[go: up one dir, main page]

TW201732886A - Insulating layer overlying substrate and method of manufacturing same - Google Patents

Insulating layer overlying substrate and method of manufacturing same Download PDF

Info

Publication number
TW201732886A
TW201732886A TW105118826A TW105118826A TW201732886A TW 201732886 A TW201732886 A TW 201732886A TW 105118826 A TW105118826 A TW 105118826A TW 105118826 A TW105118826 A TW 105118826A TW 201732886 A TW201732886 A TW 201732886A
Authority
TW
Taiwan
Prior art keywords
semiconductor substrate
substrate
insulating layer
semiconductor
germanium
Prior art date
Application number
TW105118826A
Other languages
Chinese (zh)
Other versions
TWI611462B (en
Inventor
肖德元
汝京 張
Original Assignee
上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半導體科技有限公司 filed Critical 上海新昇半導體科技有限公司
Publication of TW201732886A publication Critical patent/TW201732886A/en
Application granted granted Critical
Publication of TWI611462B publication Critical patent/TWI611462B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/50Physical imperfections
    • H10D62/57Physical imperfections the imperfections being on the surface of the semiconductor body, e.g. the body having a roughened surface
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/201Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

一種絕緣層上覆矽基板之製造方法,包括:提供一第一半導體基底;於該第一半導體基底之頂面形成一第一絕緣層,以便製成一第一半導體基板;對該第一半導體基板照射氫離子束,以便在距離該第一絕緣層之頂面的預定深度之處形成一氫摻雜層;提供一第二半導體基底;於該第二半導體基底之頂面形成一第二絕緣層,以便製成一第二半導體基板;將該第一半導體基板面對面地接合於該第二導體體基板;於一重氫氣壓環境下,對該第一半導體基板以及該第二半導體基板進行退火;以及將部分的第一半導體基板分離於該第二半導體基板,以便形成一摻雜有重氫的半導體層於該第二半導體基板之上。A method for fabricating a germanium-on-insulator substrate includes: providing a first semiconductor substrate; forming a first insulating layer on a top surface of the first semiconductor substrate to form a first semiconductor substrate; and the first semiconductor The substrate is irradiated with a hydrogen ion beam to form a hydrogen doped layer at a predetermined depth from a top surface of the first insulating layer; a second semiconductor substrate is provided; and a second insulating layer is formed on a top surface of the second semiconductor substrate a layer to form a second semiconductor substrate; the first semiconductor substrate is bonded to the second conductor substrate in a face-to-face manner; and the first semiconductor substrate and the second semiconductor substrate are annealed in a heavy hydrogen pressure environment; And separating a portion of the first semiconductor substrate from the second semiconductor substrate to form a semiconductor layer doped with heavy hydrogen on the second semiconductor substrate.

Description

絕緣層上覆矽基板及其製造方法 Insulating layer overlying substrate and method of manufacturing same

本發明有關於一種絕緣層上覆矽基板及其製造方法。 The invention relates to an insulating layer overlying substrate and a method of manufacturing the same.

近年來,已經有業界利用絕緣材料表面形成單晶半導體層的絕緣層上覆矽(SOI)基板來代替使用大塊狀矽晶圓於半導體積體電路的製造之中。因為使用SOI基板的優點在於可以減少電晶體的汲極與基板之間的寄生電容,藉此提高半導體積體電路的效能。 In recent years, an insulating layer overlying (SOI) substrate in which a single crystal semiconductor layer is formed on the surface of an insulating material has been used in the industry instead of using a bulk germanium wafer in the fabrication of a semiconductor integrated circuit. Since the use of the SOI substrate is advantageous in that the parasitic capacitance between the drain of the transistor and the substrate can be reduced, thereby improving the performance of the semiconductor integrated circuit.

關於半導體元件的製造方法,例如美國公告專利第5374564號係藉由離子植入法對矽晶圓進行氫離子植入,並在預定深度之處形成離子植入層。接下來,將植入有氫離子的矽晶圓與另一片矽晶圓接合,且於兩片矽晶圓之間插置有氧化矽膜。之後,經過熱處理,以離子植入層作為分裂面,且在植入有氫離子的矽晶圓以薄膜狀分離。藉此可在接合的矽晶圓之上形成單晶矽層。例如美國公告專利第5872387號係藉由在重氫環境下對於已經生長好閘極氧化物的基板進行退火,以便消除閘極氧化物與基板之間的懸浮鍵(dangling bond)。然而此方法必須在很高的重氫環境氣壓進行,因而導致製造成本的提高。 Regarding the manufacturing method of the semiconductor element, for example, U.S. Patent No. 5,374,564 is to perform hydrogen ion implantation on the germanium wafer by ion implantation, and to form an ion implantation layer at a predetermined depth. Next, a germanium wafer implanted with hydrogen ions is bonded to another germanium wafer, and a hafnium oxide film is interposed between the two germanium wafers. Thereafter, after heat treatment, the ion implantation layer is used as a split surface, and the germanium wafer implanted with hydrogen ions is separated as a film. Thereby, a single crystal germanium layer can be formed over the bonded germanium wafer. For example, U.S. Patent No. 5,872,387, by annealing a substrate on which a gate oxide has been grown in a heavy hydrogen environment, in order to eliminate a dangling bond between the gate oxide and the substrate. However, this method must be carried out at a very high pressure in a heavy hydrogen atmosphere, thus resulting in an increase in manufacturing costs.

有鑑於此,目前有需要一種改良的絕緣層上覆矽基板的製造方法,至少可改善上述的缺失。 In view of the above, there is a need for an improved method of fabricating a germanium-on-insulator substrate to at least improve the above-described deficiency.

本發明提供一種絕緣層上覆矽基板及其製造方法,可以減少電晶體的汲極與基板之間的寄生電容,以及降低製造成本。 The present invention provides an insulating layer overlying germanium substrate and a method of fabricating the same, which can reduce parasitic capacitance between the drain of the transistor and the substrate, and reduce manufacturing costs.

依據本發明一實施例,提供一種絕緣層上覆矽基板之製造方法,包括:提供一第一半導體基底;於該第一半導體基底之頂面形成一第一絕緣層,以便製成一第一半導體基板;對該第一半導體基板照射離子束, 以便在距離該第一絕緣層之頂面的預定深度之處形成一摻雜層;提供一第二半導體基底;於該第二半導體基底之頂面形成一第二絕緣層,以便製成一第二半導體基板;將該第一半導體基板面對面地接合於該第二導體體基板;於一重氫氣壓環境下,對該第一半導體基板以及該第二半導體基板進行退火;以及將部分的第一半導體基板分離於該第二半導體基板,以便形成一摻雜有重氫的半導體層於該第二半導體基板之上。 According to an embodiment of the present invention, a method for fabricating a germanium-on-insulator substrate includes: providing a first semiconductor substrate; forming a first insulating layer on a top surface of the first semiconductor substrate to form a first a semiconductor substrate; the first semiconductor substrate is irradiated with an ion beam, Forming a doped layer at a predetermined depth from a top surface of the first insulating layer; providing a second semiconductor substrate; forming a second insulating layer on a top surface of the second semiconductor substrate to form a first a semiconductor substrate; the first semiconductor substrate is bonded to the second conductor substrate in a face-to-face manner; the first semiconductor substrate and the second semiconductor substrate are annealed in a heavy hydrogen pressure environment; and a portion of the first semiconductor is The substrate is separated from the second semiconductor substrate to form a semiconductor layer doped with heavy hydrogen on the second semiconductor substrate.

所述的絕緣層上覆矽基板之製造方法,其中該第一半導體基底包含IV族元素、SiGe、III-V族化合物、III族-氮化合物或II-VI族化合物。 The method for manufacturing a germanium-covered overlying insulating substrate, wherein the first semiconductor substrate comprises a group IV element, a SiGe, a III-V compound, a group III-nitro compound or a II-VI compound.

所述的絕緣層上覆矽基板之製造方法,其中該預定深度介於0.01um至5um。 The method for manufacturing a germanium-covered overlying insulating substrate, wherein the predetermined depth is between 0.01 um and 5 um.

所述的絕緣層上覆矽基板之製造方法,其中該離子束為氫離子束,該氫離子束的加速電壓介於1keV至200keV,而該氫離子束之摻雜劑量介於1016(氫離子個數/cm2)至2x1017(氫離子個數/cm2)。 The method for manufacturing a germanium-covered overlying substrate, wherein the ion beam is a hydrogen ion beam, the hydrogen ion beam has an accelerating voltage of 1 keV to 200 keV, and the hydrogen ion beam has a doping amount of 10 16 (hydrogen) The number of ions / cm 2 ) to 2x10 17 (number of hydrogen ions / cm 2 ).

所述的絕緣層上覆矽基板之製造方法,其中該第二半導體基底包含IV族元素、SiGe、III-V族化合物、III族-氮化合物或II-VI族化合物。 The method for manufacturing a germanium-covered overlying insulating substrate, wherein the second semiconductor substrate comprises a group IV element, a SiGe, a III-V compound, a group III-nitro compound or a II-VI compound.

所述的絕緣層上覆矽基板之製造方法,其中該第一半導體基板以及該第二半導體於介於攝氏200度~400度進行接合。 The method for manufacturing a germanium-covered overlying insulating substrate, wherein the first semiconductor substrate and the second semiconductor are bonded at between 200 and 400 degrees Celsius.

所述的絕緣層上覆矽基板之製造方法,其中該第一半導體基板以及該第二半導體基板進行接合之步驟更包括:潤濕該第一絕緣層以及該第二絕緣層;將潤濕後的該第一絕緣層與該第二絕緣層相互接觸;以及施壓於相互接觸的該第一絕緣層以及該第二絕緣層,使得該第一絕緣層接合於該第二絕緣層之上。 The manufacturing method of the insulating layer on the ruthenium substrate, wherein the step of bonding the first semiconductor substrate and the second semiconductor substrate further comprises: wetting the first insulating layer and the second insulating layer; The first insulating layer and the second insulating layer are in contact with each other; and the first insulating layer and the second insulating layer are contacted with each other such that the first insulating layer is bonded over the second insulating layer.

所述的絕緣層上覆矽基板之製造方法,其中該重氫環境氣壓介於10托爾~1000托爾。 The method for manufacturing a germanium-covered overlying insulating substrate, wherein the heavy hydrogen atmosphere has a gas pressure of between 10 to 1000 Torr.

所述的絕緣層上覆矽基板之製造方法,其中該半導體層所摻雜的重氫濃度介於1010(重氫原子個數/cm3)~8x1018(重氫原子個數/cm3)。 The method for manufacturing a germanium-covered overlying insulating substrate, wherein the semiconductor layer is doped with a concentration of heavy hydrogen of 10 10 (number of heavy hydrogen atoms/cm 3 ) to 8× 10 18 (number of heavy hydrogen atoms/cm 3 ) ).

所述的絕緣層上覆矽基板之製造方法,其中該退火步驟更包括:先加熱該第一半導體基板以及該第二半導體基板至攝氏600度~1200度;接著冷卻該第一半導體基板以及該第二半導體基板至攝氏400度~600度。 The method of manufacturing the insulating layer on the germanium substrate, wherein the annealing step further comprises: heating the first semiconductor substrate and the second semiconductor substrate to 600 to 120 degrees Celsius; then cooling the first semiconductor substrate and the The second semiconductor substrate is 400 degrees to 600 degrees Celsius.

所述的絕緣層上覆矽基板之製造方法,其中加熱該第一半導體基板以及該第二半導體基板的時間介於0.5小時~8小時。 The method for manufacturing a germanium-covered overlying insulating substrate, wherein the time for heating the first semiconductor substrate and the second semiconductor substrate is between 0.5 hours and 8 hours.

所述的絕緣層上覆矽基板之製造方法,其中冷卻該第一半導體基板以及該第二半導體基板的時間介於30分鐘~120分鐘。 The method for manufacturing a germanium-covered overlying insulating substrate, wherein the time for cooling the first semiconductor substrate and the second semiconductor substrate is between 30 minutes and 120 minutes.

所述的絕緣層上覆矽基板之製造方法,其中該摻雜有重氫的半導體層的厚度介於50埃~50000埃。 The method for manufacturing a germanium-on-insulator substrate, wherein the semiconductor layer doped with heavy hydrogen has a thickness of 50 Å to 50,000 Å.

所述的絕緣層上覆矽基板之製造方法,更包括該第一半導體基板分離於該第二半導體基板之後,再度加熱該第二半導體基板至攝氏600度~1200度。 The method for manufacturing a germanium-covered overlying insulating substrate further includes: after the first semiconductor substrate is separated from the second semiconductor substrate, heating the second semiconductor substrate to 600 to 120 degrees Celsius.

所述的絕緣層上覆矽基板之製造方法,其中加熱該第二半導體基板之時間介於30分鐘~8小時。 The method for manufacturing a germanium-covered overlying insulating substrate, wherein the heating of the second semiconductor substrate takes between 30 minutes and 8 hours.

依據本發明一實施例,提供一種絕緣層上覆矽基板,包括:一半導體基底;一絕緣層,該絕緣層接合於該半導體基板之頂面;以及一摻雜有重氫的半導體層,該摻雜有重氫的半導體層接合於該絕緣層之頂面。 According to an embodiment of the present invention, an overlying insulating substrate is provided, comprising: a semiconductor substrate; an insulating layer bonded to a top surface of the semiconductor substrate; and a semiconductor layer doped with heavy hydrogen, A semiconductor layer doped with heavy hydrogen is bonded to the top surface of the insulating layer.

所述的絕緣層上覆矽基板,其中該半導體基底包含有IV族元素、SiGe、III-V族化合物、III族-氮化合物或II-VI族化合物。 The insulating layer is coated with a germanium substrate, wherein the semiconductor substrate comprises a group IV element, a SiGe, a III-V compound, a group III-nitro compound or a II-VI compound.

所述的絕緣層上覆矽基板,其中該摻雜有重氫的半導體層的厚度介於50埃~50000埃。 The insulating layer is covered with a germanium substrate, wherein the semiconductor layer doped with heavy hydrogen has a thickness of 50 Å to 50,000 Å.

100‧‧‧第一半導體基底 100‧‧‧First semiconductor substrate

102‧‧‧頂面 102‧‧‧ top surface

104‧‧‧第一絕緣層 104‧‧‧First insulation

106‧‧‧第一半導體基板 106‧‧‧First semiconductor substrate

108‧‧‧氫離子束 108‧‧‧Hydrogen ion beam

110‧‧‧頂面 110‧‧‧ top surface

112‧‧‧氫摻雜層 112‧‧‧ hydrogen doped layer

200‧‧‧第二半導體基底 200‧‧‧second semiconductor substrate

202‧‧‧頂面 202‧‧‧ top surface

204‧‧‧第二絕緣層 204‧‧‧Second insulation

206‧‧‧第二半導體基板 206‧‧‧Second semiconductor substrate

300‧‧‧重氫摻雜氣泡區塊 300‧‧‧Head hydrogen doped bubble block

400‧‧‧半導體層 400‧‧‧Semiconductor layer

第1圖為繪示本發明提供的絕緣層上覆矽基板的製造方法的流程圖。 FIG. 1 is a flow chart showing a method of manufacturing a germanium-covered insulating substrate provided by the present invention.

第2A-2H為繪示製造絕緣層上覆矽基板的剖視圖。 2A-2H is a cross-sectional view showing the overlying substrate on which the insulating layer is formed.

下面結合說明書附圖和優選實施例對本發明作進一步的描述,但本發明的實施方式不限於此。 The invention is further described below in conjunction with the drawings and the preferred embodiments, but the embodiments of the invention are not limited thereto.

參閱第1圖,為提供一實施例的絕緣層上覆矽基板的製造方法,包括下列步驟: Referring to FIG. 1 , in order to provide a method for fabricating an overlying insulating substrate on an insulating layer, the following steps are included:

S101:提供一第一半導體基底 S101: providing a first semiconductor substrate

S102:形成一第一絕緣層於第一半導體基底之頂面,以便製成一第一半導體基板; S102: forming a first insulating layer on a top surface of the first semiconductor substrate to form a first semiconductor substrate;

S103:以氫氣為來源氣體,對第一半導體基板照射氫離子束,以便在距離第一絕緣層之頂面的預定深度之處形成一氫摻雜層; S103: irradiating a first semiconductor substrate with a hydrogen ion beam by using hydrogen as a source gas to form a hydrogen doped layer at a predetermined depth from a top surface of the first insulating layer;

S104:提供一第二半導體基底; S104: providing a second semiconductor substrate;

S105:形成一第二絕緣層於第二半導體基底之頂面,以便製成一第二半導體基板; S105: forming a second insulating layer on a top surface of the second semiconductor substrate to form a second semiconductor substrate;

S106:將第一半導體基板面對面地接合於該第二半導體基板; S106: bonding the first semiconductor substrate to the second semiconductor substrate face to face;

S107:在一重氫氣壓環境(deuterium atmosphere)下,對相互接合的第一半導體基板與第二半導體基板進行退火; S107: annealing the first semiconductor substrate and the second semiconductor substrate that are bonded to each other under a deuterium atmosphere;

S108:將部分的第一半導體基板分離於第二半導體基板;以及 S108: separating a portion of the first semiconductor substrate from the second semiconductor substrate;

S109:形成一摻雜有重氫的半導體層於第二半導體基板之上。 S109: forming a semiconductor layer doped with heavy hydrogen on the second semiconductor substrate.

S110:回收利用分離後的第一半導體基板。 S110: recycling the separated first semiconductor substrate.

為了更具體地闡述第1圖的絕緣層上覆矽基板的製造方法,請參照第2A-2G圖,為提供本發明一實施例所提供的製造絕緣層上覆矽基板的剖視圖。 In order to more specifically explain the method of manufacturing the overlying insulating substrate on the insulating layer of FIG. 1, reference is made to FIGS. 2A-2G to provide a cross-sectional view of a germanium-clad substrate on which an insulating layer is provided according to an embodiment of the present invention.

首先,參照第2A圖,製備一第一半導體基底100,其中第一半導體基底100的材料可包含IV族元素、SiGe、III-V族元素、III族-氮化合物或II-VI族化合物。在本實施例中,第一半導體基底100使用單晶矽。在其他實施例中,當第一半導體基底100的材料為SiGe時,Ge的重量百分比介於5%~90%。 First, referring to FIG. 2A, a first semiconductor substrate 100 is prepared, wherein the material of the first semiconductor substrate 100 may include a group IV element, a SiGe, a group III-V element, a group III-nitro compound or a group II-VI compound. In the present embodiment, the first semiconductor substrate 100 uses a single crystal germanium. In other embodiments, when the material of the first semiconductor substrate 100 is SiGe, the weight percentage of Ge is between 5% and 90%.

接下來,參照第2B圖,於該第一半導體基底100之頂面102形成一第一絕緣層104,以便製成一第一半導體基板106,其中第一絕緣層104的材料可包含SiO2、SiN或AlN。在本實施例中,第一絕緣層104使用SiO2,且其厚度大約介於0.1nm~500nm。 Next, referring to FIG. 2B, a first insulating layer 104 is formed on the top surface 102 of the first semiconductor substrate 100 to form a first semiconductor substrate 106, wherein the material of the first insulating layer 104 may include SiO 2 , SiN or AlN. In the present embodiment, the first insulating layer 104 uses SiO 2 and has a thickness of approximately 0.1 nm to 500 nm.

接著,參照第2C圖,可以重氫或氫氣作為來源氣體,透過 電場作用而產生來源氣體的電漿,並從電漿中取出包含在電漿中的離子來予以生成來源氣體的離子束。在本實施例中,採用氫氣作為來源氣體,對第一半導體基板106照射氫離子束108,以便於距離第一絕緣層104之頂面110的預定深度H之處形成一氫摻雜層112,該預定深度H可藉由氫離子束108的加速能量以及入射角來控制,至於加速能量可藉由加速電壓以及摻雜劑量來控制。在本實施例中,預定深度H介於0.01um~5um,加速電壓介於1keV~200keV,而氫離子束的摻雜劑量介於1016(氫離子個數/cm2)~2x1017(氫離子個數/cm2)。 Next, referring to FIG. 2C, a hydrogen gas or a hydrogen gas may be used as a source gas, and a plasma of a source gas may be generated by an electric field, and ions contained in the plasma may be taken out from the plasma to generate an ion beam of the source gas. In the present embodiment, the first semiconductor substrate 106 is irradiated with the hydrogen ion beam 108 by using hydrogen as a source gas to form a hydrogen doping layer 112 at a predetermined depth H from the top surface 110 of the first insulating layer 104. The predetermined depth H can be controlled by the acceleration energy of the hydrogen ion beam 108 and the angle of incidence, and the acceleration energy can be controlled by the acceleration voltage and the doping amount. In this embodiment, the predetermined depth H is between 0.01 um and 5 um, the acceleration voltage is between 1 keV and 200 keV, and the doping amount of the hydrogen ion beam is between 10 16 (number of hydrogen ions/cm 2 ) to 2 x 10 17 (hydrogen). Number of ions / cm 2 ).

下面,參照第2D圖,製備一第二半導體基底200,其中第二半導體基底200的材料可包含IV族元素、SiGe、III-V族化合物、III族-氮化合物或II-VI族化合物。在本實施例中,第二半導體基底200的材料為單晶矽。 Next, referring to FIG. 2D, a second semiconductor substrate 200 is prepared, wherein the material of the second semiconductor substrate 200 may include a group IV element, a SiGe, a group III-V compound, a group III-nitro compound or a group II-VI compound. In the present embodiment, the material of the second semiconductor substrate 200 is a single crystal germanium.

接下來,參照第2E圖,於該第二半導體基底200之頂面202形成一第二絕緣層204,以便製成一第二半導體基板206,其中該第二絕緣層204可包含SiO2、SiN或AlN。在本實施例中,第二絕緣層204使用SiO2,且其厚度大約介於0.05nm至10nm。 Next, referring to FIG. 2E, a second insulating layer 204 is formed on the top surface 202 of the second semiconductor substrate 200 to form a second semiconductor substrate 206, wherein the second insulating layer 204 may include SiO 2 , SiN. Or AlN. In the present embodiment, the second insulating layer 204 uses SiO 2 and has a thickness of approximately 0.05 nm to 10 nm.

接著,參照第2F圖,將第一半導體基板106面對面地接合(bonding)於第二半導體基板206。在本實施例中,採用親水性接合(hydrophilic bonding)之方式,接合時的溫度介於攝氏200度~400度,其中接合的詳細步驟更包括:首先濕潤第一絕緣層104與第二絕緣層204;接著將濕潤後的第一絕緣層104與第二絕緣層204相互接觸;以及最後施壓於第一絕緣層104與第二絕緣層204,使得第一絕緣層104與第二絕緣層204緊密地相互接合。 Next, referring to FIG. 2F, the first semiconductor substrate 106 is bonded to the second semiconductor substrate 206 face to face. In this embodiment, the hydrophilic bonding method is used, and the temperature at the time of bonding is between 200 and 400 degrees Celsius, wherein the detailed step of bonding further comprises: first wetting the first insulating layer 104 and the second insulating layer. 204; then, the wetted first insulating layer 104 and the second insulating layer 204 are in contact with each other; and finally applied to the first insulating layer 104 and the second insulating layer 204 such that the first insulating layer 104 and the second insulating layer 204 Tightly joined to each other.

下面,參照第2G圖,在一重氫氣壓環境(deuterium atmosphere)下,對相互接合的第一半導體基板106以及該第二半導體基板206進行退火(annealing)。在本實施例中,重氫氣壓環境介於10托爾~1000托爾,而退火的詳細步驟包括:首先加熱該第一半導體基板106與第二半導體基板206至攝氏600度~1200度,而加熱時間大約介於0.5小時~8小時;接著,冷卻第一半導體基板106與第二半導體基板206至攝氏400度~600度,而冷卻時間大約30分鐘~120分鐘。經過退火後,原本相連的氫摻雜層112會分裂 為複數個相互間隔的重氫摻雜氣泡區塊300(Bubble formation)。 Next, referring to FIG. 2G, the first semiconductor substrate 106 and the second semiconductor substrate 206 bonded to each other are annealed in a deuterium atmosphere. In this embodiment, the heavy hydrogen pressure environment is between 10 Torr and 1000 Torr, and the detailed step of annealing includes: first heating the first semiconductor substrate 106 and the second semiconductor substrate 206 to 600 to 1200 degrees Celsius, and The heating time is about 0.5 to 8 hours; then, the first semiconductor substrate 106 and the second semiconductor substrate 206 are cooled to 400 to 600 degrees Celsius, and the cooling time is about 30 minutes to 120 minutes. After annealing, the originally connected hydrogen doped layer 112 will split. A plurality of mutually spaced heavy hydrogen doped bubble blocks 300 (Bubble formation).

接著,參照第2H圖,將部分的第一半導體基板106分離於該第二半導體基板206,以便形成一包含有該些重氫摻雜氣泡區塊300的半導體層400於相互接合的第一絕緣層104與第二絕緣層204之上,而該半導體層所摻雜的重氫濃度介於1010(重氫原子個數/cm3)~8x1018(重氫原子個數/cm3)。 Next, referring to FIG. 2H, a portion of the first semiconductor substrate 106 is separated from the second semiconductor substrate 206 to form a first insulating layer of the semiconductor layer 400 including the heavy hydrogen doped bubble blocks 300. The layer 104 is over the second insulating layer 204, and the semiconductor layer is doped with a concentration of heavy hydrogen of 10 10 (number of heavy hydrogen atoms/cm 3 ) to 8× 10 18 (number of heavy hydrogen atoms/cm 3 ).

值得一提的,分離後的第一半導體基板106,更可進一步進行化學機械研磨(CMP)與清洗(clean),使得分離後的第一半導體基板106得以回收利用,達到節省成本之效果。至於接合有半導體層400的第二半導體基板206可進行再度加熱至攝氏600度~1200度,而再度加熱時間介於30分鐘~8小時。 It is worth mentioning that the separated first semiconductor substrate 106 can be further subjected to chemical mechanical polishing (CMP) and cleaning, so that the separated first semiconductor substrate 106 can be recycled, thereby achieving cost-saving effect. The second semiconductor substrate 206 to which the semiconductor layer 400 is bonded may be reheated to 600 to 1200 degrees Celsius, and the reheating time may be between 30 minutes and 8 hours.

由於懸浮鍵(dangling bond)含有極高的活性,容易形成陷阱中心(trap center),造成電子電洞對的再度結合,因而降低半導體元件對於熱載子效應載子的恢復力。藉由本發明所提供的絕緣層上覆矽基板來製造半導體元件,除了可以減少電晶體的汲極與基板之間的寄生電容之外。將來於絕緣層上覆矽基板生長閘極氧化物時,摻雜於基板內的重氫原子(或重氫離子)會向外擴散至閘極氧化物與該基板之間的介面與半導體原子共價鍵結(covalently bound),以便消除懸浮鍵而有效率地提升半導體元件對於熱載子效應(hot carrier effect)載子的恢復力(resilience)。再者,由於不需要很高的重氫氣壓,製造成本大大降低。 Since the dangling bond contains extremely high activity, it is easy to form a trap center, which causes the electron hole pair to be recombined, thereby reducing the resilience of the semiconductor element to the hot carrier effect carrier. The semiconductor element is fabricated by covering the germanium substrate with the insulating layer provided by the present invention, except that the parasitic capacitance between the drain of the transistor and the substrate can be reduced. In the future, when the gate oxide is grown on the insulating layer, the heavy hydrogen atoms (or heavy hydrogen ions) doped into the substrate will diffuse outward to the interface between the gate oxide and the substrate and the semiconductor atoms. Covalently bound to eliminate the levitation bond and efficiently enhance the resilience of the semiconductor component to the hot carrier effect carrier. Moreover, since a high heavy hydrogen pressure is not required, the manufacturing cost is greatly reduced.

以上所揭露的僅為本發明的優選實施例而已,當然不能以此來限定本發明之權利範圍,因此依本發明申請專利範圍所作的等同變化,仍屬本發明所涵蓋的範圍。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, and the equivalent changes made by the scope of the present invention remain within the scope of the present invention.

流程圖無符號標示 Flowchart without symbol

Claims (18)

一種絕緣層上覆矽基板之製造方法,包括:提供一第一半導體基底;於該第一半導體基底之頂面形成一第一絕緣層,以便製成一第一半導體基板;對該第一半導體基板照射離子束,以便在距離該第一絕緣層之頂面的預定深度之處形成一摻雜層;提供一第二半導體基底;於該第二半導體基底之頂面形成一第二絕緣層,以便製成一第二半導體基板;將該第一半導體基板面對面地接合於該第二導體體基板;在一重氫氣壓環境下,對該第一半導體基板以及該第二半導體基板進行退火;以及將部分的第一半導體基板與該第二半導體基板分離,以便形成一摻雜有重氫的半導體層於該第二半導體基板之上。 A method for fabricating a germanium-on-insulator substrate includes: providing a first semiconductor substrate; forming a first insulating layer on a top surface of the first semiconductor substrate to form a first semiconductor substrate; and the first semiconductor The substrate is irradiated with an ion beam to form a doped layer at a predetermined depth from a top surface of the first insulating layer; a second semiconductor substrate is provided; and a second insulating layer is formed on a top surface of the second semiconductor substrate, To form a second semiconductor substrate; the first semiconductor substrate is bonded to the second conductor substrate in a face-to-face manner; the first semiconductor substrate and the second semiconductor substrate are annealed in a heavy hydrogen pressure environment; A portion of the first semiconductor substrate is separated from the second semiconductor substrate to form a semiconductor layer doped with heavy hydrogen on the second semiconductor substrate. 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該第一半導體基底包含IV族元素、SiGe、III-V族化合物、III族-氮化合物或II-VI族化合物。 The method for producing a germanium-on-insulator substrate according to claim 1, wherein the first semiconductor substrate comprises a group IV element, a SiGe, a group III-V compound, a group III-nitro compound or a group II-VI compound. 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該預定深度介於0.01um至5um。 A method of manufacturing a blanket overlying substrate according to claim 1, wherein the predetermined depth is between 0.01 um and 5 um. 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該離子束為氫離子束,該氫離子束的加速電壓介於1keV至200keV,而該氫離子束之摻雜劑量介於1016(氫離子個數/cm2)至2x1017(氫離子個數/cm2)。 The method for fabricating a germanium-on-insulator substrate according to claim 1, wherein the ion beam is a hydrogen ion beam, and the acceleration voltage of the hydrogen ion beam is between 1 keV and 200 keV, and the doping amount of the hydrogen ion beam is between 10 16 (number of hydrogen ions / cm 2 ) to 2 x 10 17 (number of hydrogen ions / cm 2 ). 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該第二半導體基底包含IV族元素、SiGe、III-V族化合物、III族-氮化合物或II-VI族化合物。 The method for fabricating a germanium-on-insulator substrate according to claim 1, wherein the second semiconductor substrate comprises a group IV element, a SiGe, a group III-V compound, a group III-nitro compound or a group II-VI compound. 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該第一半導體基板以及該第二半導體基板在介於攝氏200度~400度面對面地進行接合。 The method of manufacturing a blanket overlying substrate according to claim 1, wherein the first semiconductor substrate and the second semiconductor substrate are bonded face to face at a temperature of between 200 and 400 degrees Celsius. 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該第一半導體基板以及該第二半導體基板面對面地接合之步驟更包括:潤濕該第一絕緣層以及該第二絕緣層;將潤濕後的該第一絕緣層與該第二絕緣層相互接觸;以及施壓於相互接觸的該第一絕緣層以及該第二絕緣層,使得該第一絕緣層接合於該第二絕緣層之上。 The method for fabricating a germanium-on-insulator substrate according to claim 1, wherein the step of bonding the first semiconductor substrate and the second semiconductor substrate face-to-face further comprises: wetting the first insulating layer and the second insulating layer And contacting the wetted first insulating layer and the second insulating layer with each other; and pressing the first insulating layer and the second insulating layer in contact with each other such that the first insulating layer is bonded to the second Above the insulation. 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該重氫氣壓環境介於10托爾~1000托爾。 The method for manufacturing a blanket overlying substrate according to claim 1, wherein the heavy hydrogen pressure environment is between 10 Torr and 1000 Torr. 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該半導體層所摻雜的重氫濃度介於1010(重氫原子個數/cm3)~8x1018(重氫原子個數/cm3)。 The method for fabricating a germanium-on-insulator substrate according to claim 1, wherein the semiconductor layer is doped with a concentration of heavy hydrogen of 10 10 (number of heavy hydrogen atoms/cm 3 ) to 8 ×10 18 (heavy hydrogen atoms) Number / cm 3 ). 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該退火步驟更包括:先加熱該第一半導體基板以及該第二半導體基板至攝氏600度~1200度;接著冷卻該第一半導體基板以及該第二半導體基板至攝氏400度~600度。 The method for manufacturing a blanket-on-layer substrate according to claim 1, wherein the annealing step further comprises: heating the first semiconductor substrate and the second semiconductor substrate to 600 to 120 degrees Celsius; and then cooling the first The semiconductor substrate and the second semiconductor substrate are between 400 and 600 degrees Celsius. 如請求項10所述的絕緣層上覆矽基板之製造方法,其中加熱該第一半導體基板以及該第二半導體基板的時間介於0.5小時~8小時。 The method for manufacturing a blanket overlying substrate according to claim 10, wherein the heating of the first semiconductor substrate and the second semiconductor substrate is performed for 0.5 hours to 8 hours. 如請求項10所述的絕緣層上覆矽基板之製造方法,其中冷卻該第一半導體基板以及該第二半導體基板的時間介於30分鐘~120分鐘。 The method for fabricating a germanium-on-insulator substrate according to claim 10, wherein the time for cooling the first semiconductor substrate and the second semiconductor substrate is between 30 minutes and 120 minutes. 如請求項1所述的絕緣層上覆矽基板之製造方法,其中該摻雜有重氫的半導體層的厚度介於50埃~50000埃。 The method for fabricating a germanium-on-insulator substrate according to claim 1, wherein the semiconductor layer doped with heavy hydrogen has a thickness of 50 Å to 50,000 Å. 如請求項1所述的絕緣層上覆矽基板之製造方法,更包括該第一半導體 基板分離於該第二半導體基板之後,再度加熱該第二半導體基板至攝氏600度~1200度。 The method for fabricating a germanium-on-insulator substrate according to claim 1, further comprising the first semiconductor After the substrate is separated from the second semiconductor substrate, the second semiconductor substrate is heated again to 600 to 1200 degrees Celsius. 如請求項14所述的絕緣層上覆矽基板之製造方法,其中再度加熱該第二半導體基板之時間介於30分鐘~8小時。 The method for fabricating a germanium-on-insulator substrate according to claim 14, wherein the second semiconductor substrate is heated for a period of time ranging from 30 minutes to 8 hours. 一種絕緣層上覆矽基板,包括:一半導體基底;一絕緣層,該絕緣層接合於該半導體基板之頂面;以及一摻雜有重氫的半導體層,該摻雜有重氫的半導體層接合於該絕緣層之頂面。 An insulating layer overlying a germanium substrate, comprising: a semiconductor substrate; an insulating layer bonded to a top surface of the semiconductor substrate; and a semiconductor layer doped with heavy hydrogen, the semiconductor layer doped with a heavy hydrogen Bonded to the top surface of the insulating layer. 如請求項16所述的絕緣層上覆矽基板,其中該半導體基底包含有IV族元素、SiGe、III-V族化合物、III族-氮化合物或II-VI族化合物。 The insulating layer according to claim 16, wherein the semiconductor substrate comprises a group IV element, a SiGe, a group III-V compound, a group III-nitro compound or a group II-VI compound. 如請求項16所述的絕緣層上覆矽基板,其中該摻雜有重氫的半導體層的厚度介於50埃~50000埃。 The insulating layer according to claim 16, wherein the semiconductor layer doped with heavy hydrogen has a thickness of 50 Å to 50,000 Å.
TW105118826A 2016-03-03 2016-06-15 Insulating layer overlying substrate and method of manufacturing same TWI611462B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610120843.4A CN107154379B (en) 2016-03-03 2016-03-03 Top layer silicon substrate on insulating layer and method of making the same
??201610120843.4 2016-03-03

Publications (2)

Publication Number Publication Date
TW201732886A true TW201732886A (en) 2017-09-16
TWI611462B TWI611462B (en) 2018-01-11

Family

ID=59650631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105118826A TWI611462B (en) 2016-03-03 2016-06-15 Insulating layer overlying substrate and method of manufacturing same

Country Status (6)

Country Link
US (1) US10170356B2 (en)
JP (1) JP6273322B2 (en)
KR (1) KR101869641B1 (en)
CN (1) CN107154379B (en)
DE (1) DE102016119644B4 (en)
TW (1) TWI611462B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154379B (en) 2016-03-03 2020-01-24 上海新昇半导体科技有限公司 Top layer silicon substrate on insulating layer and method of making the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681472B1 (en) * 1991-09-18 1993-10-29 Commissariat Energie Atomique PROCESS FOR PRODUCING THIN FILMS OF SEMICONDUCTOR MATERIAL.
US5872387A (en) 1996-01-16 1999-02-16 The Board Of Trustees Of The University Of Illinois Deuterium-treated semiconductor devices
US6548382B1 (en) * 1997-07-18 2003-04-15 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
JPH11330438A (en) 1998-05-08 1999-11-30 Shin Etsu Handotai Co Ltd Manufacture of soi wafer and soi wafer
US6995075B1 (en) * 2002-07-12 2006-02-07 Silicon Wafer Technologies Process for forming a fragile layer inside of a single crystalline substrate
US6992025B2 (en) * 2004-01-12 2006-01-31 Sharp Laboratories Of America, Inc. Strained silicon on insulator from film transfer and relaxation by hydrogen implantation
US20060094259A1 (en) * 2004-11-03 2006-05-04 Freescale Semiconductor, Inc. Forming gas anneal process for high dielectric constant gate dielectrics in a semiconductor fabrication process
US7148124B1 (en) * 2004-11-18 2006-12-12 Alexander Yuri Usenko Method for forming a fragile layer inside of a single crystalline substrate preferably for making silicon-on-insulator wafers
DE102004060363B4 (en) * 2004-12-15 2010-12-16 Austriamicrosystems Ag Semiconductor substrate with pn junction and method of manufacture
US20060270192A1 (en) * 2005-05-24 2006-11-30 International Business Machines Corporation Semiconductor substrate and device with deuterated buried layer
JP2007141946A (en) * 2005-11-15 2007-06-07 Sumco Corp Method of manufacturing soi substrate, and soi substrate manufactured by same
US7378335B2 (en) * 2005-11-29 2008-05-27 Varian Semiconductor Equipment Associates, Inc. Plasma implantation of deuterium for passivation of semiconductor-device interfaces
US7608521B2 (en) * 2006-05-31 2009-10-27 Corning Incorporated Producing SOI structure using high-purity ion shower
EP1993128A3 (en) * 2007-05-17 2010-03-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate
EP1993127B1 (en) * 2007-05-18 2013-04-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of SOI substrate
US7781306B2 (en) * 2007-06-20 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and method for manufacturing the same
EP2045844A1 (en) * 2007-10-03 2009-04-08 ABB Technology AG Semiconductor Module
JP5522917B2 (en) * 2007-10-10 2014-06-18 株式会社半導体エネルギー研究所 Manufacturing method of SOI substrate
JP6056516B2 (en) * 2013-02-01 2017-01-11 信越半導体株式会社 Manufacturing method of SOI wafer and SOI wafer
CN107154379B (en) 2016-03-03 2020-01-24 上海新昇半导体科技有限公司 Top layer silicon substrate on insulating layer and method of making the same

Also Published As

Publication number Publication date
CN107154379A (en) 2017-09-12
JP6273322B2 (en) 2018-01-31
CN107154379B (en) 2020-01-24
KR101869641B1 (en) 2018-06-20
DE102016119644A1 (en) 2017-09-07
DE102016119644B4 (en) 2023-02-02
US10170356B2 (en) 2019-01-01
KR20170103648A (en) 2017-09-13
TWI611462B (en) 2018-01-11
US20170256438A1 (en) 2017-09-07
JP2017157811A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
US6707106B1 (en) Semiconductor device with tensile strain silicon introduced by compressive material in a buried oxide layer
US6717213B2 (en) Creation of high mobility channels in thin-body SOI devices
JP4906727B2 (en) Method for producing defect-free high Ge content SiGe-on-insulator (SGOI) substrates using wafer bonding technology
JPH05251292A (en) Manufacture of semiconductor device
TW200303073A (en) Method for porducing CMOS device
TW201916251A (en) Methods of forming soi substrates
US10312378B2 (en) Lateral gallium nitride JFET with controlled doping profile
TWI587446B (en) SOI substrate and preparation method thereof
TWI592987B (en) Insulating layer overlying substrate and method of manufacturing same
US8466500B2 (en) Semiconductor device and method for manufacturing the same
TWI628712B (en) Insulating layer overlying substrate and method of manufacturing same
TWI611462B (en) Insulating layer overlying substrate and method of manufacturing same
RU2498450C1 (en) Method for making silicon-on-insulator structure
RU2497231C1 (en) Method for making silicon-on-insulator structure
CN118435358A (en) Method for fabricating three-dimensional circuits using shared crystallization and dopant activation steps
JP2016100566A (en) Soi wafer manufacturing method and soi wafer