稀土氧化物。在這樣的玻璃中,為了在不減少阿貝數的情況下提高折射率就要提高稀土氧化物的含量。但是,在先前技術的高折射率低色散玻璃中,當提高稀土氧化物的含量時,玻璃的熱穩定性下降,在製造玻璃的過程中玻璃會顯示出失透的傾向。因此,在先前技術的高折射率低色散的玻璃中,難以在抑制想要用作光學元件材料的玻璃的失透的同時使阿貝數和折射率一同提高。這點被認為是先前技術的高折射率低色散玻璃在光學特性圖中顯示出上述這樣的分佈的理由。 High refractive index low dispersion glass mostly contains rare earth oxides such as boron oxide and cerium oxide. In such a glass, in order to increase the refractive index without reducing the Abbe number, the content of the rare earth oxide is increased. However, in the prior art high refractive index low dispersion glass, when the content of the rare earth oxide is increased, the thermal stability of the glass is lowered, and the glass tends to exhibit devitrification during the process of producing the glass. Therefore, in the prior art high refractive index low dispersion glass, it is difficult to increase the Abbe number and the refractive index together while suppressing the devitrification of the glass which is intended to be used as the optical element material. This is considered to be the reason why the prior art high refractive index low dispersion glass exhibits such a distribution in the optical property map.

另一方面,在光學系統的設計中,折射率高、阿貝數也大(色散低)的玻璃是對於色像差的校正、光學系統的高功能化、緊湊化極其有效的光學元件用的材料。因此,在光學特性圖上設定向右上升的直線,提供這條直線上和比直線折射率高(圖上位於直線左側的區域)的玻璃的意義非常大。 On the other hand, in the design of an optical system, a glass having a high refractive index and a large Abbe number (low dispersion) is an optical element which is extremely effective for correcting chromatic aberration, high function of an optical system, and compactness. material. Therefore, setting a straight line rising to the right on the optical characteristic map provides a very large meaning on the straight line and the glass having a higher refractive index than the straight line (the area on the left side of the line on the drawing).

從以上的方面出發,阿貝數(νd)為39.5~41.5、相對於該阿貝數、折射率(nd)為用2.0927-0.0058×νd求得的值以上的玻璃即滿足nd2.0927-0.0058×νd的關係的玻璃是在光學系統中有用的高折射率低色散玻璃。 From the above aspects, the Abbe number (νd) is 39.5 to 41.5, and the glass having a value equal to or higher than the Abbe number and the refractive index (nd) of 2.0927 to 0.0058 × νd satisfies nd. A glass having a relationship of 2.0927-0.0058 x νd is a high refractive index low dispersion glass useful in an optical system.

另外,構成攝像光學系統、投影機等投影光學系統的光學元件期望輕量化。這是因為將光學元件輕量化關係到安裝該光學元件的攝像光學系統、投影光學系統的輕量化。例如,當將重的光學元件安裝在自動對焦式的照相機中時,驅動 自動對焦時消耗的電耗增加,電池會很快地消耗。相對於此,如果將光學元件進行輕量化,則驅動自動對焦時的電耗降低,能夠延長電池的壽命。 Further, an optical element constituting a projection optical system such as an imaging optical system or a projector is expected to be lighter. This is because the optical element is lightweight and related to the weight reduction of the imaging optical system and the projection optical system in which the optical element is mounted. For example, when a heavy optical component is mounted in an auto-focus camera, the drive The power consumption consumed during autofocus increases and the battery is quickly consumed. On the other hand, if the optical element is made lighter, the power consumption when driving the autofocus is lowered, and the life of the battery can be extended.

但是,本發明者認為,專利文獻1~20中記載的玻璃中使用阿貝數(νd)的範圍為39.5~41.5、滿足nd2.0927-0.0058×νd的關係的高折射率低色散玻璃而製作的光學元件有變重的傾向。這是因為,在專利文獻1~20中記載的用於高折射率低色散化的組成調整中,有玻璃的比重增大的傾向。 However, the inventors of the present invention considered that the range of the Abbe number (νd) used in the glass described in Patent Documents 1 to 20 is 39.5 to 41.5, which satisfies nd. An optical element produced by a high refractive index low dispersion glass having a relationship of 2.0927 to 0.0058 x νd tends to become heavy. This is because, in the composition adjustment for high refractive index and low dispersion described in Patent Documents 1 to 20, the specific gravity of the glass tends to increase.

本發明的一個方式的目的在於提供一種阿貝數(νd)為39.5~41.5、滿足nd2.0927-0.0058×νd的關係、且可有助於光學元件的輕量化的玻璃。 An object of one aspect of the present invention is to provide an Abbe number (νd) of 39.5 to 41.5, satisfying nd A glass having a relationship of 2.0927-0.0058 × νd and contributing to weight reduction of an optical element.

本發明的一個方式關於一種玻璃,其為氧化物玻璃,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上,阿貝數(νd)的範圍為39.5~41.5,相對於阿貝數(νd),折射率(nd)滿足下述(1)式: One aspect of the present invention relates to a glass which is an oxide glass represented by a cation %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4 + , Ta 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ The total content is 90% or more, and the Abbe number (νd) is in the range of 39.5 to 41.5. The refractive index (nd) satisfies the following formula (1) with respect to the Abbe number (νd):

對於下述所示的表1中記載的陽離子成分,相對於折射率(nd),各陽離子成分的含量乘以表1中記載的係數的值的合計D滿足下記(B)式: With respect to the cation component described in Table 1 below, the total D of the content of each cation component multiplied by the coefficient described in Table 1 with respect to the refractive index (nd) satisfies the following formula (B):

在上述玻璃中,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+(以下,稱這些陽離子成分為“主要陽離子成分”)的合計含量為90%以上。本發明人在為了實現上述目的而反復深刻研究中,著眼於上述主要陽離子成分給予玻璃的比重的影響各自不同。而且,重複了相當多次數的試驗,結果對於各主要陽離子成分決定了如表1所示的係數。藉由以使用這些係數計算的合計D滿足(B)式的方式進行組成調整,從而能夠提供可有助於在阿貝數(νd)的範圍為39.5~41.5中滿足nd2.0927-0.0058×νd的關係的高折射率低分散玻璃的低比重化即光學元件的輕量化的玻璃。 In the above glass, represented by cation %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ (hereinafter, these cation components are referred to as "mainly The total content of the cationic component ") is 90% or more. In order to achieve the above object, the inventors of the present invention have focused on the effects of the specific gravity of the above-mentioned main cationic component on the glass. Moreover, a considerable number of tests were repeated, and as a result, the coefficients shown in Table 1 were determined for each of the main cation components. By adjusting the composition in such a manner that the total D calculated using these coefficients satisfies the formula (B), it is possible to provide nd which can contribute to the range of the Abbe number (νd) of 39.5 to 41.5. The low specific gravity of the high refractive index low-dispersion glass in the relationship of 2.0927-0.0058 × νd is a lightweight glass of an optical element.

根據本發明的一個方式,能夠提供具有在光學系統中有用的光學特性且可有助於光學元件的輕量化的玻璃。進而,根據本發明的一個方式,能夠提供由上述玻璃形成的壓製成型用玻璃材料、光學元件坯件和光學元件。 According to an aspect of the present invention, it is possible to provide a glass having optical characteristics useful in an optical system and contributing to weight reduction of an optical element. Further, according to one aspect of the present invention, it is possible to provide a glass material for press molding, an optical element blank, and an optical element which are formed of the above glass.

圖1是將實施例1的各玻璃和比較例1~4的各玻璃的比重取在橫軸、將各陽離子成分的含量乘以表1中記載的係數的值的合計D取在縱軸的圖表。 1 is a total of D in which the specific gravity of each glass of Example 1 and each of Comparative Examples 1 to 4 is plotted on the horizontal axis, and the content of each cationic component is multiplied by the coefficient described in Table 1 on the vertical axis. chart.

圖2是將實施例1的各玻璃和比較例1~4的各玻璃的阿貝數(νd)取在橫軸、將根據後述的(A)式算出的值A取在縱軸的圖表。 2 is a graph in which the Abbe number (νd) of each of the glasses of Example 1 and each of Comparative Examples 1 to 4 is taken on the horizontal axis, and the value A calculated based on the formula (A) described later is taken on the vertical axis.

[玻璃] [glass]

本發明的一個方式的玻璃是如下的氧化物玻璃,亦即,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上,阿貝數(νd)的範圍為39.5~41.5,相對於阿貝數(νd),折射率(nd)滿足上述(1)式,且對於下述所示的表1中記載的陽離子成分,相對於折射率(nd),各陽離子成分的含量乘以表1中記載的係數的值的合計D滿足上述(B)式。 The glass of one embodiment of the present invention is an oxide glass which is represented by a cation %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi The total content of 3+ is 90% or more, and the Abbe number (νd) is in the range of 39.5 to 41.5. The refractive index (nd) satisfies the above formula (1) with respect to the Abbe number (νd), and is as follows. The total content D of the cation component described in Table 1 and the content of each cation component multiplied by the coefficient described in Table 1 with respect to the refractive index (nd) satisfies the above formula (B).

以下,對上述玻璃的細節進行說明。 Hereinafter, the details of the above glass will be described.

本發明中的玻璃組成能夠藉由例如ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)等方法進行定量。藉由ICP-AES求得的分析值有時包含分析值的±5%左右的測定誤差。應予說明的是,本說明書和本發明中,構成成分的含量為0%、不包含或者不導入意味著基本上不含該構成成分,指的是該構成成分的含量為雜質水平程度以下。 The glass composition in the present invention can be quantified by a method such as ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). The analysis value obtained by ICP-AES sometimes includes a measurement error of about ±5% of the analysis value. In the present specification and the present invention, the content of the constituent component is 0%, and the inclusion or non-introduction means that the constituent component is substantially not contained, and the content of the constituent component is not more than the impurity level.

本發明中,對於陽離子成分用陽離子%來表示玻璃組成。陽離子%眾所周知是將含在玻璃中的全部的陽離子成分的合計含量設為100%的百分率。 In the present invention, the glass component is represented by the cationic component % of the cationic component. The cation % is known as a percentage of the total content of all the cationic components contained in the glass to 100%.

以下,只要沒有特別的記載,陽離子成分的含量、多種陽離子成分的含量的合計(合計含量)用陽離子%表示。進而,在陽離子%表示中,將陽離子成分彼此的含量(也含多種陽離子成分的合計含量)的比稱為陽離子比。 Hereinafter, the total content (total content) of the content of the cationic component and the content of the plurality of cationic components is represented by the cationic % unless otherwise specified. Further, in the cation % expression, the ratio of the content of the cation components (including the total content of the plurality of cation components) is referred to as a cation ratio.

以下,對於數值範圍,有時將(更佳)較佳的下限和(更佳)較佳的上限示於表中記載。表中越記載於下方的數值越佳,記載於最下方的數值最佳。此外,只有沒有特別的記載,(更佳)較佳的下限是指記載值以上的值(更佳)較佳,(更佳)較佳的上限是指記載值以下的值(更佳)較佳。能夠使表中的(更佳)較佳的下限的列記載的數值和(更佳)較佳的上限的列記載的數值任意地組合來規定數值範圍。 Hereinafter, for the numerical range, the (better) preferred lower limit and (better) preferred upper limit are sometimes shown in the table. The higher the numerical value described below in the table, the better the numerical value described at the bottom. Further, unless otherwise specified, the (better) preferred lower limit means that the value above the value (better) is better, and the (better) preferred upper limit means the value below the value (better). good. The numerical value range can be arbitrarily combined with the numerical values described in the column of the (better) preferred lower limit in the table and the numerical values described in the column of the (better) preferred upper limit.

<玻璃組成> <glass composition>

對於上述玻璃,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、 Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+(主要陽離子成分)的合計含量為90%以上。上述玻璃中,含有的陽離子成分可以僅為主要陽離子成分(亦即主要陽離子成分的合計含量為100%),也可以除了主要陽離子成分之外含有1種以上的其它陽離子成分。主要陽離子成分的合計含量的較佳的下限如下表2所示。 For the above glass, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta 5+ , W 6+ , Zr 4+ , Zn 2 The total content of + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ (main cation component) is 90% or more. The cation component contained in the glass may be only the main cation component (that is, the total content of the main cation component is 100%), and may contain one or more other cation components in addition to the main cation component. A preferred lower limit of the total content of the main cationic components is shown in Table 2 below.

在上述玻璃的玻璃組成中,對於主要陽離子成分的各種陽離子成分,以相對於折射率(nd)各陽離子成分的含量乘以表1中記載的係數的值的合計D滿足下述(B)式: In the glass composition of the glass, the total of the values of the respective cationic components of the main cation component multiplied by the content of each cationic component in the refractive index (nd) by the coefficient described in Table 1 satisfies the following formula (B). :

的方式進行調整。由此能夠實現阿貝數(νd)的範圍為39.5~41.5、且折射率(nd)相對於阿貝數(νd)滿足上述(1)式的高折射率低分散玻璃的輕量化。這點是本發明人經過深入研究,結果新發現的。應予說明的是,對於上述合計D的細節如下,下 述含量的單位為陽離子%。 The way to adjust. Thereby, the range of the Abbe's number (νd) is 39.5 to 41.5, and the refractive index (nd) satisfies the weight reduction of the high refractive index low-dispersion glass of the above formula (1) with respect to the Abbe number (νd). This point was newly discovered by the inventors after intensive research. It should be noted that the details of the above total D are as follows, The unit of the content is the cationic %.

D=B3+含量×0.032+Si4+含量×0.029+La3+含量×0.066+Y3+含量×0.053+Gd3+含量×0.093+Yb3+含量×0.094+Nb5+含量×0.049+Ti4+含量×0.045+Ta5+含量×0.104+W6+含量×0.111+Zr4+含量×0.080+Zn2+含量×0.051+Mg2+含量×0.030+Ca2+含量×0.024+Sr2+含量×0.043+Ba2+含量×0.055+Li+含量×0.031+Na+含量×0.021+K+含量×0.012+Al3+含量×0.034+Bi3+含量×0.090 D = B 3 + content × 0.032 + Si 4 + content × 0.029 + La 3 + content × 0.066 + Y 3 + content × 0.053 + Gd 3 + content × 0.093 + Yb 3 + content × 0.094 + Nb 5 + content × 0.049 +Ti 4+ content × 0.045 + Ta 5 + content × 0.104 + W 6 + content × 0.111 + Zr 4 + content × 0.080 + Zn 2+ content × 0.051 + Mg 2+ content × 0.030 + Ca 2+ content × 0.024 + Sr 2+ content × 0.043 + Ba 2+ content × 0.055 + Li + content × 0.031 + Na + content × 0.021 + K + content × 0.01 2 + Al 3 + content × 0.034 + Bi 3 + content × 0.090

上述(B)式較佳為下述(B-1)式,更佳為下述(B-2)式,進一步較佳為下述(B-3)式,再進一步較佳為下述(B-4)式, 更進一步較佳為下述(B-5)式,再更進一步較佳為下述(B-6)式,進而再更進一步較佳為下述(B-7)式,再進而再更進一步較佳為下述(B-8)式,更進而再更進一步較佳為下述(B-9)式。 The above formula (B) is preferably the following formula (B-1), more preferably the following formula (B-2), further preferably the following formula (B-3), and still more preferably the following ( B-4), Further, it is more preferably the following formula (B-5), and still more preferably the following formula (B-6), and still more preferably the following formula (B-7), and furthermore The following formula (B-8) is preferable, and the following formula (B-9) is still more preferable.

在上述玻璃的玻璃組成中,只要是主要陽離子成分的合計含量是90%以上且滿足(B)式即可,主要陽離子成分中也可以有上述玻璃中所不含(亦即含量為0%)的陽離子成分。對於各陽離子成分的含量的較佳的範圍等,在後面會進一步敘述。但是,本發明並不限定在下述的較佳的範圍。 In the glass composition of the glass, the total content of the main cationic component is 90% or more and the formula (B) is satisfied, and the main cationic component may be contained in the glass (that is, the content is 0%). Cation component. A preferred range of the content of each cationic component will be further described later. However, the invention is not limited to the preferred ranges described below.

B3+、Si4+是玻璃的網絡形成成分。當B3+和Si4+的合計含量(B3++Si4+)為43%以上時,能夠提高玻璃的熱穩定性,抑制製造中的玻璃的晶化。另一方面,當B3+的含量和Si4+的合計含量為65%以下時,能夠抑制折射率(nd)的降低,因此從製作具有上述的光學特性的玻璃的方面考慮較佳。因此,上述玻璃中的B3+和Si4+的合計含量的範圍較佳設為43~65%。B3+和Si4+的合計含量的更佳的下限和更佳的上限如下表3所示。 B 3+ and Si 4+ are network forming components of glass. When the total content (B 3+ + Si 4+ ) of B 3+ and Si 4+ is 43% or more, the thermal stability of the glass can be improved, and the crystallization of the glass during production can be suppressed. On the other hand, when the content of B 3+ and the total content of Si 4+ are 65% or less, the decrease in the refractive index (nd) can be suppressed, and therefore it is preferable from the viewpoint of producing a glass having the above optical characteristics. Therefore, the range of the total content of B 3+ and Si 4+ in the above glass is preferably set to 43 to 65%. A more preferred lower limit and a higher upper limit of the total content of B 3+ and Si 4+ are shown in Table 3 below.

La3+、Y3+、Gd3+和Yb3+是具有抑制阿貝數(νd)的減少並且提高折射率的作用的成分。此外,這些成分也具有改善玻璃的化學耐久性、耐候性、提高玻璃化轉變溫度的作用。 La 3+ , Y 3+ , Gd 3+ , and Yb 3+ are components having an effect of suppressing a decrease in the Abbe number (νd) and increasing the refractive index. Further, these components also have an effect of improving the chemical durability, weather resistance, and glass transition temperature of the glass.

當La3+、Y3+、Gd3+和Yb3+的合計含量(La3++Y3++Gd3++Yb3+)為25%以上時,能夠抑制折射率(nd)的降低,因此從製作具有上述的光學特性的玻璃的方面考慮較佳。進而也能夠抑制玻璃的化學耐久性、耐候性的降低。另外,當玻璃化轉變溫度降低時,在對玻璃進行機械加工(切斷、切削、研磨、拋光等)時,玻璃變得易於破損(機械加工性的降低),當La3+、Y3+、Gd3+和Yb3+的合計含量為25%以上時,能夠抑制玻璃化轉變溫度的降低,因此也能夠提高機械加工性。另一方面,當La3+、Y3+、Gd3+和Yb3+的合計含量為50%以下時,因為能夠提高玻璃的熱穩定性,所以也能夠抑制製造玻璃時的晶化,降低熔融玻璃時的原料的熔融殘留。此外,從抑制比重的上升方面考慮亦較佳。因此,在上述玻璃中,La3+、Y3+、Gd3+和Yb3+的合計含量的範圍較佳設為25~50%。La3+、Y3+、Gd3+和Yb3+的合計含量的更佳的下限和更佳的上限如下表4所 示。 When the total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ (La 3+ + Y 3+ + Gd 3+ + Yb 3+ ) is 25% or more, the refractive index (nd) can be suppressed. Since it is lowered, it is preferable from the viewpoint of producing a glass having the above optical characteristics. Further, it is also possible to suppress chemical durability and deterioration of weather resistance of the glass. In addition, when the glass transition temperature is lowered, when the glass is machined (cut, cut, polished, polished, etc.), the glass becomes easily broken (deterioration of machinability) when La 3+ , Y 3+ When the total content of Gd 3+ and Yb 3+ is 25% or more, the decrease in the glass transition temperature can be suppressed, so that the machinability can be improved. On the other hand, when the total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ is 50% or less, since the thermal stability of the glass can be improved, crystallization at the time of glass production can be suppressed and the crystallization can be suppressed. The melting of the raw material at the time of melting the glass remains. In addition, it is also preferable from the viewpoint of suppressing an increase in the specific gravity. Therefore, in the above glass, the range of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ is preferably 25 to 50%. A more preferred lower limit and a higher upper limit of the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ are shown in Table 4 below.

Nb5+、Ti4+、Ta5+和W6+是具有提高折射率的作用的成分,藉由使其適量含有從而還具有改善玻璃的熱穩定性的作用。當Ti4+、Nb5+、Ta5+和W6+的合計含量(Nb5++Ti4++Ta5++W6+)為3%以上時,從維持熱穩定性並且實現上述的光學特性方面考慮較佳。另一方面,當Nb5+、Ti4+、Ta5+和W6+的合計含量為12%以下時,能夠抑制熱穩定性的降低和阿貝數(νd)的降低。因此,在上述玻璃中,較佳將Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍設為3~12%。Nb5+、Ti4+、Ta5+和W6+的合計含量的更佳的下限和更佳的上限如下表5所示。 Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ are components having an effect of increasing the refractive index, and have an effect of improving the thermal stability of the glass by being contained in an appropriate amount. When the total content of Ti 4+ , Nb 5+ , Ta 5+ , and W 6+ (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ ) is 3% or more, the thermal stability is maintained and the above is achieved. The optical characteristics are better considered. On the other hand, when the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is 12% or less, it is possible to suppress a decrease in thermal stability and a decrease in Abbe number (νd). Therefore, in the above glass, the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ is preferably in the range of 3 to 12%. A more preferred lower limit and a higher upper limit of the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ are shown in Table 5 below.

Zr4+是具有提高折射率的作用的成分,藉由使其適 量含有從而還具有改善玻璃的熱穩定性的作用。此外,Zr4+還具有藉由提高玻璃化轉變溫度從而在機械加工時使玻璃難以破損的作用。為了良好地得到這些效果,較佳在上述玻璃中將Zr4+的含量設為2%以上。另一方面,當Zr4+的含量為8%以下時,因為能改善玻璃的熱穩定性,所以能夠抑制玻璃製造時的晶化、玻璃熔融時的熔融殘留的產生。因此,上述玻璃中的Zr4+的含量的範圍較佳設為2~8%。Zr4+含量的更佳的下限和更佳的上限如下表6所示。 Zr 4+ is a component having an effect of increasing the refractive index, and has an effect of improving the thermal stability of the glass by containing it in an appropriate amount. In addition, Zr 4+ also has an effect of making the glass difficult to break during machining by increasing the glass transition temperature. In order to obtain these effects satisfactorily, it is preferred to set the content of Zr 4+ to 2% or more in the above glass. On the other hand, when the content of Zr 4+ is 8% or less, since the thermal stability of the glass can be improved, it is possible to suppress the occurrence of crystallization during the production of the glass and the occurrence of the melt residue at the time of glass melting. Therefore, the content of Zr 4+ in the above glass is preferably in the range of 2 to 8%. A more preferred lower limit and a higher upper limit of the Zr 4+ content are shown in Table 6 below.

為了實現阿貝數(νd)為39.5~41.5、折射率(nd)和阿貝數(νd)滿足上述(1)式的關係的光學特性,較佳在上述玻璃中將Zr4+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Zr4+含量/(Nb5++Ti4++Ta5++W6+)}的範圍設為0.48~2.20。從抑制玻璃化轉變溫度的降低(由此改善機械加工性)的觀點出發,亦較佳上述陽離子比的範圍為0.48~2.20。此外,從熱穩定性的提高和玻璃的低色散化的觀點出發,亦較佳上述陽離子比為0.48以上。另一方面,從熔解性的改善和晶化的抑制的觀點出發,亦較佳上述陽離子比為2.20以下。陽離子比{Zr4+含量/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和更佳的上 限如下表7所示。 In order to achieve an optical property in which the Abbe number (νd) is 39.5 to 41.5, the refractive index (nd), and the Abbe number (νd) satisfy the relationship of the above formula (1), it is preferred to compare the Zr 4+ content in the above glass. The ratio of the cation ratio of {Zr 4+ content/(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} of the total content of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ is set to 0.48. ~2.20. From the viewpoint of suppressing a decrease in the glass transition temperature (and thereby improving machinability), the range of the above cation ratio is preferably 0.48 to 2.20. Further, from the viewpoint of improvement in thermal stability and low dispersion of glass, the cation ratio is preferably 0.48 or more. On the other hand, from the viewpoint of improvement in meltability and suppression of crystallization, the cation ratio is preferably 2.20 or less. A more preferred lower limit and a higher upper limit of the cation ratio {Zr 4+ content / (Nb 5 + + Ti 4 + + Ta 5 + + W 6+ )} are shown in Table 7 below.

為了實現改善玻璃的熱穩定性並且阿貝數(νd)為39.5~41.5、折射率(nd)和阿貝數(νd)滿足上述(1)式的關係的光學特性,較佳在上述玻璃中將B3+和Si4+的合計含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{B3++Si4+/(La3++Y3++Gd3++Yb3+)}設為0.70~1.75。當陽離子比((B3++Si4+)/(La3++Y3++Gd3++Yb3+))為0.70以上時,因為能夠改善玻璃的熱穩定性,所以能夠抑制玻璃的失透。此外,從抑制玻璃的比重的增大的方面考慮亦較佳。另一方面,陽離子比((B3++Si4+)/(La3++Y3++Gd3++Yb3+))為1.75以下從實現上述的光學特性的方面考慮較佳。陽離子比{(B3++Si4+)/(La3++Y3++Gd3++Yb3+)}的更佳的下限和更佳的上限如下表8所示。 In order to achieve an improvement in the thermal stability of the glass and an Abbe number (νd) of 39.5 to 41.5, a refractive index (nd) and an Abbe number (νd) satisfying the optical characteristics of the above relationship (1), it is preferably in the above glass. The cation ratio of the total content of B 3+ and Si 4+ to the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ {B 3+ +Si 4+ /(La 3+ +Y 3 + +Gd 3+ +Yb 3+ )} is set to 0.70~1.75. When the cation ratio ((B 3+ + Si 4+ ) / (La 3+ + Y 3+ + Gd 3+ + Yb 3+ )) is 0.70 or more, since the thermal stability of the glass can be improved, the glass can be suppressed Destruction. Further, it is also preferable from the viewpoint of suppressing an increase in the specific gravity of the glass. On the other hand, the cation ratio ((B 3+ + Si 4+ ) / (La 3+ + Y 3+ + Gd 3+ + Yb 3+ ))) of 1.75 or less is preferable from the viewpoint of achieving the above optical characteristics. A more preferred lower limit and a higher upper limit of the cation ratio {(B 3+ + Si 4+ ) / (La 3+ + Y 3+ + Gd 3+ + Yb 3+ )} are shown in Table 8 below.

為了實現改善玻璃的熱穩定性並且抑制折射率(nd)的降低的上述的光學特性,較佳在上述玻璃中將B3+和Si4+的合計含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為9.00以下。 In order to achieve the above-described optical characteristics of improving the thermal stability of the glass and suppressing the decrease in the refractive index (nd), it is preferred to compare the total content of B 3+ and Si 4+ with respect to Nb 5+ and Ti 4+ in the above glass. The cation ratio {(B 3+ + Si 4+ ) / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} of the total content of Ta 5+ and W 6+ is set to 9.00 or less.

為了抑制阿貝數(νd)的減少並且改善玻璃的熱穩定性,較佳將陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為5.00以上。進一步地從低比重化的觀點出發,亦較佳將陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}設為5.00以上。 In order to suppress the decrease in the Abbe number (νd) and improve the thermal stability of the glass, it is preferred to have a cation ratio of {(B 3+ +Si 4+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} Set to 5.00 or higher. Further, from the viewpoint of low specific gravity, the cation ratio {(B 3+ + Si 4+ ) / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} is preferably 5.00 or more.

陽離子比{(B3++Si4+)/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和更佳的上限如下表9所示。 A more preferred lower limit and a higher upper limit of the cation ratio {(B 3+ + Si 4+ ) / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} are shown in Table 9 below.

從改善玻璃的熱穩定性、抑制玻璃的晶化並且使玻璃低比重化的觀點出發,較佳將W6+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}設為0.50以下。此外,從玻璃的高折射率化、著色降低的觀點出發,亦較佳陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}為0.50以下。陽離子比{W6+/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和更佳的上限如下表10所示。 From the viewpoint of improving the thermal stability of the glass, suppressing the crystallization of the glass, and lowering the specific gravity of the glass, the W 6+ content is preferably compared with the total contents of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ . The cation ratio {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is set to 0.50 or less. Further, from the viewpoint of high refractive index and coloration of the glass, the cation ratio {W 6+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} is preferably 0.50 or less. A more preferred lower limit and a higher upper limit of the cation ratio {W 6+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 10 below.

為了改善玻璃的熱穩定性、抑制玻璃的晶化並且實現上述的光學特性,較佳在上述玻璃中將Zn2+含量相對於 La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}設為小於0.2。此外,從抑制玻璃化轉變溫度的降低(由此改善機械加工性)和提高化學耐久性的觀點出發,亦較佳陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}小於0.20。從改善熔融性的觀點出發,陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}較佳為0%以上,更佳大於0%。陽離子比{Zn2+/(La3++Y3++Gd3++Yb3+)}的較佳的下限和較佳的上限如下表11所示。 In order to improve the thermal stability of the glass, suppress the crystallization of the glass, and achieve the above optical characteristics, it is preferred to add the Zn 2+ content to the total of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ in the above glass. The content of the cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is set to be less than 0.2. Further, from the viewpoint of suppressing a decrease in glass transition temperature (thus improving machinability) and improving chemical durability, a preferred cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ + ) is also preferable. Yb 3+ )} is less than 0.20. From the viewpoint of improving the meltability, the cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is preferably 0% or more, more preferably more than 0%. A preferred lower limit and a preferred upper limit of the cation ratio {Zn 2+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 11 below.

在稀土元素La、Y、Gd和Yb中,Gd屬於重稀土元素,從玻璃的穩定供給的觀點出發,其為要求降低玻璃中的含量的成分。此外,Gd也是原子量大、使玻璃的比重增加的成分。 Among the rare earth elements La, Y, Gd, and Yb, Gd is a heavy rare earth element, and is a component that is required to lower the content in the glass from the viewpoint of stable supply of glass. Further, Gd is also a component having a large atomic weight and increasing the specific gravity of the glass.

Yb也屬於重稀土元素、且原子量大。此外,Yb在近紅外線區域有吸收。另一方面,單反照相機用的交換透鏡、監控攝 像機的透鏡期望在近紅外線區域的光線透射率高。因此,位於成為對於這些透鏡的製作有用的玻璃,期望將Yb的含量降低。 Yb is also a heavy rare earth element and has a large atomic weight. In addition, Yb absorbs in the near-infrared region. On the other hand, the exchange lens for the SLR camera, surveillance camera The lens of the camera is expected to have a high light transmittance in the near-infrared region. Therefore, it is desirable to reduce the content of Yb in the glass which is useful for the production of these lenses.

與此相對,La、Y不對近紅外區域的光線透射率帶來不良影響,藉由相對於稀土元素的合計含量適量分配從而改善熱穩定性並且抑制比重的增大,是從提供高折射率低色散玻璃的方面考慮有用的成分。 On the other hand, La and Y do not adversely affect the light transmittance of the near-infrared region, and are improved in thermal stability and suppress the increase in specific gravity by appropriately distributing the total content of the rare earth elements. Consider the useful ingredients in terms of dispersive glass.

因此,在上述玻璃中,較佳對於La3+,將La3+含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}的範圍設為0.50~0.95。陽離子比{La3+/(La3++Y3++Gd3++Yb3+)}的更佳的下限和更佳的上限如下表12所示。 Therefore, in the glass, it is preferable for La 3+, La 3+ content relative to the total content of cations La 3+, Y 3+, Gd 3+ and Yb 3+ ratio {La 3+ / (La 3 The range of + +Y 3+ +Gd 3+ +Yb 3+ )} is set to 0.50 to 0.95. A more preferred lower limit and a higher upper limit of the cation ratio {La 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 12 below.

此外,對於Y3+,較佳將Y3+的含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}的範圍設為0.10~0.50。陽離子比{Y3+/(La3++Y3++Gd3++Yb3+)}的更佳的下限和更佳的上限如下表13所示。 In addition, Y 3+, preferably the content of Y 3+ La 3+ cations respect, Y 3+, Gd 3+ and the total content ratio of Yb 3+ {Y 3+ / (La 3+ + Y 3 The range of + +Gd 3+ +Yb 3+ )} is set to 0.10 to 0.50. A more preferred lower limit and a higher upper limit of the cation ratio {Y 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 13 below.

如上述記載,從玻璃的穩定供給的觀點出發,Gd3+是應該降低玻璃中的含量的成分。從穩定供給具有上述的光學特性的高折射率低色散玻璃的觀點出發,較佳在上述玻璃中將Gd3+的含量相對於La3+、Y3+、Gd3+和Yb3+的合計含量的陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}設為0.10以下。滿足上述陽離子比還可有助於玻璃的低比重化。陽離子比{Gd3+/(La3++Y3++Gd3++Yb3+)}的更佳的下限和更佳的上限如下表14所示。 As described above, Gd 3+ is a component which should lower the content in the glass from the viewpoint of stable supply of glass. From the viewpoint of stably supplying the high refractive index low dispersion glass having the above optical characteristics, it is preferred to add the content of Gd 3+ to the total of La 3+ , Y 3+ , Gd 3+ and Yb 3+ in the above glass. The content of the cation ratio {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} is set to 0.10 or less. Satisfying the above cation ratio can also contribute to the low specific gravity of the glass. A more preferred lower limit and a higher upper limit of the cation ratio {Gd 3+ /(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )} are shown in Table 14 below.

對於La3+、Y3+、Gd3+和Yb3+的合計含量,以及La3+含量、Y3+含量、Gd3+含量相對於該合計含量的陽離子比,如上所述。La3+、Y3+、Gd3+、Yb3+的各成分的含量的較佳的下限和較佳的上限如下表15~18所示。另外,對於Y3+的含量,從 改善玻璃的熱穩定性和熔融性的觀點出發,亦較佳下表15~18所示的下限。 The total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ , and the cation ratio of the La 3+ content, the Y 3+ content, and the Gd 3+ content to the total content are as described above. The lower limit and the preferred upper limit of the content of each component of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ are shown in Tables 15 to 18 below. Further, as for the content of Y 3+ , from the viewpoint of improving the thermal stability and the meltability of the glass, the lower limits shown in the following Tables 15 to 18 are also preferable.

對於Nb5+、Ti4+、Ta5+和W6+,藉由適量含有,從而發揮提高折射率、改善玻璃的熱穩定性的作用。但是,Ta5+儘管具有提高折射率的作用,但是它是極其昂貴的成分。因此,從玻璃的穩定供給的觀點出發,不是較佳積極地使用Ta5+。此外,當Ta5+的含量多時,熔融玻璃時原料變得容易熔融殘留。此外,玻璃的比重增加。總之,Ta5+是應該降低含量的成分。因此,不是較佳積極地使用Ta5+。為了改善玻璃的熱穩定性並且謀求高折射率低色散化和Ta的使用量削減,對於Ta5+,較佳Ta5+的含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}設為0.2以下。陽離子比{Ta5+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和更佳的上限如下表19所示。 Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ are contained in an appropriate amount to exhibit an effect of increasing the refractive index and improving the thermal stability of the glass. However, although Ta 5+ has an effect of increasing the refractive index, it is an extremely expensive component. Therefore, from the viewpoint of stable supply of glass, Ta 5+ is not preferably used actively. Further, when the content of Ta 5+ is large, the raw material becomes easily melted and remains when the glass is molten. In addition, the specific gravity of the glass increases. In summary, Ta 5+ is a component that should be reduced in content. Therefore, Ta 5+ is not preferably used actively. In order to improve the thermal stability of the glass and to achieve high refractive index and low dispersion and reduction in the amount of Ta used, for Ta 5+ , the content of Ta 5+ is preferably relative to Nb 5+ , Ti 4+ , Ta 5+ and W 6 . + cation total content ratio {Ta 5+ / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+)} is set to 0.2 or less. A preferred lower limit and a higher upper limit of the cation ratio {Ta 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 19 below.

此外,對於Nb5+,為了提供為了能夠穩定供給玻璃而降低Gd3+、Ta5+的含量、較佳與Gd3+、Ta5+一同降低Yb3+的含量並且熱穩定性優異的高折射率低色散玻璃,在考慮Nb5+、Ti4+、Ta5+、W6+的上述作用的基礎上,較佳將Nb5+的含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}設為0.2以上。此外,與Ta5、W6+相比,Nb5+是具有能夠在不使比重增大的情況下提高折射率的傾向的成分。因此,為了抑制比重的增大,較佳陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}增大。陽離子比{Nb5+/(Nb5++Ti4++Ta5++W6+)}的更佳的下限和較佳的上限如下表20所示。 Further, in order to provide Nb 5+ , it is preferable to reduce the content of Gd 3+ and Ta 5+ in order to stably supply the glass, and it is preferable to reduce the content of Yb 3+ together with Gd 3+ and Ta 5+ and to have high thermal stability. refractive index of low-dispersion glass, in consideration of the above-described effect of Nb 5+, Ti 4+, Ta 5+ , W 6+ is based on the content of Nb 5+ preferred with respect to Nb 5+, Ti 4+, Ta 5 The cation ratio {Nb 5+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} of the total content of + and W 6+ is set to 0.2 or more. Further, Nb 5+ is a component having a tendency to increase the refractive index without increasing the specific gravity as compared with Ta 5 and W 6+ . Therefore, in order to suppress an increase in specific gravity, it is preferable that the cation ratio {Nb 5+ /(Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} is increased. A more preferred lower limit and a preferred upper limit of the cation ratio {Nb 5+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 20 below.

進而,從防止高色散化的觀點和著色的觀點出發,較佳將Ti4+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Ti4+/(Nb5++Ti4++Ta5++W6+)}設為0.6以下。陽離 子比{{Ti4+/(Nb5++Ti4++Ta5++W6+)}的較佳的下限和更佳的上限如下表21所示。 Further, from the viewpoint of preventing the high dispersion and coloring of view, the preferred content of Ti 4+ with respect Nb 5+, Ti 4+ cations, the total content of Ta 5+, and W 6+ ratio {Ti 4+ / (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ )} is set to 0.6 or less. A preferred lower limit and a higher upper limit of the cation ratio {{Ti 4+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} are shown in Table 21 below.

為了維持玻璃的熱穩定性並且抑制阿貝數(νd)的降低,較佳使La3+、Y3+、Gd3+和Yb3+的合計含量(La3++Y3++Gd3++Yb3+)相對於Nb5+、Ti4+、Ta5+和W6+的合計含量(Nb5++Ti4++Ta5++W6+)的陽離子比{(La3++Y3++Gd3++Yb3+)/(Nb5++Ti4++Ta5++W6+)}的下限為下表所示的較佳的下限的值。 In order to maintain the thermal stability of the glass and suppress the decrease in the Abbe number (νd), it is preferred to make the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ (La 3+ +Y 3+ +Gd 3 + +Yb 3+ ) relative to the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ (Nb 5+ + Ti 4+ + Ta 5+ + W 6+ ) cation ratio {(La 3 The lower limit of + +Y 3+ +Gd 3+ +Yb 3+ )/(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is a value of a preferred lower limit shown in the following table.

另一方面,為了抑制折射率的降低並且維持玻璃的熱穩定性,較佳使陽離子比{(La3++Y3++Gd3++Yb3+)/(Nb5++Ti4++Ta5++W6+)}的上限為下表22所示的較佳的上限的值。 On the other hand, in order to suppress the decrease in the refractive index and maintain the thermal stability of the glass, it is preferred to make the cation ratio {(La 3+ +Y 3+ +Gd 3+ +Yb 3+ )/(Nb 5+ +Ti 4+ The upper limit of +Ta 5+ +W 6+ )} is the value of the preferred upper limit shown in Table 22 below.

對於上述玻璃的玻璃組成,以下進一步進行說明。 The glass composition of the above glass will be further described below.

對於作為玻璃的網絡形成成分的B3+和Si4+的合計含量等,如上所述。對於B3+和Si4+,B3+比Si4+改善熔融性的作用優異,但熔融時易發揮。另一方面,Si4+具有改善玻璃的化學耐久性、耐候性、機械加工性或者提高熔融時的玻璃的黏性的作用。 The total content of B 3+ and Si 4+ as a network forming component of glass is as described above. For B 3+ and Si 4+ , B 3+ is superior to Si 4+ in improving the meltability, but it is easy to exhibit during melting. On the other hand, Si 4+ has an effect of improving the chemical durability, weather resistance, machinability of the glass, or improving the viscosity of the glass at the time of melting.

一般地,在含B3+和La3+等稀土元素的高折射率低分散玻璃中,熔融時的玻璃的黏性低。但是,當熔融時的玻璃的黏性低時就會變得容易晶化。對於玻璃製造時的晶化,相比於無定形狀態(非晶質狀態),晶化的狀態更穩定,其是藉由構成玻璃的離子在玻璃中移動而以具有晶體結構的方式進行排列從而產生。因此,藉由以熔融時的黏性增加的方式調節B3+和Si4的各成分的含量的比率,從而使上述離子難以以具有晶體結構的方式進行配列,能夠進一步抑制玻璃的晶化,進一步改善玻璃的耐失透性。 Generally, in a high refractive index low dispersion glass containing a rare earth element such as B 3+ and La 3+ , the viscosity of the glass at the time of melting is low. However, when the viscosity of the glass at the time of melting is low, it becomes easy to crystallize. In the crystallization of glass production, the state of crystallization is more stable than the amorphous state (amorphous state), which is arranged in such a manner as to have a crystal structure by the ions constituting the glass moving in the glass. produce. Therefore, by adjusting the ratio of the content of each component of B 3+ and Si 4 so as to increase the viscosity at the time of melting, it is difficult to arrange the ions so as to have a crystal structure, and it is possible to further suppress the crystallization of the glass. Further improve the resistance to devitrification of the glass.

從以上的觀點出發,B3+的含量相對於B3+和Si4+的合計含量的陽離子比{B3+/(B3++Si4+)}的較佳的下限和較佳的上限如下表23所示。設為下表所示的下限以上從改善玻璃的熔融性的觀點出發亦較佳。此外,設為下表23所示的上限以下從提高熔融時的玻璃的黏性考慮亦較佳。進而,為了降低因熔融時的揮發引起的玻璃組成的變動和由此引起的光學特性的變動,此外從改善玻璃的化學耐久性、耐候性和機械加工性的一個以上的觀點出發,設為下表23所示的上限以下亦較佳。 From the above viewpoint, the content of B 3+ and B 3+ cations with respect to the total content of Si 4+ preferred lower limit of the ratio of {B 3+ / (B 3+ + Si 4+)} and preferred The upper limit is shown in Table 23 below. The lower limit or more shown in the table below is also preferable from the viewpoint of improving the meltability of the glass. Further, it is also preferable to set the upper limit or less shown in the following Table 23 from the viewpoint of improving the viscosity of the glass at the time of melting. Furthermore, in order to reduce fluctuations in the glass composition due to volatilization during melting and variations in optical characteristics, it is also required to improve the chemical durability, weather resistance, and machinability of the glass. The upper limit shown in Table 23 is also preferred below.

從改善玻璃的耐失透性、熔融性、成型性、化學耐久性、耐候性、機械加工性等觀點出發,對於B3+含量、Si4+含量,各自較佳的下限和較佳的上限如下表24~25所示。 From the viewpoints of improving the devitrification resistance, the meltability, the moldability, the chemical durability, the weather resistance, the machinability, and the like of the glass, each of the B 3+ content and the Si 4+ content has a preferred lower limit and a preferred upper limit. See Table 24~25 below.

Zn2+具有在熔融玻璃時促進玻璃原料的熔融的作用、即改善熔融性的作用。此外,也具有對折射率(nd)、阿貝數(νd)進行調整、降低玻璃化轉變溫度的作用。從抑制阿貝數(νd)的降 低、改善玻璃的熱穩定性、抑制玻璃化轉變溫度的降低(由此改善機械加工性)、玻璃的低比重化的觀點出發,較佳將Zn2+的含量除以B3+和Si4+的合計含量的值即陽離子比{Zn2+/(B3++Si4+)}設為0.15以下。另外,因為上述玻璃中Zn是可以含有也可以不含有的任選成分,所以較佳陽離子比{Zn2+/(B3++Si4+)}為0以上,但為了提高熔融性、容易地製作均質的玻璃,更佳含有Zn來使陽離子比{Zn2+/(B3++Si4+)}大於0。陽離子比{Zn2+/(B3++Si4+)}的更佳的下限和更佳的上限如下表26所示。 Zn 2+ has an effect of promoting the melting of the glass raw material at the time of melting the glass, that is, improving the meltability. Further, it also has an effect of adjusting the refractive index (nd) and the Abbe number (νd) and lowering the glass transition temperature. From the viewpoint of suppressing the decrease in the Abbe number (νd), improving the thermal stability of the glass, suppressing the decrease in the glass transition temperature (the mechanical workability), and the low specific gravity of the glass, it is preferred to use Zn 2+ . The value of the content divided by the total content of B 3+ and Si 4+ , that is, the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} is set to 0.15 or less. Further, since Zn in the glass may or may not contain an optional component, the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} is preferably 0 or more, but it is easy to improve the meltability. A homogeneous glass is produced, preferably containing Zn such that the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} is greater than zero. The lower limit and the higher upper limit of the cation ratio {Zn 2+ /(B 3+ +Si 4+ )} are shown in Table 26 below.

從改善玻璃的熔融性、熱穩定性、成型性、機械加工性等,實現上述的光學特性的觀點出發,Zn2+含量的較佳的下限和較佳的上限如下表27所示。 From the viewpoint of improving the meltability, heat stability, moldability, machinability, and the like of the glass to achieve the above optical characteristics, a preferred lower limit and a preferred upper limit of the Zn 2+ content are shown in Table 27 below.

從進一步改善玻璃的熱穩定性、抑制玻璃化轉變溫度的降低(由此改善機械加工性)、改善化學耐久性的觀點出發,較佳Zn2+含量相對於Nb5+、Ti4+、Ta5+和W6+的合計含量的陽離子比{Zn2+/(Ti4++Nb5++Ta5++W6+)}為1.0以下。另一方面,由於Zn是任選成分,因此較佳陽離子比{Zn2+/(Nb5++Ti4++Ta5++W6+)}的下限為0,但是從提高熔融性的觀點出發,更佳大於0。考慮到以上的方面,陽離子比{Zn2+/(Ti4++Nb5++Ta5++W6+)}的更佳的下限和更佳的上限如下表28所示。 From the viewpoint of further improving the thermal stability of the glass, suppressing the decrease in the glass transition temperature (thereby improving the machinability), and improving the chemical durability, the Zn 2+ content is preferably relative to Nb 5+ , Ti 4+ , Ta. The cation ratio {Zn 2+ /(Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )} of the total content of 5+ and W 6+ is 1.0 or less. On the other hand, since Zn is an optional component, the lower limit of the preferred cation ratio {Zn 2+ /(Nb 5+ +Ti 4+ +Ta 5+ +W 6+ )} is 0, but from the viewpoint of improving the meltability From the point of view, it is better than 0. In view of the above aspects, a lower limit and a higher upper limit of the cation ratio {Zn 2+ /(Ti 4+ + Nb 5+ + Ta 5+ + W 6+ )} are shown in Table 28 below.

在考慮到上述作用、效果的基礎上,對於Nb5+、Ti4+、Ta5+、W6+,Nb5+、Ti4+、Ta5+、W6+的各成分的含量的較佳的範圍如下表29~32所示。 Based on the above effects and effects, the contents of the respective components of Nb 5+ , Ti 4+ , Ta 5+ , W 6+ , Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ are compared. The preferred range is shown in Tables 29 to 32 below.

接著,對以上說明了的成分以外的任選成分進行說明。 Next, optional components other than the components described above will be described.

Li+因為使玻璃化轉變溫度降低的作用很強,所以當其含量變多時,示出機械加工性降低的傾向。此外,化學耐久性、耐候性也顯示出降低的傾向。因此,較佳將Li+含量設為5%以下。Li+的含量的較佳的下限和更佳的上限如下表33 所示。Li+的含量也可以為0%。 Since Li + has a strong effect of lowering the glass transition temperature, when the content thereof is increased, the mechanical workability tends to be lowered. Further, chemical durability and weather resistance also tend to decrease. Therefore, it is preferable to set the Li + content to 5% or less. The preferred lower limit and the better upper limit of the Li + content are shown in Table 33 below. The content of Li + may also be 0%.

Na+、K+、Rb+、Cs+均具有改善玻璃的熔融性的作用,但當這些含量增加時,顯示出玻璃的熱穩定性、化學耐久性、耐候性、機械加工性降低的傾向。因此,較佳Na+、K+、Rb+、Cs+的各含量的下限和上限分別如下表34~37所示。 Each of Na + , K + , Rb + , and Cs + has an effect of improving the meltability of the glass. However, when these contents are increased, the thermal stability, chemical durability, weather resistance, and machinability of the glass tend to be lowered. Therefore, the lower limit and the upper limit of the respective contents of Na + , K + , Rb + and Cs + are preferably as shown in Tables 34 to 37 below.

從維持玻璃的熱穩定性、化學耐久性、耐候性、機械加工性並且改善玻璃的熔融性的觀點出發,Li+、Na+和K+的合計含量(Li++Na++K+)的較佳的下限和較佳的上限如下表38所示。 The total content of Li + , Na + and K + (Li + +Na + +K + ) is maintained from the viewpoint of maintaining thermal stability, chemical durability, weather resistance, machinability, and improvement of glass meltability of the glass. The preferred lower limit and preferred upper limit are shown in Table 38 below.

Mg2+、Ca2+、Sr2+、Ba2+均是具有改善玻璃的熔融性的作用的成分。但是,當這些成分的含量增加時,玻璃的熱穩定性降低,顯示出失透傾向。因此,這些成分的各自的含量分 別較佳設為下表39~42所示的下限以上,較佳設為上限以下。 Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ are all components having an effect of improving the meltability of the glass. However, when the content of these components is increased, the thermal stability of the glass is lowered, showing a tendency to devitrification. Therefore, the content of each of these components is preferably equal to or lower than the lower limit shown in the following Tables 39 to 42, and preferably equal to or less than the upper limit.

此外,從維持玻璃的熱穩定性的觀點出發,較佳Mg2+、Ca2+、Sr2+和Ba2+的合計含量(Mg2++Ca2++Sr2++Ba2+)設為下表43所示的下限以上,較佳設為上限以下。 Further, from the viewpoint of maintaining the thermal stability of the glass, the total content of Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ is preferably (Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ ). It is set to the lower limit or more shown in Table 43 below, and is preferably set to the upper limit or less.

Al3+是具有改善玻璃的化學耐久性、耐候性的作用的成分。但是,當Al3+的含量增加時,有時顯示出折射率(nd)的降低傾向、玻璃的熱穩定性的降低傾向,熔融性的降低傾向。考慮以上的方面,較佳Al3+的含量為下表44所示的下限以上,較佳為上限以下。 Al 3+ is a component having an effect of improving the chemical durability and weather resistance of the glass. However, when the content of Al 3+ is increased, the refractive index (nd) tends to decrease, the thermal stability of the glass tends to decrease, and the meltability tends to decrease. In view of the above, the content of Al 3+ is preferably at least the lower limit shown in Table 44 below, and preferably at most the upper limit.

Ga3+、In3+、Sc3+、Hf4+均具有提高折射率(nd)的作用。但是,這些成分價格昂貴,從得到上述光學玻璃的角度考慮不是必需的成分。因此,Ga3+、In3+、Sc3+、Hf4+的各含量較佳設為下表45~48所示的下限以上,較佳設為上限以下。 Ga 3+ , In 3+ , Sc 3+ , and Hf 4+ all have an effect of increasing the refractive index (nd). However, these components are expensive, and are not essential components from the viewpoint of obtaining the above optical glass. Therefore, the content of each of Ga 3+ , In 3+ , Sc 3+ , and Hf 4+ is preferably equal to or lower than the lower limit shown in the following Tables 45 to 48, and preferably equal to or less than the upper limit.

Lu3+具有提高折射率(nd)的作用,但也是會使玻璃 的比重增加的成分。此外,Lu與Gd、Yb同樣,是重稀土元素,因此較佳降低Lu的含量。從以上的方面出發,Lu3+的含量的較佳的下限和較佳的上限如下表49所示。 Lu 3+ has an effect of increasing the refractive index (nd), but is also a component that increases the specific gravity of the glass. Further, Lu, like Gd and Yb, is a heavy rare earth element, and therefore it is preferable to reduce the content of Lu. From the above aspects, the preferred lower limit and the preferred upper limit of the content of Lu 3+ are shown in Table 49 below.

Ge4+是具有提高折射率(nd)的作用,但在通常使用的玻璃成分中是極其昂貴的成分。從降低玻璃的製造成本的觀點出發,Ge4+的含量的較佳的下限和較佳的上限如下表50所示。 Ge 4+ has an effect of increasing the refractive index (nd), but is an extremely expensive component among commonly used glass components. From the viewpoint of lowering the production cost of the glass, a preferred lower limit and a preferred upper limit of the content of Ge 4+ are shown in Table 50 below.

Bi3+是提高折射率(nd)並且使阿貝數(νd)降低的成分。此外,也是易於使比重、著色增大的成分。為了製作具有上述的光學特性、且著色少、比重低的玻璃,Bi3+含量的較佳的下限和較佳的上限如下表51所示。 Bi 3+ is a component that increases the refractive index (nd) and lowers the Abbe number (νd). Further, it is also a component which is easy to increase the specific gravity and coloration. In order to produce a glass having the above optical characteristics and having less coloration and a lower specific gravity, a preferred lower limit and a preferred upper limit of the Bi 3+ content are shown in Table 51 below.

為了良好地得到以上說明的各種作用、效果,以上記載的陽離子成分的各含量的合計(合計含量)較佳大於95%,更佳大於98%,進一步較佳大於99%,更進一步較佳大於99.5%。 In order to satisfactorily obtain the various actions and effects described above, the total content (total content) of each of the cationic components described above is preferably more than 95%, more preferably more than 98%, still more preferably more than 99%, still more preferably more than 99.5%.

在以上記載的陽離子成分以外的陽離子成分中,P5+是使折射率(nd)降低的成分,也是使玻璃的熱穩定性降低的成分,但是如果極少量的導入時,有時使玻璃的熱穩定性提高。為了製作具有上述的光學特性並且熱穩定性優異的玻璃,P5+含量的較佳的下限和較佳的上限如下表52所示。 In the cation component other than the cation component described above, P 5+ is a component which lowers the refractive index (nd) and is a component which lowers the thermal stability of the glass. However, when a very small amount is introduced, the glass may be used. Increased thermal stability. In order to produce a glass having the above optical characteristics and excellent thermal stability, a preferred lower limit and a preferred upper limit of the P 5+ content are shown in Table 52 below.

Te4+是提高折射率(nd)的成分,但是因為是具有毒性的成分,所以較佳減少Te4+的含量。Te4+的含量的較佳的下限和較佳的上限如下表53所示。 Te 4+ is a component that increases the refractive index (nd), but since it is a toxic component, it is preferable to reduce the content of Te 4+ . A preferred lower limit and a preferred upper limit of the content of Te 4+ are shown in Table 53 below.

應予說明的是,上述的各表中記載為(更佳)較佳的下限或0%的成分亦較佳含量是0%。對於多種成分的合計含量也是同樣。 In addition, in the above-mentioned respective tables, it is described that the (better) preferred lower limit or 0% component is also preferably 0%. The same is true for the total content of various components.

對於以上記載的各種陽離子成分,本發明者經過反復研究,著眼於考慮各陽離子成分給予玻璃的色散(阿貝數)的影響各自不同。而且,本發明人進一步反復研究,結果認為,對於各陽離子成分規定考慮給予玻璃的色散的影響的係數以由下述(A)式算出的值A成為8.5000~11.000的範圍的方式進行組成調整,為了實現阿貝數(νd)為39.5~41.5、折射率(nd)和阿貝數(νd)滿足上述(1)式的關係的光學特性而較佳。 The inventors of the present invention have conducted repeated studies to examine the influence of the dispersion (Abbe number) imparted to each glass by the respective cationic components. Furthermore, the inventors of the present invention have further studied and determined that the coefficient for which the influence of the chromatic dispersion of the glass is given to each of the cation components is adjusted so that the value A calculated by the following formula (A) is in the range of 8.5000 to 11.000. It is preferable to achieve an optical property of the relationship (1) in which the Abbe number (νd) is 39.5 to 41.5, the refractive index (nd), and the Abbe number (νd) satisfy the above formula (1).

(A)式A=0.01×Si4+含量+0.01×B3+含量+0.05×La3+含量+0.07×Y3+含量+0.07×Yb3+含量+0.085×Zn2+含量+0.3×Zr4+含量 +0.5×Ta5+含量+0.8×Nb5+含量+0.9×W5+含量+0.95×Ti4+含量 (A) Formula A = 0.01 × Si 4 + content + 0.01 × B 3 + content + 0.05 × La 3 + content + 0.07 × Y 3 + content + 0.07 × Yb 3 + content + 0.085 × Zn 2+ content + 0.3 × Zr 4+ content +0.5×Ta 5+ content+0.8×Nb 5+ content+0.9×W 5+ content+0.95×Ti 4+ content

由上述(A)式算出的值A的更佳的下限和更佳的上限如下表54所示。 A more preferable lower limit and a higher upper limit of the value A calculated by the above formula (A) are shown in Table 54 below.

此外,在以上記載的各種陽離子成分中,對於Nb5+、Ti4+和Gd3+,Nb5+和Ti4+是具有提高折射率的作用的成分,並且與Gd3+相比是使比重增加的作用小的成分。因此,為了抑制比重的增大並且提高折射率,較佳使Nb5+和Ti4+的合計含量與Gd3+的含量平衡。從該方面出發,對於上述玻璃,在以陽離子%表示的玻璃組成中,較佳由下述式(C)算出的值C為-1.000以上。此外,從高折射率低分散化的觀點出發,由下述式(C)算出的值C較佳為6.720以下。 Further, among the various cationic components described above, for Nb 5+ , Ti 4+ and Gd 3+ , Nb 5+ and Ti 4+ are components having an effect of increasing the refractive index, and compared with Gd 3+ A component that has a small effect on the increase in specific gravity. Therefore, in order to suppress an increase in specific gravity and increase the refractive index, it is preferred to balance the total content of Nb 5+ and Ti 4+ with the content of Gd 3+ . From the above, in the glass composition represented by the cation %, the value C calculated by the following formula (C) is preferably -1.000 or more. Further, from the viewpoint of high dispersion and low dispersion, the value C calculated by the following formula (C) is preferably 6.720 or less.

(C)式C=0.567×(Nb5+含量+Ti4+含量)-1.000×Gd3+含量 (C) Formula C = 0.567 × (Nb 5 + content + Ti 4 + content) - 1.000 × Gd 3 + content

由(C)式算出的值C的更佳的下限和更佳的上限如下表55所示。 A more preferable lower limit and a higher upper limit of the value C calculated by the formula (C) are shown in Table 55 below.

Pb、As、Cd、Tl、Be、Se各自具有毒性。因此,較佳不含這些元素,亦即,不將這些元素導入玻璃中作為玻璃成分。 Each of Pb, As, Cd, Tl, Be, and Se is toxic. Therefore, it is preferred that these elements are not contained, that is, these elements are not introduced into the glass as a glass component.

U、Th、Ra均是放射性元素。因此,較佳不含這些元素,亦即,不將這些元素成分導入玻璃中作為玻璃。 U, Th, and Ra are all radioactive elements. Therefore, it is preferred that these elements are not contained, that is, these elemental components are not introduced into the glass as glass.

V、Cr、Mn、Fe、Co、Ni、Cu、Pr,Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ce或使玻璃的著色增大,或成為螢光的產生源,不是較佳作為含在光學元件用的玻璃中的元素。因此,較佳不含這些元素,亦即,不將這些元素導入玻璃中作為玻璃成分。 V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Ce or increase the color of the glass, or become a source of fluorescence It is not preferable as an element contained in the glass for optical elements. Therefore, it is preferred that these elements are not contained, that is, these elements are not introduced into the glass as a glass component.

Sb、Sn是作為澄清劑發揮功能的能夠任意地添加的元素。 Sb and Sn are elements which can be arbitrarily added as a clarifying agent.

對於Sb的添加量,換算成Sb2O3,在將Sb2O3以外的玻璃成分的含量的合計設為100質量%時,較佳的範圍為0~0.11質量%,更佳的範圍為0.01~0.08質量%,進一步較佳的範圍為0.02~0.05質量%。 When the amount of Sb added is converted to Sb 2 O 3 and the total content of the glass components other than Sb 2 O 3 is 100% by mass, the preferred range is 0 to 0.11% by mass, and a more preferable range is From 0.01 to 0.08 mass%, a further preferred range is from 0.02 to 0.05 mass%.

對於Sn的添加量,換算成SnO2,在將SnO2以外的玻璃成分的含量的合計設為100質量%時,較佳的範圍為0~0.5質量%,更佳的範圍為0~0.2質量%,進一步較佳的範圍為0質量%。 When the amount of addition of Sn is converted to SnO 2 and the total content of the glass components other than SnO 2 is 100% by mass, the preferred range is 0 to 0.5% by mass, and more preferably 0 to 0.2% by mass. Further, a further preferred range is 0% by mass.

以上,對陽離子成分進行了說明。接下來,對陰離子成分進行說明。 The cationic component has been described above. Next, the anion component will be described.

上述玻璃因為是氧化物玻璃,所以含有O2-作為陰離子成分。O2-的含量的較佳的下限如下表56所示。 Since the glass is an oxide glass, it contains O 2- as an anion component. A preferred lower limit of the content of O 2- is as shown in Table 56 below.

作為O2-以外的陰離子成分,可以例示F-、Cl-、Br-、I-。但是,F-、Cl-、Br-、I-在玻璃的熔融中均容易發揮。由於這些成分的揮發,有玻璃的特性變動而玻璃的均質性降低、熔融設備的消耗變得顯著的傾向。因此,較佳將F-、Cl-、Br-和I-的合計含量控制在從100陰離子%中減去O2-的含量的量。 Examples of the anion component other than O 2− are F , Cl , Br , and I . However, F - , Cl - , Br - , and I - are easily exhibited in the melting of the glass. Due to the volatilization of these components, the characteristics of the glass fluctuate, the homogeneity of the glass is lowered, and the consumption of the melting equipment tends to be remarkable. Therefore, it is preferred to control the total content of F - , Cl - , Br - and I - to an amount obtained by subtracting the content of O 2- from 100 anions %.

應予說明的是,陰離子%眾所周知是指將含在玻璃中的全部的陰離子成分的合計含量設為100%時的百分率。 In addition, the anion% is a percentage which is a case where the total content of all the anion components contained in glass is 100%.

<玻璃特性> <glass characteristics>

(玻璃的光學特性) (Optical properties of glass)

上述玻璃是阿貝數(νd)的範圍為39.5~41.5、且相對於阿貝數(νd),折射率(nd)滿足下述(1)式的玻璃。 The glass is a glass having an Abbe number (νd) in the range of 39.5 to 41.5 and having a refractive index (nd) satisfying the following formula (1) with respect to the Abbe number (νd).

阿貝數(νd)為39.5以上的玻璃作為光學元件的材料在校正色像差方面是有效的。另一方面,當阿貝數(νd)大於41.5時,如果不使折射率降低的話,則玻璃的熱穩定性會顯著降低,製造玻璃的過程中變得容易失透。阿貝數(νd)的較佳的下限和較佳的上限如下表57所示。 A glass having an Abbe number (νd) of 39.5 or more is effective as a material of an optical element in correcting chromatic aberration. On the other hand, when the Abbe number (νd) is more than 41.5, if the refractive index is not lowered, the thermal stability of the glass is remarkably lowered, and it becomes easy to devitrify during the process of producing glass. The preferred lower limit and preferred upper limit of the Abbe number (νd) are shown in Table 57 below.

在上述玻璃中,相對於阿貝數(νd),折射率(nd)滿足(1)式。阿貝數(νd)的範圍為39.5~41.5、且折射率(nd)滿足(1)式的玻璃是在光學系統的設計中利用價值高的玻璃。 In the above glass, the refractive index (nd) satisfies the formula (1) with respect to the Abbe number (νd). A glass having an Abbe number (νd) in the range of 39.5 to 41.5 and having a refractive index (nd) satisfying the formula (1) is a glass having high value in the design of an optical system.

折射率(nd)的上限由玻璃組成自然而然地確定。為了得到改善熱穩定性、難以失透的玻璃,較佳折射率(nd)滿足下述(2)式。 The upper limit of the refractive index (nd) is naturally determined by the composition of the glass. In order to obtain a glass which is improved in thermal stability and is difficult to devitrify, the refractive index (nd) preferably satisfies the following formula (2).

相對於阿貝數(νd)的折射率(nd)的較佳的下限和更佳的上 限如下表58所示。 a preferred lower limit and a better upper limit of the refractive index (nd) relative to the Abbe number (νd) The limits are shown in Table 58 below.

此外,折射率(nd)亦較佳為下表59所示的下限以上,亦較佳為上限以下。 Further, the refractive index (nd) is preferably at least the lower limit shown in Table 59 below, and is preferably at most the upper limit.

(部分色散特性) (partial dispersion characteristics)

從校正色像差的觀點出發,較佳上述玻璃是在將阿貝數(νd)固定時相對部分色散小的玻璃。 From the viewpoint of correcting chromatic aberration, the glass is preferably a glass having a relatively small partial dispersion when the Abbe number (νd) is fixed.

在此,部分分散比(Pg,F)使用在g線、F線、c線中的各折射率(ng)、折射率(nF)、折射率(nc),表示為(ng-nF)/(nF-nc)。 Here, the partial dispersion ratio (Pg, F) is a refractive index (ng), a refractive index (nF), and a refractive index (nc) in the g-line, the F-line, and the c-line, and is expressed as (ng-nF)/ (nF-nc).

為了提供適合於高階的色像差校正的玻璃,上述玻璃的相對部分色散(Pg,f)的較佳的下限和較佳的上限如下表60所示。 In order to provide a glass suitable for high-order chromatic aberration correction, a preferred lower limit and a preferred upper limit of the relative partial dispersion (Pg, f) of the above glass are shown in Table 60 below.

(玻璃化轉變溫度) (glass transition temperature)

上述玻璃的玻璃化轉變溫度沒有特別的限定,較佳為640℃以上。藉由將玻璃化轉變溫度(glass transition temperature,Tg)設為640℃以上,從而在對玻璃進行切斷、切削、研磨、拋光等機械加工時,能夠使玻璃難以破損。此外,因為也可以不大量含有使玻璃化轉變溫度降低的作用強的Li、Zn等成分,所以即使較少的含有Gd、Ta,進一步較少的含有Yb,也容易提高熱穩定性。 The glass transition temperature of the above glass is not particularly limited, but is preferably 640 ° C or higher. By setting the glass transition temperature (Tg) to 640 ° C or higher, it is possible to make the glass hard to be broken when the glass is subjected to mechanical processing such as cutting, cutting, polishing, and polishing. In addition, since components such as Li and Zn which have a strong effect of lowering the glass transition temperature are not contained in a large amount, even if Gd and Ta are contained less and Yb is further contained less, thermal stability is likely to be improved.

另一方面,當玻璃化轉變溫度過高時,必須在高溫下對玻璃進行退火,會顯著地消耗退火爐。此外,在對玻璃進行成型時,必須以高的溫度進行成型,成型所使用的模具的消耗會變得顯著。 On the other hand, when the glass transition temperature is too high, the glass must be annealed at a high temperature, and the annealing furnace is significantly consumed. Further, when molding glass, it is necessary to perform molding at a high temperature, and the consumption of the mold used for molding becomes remarkable.

從改善機械加工性、減輕退火爐、成型模的負擔的觀點出發,玻璃化轉變溫度的較佳的下限和較佳的上限如下表61所示。 From the viewpoint of improving the machinability and reducing the burden on the annealing furnace and the molding die, a preferred lower limit and a preferred upper limit of the glass transition temperature are shown in Table 61 below.

(玻璃的比重) (specific gravity of glass)

在構成光學系統的光學元件(透鏡)中,根據構成透鏡的玻璃的折射率和透鏡的光學功能面(要控制的光線入射、出射面)的曲率決定屈光力。當要使光學功能面的曲率增大時,透鏡的厚度也會增加。結果是透鏡會變重。與此相對,如果使用折射率高的玻璃,則即使光學功能面的曲率不增大,也能夠得到大的屈光力。 In the optical element (lens) constituting the optical system, the refractive power is determined according to the refractive index of the glass constituting the lens and the curvature of the optical functional surface (light incident and exit surface to be controlled) of the lens. When the curvature of the optical functional surface is to be increased, the thickness of the lens is also increased. The result is that the lens will become heavier. On the other hand, if a glass having a high refractive index is used, a large refractive power can be obtained even if the curvature of the optical functional surface is not increased.

由此,只要能抑制玻璃的比重的增加並且提高折射率,就能夠使具有固定的屈光力的光學元件輕量化。 Thereby, as long as the increase in the specific gravity of the glass can be suppressed and the refractive index is increased, the optical element having a fixed refractive power can be made lighter.

關於賦予折射率(nd)的屈光力,藉由取玻璃的比重(d)相對於從玻璃的折射率(nd)中減去真空中的折射率(1)的值(nd-1)的比,能夠作為謀求光學元件的輕量化時的指標。亦即,將d/(nd-1)作為謀求將光學元件輕量化時的指標,藉由降低該值,從而能夠謀求透鏡的輕量化。 Regarding the refractive power imparted to the refractive index (nd), by taking the ratio of the specific gravity (d) of the glass to the value (nd-1) of the refractive index (1) in the vacuum from the refractive index (nd) of the glass, It can be used as an indicator for reducing the weight of optical components. In other words, by using d/(nd-1) as an index for reducing the weight of the optical element, by reducing the value, it is possible to reduce the weight of the lens.

上述玻璃藉由將上述的合計D相對於折射率(nd)滿足上述(B)式從而能夠一邊成為高折射率低分散玻璃一邊低比重化。因此,上述玻璃的d/(nd-1)能夠例如為5.70以下。但是,當使d/(nd-1)過度減少時,顯示玻璃的熱穩定性降低的傾向。因此, 較佳d/(nd-1)設為5.00以上。d/(nd-1)的更佳的下限和更佳的上限如下表62所示。 By satisfying the above formula (B) with respect to the refractive index (nd), the above-mentioned glass can be made to have a low specific gravity while being a high refractive index low dispersion glass. Therefore, the d/(nd-1) of the above glass can be, for example, 5.70 or less. However, when d/(nd-1) is excessively decreased, the thermal stability of the glass tends to be lowered. therefore, Preferably, d/(nd-1) is set to 5.00 or more. A preferred lower limit and a better upper limit of d/(nd-1) are shown in Table 62 below.

而且,上述玻璃的比重(d)的較佳的下限和較佳的上限如下表63所示。從由該玻璃形成的光學元件的輕量化的觀點出發,較佳將比重(d)設為下表63所示的上限以下。此外,為了進一步改善玻璃的熱穩定性,較佳將比重設為下表63所示的下限以上。 Further, a preferred lower limit and a preferred upper limit of the specific gravity (d) of the above glass are shown in Table 63 below. From the viewpoint of weight reduction of the optical element formed of the glass, the specific gravity (d) is preferably set to be equal to or less than the upper limit shown in Table 63 below. Further, in order to further improve the thermal stability of the glass, the specific gravity is preferably set to a lower limit or more as shown in the following Table 63.

(液相線溫度) (liquidus temperature)

液相線溫度是玻璃的熱穩定性的指標之一。為了抑制玻璃製造時的晶化、抑制失透,較佳液相線溫度(LT)為1350℃以下,更佳為1330℃以下,進一步較佳為1300℃以下,更進一步較佳為1250℃以下。液相線溫度(LT)的下限作為一個例子是1100℃以上,但是較佳液相線溫度(LT)的下限低,並沒有特別 的限定。 The liquidus temperature is one of the indicators of the thermal stability of the glass. In order to suppress crystallization and suppress devitrification during glass production, the liquidus temperature (LT) is preferably 1350 ° C or lower, more preferably 1330 ° C or lower, further preferably 1300 ° C or lower, and even more preferably 1250 ° C or lower. . The lower limit of the liquidus temperature (LT) is 1100 ° C or more as an example, but the lower limit of the preferred liquidus temperature (LT) is low, and there is no particular Limited.

對於以上說明的本發明的一個方式的玻璃,折射率(nd)和阿貝數(νd)大,作為光學元件用的玻璃材料是有用的。進而,藉由進行在先記載的組成調整,從而還能夠使玻璃均質化和低比重化。因此,上述玻璃作為賦予更輕量的光學元件的光學玻璃是合適的。 The glass of one embodiment of the present invention described above has a large refractive index (nd) and an Abbe number (νd), and is useful as a glass material for optical elements. Further, by performing the composition adjustment described earlier, it is also possible to homogenize the glass and reduce the specific gravity. Therefore, the above glass is suitable as an optical glass that imparts a lighter weight optical element.

<玻璃的製造方法> <Method of Manufacturing Glass>

上述玻璃能夠藉由以下方式得到,亦即,以能夠得到目標的玻璃組成的方式,稱量、調配作為原料的氧化物、碳酸鹽、硫酸鹽、硝酸鹽、氫氧化物等,充分混合製成混合批料,在熔融容器內進行加熱、熔融,進行脫泡、攪拌,製造均質且不含泡沫的熔融玻璃,將其成型。具體地能夠使用公知的熔融法來製作。上述玻璃具有上述的光學特性的高折射率低色散玻璃並且熱穩定性優異,因此能夠使用公知的熔融法、成型法穩定地製造。 The glass can be obtained by weighing and blending oxides, carbonates, sulfates, nitrates, hydroxides, and the like as raw materials in such a manner as to obtain a desired glass composition. The batch is mixed, heated and melted in a melting vessel, defoamed and stirred, and a homogeneous molten glass containing no foam is produced and molded. Specifically, it can be produced by a known melting method. Since the glass has high refractive index and low dispersion glass having the above optical characteristics and is excellent in thermal stability, it can be stably produced by a known melting method or molding method.

[壓製成型用玻璃材料、光學元件坯件、及它們的製造方法] [Glass material for press molding, optical element blank, and method for producing the same]

本發明的另一個方式關於一種由上述的玻璃形成的壓製成型用的玻璃材料。 Another aspect of the present invention relates to a glass material for press molding formed of the above glass.

一種由上述的玻璃形成的光學元件坯件。 An optical element blank formed from the above glass.

根據本發明的另一個方式,還可提供下述者。 According to another aspect of the present invention, the following may also be provided.

一種具有將上述的玻璃成型為壓製成型用玻璃材料的步驟的壓製成型用玻璃材料的製造方法。 A method for producing a glass material for press molding having a step of molding the above-described glass into a glass material for press molding.

一種具有藉由將上述的壓製成型用玻璃材料使用壓製成 型模進行壓製成型而製作光學元件坯件的步驟的光學元件坯件的製造方法。 One having a pressurization using the above-mentioned glass material for press molding A method of manufacturing an optical element blank in which a mold is subjected to press molding to produce an optical element blank.

一種具有將上述的玻璃成型為光學元件坯件的步驟的光學元件坯件的製造方法。 A method of manufacturing an optical element blank having the step of molding the above-described glass into an optical element blank.

光學元件坯件是與設為目標的光學元件的形狀近似、在光學元件形狀上增加了拋光餘量(藉由拋光而會除去的表面層)、根據需要增加了研磨餘量(藉由研磨而會除去的表面層)的光學元件母材。藉由將光學元件坯件的表面研磨、拋光,從而製作完成了光學元件。在一個方式中,能夠藉由對將上述玻璃進行適量熔融而得到的熔融玻璃壓製成型的方法(被稱為直接壓製法),從而製作光學元件坯件。在另一個方式中,也能夠藉由對將上述玻璃適量熔融而得到的熔融玻璃進行固化而製作光學元件坯件。 The optical element blank is similar to the shape of the target optical element, and the polishing allowance is added to the optical element shape (the surface layer removed by polishing), and the grinding allowance is increased as needed (by grinding) The optical element base material of the surface layer to be removed. The optical element is completed by polishing and polishing the surface of the optical element blank. In one embodiment, an optical element blank can be produced by a method of press molding a molten glass obtained by appropriately melting the glass (referred to as a direct pressing method). In another aspect, the optical element blank can also be produced by curing the molten glass obtained by appropriately melting the glass.

此外,在另一個方式中,能夠藉由製作壓製成型用玻璃材料,將製作的壓製成型用玻璃材料進行壓製成型而製作光學元件坯件。 Further, in another embodiment, the glass material for press molding can be produced by press-forming the produced glass material for press molding to produce an optical element blank.

壓製成型用玻璃材料的壓製成型能夠藉由將加熱後呈軟化狀態的壓製成型用玻璃材料用壓製成型模進行壓製的公知的方法進行。加熱、壓製成型均能夠在大氣中進行。能夠藉由壓製成型後進行退火來降低玻璃內部的應力,從而得到均質的光學元件坯件。 The press molding of the glass material for press molding can be carried out by a known method of pressing a glass material for press molding which is softened after heating with a press molding die. Both heating and press molding can be carried out in the atmosphere. The stress inside the glass can be reduced by annealing after press molding to obtain a homogeneous optical element blank.

壓製成型用玻璃材料除了以原本的狀態提供給用於光學元件坯件製作的壓製成型的被稱為壓製成型用玻璃料滴的壓製成型用玻璃材料以外,還包含施加切斷、研磨、拋光 等機械加工,經過壓製成型用玻璃料滴而供給到壓製成型的壓製成型用玻璃材料。作為切斷方法,具有:在玻璃板的表面的想要切斷的部分使用被稱為刻劃的方法形成槽,從形成的槽的面的背面對槽的部分施加局部壓力,在槽的部分切斷玻璃板的方法;用切斷刃切斷玻璃板的方法等。此外,作為研磨、拋光方法可列舉為滾筒拋光等。 The glass material for press molding is provided, in addition to the glass material for press molding, which is called press-molding glass gob for press molding for optical element blank production, and includes cutting, grinding, and polishing. After machining, the glass gob is subjected to press molding and supplied to a press-molded glass material for press molding. As a cutting method, a groove is formed in a portion to be cut on the surface of the glass sheet by a method called scribing, and a partial pressure is applied to a portion of the groove from the back surface of the surface of the formed groove, in the portion of the groove. A method of cutting a glass sheet; a method of cutting a glass sheet with a cutting blade, and the like. Further, examples of the polishing and polishing methods include barrel polishing and the like.

壓製成型用玻璃材料能夠藉由例如將熔融玻璃澆鑄入鑄模中,成型成玻璃板,將該玻璃板切斷成多個玻璃片從而製作。或者,也能夠將適量的熔融玻璃進行成型,製作壓製成型用玻璃料滴。還能夠藉由將壓製成型用玻璃料滴進行再加熱、軟化,進行壓製成型從而製作光學元件坯件。將玻璃再加熱,軟化,進行壓製成型而製作光學元件坯件的方法相對於直接壓製法被稱為再加熱壓製法。 The glass material for press molding can be produced by, for example, casting molten glass into a mold to form a glass plate, and cutting the glass plate into a plurality of glass sheets. Alternatively, an appropriate amount of molten glass can be molded to produce a glass gob for press molding. It is also possible to produce an optical element blank by reheating and softening the glass gob for press molding and performing press molding. The method of reheating, softening, and press-forming a glass to produce an optical element blank is referred to as a reheat pressing method with respect to a direct pressing method.

[光學元件及其製造方法] [Optical element and its manufacturing method]

本發明的另一個方式關於一種由上述的玻璃形成的光學元件。 Another aspect of the invention relates to an optical element formed from the above-described glass.

上述光學元件使用上述的玻璃製作。在上述光學元件中,也可以在玻璃表面形成例如防反射膜等多層膜等一層以上的塗層膜。 The above optical element is produced using the above glass. In the above optical element, one or more coat films such as a multilayer film such as an antireflection film may be formed on the surface of the glass.

此外,根據本發明的一個方式還可提供具有藉由將上述的光學元件坯件進行研磨及/或拋光而製作光學元件的步驟的光學元件的製造方法。 Further, according to an aspect of the present invention, a method of manufacturing an optical element having a step of fabricating an optical element by polishing and/or polishing the above-described optical element blank can be provided.

在上述光學元件的製造方法中,研磨、拋光只要應用公知的方法即可,能夠藉由在加工後對光學元件表面充分 洗淨、使其乾燥等來得到內部質量和表面質量高的光學元件。這樣,能夠得到由上述玻璃形成的光學元件。作為光學元件,能夠例示球面透鏡、非球面透鏡、微透鏡等各種的透鏡、棱鏡等。 In the above method for producing an optical element, polishing and polishing may be performed by applying a known method, and the surface of the optical element can be sufficiently formed by processing. It is washed, dried, and the like to obtain an optical element having high internal quality and surface quality. Thus, an optical element formed of the above glass can be obtained. As the optical element, various lenses, prisms, and the like such as a spherical lens, an aspherical lens, and a microlens can be exemplified.

此外,由上述玻璃形成的光學元件作為構成膠合光學元件的透鏡而較佳。作為膠合光學元件,能夠例示將透鏡彼此進行膠合的膠合光學元件(膠合透鏡)、將透鏡和棱鏡膠合的膠合光學元件等。例如,膠合光學元件可以藉由以下方式製作,亦即,將膠合的2個光學元件的膠合面以形狀成為反轉形狀的方式進行精密地加工(例如球面拋光加工),塗布膠合透鏡的黏接所使用的紫外線固化型黏接劑,使其貼合後,藉由透鏡照射紫外線,使黏接劑硬化。為了製作這樣的膠合光學元件,較佳上述玻璃。藉由使用阿貝數(νd)不同的多種玻璃分別製作膠合的多個光學元件、進行膠合,從而能成為適合於色像差校正的元件。 Further, an optical element formed of the above glass is preferable as a lens constituting the glued optical element. As the glue optical element, a glue optical element (glued lens) that bonds lenses to each other, a glue optical element that bonds a lens and a prism, and the like can be exemplified. For example, the glue optical element can be produced by precisely processing the glued surface of the two glued optical elements in such a manner that the shape is reversed (for example, spherical polishing), and bonding of the coated cemented lens. After the ultraviolet curable adhesive used is bonded, the ultraviolet rays are irradiated by the lens to harden the adhesive. In order to produce such a glued optical element, the above glass is preferred. By using a plurality of kinds of glass having different Abbe numbers (νd) to produce a plurality of glued optical elements and bonding them, it is possible to obtain an element suitable for chromatic aberration correction.

對於玻璃組成的定量分析,結果有時玻璃成分以氧化物基準表示、玻璃成分的含量以質量%表示。這樣用氧化物基準以質量%表示的組成能夠按照例如下列的方法換算成以陽離子%、陰離子%表示的組成。 For the quantitative analysis of the glass composition, the glass component is represented by an oxide standard, and the content of the glass component is represented by mass%. The composition expressed in mass% in terms of the oxide standard can be converted into a composition represented by cation % and anion %, for example, by the following method.

玻璃中含有N種玻璃成分的情況下,將第k種的玻璃組成用A(k)mOn表示。但是,k為1以上、N以下的任意整數。 When the glass contains N kinds of glass components, the glass composition of the kth type is represented by A(k) m O n . However, k is an arbitrary integer of 1 or more and N or less.

A(k)是陽離子、O是氧、m和n是化學計量法所確定的整數。例如,基於氧化物基準表示為B2O3的情況下,m=2、n=3;表示為SiO2的情況下,m=1、n=2。 A(k) is a cation, O is oxygen, and m and n are integers determined by stoichiometry. For example, when the oxide standard is represented by B 2 O 3 , m=2 and n=3; when it is represented by SiO 2 , m=1 and n=2.

接著,將A(k)mOn的含量用X(k)[質量%]表示。在此,將A(k)的原子量設為P(k)、將氧O的原子序數設為Q時,A(k)mOn的形式上的分子量R(k)為R(k)=P(k)×m+Q×n。 Next, the content of A(k) m O n is represented by X(k) [% by mass]. Here, when the atomic weight of A(k) is P(k) and the atomic number of oxygen O is Q, the molecular weight R(k) of A(k) m O n is R(k)= P(k) × m + Q × n.

進而,當B=100/{Σ[m×X(k)/R(k)]}時,陽離子成分A(k)s+的含量(陽離子%)為(X(k)/R(k))×m×B(陽離子%)。在此,Σ是指從k=1至N的m×X(k)/R(K)的合計。m根據k變化。s是2n/m。 Further, when B=100/{Σ[m×X(k)/R(k)]}, the content (cation %) of the cationic component A(k) s+ is (X(k)/R(k)) × m × B (cation %). Here, Σ means the total of m × X (k) / R (K) from k = 1 to N. m varies according to k. s is 2n/m.

此外,分子量R(k)只要使用將小數點後第4位進行四捨五入、小數點後3位表示的值計算即可。應予說明的是,對於若干個玻璃成分、添加劑,依據氧化物基準表示的分子量如下表64表示。 Further, the molecular weight R(k) may be calculated by using a value obtained by rounding off the fourth digit after the decimal point and three decimal places. Incidentally, the molecular weights expressed by the oxide standard for a plurality of glass components and additives are shown in Table 64 below.

[實施例] [Examples]

以下,基於實施例對本發明進行進一步說明。但是,本發明並不限定於實施例所示的方式。 Hereinafter, the present invention will be further described based on examples. However, the present invention is not limited to the embodiment shown in the embodiment.

(實施例1) (Example 1)

以可得到具有下述的表所示的組成的玻璃的方式,稱量作為原料的氧化物、硼酸等化合物,充分混合,製作批量原料。 A compound such as an oxide or a boric acid as a raw material is weighed so that a glass having a composition shown in the following table can be obtained, and sufficiently mixed to prepare a batch raw material.

將該批量原料放入鉑坩堝中,連同坩堝一起加熱到1350~1450℃,歷經2~3小時,將玻璃熔融、澄清。將熔融玻璃進行攪拌而均質化後,將熔融玻璃澆鑄到經預熱的成型模中,放置冷卻至玻璃化轉變溫度附近,然後立刻將玻璃連同成型模一起放入退火爐內。然後,在玻璃化轉變溫度附近進行約1小時的退火處理。退火處理之後,在退火爐內放置冷卻至室溫。 The batch of raw materials was placed in a platinum crucible and heated together with hydrazine to 1350 to 1450 ° C. After 2 to 3 hours, the glass was melted and clarified. After the molten glass was stirred and homogenized, the molten glass was cast into a preheated molding die, left to cool to near the glass transition temperature, and then immediately placed in the annealing furnace together with the molding die. Then, an annealing treatment was performed for about 1 hour in the vicinity of the glass transition temperature. After the annealing treatment, it was left to cool to room temperature in an annealing furnace.

觀察這樣製作的玻璃,結果沒有發現晶體的析出、氣泡、紋理、原料的熔融殘留。由此,能夠製作均質性高的玻璃。 When the glass thus produced was observed, no precipitation of crystals, bubbles, texture, and melting of the raw material were observed. Thereby, it is possible to produce a glass having high homogeneity.

(比較例1~4) (Comparative examples 1 to 4)

以可得到具有下述的表所示的比較例1~4的各組成的玻璃的方式,稱量作為原料的氧化物、硼酸等化合物,充分混合,製作批量原料,除此之外,用與實施例1同樣的方法得到玻璃。 In the form of a glass having a composition of each of Comparative Examples 1 to 4 shown in the following table, a compound such as an oxide or a boric acid as a raw material is weighed and sufficiently mixed to prepare a bulk raw material, and The glass was obtained in the same manner as in Example 1.

比較例1的組成是將專利文獻20的玻璃No.11的組成換算成以陽離子%表示的玻璃組成的組成。 The composition of Comparative Example 1 is a composition in which the composition of the glass No. 11 of Patent Document 20 is converted into a glass composition represented by a cationic %.

比較例2是將專利文獻20的玻璃No.25的組成換算成以陽離子%表示的玻璃組成的組成。 Comparative Example 2 is a composition in which the composition of the glass No. 25 of Patent Document 20 is converted into a glass composition represented by a cationic %.

比較例3是將專利文獻20的玻璃No.45的組成換算成以陽離子%表示的玻璃組成的組成。 In Comparative Example 3, the composition of the glass No. 45 of Patent Document 20 was converted into a composition of a glass composition represented by a cationic %.

比較例4是將專利文獻20的玻璃No.49的組成換算成以陽離子%表示的玻璃組成的組成。 In the comparative example 4, the composition of the glass No. 49 of the patent document 20 is converted into the composition of the glass composition represented by the cationic %.

將得到的玻璃的玻璃特性,用以下所示的方法進 行了測定。測定結果如下表所示。 The glass characteristics of the obtained glass are obtained by the method shown below. The measurement was taken. The measurement results are shown in the table below.

(1)折射率(nd)、折射率(nF)、折射率(nc)、折射率(ng)、阿貝數(νd) (1) Refractive index (nd), refractive index (nF), refractive index (nc), refractive index (ng), Abbe number (νd)

對於以-30℃/小時的降溫速度進行降溫而得到的玻璃,根據日本光學玻璃工業會標準的折射率測定法,對折射率(nd)、折射率(nF)、折射率(nc)、折射率(ng)進行測定。使用折射率(nd)、折射率(nF)、折射率(nc)的各測定值算出阿貝數(νd)。 The glass obtained by cooling at a temperature drop rate of -30 ° C / hour is subjected to refractive index (nd), refractive index (nF), refractive index (nc), and refractive index according to the refractive index measurement method of the Japan Optical Glass Industry Association standard. The rate (ng) was measured. The Abbe number (νd) was calculated using each measured value of the refractive index (nd), the refractive index (nF), and the refractive index (nc).

(2)玻璃化轉變溫度(Tg) (2) Glass transition temperature (Tg)

使用差示掃描熱量分析裝置(DSC),以10℃/分鐘的升溫速度進行測定。 The measurement was carried out at a temperature elevation rate of 10 ° C /min using a differential scanning calorimeter (DSC).

(3)比重 (3) Specific gravity

根據阿基米德法進行測定。 The measurement was carried out according to the Archimedes method.

(4)相對部分色散(Pg,F) (4) Relative partial dispersion (Pg, F)

根據由上述(1)測定的nF、nc、ng的值算出。 It is calculated from the values of nF, nc, and ng measured by the above (1).

(5)液相線溫度 (5) liquidus temperature

將玻璃放入已加熱到規定溫度的爐內,保持2小時,冷卻後,用100倍的光學顯微鏡觀察玻璃內部,根據有無結晶來決定液相線溫度。 The glass was placed in a furnace heated to a predetermined temperature and kept for 2 hours. After cooling, the inside of the glass was observed with a 100-fold optical microscope, and the liquidus temperature was determined depending on the presence or absence of crystals.

圖1是將實施例1的各玻璃和比較例1~4的各玻璃的比重取在橫軸、將各陽離子成分的含量乘以表1記載的係數的值的合計D取在縱軸的圖表。 1 is a graph in which the specific gravity of each glass of Example 1 and each of Comparative Examples 1 to 4 is taken as a horizontal axis, and the content of each cationic component is multiplied by the coefficient described in Table 1 on the vertical axis. .

如圖1所示,顯示出各陽離子成分的含量乘以表1記載的係數的值的合計D與比重有良好的相關關係。從該結果能夠確認,藉由以滿足基於合計D的(B)式的方式進行組成調整從而可得到低比重的玻璃。 As shown in Fig. 1, the total D of the content of each cationic component multiplied by the coefficient described in Table 1 has a good correlation with the specific gravity. From this result, it was confirmed that the glass having a low specific gravity can be obtained by performing composition adjustment so as to satisfy the formula (B) based on the total D.

圖2是將實施例1的各玻璃和比較例1~4的各玻璃的阿貝數(νd)取在橫軸、將由上述(A)式算出的值A取在縱軸的圖表。 2 is a graph in which the Abbe number (νd) of each of the glasses of Example 1 and each of Comparative Examples 1 to 4 is taken on the horizontal axis, and the value A calculated by the above formula (A) is taken on the vertical axis.

如圖2所示,由上述(A)式算出的值A顯示出與阿貝數良好的相關關係。從該結果能夠確認,進行基於值A的組成調整從對阿貝數進行調整的方面考慮較佳。 As shown in FIG. 2, the value A calculated by the above formula (A) shows a good correlation with the Abbe number. From this result, it was confirmed that the composition adjustment based on the value A is preferable from the viewpoint of adjusting the Abbe number.

(實施例2) (Example 2)

使用實施例1中得到的各種玻璃,製作壓製成型用玻璃塊(玻璃料滴)。將該玻璃塊在大氣中加熱、軟化、用壓製成型模進行壓製成型,製作透鏡坯件(光學元件坯件)。將製作的透鏡坯件從壓製成型模中取出,進行退火,進行含拋光的機械加工,製作由實施例1製作的各種玻璃形成的球面透鏡。 Using the various glasses obtained in Example 1, a glass block for press molding (glass gob) was produced. The glass block was heated and softened in the atmosphere, and press-molded by a press molding die to prepare a lens blank (optical element blank). The produced lens blank was taken out from the press molding die, annealed, and subjected to polishing including polishing to prepare a spherical lens formed of various glasses produced in Example 1.

(實施例3) (Example 3)

將所需量的在實施例1中製作的熔融玻璃用壓製成型模進行壓製成型,製作透鏡坯件(光學元件坯件)。將製作的透鏡坯件從壓製成型模中取出,進行退火,進行含拋光的機械加工,製作由實施例1製作的各種玻璃形成的球面透鏡。 The required amount of the molten glass produced in Example 1 was compression-molded by a press molding die to prepare a lens blank (optical element blank). The produced lens blank was taken out from the press molding die, annealed, and subjected to polishing including polishing to prepare a spherical lens formed of various glasses produced in Example 1.

(實施例4) (Example 4)

對將在實施例1中製作的熔融玻璃進行固化而製成的玻璃塊(光學元件坯件)進行退火,進行含拋光的機械加工,製作由實施例1製作的各種玻璃形成的球面透鏡。 A glass block (optical element blank) obtained by curing the molten glass produced in Example 1 was annealed, and subjected to polishing including polishing to prepare a spherical lens formed of various glasses produced in Example 1.

(實施例5) (Example 5)

將在實施例2~4中製作的球面透鏡與由其它種類的玻璃形成的球面透鏡貼合,製作膠合透鏡。在實施例2~4中製作的球面透鏡的膠合面是凸面,由其它種類的玻璃形成的球面透鏡的膠合面是凹面。上述2個膠合面以相互曲率半徑的絕對值成為相等的方式而製作。在膠合面塗布光學元件膠合用的紫外線固化型黏接劑,使2個透鏡在膠合面之間黏合。之後,藉由在實施例2~4中製作的球面透鏡,對在膠合面塗布的黏接劑照射紫外線,使黏接劑固化。 The spherical lenses produced in Examples 2 to 4 were bonded to a spherical lens formed of other kinds of glass to produce a cemented lens. The cemented surface of the spherical lens produced in Examples 2 to 4 was a convex surface, and the cemented surface of a spherical lens formed of other kinds of glass was a concave surface. The two cemented surfaces are produced such that the absolute values of the mutual curvature radii are equal. The ultraviolet curable adhesive for optical component bonding is applied to the bonding surface to bond the two lenses between the bonding surfaces. Thereafter, the adhesive coated on the bonding surface was irradiated with ultraviolet rays by the spherical lenses produced in Examples 2 to 4 to cure the adhesive.

按照上述這樣製作膠合透鏡。膠合透鏡的膠合強度足夠高,是光學性能也足夠高的膠合透鏡。 A cemented lens was produced as described above. The cemented lens has a sufficiently high bonding strength and is a cemented lens having high optical properties.

最後,對上述的各方式進行總結。 Finally, summarize the above methods.

根據一個方式,能夠提供一種玻璃,其為氧化物玻璃,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+、和Bi3+的合計含量為90%以上,阿貝數(νd)的範圍為39.5~41.5,相對於阿貝數(νd),折射率(nd)滿足上述(1)式,且對於上述表1中記載的陽離子成分,相對於折射率(nd),各陽離子成分的含量乘以表1記載的係數的值的合計D滿足上述(B)式。 According to one embodiment, it is possible to provide a glass which is an oxide glass represented by a cation %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4 + , Ta 5+ , W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ , and Bi 3 The total content of + is 90% or more, and the Abbe number (νd) is in the range of 39.5 to 41.5. The refractive index (nd) satisfies the above formula (1) with respect to the Abbe number (νd), and is described in the above Table 1. The total amount of the cation component, the content of each cation component multiplied by the coefficient described in Table 1, with respect to the refractive index (nd) satisfies the above formula (B).

上述玻璃是阿貝數(νd)的範圍為39.5~41.5、且滿足(1)式的玻璃,是在光學系統中有用的高折射率低色散玻璃。進而,上述玻璃能夠有助於光學元件的輕量化。 The glass is a glass having an Abbe number (νd) in the range of 39.5 to 41.5 and satisfying the formula (1), and is a high refractive index low dispersion glass useful in an optical system. Further, the glass can contribute to weight reduction of the optical element.

在一個方式中,上述玻璃較佳B3+和Si4+的合計含量的範圍為43~65陽離子%。 In one embodiment, the glass preferably has a total content of B 3+ and Si 4+ ranging from 43 to 65 cationic %.

在一個方式中,上述玻璃較佳La3+、Y3+、Gd3+和Yb3+的合計含量的範圍為25~45%。 In one embodiment, the glass preferably has a total content of La 3+ , Y 3+ , Gd 3+ , and Yb 3+ ranging from 25 to 45%.

在一個方式中,上述玻璃較佳Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍為3~12%。 In one embodiment , the glass preferably has a total content of Nb 5+ , Ti 4+ , Ta 5+ , and W 6+ ranging from 3 to 12%.

在一個方式中,上述玻璃較佳在以陽離子%表示的玻璃組成中由上述(C)式算出的值C的範圍為-1.000~6.720。 In one embodiment, the glass preferably has a value C calculated by the above formula (C) in the glass composition represented by the cation % in the range of -1.000 to 6.720.

根據以上說明的玻璃能夠製作壓製成型用玻璃元件、光學元件坯件和光學元件。亦即,根據另一個方式,還可提供一種由上述玻璃形成的壓製成型用玻璃材料、光學元件坯件和光學元件。 According to the glass described above, a glass member for press molding, an optical element blank, and an optical element can be produced. That is, according to another aspect, a glass material for press molding, an optical element blank, and an optical element formed of the above glass can also be provided.

此外,根據另一個方式,還可提供一種具有將上述玻璃成型為壓製成型用玻璃材料的步驟的壓製成型用玻璃材料的製造方法。 Further, according to another aspect, a method of producing a glass material for press molding having the step of molding the glass into a glass material for press molding can be provided.

進而,根據另一個方式,還可提供一種具有藉由將上述壓製成型用玻璃材料使用壓製成型模進行壓製成型而製作光學元件坯件的步驟的光學元件坯件的製造方法。 Further, according to another aspect, there is provided a method of producing an optical element blank having a step of producing an optical element blank by press-molding the above-mentioned glass material for press molding using a press molding die.

進而,根據另一個方式,還可提供一種具有將上述玻璃成型為光學元件坯件的步驟的光學元件坯件的製造方法。 Further, according to another aspect, a method of manufacturing an optical element blank having the step of molding the above-described glass into an optical element blank can also be provided.

進而,根據另一個方式,還可提供一種具有藉由將上述光學元件坯件進行研磨及/或拋光從而製作光學元件的步驟的光學元件的製造方法。 Further, according to another aspect, there is provided a method of manufacturing an optical element having the step of producing an optical element by polishing and/or polishing the optical element blank.

應該認為,這次公開的實施形態在全部的方面是例示,並不是限制。本發明的範圍不是藉由上述的說明而是藉由申請專利範圍的範圍來表示,意圖包含與申請專利範圍的範圍同等的意思和範圍內的全部的變更。 It is to be understood that the embodiments disclosed herein are illustrative in all aspects and are not limiting. The scope of the present invention is defined by the scope of the claims and the scope of the claims.

例如,藉由對於上述的例示的玻璃組成進行說明書中記載的組成調整,從而能夠得到本發明的一個方式的玻璃。 For example, the glass of one embodiment of the present invention can be obtained by performing the composition adjustment described in the specification for the glass composition exemplified above.

此外,當然能夠使說明書中例示或者作為較佳的範圍記載的事項的2個以上進行任意地組合。 In addition, it is needless to say that two or more of the items described in the specification or as the items described in the preferred range can be arbitrarily combined.

(產業利用性) (industrial use)

本發明在各種光學元件的製造領域中是有用的。 The invention is useful in the field of manufacture of various optical components.

Claims (8)

一種玻璃,是氧化物玻璃,其中,以陽離子%表示,B3+、Si4+、La3+、Y3+、Gd3+、Yb3+、Nb5+、Ti4+、Ta5+、W6+、Zr4+、Zn2+、Mg2+、Ca2+、Sr2+、Ba2+、Li+、Na+、K+、Al3+和Bi3+的合計含量為90%以上;阿貝數(νd)的範圍為39.5~41.5;折射率(nd)相對於阿貝數(νd)滿足下述(1)式: 對於表1中記載的陽離子成分,各陽離子成分的含量乘以表1中記載的係數的值的合計D相對於折射率(nd)滿足下述(B)式: A glass, which is an oxide glass, wherein is represented by a cationic %, B 3+ , Si 4+ , La 3+ , Y 3+ , Gd 3+ , Yb 3+ , Nb 5+ , Ti 4+ , Ta 5+ The total content of W 6+ , Zr 4+ , Zn 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Li + , Na + , K + , Al 3+ and Bi 3+ is 90 % or more; the Abbe number (νd) ranges from 39.5 to 41.5; the refractive index (nd) satisfies the following formula (1) with respect to the Abbe number (νd): With respect to the cationic component described in Table 1, the total D of the content of each cationic component multiplied by the coefficient described in Table 1 satisfies the following formula (B) with respect to the refractive index (nd): 如申請專利範圍第1項所述之玻璃,其中B3+和Si4+的合計含量的範圍為43~65陽離子%。 The glass according to claim 1, wherein the total content of B 3+ and Si 4+ ranges from 43 to 65 cationic %. 如申請專利範圍第1或2項所述之玻璃,其中La3+、Y3+、Gd3+和Yb3+的合計含量的範圍為25~45%。 The glass according to claim 1 or 2, wherein the total content of La 3+ , Y 3+ , Gd 3+ and Yb 3+ ranges from 25 to 45%. 如申請專利範圍第1或2項所述之玻璃,其中Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍為3~12%。 The glass according to claim 1 or 2, wherein the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ ranges from 3 to 12%. 如申請專利範圍第3項所述之玻璃,其中Nb5+、Ti4+、Ta5+和W6+的合計含量的範圍為3~12%。 The glass according to claim 3, wherein the total content of Nb 5+ , Ti 4+ , Ta 5+ and W 6+ ranges from 3 to 12%. 一種壓製成型用玻璃材料,由申請專利範圍第1至5項中任一項所述之玻璃形成。 A glass material for press molding, which is formed from the glass according to any one of claims 1 to 5. 一種光學元件坯件,由申請專利範圍第1至5項中任一項所述之玻璃形成。 An optical element blank formed of the glass of any one of claims 1 to 5. 一種光學元件,由申請專利範圍第1至5項中任一項所述之玻璃形成。 An optical element formed from the glass of any one of claims 1 to 5.
TW105135659A 2015-11-06 2016-11-03 Glass, glass materials for press molding, optical element blanks and optical elements TWI756192B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015218953 2015-11-06
JP2015-218953 2015-11-06
JP2016-073348 2016-03-31
JP2016073348A JP6121020B1 (en) 2015-11-06 2016-03-31 Glass, glass material for press molding, optical element blank, and optical element

Publications (2)

Publication Number Publication Date
TW201733942A true TW201733942A (en) 2017-10-01
TWI756192B TWI756192B (en) 2022-03-01

Family

ID=58666598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105135659A TWI756192B (en) 2015-11-06 2016-11-03 Glass, glass materials for press molding, optical element blanks and optical elements

Country Status (2)

Country Link
JP (2) JP6121020B1 (en)
TW (1) TWI756192B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384387A (en) * 2018-09-27 2019-02-26 成都光明光电股份有限公司 Optical glass and the gas preform being made from it, optical element and optical instrument
JP7009345B2 (en) * 2018-11-01 2022-01-25 ユニ・チャーム株式会社 Absorbent article
CN119241062A (en) * 2022-08-26 2025-01-03 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750984B2 (en) * 2000-05-31 2006-03-01 Hoya株式会社 Optical glass and optical product manufacturing method
JP4017832B2 (en) * 2001-03-27 2007-12-05 Hoya株式会社 Optical glass and optical components
JP3943348B2 (en) * 2001-06-06 2007-07-11 株式会社オハラ Optical glass
JP5427460B2 (en) * 2009-04-14 2014-02-26 富士フイルム株式会社 Optical glass
JP5874558B2 (en) * 2012-07-23 2016-03-02 旭硝子株式会社 Preforms for press molding and optical elements made from preforms
US9040439B2 (en) * 2013-03-08 2015-05-26 Canon Kabushiki Kaisha Optical glass, optical element, and method for manufacturing optical glass
CN103241941A (en) * 2013-05-22 2013-08-14 成都赛林斯科技实业有限公司 Optical glass
JP5979723B2 (en) * 2013-07-31 2016-08-31 株式会社オハラ Optical glass and optical element
JP6292877B2 (en) * 2013-12-27 2018-03-14 株式会社オハラ Optical glass

Also Published As

Publication number Publication date
JP6808555B2 (en) 2021-01-06
TWI756192B (en) 2022-03-01
JP2017088477A (en) 2017-05-25
JP6121020B1 (en) 2017-04-26
JP2017160118A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6603449B2 (en) Glass, glass material for press molding, optical element blank, and optical element
TWI765868B (en) Glass, glass materials for press molding, optical element blanks and optical elements
JP6738243B2 (en) Glass, glass material for press molding, optical element blank and optical element
TWI610900B (en) Glass, glass material for press molding, optical component blanks and optical components
TW201619084A (en) Glass, glass material for press forming, blank for optical element, and optical element
JP2018104283A (en) Glass, glass material for press molding, optical element blank and optical element
TWI756192B (en) Glass, glass materials for press molding, optical element blanks and optical elements
JP2018172282A (en) Glass, glass blank for press-forming, optical element blank, and optical element
JP6693726B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP7194551B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP2018039729A (en) Glass, glass blank for press-forming, optical element blank, and optical element
JP6678008B2 (en) Glass, glass material for press molding, optical element blank, and optical element
JP7194861B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP7234454B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP7663736B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP7170488B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements
JP7394523B2 (en) Optical glass, glass materials for press molding, optical element blanks and optical elements