TW201724594A - Spin hall effect MRAM with thin-film selector - Google Patents
Spin hall effect MRAM with thin-film selector Download PDFInfo
- Publication number
- TW201724594A TW201724594A TW105126395A TW105126395A TW201724594A TW 201724594 A TW201724594 A TW 201724594A TW 105126395 A TW105126395 A TW 105126395A TW 105126395 A TW105126395 A TW 105126395A TW 201724594 A TW201724594 A TW 201724594A
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- mram
- stt
- 1mtj
- transistor
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1659—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/18—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/10—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
本發明揭露係關於磁阻式隨機存取記憶體(MRAM)。 The present invention is directed to a magnetoresistive random access memory (MRAM).
磁阻式隨機存取記憶體(MRAM)使用磁性儲存元件而非電子電荷或電流來儲存資料。磁性隧道接面(MTJ)可被使用作為磁性儲存元件。MTJ被形成在兩個鐵磁板之間薄、絕緣、穿隧障壁中,其每一個保持分別的磁化。MTJ(固定磁性層)中的其中一板係為永久磁鐵,其設定為特定極性,藉由MTJ(自由磁性層)中的第二板產生的磁場可被改變,使得第二板之極性匹配第一板(平行)之極性、或使得第二板之極性與第一板之極性(逆平行)相反。由於藉由自由和固定磁性板所產生之磁場之相對方向,通過分離自由和固定磁性層之隧道層的磁性隧道層引起MTJ之電阻的改變。 Magnetoresistive random access memory (MRAM) uses magnetic storage elements instead of electronic charge or current to store data. A magnetic tunnel junction (MTJ) can be used as a magnetic storage element. The MTJ is formed in a thin, insulating, tunneling barrier between two ferromagnetic plates, each of which maintains a separate magnetization. One of the plates in the MTJ (fixed magnetic layer) is a permanent magnet set to a specific polarity, and the magnetic field generated by the second plate in the MTJ (free magnetic layer) can be changed so that the polarity of the second plate matches The polarity of a plate (parallel) or the polarity of the second plate is opposite to the polarity of the first plate (anti-parallel). Due to the relative orientation of the magnetic fields generated by the free and fixed magnetic plates, the change in resistance of the MTJ is caused by separating the magnetic tunnel layers of the tunnel layers that free and fix the magnetic layer.
使用在該STT-MRAM位元胞之典型的MTJ裝置包括與諸如電晶體(即,1T-1MTJ位元胞)之控制裝置串連耦 合的MTJ。串連MTJ和電晶體被連接在位元線和源極線之間。STT-MRAM裝置的讀取路徑和寫入路徑係相同需要設計妥協。該妥協通常藉由MTJ之電阻證明-通常,在讀取操作期間較高的電阻和在寫入操作期間較低的電阻(減少改變位元胞之狀態所需的電流消耗)係為較佳。然而,由於讀取和寫入操作共路徑,讀取和寫入操作之間的電阻差異係不被允許。 A typical MTJ device used in the STT-MRAM bit cell includes a series coupling with a control device such as a transistor (ie, 1T-1MTJ bit cell) Combined MTJ. The series MTJ and the transistor are connected between the bit line and the source line. The read path and write path of the STT-MRAM device are the same and require design compromise. This compromise is usually evidenced by the resistance of the MTJ - typically, a higher resistance during a read operation and a lower resistance during a write operation (reducing the current consumption required to change the state of the bit cell) is preferred. However, due to the common path of read and write operations, the difference in resistance between read and write operations is not allowed.
1T-1MTJ位元胞因而具有數個顯著缺點。第一,可能需要大寫入電流(例如,超過100微安培,μA)和較高電壓(例如,超過0.7伏特,V)用以改變MTJ中自由磁性層之對準,並且如此成功地完成到MTJ裝置的寫入操作。許多MTJ不能在常規基礎上處理該大電流,並且因而寫入電流可被限制為較低數值,其提供MTJ令人滿意之服務生命期。然而,寫入操作期間限制電流之需求可導致在MTJ基礎MRAM中之不可接受的高錯誤率和/或低速交換(例如,大於20奈秒)。此外,即使在低電流數值下,MTJ之內的隧道路徑之存在可導致MTJ中的可靠度問題。 The 1T-1MTJ bit cell thus has several significant disadvantages. First, large write currents (eg, over 100 microamps, μA) and higher voltages (eg, over 0.7 volts, V) may be required to change the alignment of the free magnetic layer in the MTJ and thus successfully completed Write operation of the MTJ device. Many MTJs cannot handle this large current on a regular basis, and thus the write current can be limited to lower values, which provides a satisfactory service life for the MTJ. However, the need to limit current during write operations can result in unacceptably high error rates and/or low speed switching (eg, greater than 20 nanoseconds) in the MTJ base MRAM. Moreover, even at low current values, the presence of tunnel paths within the MTJ can lead to reliability issues in the MTJ.
100‧‧‧磁阻式隨機存取記憶體位元胞 100‧‧‧Magnetoresistive random access memory location cells
110‧‧‧磁性隧道接面裝置 110‧‧‧Magnetic tunnel junction device
112‧‧‧自由磁性層 112‧‧‧ free magnetic layer
114‧‧‧固定磁性層 114‧‧‧Fixed magnetic layer
116‧‧‧氧化物 116‧‧‧Oxide
122‧‧‧釕 122‧‧‧钌
124‧‧‧鈷/鐵 124‧‧‧cobalt/iron
126‧‧‧反強磁性層 126‧‧‧anti-magnetic layer
130‧‧‧自旋霍爾效應(SHE)電極 130‧‧‧ Spin Hall Effect (SHE) Electrode
132‧‧‧第一端部 132‧‧‧First end
134‧‧‧第二端部 134‧‧‧second end
140‧‧‧源極線 140‧‧‧ source line
142‧‧‧讀取位元線 142‧‧‧Read bit line
144‧‧‧寫入位元線 144‧‧‧Write bit line
146‧‧‧字線 146‧‧‧ word line
150‧‧‧第一電晶體 150‧‧‧First transistor
152‧‧‧擴散區域 152‧‧‧Diffusion area
154‧‧‧導電結構 154‧‧‧Electrical structure
155‧‧‧閘極 155‧‧‧ gate
156‧‧‧擴散區域 156‧‧‧Diffusion area
158‧‧‧導電結構 158‧‧‧Electrical structure
160‧‧‧薄膜選擇器 160‧‧‧Film Selector
100A‧‧‧位元胞“A” 100A‧‧‧ cell "A"
100A‧‧‧自旋轉矩轉移(STT)、自旋霍爾效應(SHE)磁 阻式隨機存取記憶體(MRAM)設備 100A‧‧‧Rotational moment transfer (STT), spin Hall effect (SHE) magnetic Resistive random access memory (MRAM) device
100B‧‧‧位元胞“B” 100B‧‧‧ cell "B"
100B、100C、100D、100E、100F、100G、100H、100I、100J、100K、100L、100M、100N、100O、100P‧‧‧自旋轉矩轉移(STT)、自旋霍爾效應(SHE)磁阻式隨機存取記憶體(MRAM)設備 100B, 100C, 100D, 100E, 100F, 100G, 100H, 100I, 100J, 100K, 100L, 100M, 100N, 100O, 100P‧‧‧ spin torque transfer (STT), spin Hall effect (SHE) magnetic Resistive random access memory (MRAM) device
140A‧‧‧源極線0(M0) 140A‧‧‧Source line 0 (M0)
140B‧‧‧源極線1(M0) 140B‧‧‧Source Line 1 (M0)
140C‧‧‧源極線2(M0) 140C‧‧‧Source Line 2 (M0)
140D‧‧‧源極線3(M0) 140D‧‧‧Source Line 3 (M0)
142A‧‧‧讀取位元線0(M4) 142A‧‧‧Read bit line 0 (M4)
142B‧‧‧讀取位元線1(M4) 142B‧‧‧Read bit line 1 (M4)
142C‧‧‧讀取位元線2(M4) 142C‧‧‧Read bit line 2 (M4)
142D‧‧‧讀取位元線3(M4) 142D‧‧‧Read bit line 3 (M4)
144A‧‧‧寫入位元線(M0) 144A‧‧‧Write bit line (M0)
144B‧‧‧寫入位元線1(M0) 144B‧‧‧Write bit line 1 (M0)
144C‧‧‧寫入位元線2(M0) 144C‧‧‧Write bit line 2 (M0)
144D‧‧‧寫入位元線3(M0) 144D‧‧‧Write bit line 3 (M0)
146A‧‧‧字線0 146A‧‧‧Word line 0
146B‧‧‧字線1 146B‧‧‧Word line 1
200‧‧‧例示性磁性隧道接面(MTJ)裝置 200‧‧‧Executive Magnetic Tunnel Junction (MTJ) device
202‧‧‧中心部分 202‧‧‧ central part
204‧‧‧銅 204‧‧‧ copper
206‧‧‧銅 206‧‧‧ copper
220‧‧‧寫入電流 220‧‧‧Write current
230‧‧‧讀取電流 230‧‧‧Read current
300‧‧‧例示性磁性隧道接面裝置 300‧‧‧Executive magnetic tunnel junction device
302‧‧‧長度 302‧‧‧ length
304‧‧‧寬度 304‧‧‧Width
400‧‧‧例示性自旋霍爾效應(SHE)電極 400‧‧‧Executive Spin Hall Effect (SHE) Electrode
402‧‧‧上自旋電流 402‧‧‧Upper spin current
404‧‧‧下自旋電流 404‧‧‧ under spin current
410‧‧‧電荷電流 410‧‧‧Charge current
412‧‧‧電荷電流 412‧‧‧Charge current
500‧‧‧一電晶體(1T)、一選擇器(1S)、自旋霍爾效應(SHE)、在讀取操作期間之自旋轉矩轉移(STT)磁阻式隨機存取記憶體(MRAM) 500‧‧‧1 O crystal (1T), a selector (1S), spin Hall effect (SHE), spin torque transfer (STT) magnetoresistive random access memory during read operation ( MRAM)
502‧‧‧讀取電流 502‧‧‧Read current
510‧‧‧寫入電流 510‧‧‧Write current
512‧‧‧第一方向 512‧‧‧First direction
520‧‧‧寫入電流 520‧‧‧Write current
522‧‧‧第二方向 522‧‧‧second direction
600‧‧‧寫入操作 600‧‧‧write operation
602‧‧‧讀取電流 602‧‧‧Read current
610‧‧‧寫入電流 610‧‧‧Write current
612‧‧‧第一方向 612‧‧‧First direction
620‧‧‧寫入電流 620‧‧‧Write current
622‧‧‧第二方向 622‧‧‧second direction
700‧‧‧陣列 700‧‧‧Array
800‧‧‧配置 800‧‧‧Configuration
810‧‧‧1.5倍的閘極間隔 810‧‧‧1.5 times the gate spacing
820‧‧‧2.5倍的M0間距 820‧‧‧2.5 times M0 spacing
900‧‧‧配置 900‧‧‧Configuration
910‧‧‧1.5倍的閘極間隔 910‧‧‧1.5 times gate spacing
920‧‧‧3.5倍的M0間距 920‧‧‧3.5 times M0 spacing
1300‧‧‧以處理器為基礎之環境 1300‧‧‧Process-based environment
1302‧‧‧以處理器為基礎之裝置 1302‧‧‧Processor-based devices
1304‧‧‧儲存裝置 1304‧‧‧Storage device
1312‧‧‧處理電路 1312‧‧‧Processing Circuit
1314‧‧‧系統記憶體 1314‧‧‧System Memory
1316‧‧‧通訊鏈 1316‧‧‧Communication chain
1318‧‧‧唯讀記憶體 1318‧‧‧Reading memory
1320‧‧‧隨機存取記憶體 1320‧‧‧ random access memory
1322‧‧‧基本輸出入系統 1322‧‧‧Basic input and output system
1324‧‧‧磁碟驅動器 1324‧‧‧Disk drive
1328‧‧‧光學儲存器 1328‧‧‧Optical storage
1330‧‧‧磁性儲存器 1330‧‧‧Magnetic storage
1332‧‧‧原子或量子儲存器 1332‧‧‧Atomic or Quantum Storage
1336‧‧‧操作系統 1336‧‧‧ operating system
1338‧‧‧應用 1338‧‧‧Application
1340‧‧‧其他模組 1340‧‧‧Other modules
1342‧‧‧數據 1342‧‧‧ data
1344‧‧‧瀏覽器 1344‧‧‧Browser
1360‧‧‧網路介面 1360‧‧‧Network interface
1370‧‧‧實體輸入裝置 1370‧‧‧Physical input device
1372‧‧‧鍵盤 1372‧‧‧ keyboard
1374‧‧‧觸碰式螢幕 1374‧‧‧Touch screen
1376‧‧‧音訊 1376‧‧‧ audio
1378‧‧‧指向裝置 1378‧‧‧ pointing device
1380‧‧‧實體輸出裝置 1380‧‧‧ physical output device
1382‧‧‧視覺 1382‧‧ Vision
1384‧‧‧觸覺 1384‧‧‧Touch
1386‧‧‧音訊 1386‧‧‧ audio
申請標的之各種實施方式的特徵和優點將隨著以下詳細說明之進行而明顯意見,並且參考所附圖示,其中相同數字代表相同部件,並且在其中: 圖1係為根據本發明揭露之至少一實施方式之例示性 一電晶體(1T)、一選擇器(1S)、使用自旋霍爾效應(SHE)電極用以改變磁性隧道接面(MTJ)之電阻的STT-MRAM位元胞之剖面圖;圖2係為根據本發明揭露之至少一實施方式之具有置放鄰近在自旋霍爾效應(SHE)電極之自由磁性層的例示性磁性隧道接面(MTJ)裝置之透視圖。圖3係為根據本發明揭露之至少一實施方式之具有置放鄰近在自旋霍爾效應(SHE)電極之自由磁性層的例示性磁性隧道接面(MTJ)裝置之俯視圖;圖4係為根據本發明揭露之至少一實施方式之例示性自旋霍爾效應(SHE)電極之之放大剖面圖,在其中電流的通過產生了各種SHE電極之內的上旋轉模式和下旋轉模式;圖5A係為根據本發明揭露之至少一實施方式之例示性一電晶體(1T)、一選擇器(1S)、自旋霍爾效應(SHE)、在讀取操作期間之自旋轉矩轉移(STT)磁阻式隨機存取記憶體(MRAM)之示意圖,在其中讀取電流流通過MTJ和第一電晶體;圖5B係為根據本發明揭露之至少一實施方式之圖5A所描繪的一示例性電晶體(1T)、一選擇器(1S)自旋轉矩轉移(STT)、自旋霍爾效應(SHE)、磁阻式隨機存取記憶體(MRAM)(1T-1S-1MTJ-STT-SHE-MRAM)在寫入操作期間之示意圖,在其中寫入電流流通過第一電晶體、SHE電極、以及薄膜選擇器; 圖6A係為根據本發明揭露之至少一實施方式之另一例示性一電晶體(1T)、一選擇器(1S)、自旋霍爾效應(SHE)、在讀取操作期間之自旋轉矩轉移(STT)磁阻式隨機存取記憶體(MRAM)之示意圖,在其中讀取電流流通過MTJ和第一電晶體;圖6B係為根據本發明揭露之至少一實施方式之圖6A所描繪的示例性一電晶體(1T)、一選擇器(1S)自旋轉矩轉移(STT)、自旋霍爾效應(SHE)、磁阻式隨機存取記憶體(MRAM)(1T-1S-1MTJ-STT-SHE-MRAM)在寫入操作期間之示意圖,在其中寫入電流流通過第一電晶體、SHE電極、以及薄膜選擇器;圖7係為根據本發明揭露之至少一實施方式的例示性4x4陣列之俯視圖,其包括十六1T-1S-1MTJ-STT-SHE-MRAM位元胞;圖8A係為根據本發明揭露之至少一實施方式的例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞之配置;圖8B係為根據本發明揭露之至少一實施方式之圖8A所描繪的例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞之沿著剖面線B-B的斷面圖;圖8C係為根據本發明揭露之至少一實施方式之圖8A所描繪的例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞之沿著剖面線C-C的斷面圖;圖9A係為根據本發明揭露之至少一實施方式的另一例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞之配置; 圖9B係為根據本發明揭露之至少一實施方式之圖9A所描繪的例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞之沿著剖面線B-B的斷面圖;圖9C係為根據本發明揭露之至少一實施方式之圖9A所描繪的例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞之沿著剖面線C-C的斷面圖;圖10A係為根據本發明揭露之至少一實施方式的描繪在例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞中被使用的例示性、突返、薄膜選擇器之執行的圖;圖10B係為根據本發明揭露之至少一實施方式的描繪在例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞中被使用的例示性薄膜選擇器之執行的圖;圖11係為根據本發明揭露之至少一實施方式的提供例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞之方法的高階流程圖;圖12係為根據本發明揭露之至少一實施方式的儲存數位數據在例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞之方法的高階流程圖;圖13係為根據本發明揭露之至少一實施方式的示例性以處理器為基礎裝置的高方塊圖,在其中使用例示性1T-1S-1MTJ-STT-SHE-MRAM位元胞提供至少部分的非暫態數據。 The features and advantages of the various embodiments of the invention will be apparent from the following detailed description. 1 is an illustration of at least one embodiment of the present disclosure. A transistor (1T), a selector (1S), a section of the STT-MRAM cell using a spin Hall effect (SHE) electrode to change the resistance of the magnetic tunnel junction (MTJ); A perspective view of an exemplary magnetic tunnel junction (MTJ) device having a free magnetic layer disposed adjacent to a spin Hall effect (SHE) electrode in accordance with at least one embodiment of the present disclosure. 3 is a top plan view of an exemplary magnetic tunnel junction (MTJ) device having a free magnetic layer disposed adjacent to a spin Hall effect (SHE) electrode, in accordance with at least one embodiment of the present disclosure; FIG. An enlarged cross-sectional view of an exemplary spin Hall effect (SHE) electrode in accordance with at least one embodiment of the present disclosure, in which the passage of current produces an upper rotation mode and a lower rotation mode within various SHE electrodes; An exemplary transistor (1T), a selector (1S), a spin Hall effect (SHE), and a spin torque transfer (STT) during a read operation in accordance with at least one embodiment of the present disclosure. a schematic diagram of a magnetoresistive random access memory (MRAM) in which a current is read through the MTJ and the first transistor; FIG. 5B is an example depicted in FIG. 5A in accordance with at least one embodiment of the present disclosure. Transistor (1T), a selector (1S) spin torque transfer (STT), spin Hall effect (SHE), magnetoresistive random access memory (MRAM) (1T-1S-1MTJ-STT -SHE-MRAM) a schematic diagram during a write operation in which a write current flows through the first transistor, SHE Electrode, and a thin film selector; 6A is another exemplary transistor (1T), a selector (1S), a spin Hall effect (SHE), self-rotation during a read operation, in accordance with at least one embodiment of the present disclosure. A schematic diagram of a moment transfer (STT) magnetoresistive random access memory (MRAM) in which a current is read through an MTJ and a first transistor; FIG. 6B is a diagram of FIG. 6A in accordance with at least one embodiment of the present disclosure. Exemplary one transistor (1T), one selector (1S) spin torque transfer (STT), spin Hall effect (SHE), and magnetoresistive random access memory (MRAM) (1T-1S) -1MTJ-STT-SHE-MRAM) Schematic diagram during a write operation in which a write current flows through a first transistor, a SHE electrode, and a thin film selector; FIG. 7 is at least one embodiment in accordance with the present disclosure. A top view of an exemplary 4x4 array comprising sixteen 1T-1S-1MTJ-STT-SHE-MRAM bit cells; FIG. 8A is an exemplary 1T-1S-1MTJ-STT in accordance with at least one embodiment of the present disclosure -SHE-MRAM bit cell configuration; Figure 8B is an exemplary 1T-1S-1MTJ-STT-SHE- depicted in Figure 8A in accordance with at least one embodiment of the present disclosure. A cross-sectional view of the MRAM bit cell along section line BB; FIG. 8C is an exemplary 1T-1S-1MTJ-STT-SHE-MRAM bit cell depicted in FIG. 8A in accordance with at least one embodiment of the present disclosure. A cross-sectional view along section line CC; FIG. 9A is a configuration of another exemplary 1T-1S-1MTJ-STT-SHE-MRAM bit cell in accordance with at least one embodiment of the present disclosure; 9B is a cross-sectional view of the exemplary 1T-1S-1MTJ-STT-SHE-MRAM bit cell depicted in FIG. 9A along section line BB in accordance with at least one embodiment of the present disclosure; FIG. 9C is A cross-sectional view of an exemplary 1T-1S-1MTJ-STT-SHE-MRAM bit cell depicted in FIG. 9A along section line CC in accordance with at least one embodiment of the present disclosure; FIG. 10A is a disclosure in accordance with the present invention. At least one embodiment depicts a diagram of an exemplary, recursive, and thin film selector used in an exemplary 1T-1S-1MTJ-STT-SHE-MRAM cell; FIG. 10B is a disclosure in accordance with the present invention. At least one embodiment depicts a diagram of an exemplary thin film selector used in an exemplary 1T-1S-1MTJ-STT-SHE-MRAM bit cell; FIG. 11 is an at least one implementation in accordance with the present disclosure. A high-level flowchart of a method for providing an exemplary 1T-1S-1MTJ-STT-SHE-MRAM bit cell; FIG. 12 is a diagram of stored digital data in an exemplary 1T-1S- according to at least one embodiment of the present disclosure. a high-level flowchart of a method of 1MTJ-STT-SHE-MRAM bit cell; FIG. 13 is a diagram of at least one embodiment according to the present disclosure Example high block diagram of processor-based devices, non-transitory data providing at least a portion of an exemplary embodiment wherein a 1T-1S-1MTJ-STT-SHE-MRAM bit cell.
儘管以下之詳細描述將參考例示性實施方式進行,對熟悉本技術領域之人員而言,許多替代、修改和變化將係 為顯而易見的。 While the following detailed description is described with reference to the exemplary embodiments, many alternatives, modifications and It is obvious.
自旋轉矩轉移(STT)使用使用在鄰近MTJ之自由磁性層的自旋霍爾效應材料中的旋轉對準電子,用以改變自由磁性層之磁性方向或對準。例如,流通過具有大自旋軌道耦合之金屬層的電流可產生通過MTJ(經由巨大自旋霍爾效應)之自旋電流,足以引起MTJ裝置中自由磁場的重新對準或重新定向。自旋霍爾效應係為在具有大原子量之金屬中發生的現象,在其中具有不同自旋之電極在不同側向方向中偏轉。因此,施加的電荷電流產生橫向於電荷流之自旋角動量流。此外,通過自旋霍爾效應材料之電流之方向改變材料中的電極的方向-如此,置放在鄰近MTJ之自旋霍爾效應電極可通過自旋霍爾效應材料,簡單地在電流之方向變化或改變MTJ基礎之電阻。 Spin Torque Transfer (STT) uses rotational alignment electrons in a spin Hall effect material adjacent to the free magnetic layer of the MTJ to change the magnetic orientation or alignment of the free magnetic layer. For example, current flowing through a metal layer with large spin-orbital coupling can produce a spin current through the MTJ (via the large spin Hall effect) sufficient to cause realignment or reorientation of the free magnetic field in the MTJ device. The spin Hall effect is a phenomenon occurring in a metal having a large atomic weight in which electrodes having different spins are deflected in different lateral directions. Thus, the applied charge current produces a spin angular momentum flow transverse to the charge flow. In addition, the direction of the electrode in the material is changed by the direction of the current of the spin Hall effect material - thus, the spin Hall effect electrode placed adjacent to the MTJ can pass through the spin Hall effect material, simply in the direction of the current Change or change the resistance of the MTJ base.
一電晶體(1T)、一選擇器(1S)、一磁性隧道接面(1MTJ)、自旋轉矩轉移(STT)、自旋霍爾效應(SHE)、磁阻式隨機存取記憶體(MRAM)位元胞(以下簡稱為:1T-1S-1MTJ-STT-SHE MRAM)包括具有置放在鄰近SHE電極之自由磁性層的MTJ裝置。MTJ自由磁性層之極性或磁性方向可藉由讓方向電流流通過SHE電極被改變。當電流在第一方向流通過SHE電極時,流經過SHE電極之電流的自旋極化引起在MTJ自由磁性層和MTJ固定磁性層中的磁場的平行對準。在平行配置中, MTJ裝置對流經過MTJ裝置之電流呈現相對低的電阻路徑。當電流在與第一方向相反之第二方向流通過SHE電極時,流經過SHE電極之電流的自旋極化引起在MTJ自由磁性層和MTJ固定磁性層中的磁場的逆平行對準。在逆平行配置中,MTJ裝置對流經過MTJ之電流呈現相對高的電阻路徑。 A transistor (1T), a selector (1S), a magnetic tunnel junction (1MTJ), spin torque transfer (STT), spin Hall effect (SHE), magnetoresistive random access memory ( The MRAM) bit cell (hereinafter abbreviated as: 1T-1S-1MTJ-STT-SHE MRAM) includes an MTJ device having a free magnetic layer disposed adjacent to the SHE electrode. The polarity or magnetic direction of the MTJ free magnetic layer can be altered by passing a directional current through the SHE electrode. When current flows through the SHE electrode in the first direction, the spin polarization of the current flowing through the SHE electrode causes parallel alignment of the magnetic fields in the MTJ free magnetic layer and the MTJ fixed magnetic layer. In a parallel configuration, The MTJ device presents a relatively low resistance path for current flowing through the MTJ device. When the current flows through the SHE electrode in a second direction opposite the first direction, the spin polarization of the current flowing through the SHE electrode causes an anti-parallel alignment of the magnetic fields in the MTJ free magnetic layer and the MTJ fixed magnetic layer. In an anti-parallel configuration, the MTJ device presents a relatively high resistance path for current flowing through the MTJ.
藉由MTJ呈現之電阻允許二進制數據之非揮發性儲存(例如,低電阻可指示第一邏輯狀態,並且高電阻可指示第二邏輯狀態)。有利地,由於SHE電極到MTJ自由磁性層之間的協同耦合(即,自旋轉矩轉移),MTJ自由磁性層之方向藉由電流流通過SHE電極而非MTJ本身被改變。其可允許明顯地較高寫入電流支使用,其有利地提供MRAM位元胞之更快速的循環或控時,同時在同一時間有利地降低MRAM位元胞內的錯誤率。 The resistance presented by the MTJ allows for non-volatile storage of binary data (eg, low resistance may indicate a first logic state and high resistance may indicate a second logic state). Advantageously, due to the cooperative coupling between the SHE electrode to the MTJ free magnetic layer (ie, spin torque transfer), the direction of the MTJ free magnetic layer is altered by current flow through the SHE electrode rather than the MTJ itself. It may allow for significantly higher write current branch usage, which advantageously provides for faster cycling or timing of MRAM bit cells while advantageously reducing the error rate within the MRAM bit cell at the same time.
1T-1S-1MTJ-STT-SHE MRAM位元胞運用巨自旋霍爾效應(GSHE)提高高自旋注入效率,並且提供相對堅固和可靠但又緊密的隨機存取記憶體。因為寫入電流不通過MTJ反而通過SHE電極,GSHE實現低程式電壓之使用,或替代性地,實現在相同電壓下較高電流之使用。1T-1S-1MTJ-STT-SHE MRAM位元胞特徵為在相對快(例如,<10奈秒)之寫入速度下具有低錯誤率。1T-1S-1MTJ-STT-SHE MRAM位元胞之內的讀取和寫入路徑有利地被耦合,從而改善讀取潛時。1T-1S-1MTJ-STT-SHE MRAM位元胞進一步特徵為具有低電阻寫入操作,此允許更大的 寫入電流並且實現MTJ快速地改變狀態。1T-1S-1MTJ-STT-SHE MRAM位元胞之內的分別的讀取和寫入路徑允許較低讀取電流(例如,10μA讀取電流對上100μA寫入電流)之使用,其改善MTJ裝置的性能和可靠度。 The 1T-1S-1MTJ-STT-SHE MRAM bit cell uses the Giant Spin Hall Effect (GSHE) to improve high spin injection efficiency and provides relatively robust and reliable but tight random access memory. Since the write current does not pass through the SHE electrode through the MTJ, the GSHE achieves the use of a low program voltage or, alternatively, achieves a higher current at the same voltage. The 1T-1S-1MTJ-STT-SHE MRAM bit cell is characterized by a low error rate at relatively fast (eg, <10 nanoseconds) write speed. The read and write paths within the 1T-1S-1MTJ-STT-SHE MRAM bit cells are advantageously coupled to improve read latency. The 1T-1S-1MTJ-STT-SHE MRAM bit cell is further characterized as having a low resistance write operation, which allows for a larger The current is written and the MTJ is quickly changed state. The separate read and write paths within the 1T-1S-1MTJ-STT-SHE MRAM bit cell allow for the use of lower read currents (eg, 10μA read current vs. 100μA write current), which improves MTJ The performance and reliability of the device.
一電晶體(1T)、一選擇器(1S)、一磁性隧道接面(1MTJ)、自旋轉矩轉移(STT)、自旋霍爾效應(SHE)磁阻式隨機存取記憶體(MRAM)設備被提供。設備可包括自旋霍爾效應(SHE)電極和導電地耦合在SHE電極與源極線之間的第一電晶體,該第一電晶體藉由字線被控制。該裝置可另外包括導電耦合在SHE電極和寫入位元線之間的薄膜選擇器、以及磁性隧道接面(MTJ)裝置,其中MTJ裝置包括在到第一電晶體之導電耦合和到薄膜選擇器之導電耦合之間的位置,導電地耦合到SHE電極之自由磁性層。 A transistor (1T), a selector (1S), a magnetic tunnel junction (1MTJ), spin torque transfer (STT), spin Hall effect (SHE) magnetoresistive random access memory (MRAM) ) The device is provided. The apparatus can include a spin Hall effect (SHE) electrode and a first transistor electrically coupled between the SHE electrode and the source line, the first transistor being controlled by a word line. The apparatus can additionally include a thin film selector electrically coupled between the SHE electrode and the write bit line, and a magnetic tunnel junction (MTJ) device, wherein the MTJ device includes conductive coupling to the first transistor and to film selection The position between the conductive couplings of the device is electrically coupled to the free magnetic layer of the SHE electrode.
一電晶體(1T)、一選擇器(1S)、一磁性隧道接面(1MTJ)、自旋轉矩轉移(STT)、自旋霍爾效應(SHE)磁阻式隨機存取記憶體(MRAM)方法被提供。 方法可包括形成具有源極區、汲極區、以及閘極區的第一電晶體。方法可進一步包括在第一金屬層中形成源極線並導電地耦合第一電晶體之源極區到源極線。方法也可包括形成SHE電極並且導電地耦合第一電晶體之汲極區到SHE電極。方法可另外包括形成MTJ裝置,其包括自由磁性層和固定磁性層,並且導電地耦合MTJ裝置之自由磁性層到SHE電極。方法可進一步包括在第二金屬層中 形成寫入位元線和形成讀取位元線。方法也可包括形成薄膜選擇器,和在SHE電極之間導電地耦合薄膜選擇器和到寫入位元線,以及導電地耦合MTJ裝置之固定磁性層用以讀取位元線。 A transistor (1T), a selector (1S), a magnetic tunnel junction (1MTJ), spin torque transfer (STT), spin Hall effect (SHE) magnetoresistive random access memory (MRAM) The method is provided. The method can include forming a first transistor having a source region, a drain region, and a gate region. The method can further include forming a source line in the first metal layer and electrically coupling the source region to the source line of the first transistor. The method can also include forming a SHE electrode and electrically coupling the drain region of the first transistor to the SHE electrode. The method can additionally include forming an MTJ device comprising a free magnetic layer and a fixed magnetic layer and electrically coupling the free magnetic layer of the MTJ device to the SHE electrode. The method can be further included in the second metal layer A write bit line is formed and a read bit line is formed. The method can also include forming a thin film selector, and electrically coupling the thin film selector and the write bit line between the SHE electrodes, and conductively coupling the fixed magnetic layer of the MTJ device for reading the bit lines.
一電晶體(1T)、一選擇器(1S)、一磁性隧道接面(1MTJ)、自旋轉矩轉移(STT)、自旋霍爾效應(SHE)磁阻式隨機存取記憶體(MRAM)方法被提供。方法可包括選擇性地將二元數值寫入到MRAM單元,其包括藉由引起寫入電流在以下任一方向流通過電極,耦合到SHE電極的MTJ:放置在第一狀態中磁性地耦合到SHE電極之MTJ裝置之電阻值的第一方向,或放置在不同於第一狀態之第二狀態中磁性地耦合到SHE電極之MTJ裝置之電阻值的第二方向。 A transistor (1T), a selector (1S), a magnetic tunnel junction (1MTJ), spin torque transfer (STT), spin Hall effect (SHE) magnetoresistive random access memory (MRAM) The method is provided. The method can include selectively writing a binary value to the MRAM cell, the MTJ coupled to the SHE electrode by causing the write current to flow through the electrode in any of the following directions: being placed in the first state magnetically coupled to The first direction of the resistance value of the MTJ device of the SHE electrode, or the second direction of the resistance value of the MTJ device magnetically coupled to the SHE electrode in a second state different from the first state.
一電晶體(1T)、一選擇器(1S)、一磁性隧道接面(1MTJ)、自旋轉矩轉移(STT)、自旋霍爾效應(SHE)磁阻式隨機存取記憶體(MRAM)系統被提供。系統可包括裝置,用於選擇性地將二元數值寫入到MRAM單元,其包括藉由引起寫入電流在以下任一方向流通過電極,耦合到SHE電極的MTJ:放置在第一狀態中磁性地耦合到SHE電極之MTJ裝置之電阻值的第一方向,或放置在不同於第一狀態之第二狀態中磁性地耦合到SHE電極之MTJ裝置之電阻值的第二方向。 A transistor (1T), a selector (1S), a magnetic tunnel junction (1MTJ), spin torque transfer (STT), spin Hall effect (SHE) magnetoresistive random access memory (MRAM) The system is provided. The system can include means for selectively writing a binary value to the MRAM cell, the MTJ coupled to the SHE electrode by causing the write current to flow through the electrode in any of the following directions: placed in the first state A first direction of resistance value magnetically coupled to the MTJ device of the SHE electrode, or a second direction of resistance value of the MTJ device magnetically coupled to the SHE electrode in a second state different from the first state.
如本發明所使用的,術語「電晶體」和複數術語「電晶體們」可指任何類型具有汲極端子、源極端子、閘極端 子、以及大量端子之金屬氧化物半導體(MOS)電晶體。術語「電晶體」和複數術語「電晶體們」也可指任何其他類型的當前或未來開發的電晶體或電晶體狀(即,交換)裝置,其包括但不局限於,鯺式場效電晶體(FinFETs)、三閘電晶體、環繞式閘極柱形電晶體、奈米碳管裝置、以及自旋電子裝置。如本發明所描述,術語「源極」和「汲極」係指電晶體端子,並且可因而彼此自由地被代替。術語「電晶體」和複數術語「電晶體們」也可係指雙極型接面電晶體(BJT或BJTs)。 As used herein, the term "transistor" and the plural term "transistor" may refer to any type having a 汲 terminal, a source terminal, and a gate terminal. A metal oxide semiconductor (MOS) transistor with a large number of terminals. The term "transistor" and the plural term "transistor" may also refer to any other type of current or future developed transistor or transistor (ie, switching) device including, but not limited to, a 场 field effect transistor. (FinFETs), triple gate transistors, wraparound gate column transistors, carbon nanotube devices, and spintronic devices. As described herein, the terms "source" and "drain" refer to the transistor terminals and can thus be freely replaced with each other. The term "transistor" and the plural term "transistors" may also refer to bipolar junction transistors (BJT or BJTs).
圖1係為根據本發明之至少一實施方式的,例示性一電晶體、一選擇器、一磁性隧道接面、自旋轉矩轉移、自旋霍爾效應、磁阻式隨機存取記憶體位元胞100(以下稱「1T-1S-1MTJ-STT-SHE MRAM位元胞100」或「位元胞100」)的方塊圖。1T-1S-1MTJ-STT-SHE MRAM位元胞100包括磁性隧道接面(MTJ)裝置110、自旋霍爾效應(SHE)電極130、第一電晶體150、以及薄膜選擇器160。 1 is an exemplary transistor, a selector, a magnetic tunnel junction, a spin torque transfer, a spin Hall effect, and a magnetoresistive random access memory device according to at least one embodiment of the present invention. A block diagram of the cell 100 (hereinafter referred to as "1T-1S-1MTJ-STT-SHE MRAM cell 100" or "bit cell 100"). The 1T-1S-1MTJ-STT-SHE MRAM bit cell 100 includes a magnetic tunnel junction (MTJ) device 110, a spin Hall effect (SHE) electrode 130, a first transistor 150, and a thin film selector 160.
一些導電結構154,諸如一或多個柱狀通孔,可導電地耦合第一電晶體150之第一擴散區域152(例如,源極區)到源極線140。在部分實例中,源極線140可被設置在半導體晶粒之內的零金屬(M0)層上。一些導電結構158,諸如一或多個柱狀通孔,可導電地耦合第一電晶體150之第二擴散區域156(例如,汲極區)到SHE電極130之第一端部132。字線146可導電地耦合到第一電晶 體150之閘極155,並且可控制第一電晶體150之操作和/或邏輯狀態。 A plurality of conductive structures 154, such as one or more pillar vias, electrically couple the first diffusion region 152 (eg, the source region) of the first transistor 150 to the source line 140. In some examples, source line 140 can be disposed on a zero metal (M0) layer within the semiconductor die. A plurality of conductive structures 158, such as one or more pillar vias, electrically couple the second diffusion region 156 (eg, the drain region) of the first transistor 150 to the first end 132 of the SHE electrode 130. Word line 146 can be electrically coupled to the first transistor Gate 155 of body 150 and can control the operation and/or logic state of first transistor 150.
薄膜選擇器160可選擇性地導電地耦合寫入位元線144到SHE電極130的第二端部134。在部分實例中,寫入位元線可全部或部分地被設置在半導體晶粒之內的第二金屬(M2)層上。當正或負電壓差或偏壓跨越薄膜選擇器160達到限定的臨界值時,薄膜選擇器160允許雙向電流。 Membrane selector 160 is selectively conductively coupled to write bit line 144 to second end 134 of SHE electrode 130. In some examples, the write bit line may be disposed in whole or in part on a second metal (M2) layer within the semiconductor die. The thin film selector 160 allows bidirectional current when a positive or negative voltage difference or bias across the membrane selector 160 reaches a defined threshold.
MTJ裝置110之自由磁性層112可導電地被耦合到SHE電極130,並且MTJ裝置110之固定磁性層114可直接地或間接地導電地被耦合到讀取位元線142。在部分實施方式中,讀取位元線142可全部或部分地被設置在半導體晶粒之內的第四金屬(M4)層上。在部分實施方式中,包括至少一釕層122和至少一鈷/鐵層124之合成反鐵磁(SAF)層可被設置在鄰近在固定磁性層114和讀取位元線142之間的MTJ裝置110之固定磁性層114。在部分實施方式中,反強磁性(AFM)裝置126可被設置在至少一鈷/鐵層124和讀取位元線142之間。在實施方式中,1T-1S-1MTJ-STT-SHE MRAM位元胞100提供四端子裝置(即,用於以下每一個的分別連接:源極線140、讀取位元線142、寫入位元線144、字線146) The free magnetic layer 112 of the MTJ device 110 is electrically coupled to the SHE electrode 130, and the fixed magnetic layer 114 of the MTJ device 110 can be electrically coupled to the read bit line 142, either directly or indirectly. In some embodiments, the read bit line 142 may be disposed in whole or in part on a fourth metal (M4) layer within the semiconductor die. In some embodiments, a synthetic antiferromagnetic (SAF) layer comprising at least one germanium layer 122 and at least one cobalt/iron layer 124 can be disposed adjacent to the MTJ between the fixed magnetic layer 114 and the read bit line 142. The fixed magnetic layer 114 of the device 110. In some embodiments, an antiferromagnetic (AFM) device 126 can be disposed between at least one cobalt/iron layer 124 and the read bit line 142. In an embodiment, the 1T-1S-1MTJ-STT-SHE MRAM bit cell 100 provides a four-terminal device (ie, for each of the following connections: source line 140, read bit line 142, write bit) Yuan line 144, word line 146)
在實施方式中,自旋極化寫入電流可通過源極線140和寫入位元線144之間,用以執行寫入操作。源極線140和寫入位元線144之間的潛在電位差決定是否寫入電流從 源極線140流向寫入位元線144,或反之亦然。寫入電流通過該SHE電極130流動之該方向決定在該MTJ裝置110中之自由磁性層112的該磁場方向,並且因此決定MTJ裝置110之電阻(和邏輯狀態)。在實施方式中,寫入電流在第一方向流通過SHE電極130,引起在MTJ裝置110中的自由磁性層112呈現磁場方向,其大致上平行於固定磁性層114之磁場方向。安排自由磁性層112和固定磁性層114之磁場在大致平行之配置中,放置MTJ裝置110於相對高隧道電流/低電阻狀態中。相反地,寫入電流在第二方向流通過SHE電極130,可引起在MTJ裝置110中的自由磁性層112呈現磁場方向,其大致上逆平行於固定磁性層114之磁場方向。安排自由磁性層112和固定磁性層114之磁場在大致逆平行之配置中,放置MTJ裝置110於相對低隧道電流/高電阻狀態中。 In an embodiment, a spin-polarized write current may pass between the source line 140 and the write bit line 144 for performing a write operation. The potential difference between the source line 140 and the write bit line 144 determines whether the write current is from Source line 140 flows to write bit line 144, or vice versa. The direction in which the write current flows through the SHE electrode 130 determines the direction of the magnetic field of the free magnetic layer 112 in the MTJ device 110, and thus determines the resistance (and logic state) of the MTJ device 110. In an embodiment, the write current flows through the SHE electrode 130 in a first direction, causing the free magnetic layer 112 in the MTJ device 110 to exhibit a magnetic field direction that is substantially parallel to the magnetic field direction of the fixed magnetic layer 114. The magnetic fields of the free magnetic layer 112 and the fixed magnetic layer 114 are arranged in a substantially parallel configuration in which the MTJ device 110 is placed in a relatively high tunneling current/low resistance state. Conversely, the write current flowing through the SHE electrode 130 in the second direction can cause the free magnetic layer 112 in the MTJ device 110 to assume a magnetic field direction that is substantially antiparallel to the magnetic field direction of the fixed magnetic layer 114. The magnetic field of the free magnetic layer 112 and the fixed magnetic layer 114 is arranged in a substantially anti-parallel configuration in which the MTJ device 110 is placed in a relatively low tunneling current/high resistance state.
在實施方式中,源極線140和寫入位元線144之間的電位差,藉由控制寫入電流通過的方向並且因此在SHE電極130中寫入電流自旋極化,可被使用於分配和儲存MTJ裝置110中的二元數值。在實施方式中,寫入電流可以係為約30μA或更大;約50μA或更大;約70μA或更大;約100μA或更大;約150μA或更大;約200μA或更大。有利地,相對高的寫入電流不通過MTJ裝置110,而是僅通過SHE電極130。此外,使用相對高的寫入電流之能力可改善寫入速度和數據可靠度,同時不折衷在1T-1S-1MTJ-STT-SHE MRAM位元胞100中被使用之MTJ裝置 110的長期可靠度和性能。 In an embodiment, the potential difference between the source line 140 and the write bit line 144 can be used for distribution by controlling the direction in which the write current passes and thus writing the current spin polarization in the SHE electrode 130. And storing the binary values in the MTJ device 110. In an embodiment, the write current may be about 30 μA or greater; about 50 μA or greater; about 70 μA or greater; about 100 μA or greater; about 150 μA or greater; about 200 μA or greater. Advantageously, a relatively high write current does not pass through the MTJ device 110, but only through the SHE electrode 130. In addition, the ability to use relatively high write currents improves write speed and data reliability while not compromising MTJ devices used in 1T-1S-1MTJ-STT-SHE MRAM cells 100 110 long-term reliability and performance.
在實施方式中,讀取電流從讀取位元線142通過MTJ裝置110用以執行讀取操作。MTJ裝置110之電阻決定讀取操作返回之邏輯值。讀取電流可以係為約30μA或更小;25μA或更小;20μA或更小;15μA或更小;10μA或更小;5μA或更小。有利地,MTJ裝置110僅檢查相對低的讀取電流,而不是實質上較高之寫入電流。通過MTJ裝置110之讀取電流的減少有利地改善了1T-1S-1MTJ-STT-SHE MRAM位元胞100之長期可靠度和效能。 In an embodiment, the read current is passed from the read bit line 142 through the MTJ device 110 to perform a read operation. The resistance of the MTJ device 110 determines the logic value returned by the read operation. The read current may be about 30 μA or less; 25 μA or less; 20 μA or less; 15 μA or less; 10 μA or less; 5 μA or less. Advantageously, the MTJ device 110 only checks for relatively low read currents, rather than substantially higher write currents. The reduction in read current through the MTJ device 110 advantageously improves the long-term reliability and performance of the 1T-1S-1MTJ-STT-SHE MRAM cell 100.
MTJ裝置110包括自由磁性層被設置鄰近或與SHE電極130接觸之自由磁性層112。在實施方式中,MTJ裝置110可包括任何當前或未來開發之MTJ裝置110,其包括但不局限於,垂直磁化MTJ裝置110和平面內磁化MTJ裝置110。在實施方式中,MTJ裝置110之自由磁性層112和固定磁性層114可包括任何當前或未來開發之磁性材料。在至少部分實施方式中,MTJ裝置110之自由磁性層112和/或固定磁性層114可包括一或多個具有相對高之自旋極化的材料,諸如鈷(Co)、鐵(Fe)、或鈷、鐵、硼合金(CoaFebBc-其中a,b,和c係為整數值)。在一實施方式中,每一個自由磁性層112和固定磁性層114可包括作為非晶薄膜層被濺射的CoFeB層,其係為約80%CoFe和約20%B((CoFe)80B20)。 The MTJ device 110 includes a free magnetic layer 112 in which a free magnetic layer is disposed adjacent to or in contact with the SHE electrode 130. In an embodiment, the MTJ device 110 may include any current or future developed MTJ device 110 including, but not limited to, a perpendicular magnetization MTJ device 110 and an in-plane magnetized MTJ device 110. In an embodiment, the free magnetic layer 112 and the fixed magnetic layer 114 of the MTJ device 110 may comprise any current or future developed magnetic material. In at least some embodiments, the free magnetic layer 112 and/or the fixed magnetic layer 114 of the MTJ device 110 can include one or more materials having relatively high spin polarization, such as cobalt (Co), iron (Fe), Or cobalt, iron, boron alloys (Co a Fe b B c - where a, b, and c are integer values). In one embodiment, each of the free magnetic layer 112 and the fixed magnetic layer 114 may include a CoFeB layer that is sputtered as an amorphous thin film layer, which is about 80% CoFe and about 20% B ((CoFe) 80 B 20 ).
一或多個穿隧障壁層116將自由磁性層112從固定磁性層114分離。在實施方式中,一或多個穿隧障壁層116 可包括一或多個金屬氧化物。金屬氧化物之實例包括但不局限於,氧化鈦(TiOx)、氧化鎂(MgOx)、氧化鋁(AlOx)或其組合。穿隧障壁層116可係為數個埃到數個奈米之厚度。 One or more tunneling barrier layers 116 separate the free magnetic layer 112 from the fixed magnetic layer 114. In an embodiment, one or more tunneling barrier layers 116 may include one or more metal oxides. Examples of metal oxides include, but are not limited to, titanium oxide (TiO x ), magnesium oxide (MgO x ), aluminum oxide (AlO x ), or combinations thereof. The tunneling barrier layer 116 can be a thickness of a few angstroms to a few nanometers.
MTJ裝置110可包括或以其他方式併入合成反鐵磁(SAF)層和/或反強磁性(AFM)層其中之一或兩者。合成反鐵磁(SAF)層可包括被沉積在鄰近固定磁性層114的釕(Ru)層122、和被沉積在鄰近釕(Ru)層122的鈷/鐵(CoFe)層124。在實施方式中,SAF/AFM層可通過交換偏壓耦合到固定磁性層114,並且可引起在固定磁性層114中的至少一部份原子與在SAF/AFM層中的至少一部份原子對準,從而「釘住」或固定固定磁性層114之磁場方向。儘管描述為包括釕層122和鈷/鐵層124,SAF層可包括能夠釘住或固定固定磁性層114磁場之方向的附加或替代性材料。MTJ裝置110可通過SAF/AFM層導電地耦合到讀取位元線142。雖然為在圖1中描繪,在部分實施方式中,一或多個導電結構,諸如一或多個通孔,可導電地耦合MTJ裝置110到讀取位元線142。 The MTJ device 110 can include or otherwise incorporate one or both of a synthetic antiferromagnetic (SAF) layer and/or an antiferromagnetic (AFM) layer. The synthetic antiferromagnetic (SAF) layer may include a ruthenium (Ru) layer 122 deposited adjacent to the fixed magnetic layer 114, and a cobalt/iron (CoFe) layer 124 deposited adjacent to the ruthenium (Ru) layer 122. In an embodiment, the SAF/AFM layer can be coupled to the fixed magnetic layer 114 by an exchange bias and can cause at least a portion of the atoms in the fixed magnetic layer 114 to interact with at least a portion of the atoms in the SAF/AFM layer. Precisely, thereby "pinning" or fixing the magnetic field direction of the magnetic layer 114. Although described as including a tantalum layer 122 and a cobalt/iron layer 124, the SAF layer can include additional or alternative materials that can pin or secure the direction of the magnetic field of the magnetic layer 114. The MTJ device 110 can be electrically coupled to the read bit line 142 through a SAF/AFM layer. Although depicted in FIG. 1, in some embodiments, one or more conductive structures, such as one or more vias, can electrically couple the MTJ device 110 to the read bit line 142.
SHE電極130可包括巨自旋霍爾效應(GSHE)金屬,其包括但不局限於,β-鉭(β-Ta)、β-鎢(β-W)、鉑(Pt)、金(Au)、銀(Ag)、銅(Cu),或其組合或合金。在部分實施方式中,SHE電極130可包括一或多個摻雜物,諸如銥(Ir)、鉍(Bi)、來自3d、4d、5d、4f、或5族之元素的任一種或其組合或合金。 The SHE electrode 130 may include a giant spin Hall effect (GSHE) metal including, but not limited to, β-钽 (β-Ta), β-tungsten (β-W), platinum (Pt), gold (Au). , silver (Ag), copper (Cu), or a combination or alloy thereof. In some embodiments, the SHE electrode 130 can include one or more dopants, such as iridium (Ir), bismuth (Bi), any one of the elements from 3d, 4d, 5d, 4f, or 5, or a combination thereof. Or alloy.
MTJ裝置110可被置放在具有優化之尺寸和厚度的SHE電極130上,以實現高自旋注入。每一個位元胞100之內的SHE電極130可被置放在源極線140上方,在部分實施方式中,可以被圖案化到零金屬(M0)層。一或多個導電結構158,諸如一或多個柱狀通孔,可導電地耦合每一個位元胞100之內的SHE電極130之第一端部132到第一電晶體150之第二擴散區域156。兩端子薄膜選擇器160可在位元胞100之內的SHE電極130之第二端部134和寫入位元線144之間導電地被耦合。 The MTJ device 110 can be placed on the SHE electrode 130 with optimized dimensions and thickness to achieve high spin injection. The SHE electrode 130 within each bit cell 100 can be placed over the source line 140, and in some embodiments, can be patterned into a zero metal (M0) layer. One or more conductive structures 158, such as one or more pillar vias, are electrically coupled to the first end 132 of the SHE electrode 130 within each bit cell 100 to a second diffusion of the first transistor 150 Area 156. The two terminal film selector 160 can be electrically coupled between the second end 134 of the SHE electrode 130 and the write bit line 144 within the bit cell 100.
第一電晶體150可包括能夠控制源極線140和SHE電極130之第一端部132之間的寫入電流的任何組合或數量的裝置或系統。在至少部分實施方式中,一或多個導電結構154,諸如形成或以其他方式被設置在溝槽(例如,TCN)中的一或多個柱狀通孔,可傳播地耦合第一電晶體150之第一擴散區域152(例如,源極)到源極線140。在實施方式中,一或多個導電結構158,諸如一或多個柱狀通孔,可導電地耦合第一電晶體150之第二擴散區域152(例如,汲極)到SHE電極130之第一端部132。在實施方式中,字線146可導電地耦合到第一電晶體150之閘極155,用以控制第一電晶體150之操作。 The first transistor 150 can include any combination or number of devices or systems capable of controlling the write current between the source line 140 and the first end 132 of the SHE electrode 130. In at least some embodiments, one or more conductive structures 154, such as one or more pillar vias formed or otherwise disposed in a trench (eg, TCN), are communicably coupled to the first transistor A first diffusion region 152 (eg, a source) of 150 is coupled to the source line 140. In an embodiment, one or more conductive structures 158, such as one or more column vias, electrically couple the second diffusion region 152 (eg, the drain) of the first transistor 150 to the first of the SHE electrodes 130. One end portion 132. In an embodiment, word line 146 is conductively coupled to gate 155 of first transistor 150 for controlling the operation of first transistor 150.
薄膜選擇器160可包括能夠控制SHE電極130之第二端部134和寫入位元線144之間的寫入電流的任何組合或數量的裝置和/或系統。在實施方式中,薄膜選擇器160可包括,但不局限於,至少一雙向定限開關(OTS)、莫 特氧化物MIT開關、混合離子電子導體開關(MIEC)、高選擇性MIM隧道開關。莫特氧化物開關之實例係為NbO2、Ti2O3、以SmNiO3為基礎的MIT開關。MIEC開關之實例係為以Cu為基礎之硫屬化物。MIM隧道開關之實例係為TaOx/TiO2/TaOx薄膜堆疊。在實施方式中,薄膜選擇器160之特徵在於低偏壓下對電流相對高的電阻和在高偏壓下非常高的電流。部分選擇器材料呈現S形IV且特徵在於低電流,直到跨越薄膜選擇器160之正或負電壓超越定義的臨界值,在其中裝置電壓回跳並且裝置電流藉由負載線受限。在部分實施方式中,薄膜選擇器160可包括,但不局限於,夾在電極之間的無定形硫屬合金(包括至少一種硫屬陰離子和至少一種以上之正電性元素的合金,包括週期表上的所有第16族元素-硫、硒、碲)。在至少部分實施方式中,電極可包括碳電極或含碳電極。在部分實施方式中,薄膜選擇器160之開啟時間可隨著施加電壓(例如,施加電壓大於臨界值可縮短薄膜選擇器之開啟時間)而變化。在部分實施方式中,薄膜選擇器160之關閉時間可隨著施加電壓(例如,施加電壓小於臨界值可縮短薄膜選擇器之關閉時間)而變化。 The thin film selector 160 can include any combination or number of devices and/or systems capable of controlling the write current between the second end 134 of the SHE electrode 130 and the write bit line 144. In an embodiment, the thin film selector 160 may include, but is not limited to, at least one bidirectional limit switch (OTS), a Mote oxide MIT switch, a hybrid ion electronic conductor switch (MIEC), a high selectivity MIM tunnel switch. Examples of Mott oxide switches are NbO2, Ti2O3, SmNiO3-based MIT switches. An example of a MIEC switch is a Cu-based chalcogenide. An example of a MIM tunnel switch is a TaO x /TiO2/TaO x film stack. In an embodiment, the membrane selector 160 is characterized by a relatively high resistance to current at low bias and a very high current at high bias. The partial selector material exhibits a S-shape IV and is characterized by a low current until the positive or negative voltage across the membrane selector 160 exceeds a defined threshold in which the device voltage is rebounded and the device current is limited by the load line. In some embodiments, the membrane selector 160 can include, but is not limited to, an amorphous chalcogenide alloy sandwiched between electrodes (including at least one chalcogen anion and an alloy of at least one positively charged element, including cycles) All of the Group 16 elements on the table - sulfur, selenium, tellurium). In at least some embodiments, the electrode can comprise a carbon electrode or a carbon containing electrode. In some embodiments, the turn-on time of the thin film selector 160 can vary with the application of a voltage (eg, an applied voltage greater than a threshold can shorten the turn-on time of the thin film selector). In some embodiments, the turn-off time of the thin film selector 160 can vary with the applied voltage (eg, the applied voltage is less than the threshold to shorten the turn-off time of the thin film selector).
圖2描繪根據本發明之至少一實施方式的例示性MTJ裝置110,其包括SAF層和設置在示例性SHE電極130上的AFM層。MTJ裝置110之自由磁性層122可被設置在鄰近SHE電極130之中心部分202,其包括或係由使用一或多個巨自旋霍爾效應(GSHE)製造。該GSHE材料 之實例包括但不局限於β-鉭(β-Ta)、β-鎢(β-W)、鉑(Pt)、金(Au)、銀(Ag)、銅(Cu)、或其組合物或合金。在部分實施方式中,SHE電極130之中心部分202可包括一或多個摻雜物,諸如銥(Ir)、鉍(Bi)、來自3d、4d、5d、4f、或5族之元素的任一種或其組合或合金。在部分實施方式中,SHE電極130之第一端部132可包括或使用一或多種導電地導電材料製造,諸如銅、銅合金、鋁、鋁合金、金、金合金、銀、銀合金、鉑、鉑合金、或其組合物。在部分實施方式中,SHE電極130之第二端部134可包括或使用一或多個導電地導電材料製造,諸如銅、銅合金、鋁、鋁合金、金、金合金、銀、銀合金、鉑、鉑合金、或其組合物。用高度導電地導電材料製造SHE電極130之第一端部132和第二端部134中的任一或兩者,有利地減少SHE電極130之電阻並且潛在地允許較低寫入電流水平的使用。 2 depicts an exemplary MTJ device 110 including an SAF layer and an AFM layer disposed on the exemplary SHE electrode 130, in accordance with at least one embodiment of the present invention. The free magnetic layer 122 of the MTJ device 110 can be disposed adjacent the central portion 202 of the SHE electrode 130, which includes or is fabricated using one or more Giant Spin Hall Effects (GSHE). The GSHE material Examples include, but are not limited to, β-tellurium (β-Ta), β-tungsten (β-W), platinum (Pt), gold (Au), silver (Ag), copper (Cu), or combinations thereof or alloy. In some embodiments, the central portion 202 of the SHE electrode 130 can include one or more dopants, such as iridium (Ir), bismuth (Bi), elements from 3d, 4d, 5d, 4f, or 5 One or a combination or alloy thereof. In some embodiments, the first end 132 of the SHE electrode 130 can comprise or be fabricated using one or more electrically conductive materials, such as copper, copper alloys, aluminum, aluminum alloys, gold, gold alloys, silver, silver alloys, platinum. , a platinum alloy, or a combination thereof. In some embodiments, the second end 134 of the SHE electrode 130 can include or be fabricated using one or more electrically conductive materials, such as copper, copper alloys, aluminum, aluminum alloys, gold, gold alloys, silver, silver alloys, Platinum, platinum alloys, or combinations thereof. Fabricating either or both of the first end 132 and the second end 134 of the SHE electrode 130 with a highly electrically conductive material advantageously reduces the resistance of the SHE electrode 130 and potentially allows for lower write current levels. .
自旋極化寫入電流220可在第一方向或第二方向沿著SHE電極130流動,如圖2中所顯示的雙頭箭頭所表示。有利地,寫入電流220不流通過MTJ裝置110,從而允許相對高的寫入電流(例如,100μA或更大)之使用,用以提供快速和可靠的寫入到MTJ裝置110形成MRAM位元胞。與寫入電流220相反,讀取電流230可從讀取位元線142流過並且通過MTJ裝置110,如圖2中所顯示的單頭箭頭所表示。由於寫入電流和讀取電流沿著不同路徑流通過1T-1S-1MTJ-STT-SHE MRAM位元胞100,讀取電流和 寫入電流兩者可有利地選擇其分別的功能。相對高的寫入電流有力地提供快速和可靠的寫入到1T-1S-1MTJ-STT-SHE MRAM位元胞100,相對低的讀取電流(例如,10μA)有利地改善1T-1S-1MTJ-STT-SHE MRAM位元胞100的長期可靠度。 The spin-polarized write current 220 can flow along the SHE electrode 130 in a first direction or a second direction, as indicated by the double-headed arrow shown in FIG. Advantageously, write current 220 does not flow through MTJ device 110, thereby allowing the use of relatively high write currents (e.g., 100 [mu]A or greater) to provide fast and reliable writes to MTJ device 110 to form MRAM bits. Cell. In contrast to the write current 220, the read current 230 can flow from the read bit line 142 and through the MTJ device 110, as indicated by the single-headed arrow shown in FIG. Since the write current and the read current flow through the 1T-1S-1MTJ-STT-SHE MRAM bit cell 100 along different paths, the current is read and Both of the write currents can advantageously select their respective functions. The relatively high write current strongly provides fast and reliable writes to the 1T-1S-1MTJ-STT-SHE MRAM bit cell 100, and the relatively low read current (eg, 10μA) advantageously improves 1T-1S-1MTJ -STT-SHE MRAM bit cell 100 long-term reliability.
圖3描繪根據本發明揭露之至少一實施方式的例示性MTJ裝置110幾何形狀。MTJ裝置110可具有任何形狀、尺寸、或配置。在至少一實施方式中,MTJ裝置110可具有大致橢圓形的覆蓋區。在該實施方式中,MTJ裝置110可具有橢圓形幾何性狀,其特徵在於長軸(或長度)302以及短軸(或寬度)304。在至少部分實施方式中,MTJ裝置110為了適當的自旋注入可沿著SHE電極130之寬度被定向。藉由沿著SHE電極130在第一方向或第二方向上應用自旋極化寫入電流220,二進制數據可被寫入MTJ裝置110。磁性寫入的方向可藉由應用寫入電流之方向被決定。例如,正電流(沿著+y軸)產生具有傳輸方向(沿著+z軸)的自旋注入電流和在+x方向中定向的自旋。 FIG. 3 depicts an exemplary MTJ device 110 geometry in accordance with at least one embodiment of the present disclosure. The MTJ device 110 can have any shape, size, or configuration. In at least one embodiment, the MTJ device 110 can have a generally elliptical footprint. In this embodiment, the MTJ device 110 can have an elliptical geometry characterized by a major axis (or length) 302 and a minor axis (or width) 304. In at least some embodiments, the MTJ device 110 can be oriented along the width of the SHE electrode 130 for proper spin injection. Binary data can be written to the MTJ device 110 by applying a spin-polarized write current 220 along the SHE electrode 130 in either the first direction or the second direction. The direction of magnetic writing can be determined by the direction in which the write current is applied. For example, a positive current (along the +y axis) produces a spin injection current with a transport direction (along the +z axis) and a spin oriented in the +x direction.
圖4描繪GSHE之剖面圖,其闡示了上自旋電流402的方向、下自旋電流404的方向以及由於在沒有外部施加磁場的情況下從在GSHE材料中自旋霍爾效應產生的電荷電流410、412。注入自旋電流產生自旋轉矩,用以對準在+x或-x方向中的磁鐵。用於寫入電子中之電荷電流
()的具有自旋方向之橫向自旋電流可以表示
為:
其中係為自旋霍爾注入效率
(橫向自旋電流到橫向電荷電流之幅度的比例),w係為磁鐵的寬度,t係為GSHE金屬電極的厚度,λ sf 係為在GSE金屬中的自旋翻轉長度,Θ SHE 係為用於GSHE-金屬到FM1介面的自旋霍爾角度。負責自旋轉矩之注入自旋角動量由以下公式給定:
圖5A係為根據本發明揭露之至少一實施方式,描繪實例1T-1S-1MTJ-STT-SHE-MRAM位元胞100上之示例性讀取操作。在讀取操作期間,讀取電流502從讀取位元線142流通過MTJ110、和通過SHE電極130、通過第一電晶體150、到源極線140。在實施方式中,讀取位元線142和源極線140可導電地被耦合到感測放大器(未顯示在圖5A中)。MTJ裝置110之電阻決定使否讀取「低」邏輯值或「高」邏輯值。在實施方式中,讀取電流502可係為約30μA或更小;25μA或更小;20μA或更小;15μA或更小;10μA或更小;5μA或更小。 FIG. 5A depicts an exemplary read operation on the example 1T-1S-1MTJ-STT-SHE-MRAM bit cell 100 in accordance with at least one embodiment of the present disclosure. During a read operation, read current 502 flows from read bit line 142 through MTJ 110, and through SHE electrode 130, through first transistor 150, to source line 140. In an embodiment, the read bit line 142 and the source line 140 are electrically coupled to a sense amplifier (not shown in Figure 5A). The resistance of the MTJ device 110 determines whether or not to read a "low" logic value or a "high" logic value. In an embodiment, the read current 502 can be about 30 μA or less; 25 μA or less; 20 μA or less; 15 μA or less; 10 μA or less; 5 μA or less.
圖5B係為根據本發明揭露之至少一實施方式,描繪實例1T-1S-1MTJ-STT-SHE-MRAM位元胞100上之示例性寫入操作600。寫入電流通過該SHE電極130流動之該方向決定該寫入電流之自旋極化,並且因而決定該自由磁 性層112之該磁場之該方向。為了寫入「低」邏輯值或狀態到MTJ裝置110,寫入電流可在第一方向中流通過SHE電極130。為了寫入「高」邏輯值或狀態到MTJ裝置110,寫入電流可在與第一方向相反之第二方向中流通過SHE電極130。在實施方式中,源極線140和寫入位元線144之間的相對電位差決定寫入電流流通過SHE電極130之方向。 FIG. 5B is an exemplary write operation 600 depicting an example 1T-1S-1MTJ-STT-SHE-MRAM bit cell 100 in accordance with at least one embodiment of the present disclosure. The direction in which the write current flows through the SHE electrode 130 determines the spin polarization of the write current and thus determines the free magnetic The direction of the magnetic field of the layer 112. To write a "low" logic value or state to the MTJ device 110, a write current can flow through the SHE electrode 130 in a first direction. To write a "high" logic value or state to the MTJ device 110, the write current may flow through the SHE electrode 130 in a second direction that is opposite the first direction. In an embodiment, the relative potential difference between the source line 140 and the write bit line 144 determines the direction in which the write current flows through the SHE electrode 130.
在圖5B中所描繪的左1T-1S-1MTJ-STT-SHE MRAM位元胞100A(位元胞“A”)中,源極線140係保持在較寫入位元線144高的電位。在該實例中,寫入電流510流通過薄膜選擇器160、在第一方向512通過SHE電極130、以及通過第一電晶體150。在圖5B所顯示之右1T-1S-1MTJ-STT-SHE MRAM位元胞100B,寫入位元線144係維持在較源極線140高的電位。在該實例中,寫入電流520流通過薄膜選擇器160、在第二方向522通過SHE電極130、以及通過第一電晶體150。 In the left 1T-1S-1MTJ-STT-SHE MRAM bit cell 100A (bit cell "A") depicted in FIG. 5B, the source line 140 is maintained at a higher potential than the write bit line 144. In this example, write current 510 flows through thin film selector 160, through SHE electrode 130 in a first direction 512, and through first transistor 150. In the right 1T-1S-1MTJ-STT-SHE MRAM bit cell 100B shown in FIG. 5B, the write bit line 144 is maintained at a higher potential than the source line 140. In this example, write current 520 flows through thin film selector 160, through SHE electrode 130 in a second direction 522, and through first transistor 150.
圖6A係為根據本發明揭露之至少一實施方式,描繪另一實例1T-1S-1MTJ-STT-SHE-MRAM位元胞100上之示例性讀取操作。如圖6A所描繪,在讀取操作期間,讀取電流602從讀取位元線142流通過MTJ110、和通過SHE電極130、通過薄膜選擇器160、到源極線140。在實施方式中,讀取位元線142和源極線140可導電地被耦合到感測放大器(未顯示在圖6A)。在讀取操作期間,寫入致動線604維持第一電晶體150在關閉或導電地非導 通狀態。MTJ裝置110之電阻決定使否讀取「低」邏輯值或「高」邏輯值。在實施方式中,讀取電流502可係為約30μA或更小;25μA或更小;20μA或更小;15μA或更小;10μA或更小;5μA或更小。 6A is an exemplary read operation depicting another example 1T-1S-1MTJ-STT-SHE-MRAM bit cell 100, in accordance with at least one embodiment of the present disclosure. As depicted in FIG. 6A, during a read operation, read current 602 flows from read bit line 142 through MTJ 110, and through SHE electrode 130, through thin film selector 160, to source line 140. In an embodiment, the read bit line 142 and the source line 140 are electrically coupled to a sense amplifier (not shown in Figure 6A). The write actuation line 604 maintains the first transistor 150 in a closed or conductively non-conductive state during a read operation Pass state. The resistance of the MTJ device 110 determines whether or not to read a "low" logic value or a "high" logic value. In an embodiment, the read current 502 can be about 30 μA or less; 25 μA or less; 20 μA or less; 15 μA or less; 10 μA or less; 5 μA or less.
圖6B係為根據本發明揭露之至少一實施方式,描繪另一實例1T-1S-1MTJ-STT-SHE-MRAM位元胞100上之示例性寫入操作600。在寫入操作期間,寫入致動線604維持第一電晶體150在開啟或導電地導通狀態。寫入電流通過該SHE電極130流動之該方向決定該寫入電流之自旋極化以及因而自由磁性層112的該磁場方向。為了寫入「低」邏輯值或狀態到MTJ裝置110,寫入電流可在第一方向中流通過SHE電極130。為了寫入「高」邏輯值或狀態到MTJ裝置110,寫入電流可在與第一方向相反之第二方向中流通過SHE電極130。在實施方式中,源極線140和寫入位元線144之間的相對電位差決定寫入電流流通過SHE電極130之方向。 6B is an exemplary write operation 600 depicting another example 1T-1S-1MTJ-STT-SHE-MRAM bit cell 100, in accordance with at least one embodiment of the present disclosure. During the write operation, the write actuation line 604 maintains the first transistor 150 in an on or conductively conducting state. The direction in which the write current flows through the SHE electrode 130 determines the spin polarization of the write current and thus the direction of the magnetic field of the free magnetic layer 112. To write a "low" logic value or state to the MTJ device 110, a write current can flow through the SHE electrode 130 in a first direction. To write a "high" logic value or state to the MTJ device 110, the write current may flow through the SHE electrode 130 in a second direction that is opposite the first direction. In an embodiment, the relative potential difference between the source line 140 and the write bit line 144 determines the direction in which the write current flows through the SHE electrode 130.
在圖6B中描繪之左1T-1S-1MTJ-STT-SHE MRAM位元胞100A(位元胞「A」),寫入位元線144係維持在較源極線140高的電位。在該實例中,寫入電流610流通過第一電晶體150、在第一方向612通過SHE電極130、以及通過薄膜選擇器160。在圖6B中描繪之右1T-1S-1MTJ-STT-SHE MRAM位元胞100B,源極線140係維持在較寫入位元線144高的電位。在該實例中,寫入電流620流通過薄膜選擇器160、在第二方向622通過SHE電極130、 以及通過第一電晶體150到源極線140。 In the left 1T-1S-1MTJ-STT-SHE MRAM bit cell 100A (bit cell "A") depicted in FIG. 6B, the write bit line 144 is maintained at a higher potential than the source line 140. In this example, write current 610 flows through first transistor 150, through SHE electrode 130 in first direction 612, and through thin film selector 160. In the right 1T-1S-1MTJ-STT-SHE MRAM bit cell 100B depicted in FIG. 6B, the source line 140 is maintained at a higher potential than the write bit line 144. In this example, the write current 620 flows through the thin film selector 160, passes through the SHE electrode 130 in the second direction 622, And passing through the first transistor 150 to the source line 140.
圖7根據本發明揭露之至少一實施方式描繪示例性陣列700,其包括十六(16)1T-1S-1MTJ-STT-SHE MRAM位元胞100A-100P,諸如圖5A和5B中所描繪和描述。雖然如例示性1T-1S-1MTJ-STT-SHE MRAM位元胞100之4x4陣列所描繪,該陣列700可具有任何數目或配置的1T-1S-1MTJ-STT-SHE MRAM位元胞100。每一個1T-1S-1MTJ-STT-SHE MRAM位元胞100A-100P包括SHE電極130和MTJ裝置110,當組合時其提供三端子裝置。此外,每一個1T-1S-1MTJ-STT-SHE MRAM位元胞包括第一電晶體150和薄膜選擇器160。MTJ裝置110可被連接到讀取位元線142,其可被包括在半導體晶粒之內的金屬層中,諸如半導體晶粒之內的第四金屬(M4)層。SHE電子130可使用一或多個自旋霍爾材料被形成,其包括但不局限於:β-鉭、β-鎢、鉑、或硒化鉍。MTJ裝置110可以被按尺寸、形狀分類,並以正確方向被置放在SHE電極130上用以使得自旋注入。 7 depicts an exemplary array 700 including sixteen (16) 1T-1S-1MTJ-STT-SHE MRAM bit cells 100A-100P, such as depicted in FIGS. 5A and 5B, in accordance with at least one embodiment of the present disclosure. description. Although depicted as a 4x4 array of exemplary 1T-1S-1MTJ-STT-SHE MRAM bit cells 100, the array 700 can have any number or configuration of 1T-1S-1MTJ-STT-SHE MRAM bit cells 100. Each 1T-1S-1MTJ-STT-SHE MRAM bit cell 100A-100P includes a SHE electrode 130 and an MTJ device 110 which, when combined, provides a three terminal device. Further, each 1T-1S-1MTJ-STT-SHE MRAM bit cell includes a first transistor 150 and a thin film selector 160. The MTJ device 110 can be connected to a read bit line 142 that can be included in a metal layer within the semiconductor die, such as a fourth metal (M4) layer within the semiconductor die. The SHE electrons 130 can be formed using one or more spin Hall materials including, but not limited to, beta-ruthenium, beta-tungsten, platinum, or tantalum selenide. The MTJ device 110 can be sized, shaped, and placed on the SHE electrode 130 in the correct orientation for spin injection.
藉由致動字線146用以致動單位元胞100中的第一電晶體150,可發生每一個位元胞100的寫入操作。如上述圖5B中所描繪和描述的,寫入電流510、520流通過分別的位元胞100。由於在每一個位元胞中選擇電晶體之存在和自旋霍爾金屬之分離,在分別的列中的鄰接位元胞100可保持不受干擾。耦合到分別的位元胞100之寫入位元線144之電位藉由取決於輸入數據選擇性地耦合分別的寫入 位元線144到接地(低電位)或者Vcc(高電位)被調整(即,邏輯「1」或邏輯「0」是否係被寫入位元胞)。(分別地)通過位元胞100之寫入電流510、520之方向512、522允許適合的自旋注入MTJ裝置110中。為了執行讀取操作,第一電晶體150可被致動,使得讀取電流502能夠從讀取位元線142流通過MTJ裝置110和通過第一電晶體150,用以檢測MTJ裝置110之電阻。 By actuating word line 146 to actuate first transistor 150 in unit cell 100, a write operation for each bit cell 100 can occur. As depicted and described above in FIG. 5B, write currents 510, 520 flow through respective bit cells 100. The adjacent bit cells 100 in the respective columns can remain undisturbed due to the selection of the presence of the transistor and the separation of the spin Hall metal in each bit cell. The potential of the write bit line 144 coupled to the respective bit cell 100 is adjusted by selectively coupling the respective write bit line 144 to ground (low potential) or V cc (high potential) depending on the input data. (ie, whether logical "1" or logical "0" is written to the bit cell). The appropriate spins are injected into the MTJ device 110 (respectively) by the direction 512, 522 of the write currents 510, 520 of the bit cells 100. To perform a read operation, the first transistor 150 can be actuated such that the read current 502 can flow from the read bit line 142 through the MTJ device 110 and through the first transistor 150 for detecting the resistance of the MTJ device 110. .
陣列700包括用於1T-1S-1MTJ-STT-SHE MRAM位元胞100的每一「列」的分別的源極線140A-140D、分別的讀取位元線142A-142D、以及分別的數據線144A-144D。陣列700也包括分別的字線146A-146B,其每一個被共享在1T-1S-1MTJ-STT-SHE MRAM位元胞100的兩鄰接欄之間。 Array 700 includes separate source lines 140A-140D, respective read bit lines 142A-142D, and respective data for each "column" of 1T-1S-1MTJ-STT-SHE MRAM bit cell 100. Lines 144A-144D. Array 700 also includes respective word lines 146A-146B, each of which is shared between two contiguous columns of 1T-1S-1MTJ-STT-SHE MRAM cells 100.
圖8A係為根據本發明揭露之至少一實施方式,描繪1T-1S-1MTJ-STT-SHE-MRAM位元胞100之例示性配置800之俯視圖。在如圖8所描繪之實施方式中,每一個1T-1S-1MTJ-STT-SHE MRAM位元胞具有一倍半(1-½)之閘極間隔或三(3)倍之半閘極間隔(3F)的第一尺寸810和二倍半(2-½)之源極線140之間距或五(5)倍的半源極線間距的第二尺寸820。在該實施方式中,每一個1T-1S-1MTJ-STT-SHE MRAM位元胞100包括專用的SHE電極130,其不被任何其他1T-1S-1MTJ-STT-SHE MRAM位元胞100共享。 FIG. 8A is a top plan view of an exemplary configuration 800 depicting a 1T-1S-1MTJ-STT-SHE-MRAM bit cell 100 in accordance with at least one embodiment of the present disclosure. In the embodiment depicted in Figure 8, each 1T-1S-1MTJ-STT-SHE MRAM cell has a one-and-a-half (1-1⁄2) gate interval or three (3) times the half gate interval. The second dimension 820 of the first source size 810 and the double half (2-1⁄2) source line 140 is (5F) or five (5) times the half source line pitch. In this embodiment, each 1T-1S-1MTJ-STT-SHE MRAM bit cell 100 includes a dedicated SHE electrode 130 that is not shared by any other 1T-1S-1MTJ-STT-SHE MRAM bit cell 100.
圖8B係為根據本發明之至少一實施方式,描繪在圖 8A中描繪之例示性1T-1S-1MTJ-STT-SHE MRAM位元胞100沿著其剖面線B-B之剖面圖。圖8C係為根據本發明之至少一實施方式,描繪在圖8A中描繪之例示性1T-1S-1MTJ-STT-SHE MRAM位元胞100沿著其剖面線C-C之剖面圖。在係為單元幾何形狀之圖8B和8C中更清楚可見,在其中讀取位元線142被形成、圖案化、或以其他方式沉積在第四金屬(M4)層中、上或周圍,寫入位元線144被形成、圖案化、或以其他方式沉積在第二金屬(M2)層中、上或周圍,源極線140被形成、圖案化、或以其他方式沉積在第零金屬(M0)層中、上或周圍。 Figure 8B is a diagram depicted in accordance with at least one embodiment of the present invention. A cross-sectional view of an exemplary 1T-1S-1MTJ-STT-SHE MRAM bit cell 100 depicted along 8A along its section line B-B. 8C is a cross-sectional view of the exemplary 1T-1S-1MTJ-STT-SHE MRAM cell 100 depicted along FIG. 8A along its section line C-C, in accordance with at least one embodiment of the present invention. It can be seen more clearly in Figures 8B and 8C, which are unit geometry, in which the read bit line 142 is formed, patterned, or otherwise deposited in, on or around the fourth metal (M4) layer, written. The in-bit line 144 is formed, patterned, or otherwise deposited in, on, or around the second metal (M2) layer, and the source line 140 is formed, patterned, or otherwise deposited on the zeroth metal ( M0) In, on or around the layer.
圖9A係為根據本發明揭露之至少一實施方式,描繪1T-1S-1MTJ-STT-SHE-MRAM位元胞100之例示性配置900之俯視圖。在如圖8所描繪之實施方式中,每一個1T-1S-1MTJ-STT-SHE MRAM位元胞具有一倍半(1-½)之閘極間隔或三(3)倍之半閘極間隔(3F)的第一尺寸910和三倍半(3-½)之源極線140之間距或七(7)倍的半源極線間距的第二尺寸920。在該實施方式中,每一個1T-1S-1MTJ-STT-SHE MRAM位元胞100包括專用的SHE電極130,其不被任何其他1T-1S-1MTJ-STT-SHE MRAM位元胞100共享。 9A is a top plan view of an exemplary configuration 900 depicting a 1T-1S-1MTJ-STT-SHE-MRAM bit cell 100 in accordance with at least one embodiment of the present disclosure. In the embodiment depicted in Figure 8, each 1T-1S-1MTJ-STT-SHE MRAM cell has a one-and-a-half (1-1⁄2) gate interval or three (3) times the half gate interval. The second dimension 920 of the first dimension 910 and the triple half (3-1⁄2) source line 140 between (3F) or seven (7) times the half source line spacing. In this embodiment, each 1T-1S-1MTJ-STT-SHE MRAM bit cell 100 includes a dedicated SHE electrode 130 that is not shared by any other 1T-1S-1MTJ-STT-SHE MRAM bit cell 100.
圖9B係為根據本發明之至少一實施方式,描繪在圖9A中描繪之例示性1T-1S-1MTJ-STT-SHE MRAM位元胞100沿著其剖面線B-B之剖面圖。圖9C係為根據本發明之至少一實施方式,描繪在圖9A中描繪之例示性1T-1S- 1MTJ-STT-SHE MRAM位元胞100沿著其剖面線C-C之剖面圖。在係為單元幾何形狀之圖9B和9C中更清楚可見,在其中讀取位元線142被形成、圖案化、或以其他方式沉積在第四金屬(M4)層中、上或周圍,寫入位元線144和源極線140被形成、圖案化、或以其他方式沉積在第零金屬(M0)層中、上或周圍。 9B is a cross-sectional view of the exemplary 1T-1S-1MTJ-STT-SHE MRAM cell 100 depicted along FIG. 9A along its section line B-B, in accordance with at least one embodiment of the present invention. Figure 9C is an illustration of an exemplary 1T-1S- depicted in Figure 9A, in accordance with at least one embodiment of the present invention. 1MTJ-STT-SHE MRAM bit cell 100 is a cross-sectional view along its section line C-C. It can be seen more clearly in Figures 9B and 9C, which are unit geometry, in which the read bit line 142 is formed, patterned, or otherwise deposited in, on or around the fourth metal (M4) layer, written The in-line line 144 and the source line 140 are formed, patterned, or otherwise deposited in, on or around the zeroth metal (M0) layer.
圖10A係根據本發明之至少一實施方式,描繪例示性薄膜(單層或多層)突返選擇器160之電流(安培)對電壓(伏特)之實例曲線圖1000。從圖10A,流通過突返薄膜選擇器160之電流維持相對低的電壓差,跨越薄膜選擇器160從約±0.8V到約±1V。有利地,流通過SHE電極130之該低電流(例如,0.1μA到10μA)不可能導致自由磁性層112之磁場方向的改變。如此,在小於約0.8V到1V之正向或反向電壓差之通過薄膜選擇器160的電流洩漏,其不可能引起自由磁性層112之磁場的方向的改變。然而,在跨越薄膜選擇器160之電壓差大於約±0.8V到約±1V時,流通過薄膜選擇器160之電流可快速地增加到約200μA。即使電壓下降到約±0.8V到約±1V以下,電流也持續增加。高於約100μA之電流流通過SHE電極130可改變自由磁性層112之磁場方向。 FIG. 10A depicts an example graph 1000 of current (amperes) vs. voltage (volts) for an exemplary thin film (single or multi-layer) flashback selector 160, in accordance with at least one embodiment of the present invention. From FIG. 10A, the current flowing through the flashback film selector 160 maintains a relatively low voltage difference across the film selector 160 from about ±0.8V to about ±1V. Advantageously, this low current (eg, 0.1 μA to 10 μA) flowing through the SHE electrode 130 is unlikely to result in a change in the direction of the magnetic field of the free magnetic layer 112. As such, current leakage through the thin film selector 160 at a forward or reverse voltage difference of less than about 0.8V to 1V is unlikely to cause a change in the direction of the magnetic field of the free magnetic layer 112. However, when the voltage difference across the thin film selector 160 is greater than about ±0.8V to about ±1V, the current flowing through the thin film selector 160 can be rapidly increased to about 200μA. Even if the voltage drops to about ±0.8V to about ±1V, the current continues to increase. A current flow above about 100 [mu]A can change the direction of the magnetic field of the free magnetic layer 112 through the SHE electrode 130.
圖10B係根據本發明之至少一實施方式,描繪例示性薄膜(單層或多層)選擇器160之電流(安培)對電壓(伏特)之實例曲線圖1050。從圖10B,流通過突返薄膜選擇器160之電流維持相對低的電壓差(對單層選擇器增 加小於20μA,並且對多層選擇器增加小於約5μA),跨越薄膜選擇器160之電壓差從約±0.8V到約±1V。有利地,流通過SHE電極130之小於約20μA的電流不可能導致自由磁性層112之磁場方向的改變。如此,在小於約0.8V之電壓差之通過薄膜選擇器160的電流洩漏,其不可能引起自由磁性層112之磁場的方向的改變。然而,在跨越薄膜選擇器160之電壓差大於約±0.8V到約±1V時,流通過薄膜選擇器160之電流可快速地增加到約200μA。高於約100μA之電流流通過SHE電極130可改變自由磁性層112之磁場方向。 FIG. 10B depicts an example graph 1050 of current (amperes) vs. voltage (volts) for an exemplary thin film (single or multi-layer) selector 160, in accordance with at least one embodiment of the present invention. From Figure 10B, the current flowing through the flashback film selector 160 maintains a relatively low voltage difference (increased for a single layer selector) Adding less than 20 μA and increasing the multilayer selector by less than about 5 μA), the voltage difference across the thin film selector 160 is from about ±0.8V to about ±1V. Advantageously, a current of less than about 20 [mu]A flowing through the SHE electrode 130 is unlikely to result in a change in the direction of the magnetic field of the free magnetic layer 112. As such, current leakage through the thin film selector 160 at a voltage difference of less than about 0.8V is unlikely to cause a change in the direction of the magnetic field of the free magnetic layer 112. However, when the voltage difference across the thin film selector 160 is greater than about ±0.8V to about ±1V, the current flowing through the thin film selector 160 can be rapidly increased to about 200μA. A current flow above about 100 [mu]A can change the direction of the magnetic field of the free magnetic layer 112 through the SHE electrode 130.
圖11係為根據本發明揭露之至少一實施方式,描繪形成1T-1S-1MTJ-STT-SHE-MRAM位元胞100之高階例示性方法1100。方法1100從1102開始。 11 is a high-order exemplary method 1100 depicting forming a 1T-1S-1MTJ-STT-SHE-MRAM bit cell 100 in accordance with at least one embodiment of the present disclosure. Method 1100 begins at 1102.
在1104,第一電晶體150可被形成在基板中、上、或周圍。第一電晶體150可包括第一擴散區域152(例如,源極)、閘極區155以及第二擴散區域156(例如,汲極)。第一電晶體150可包括金屬氧化物半導體(MOS)電晶體、三閘電晶體、鯺式場效電晶體(FinFET)、環繞式閘極柱形電晶體、或提供電晶體類功能之任何其他目前或未來開發中的裝置、系統、或系統和裝置的組合(例如,奈米碳管、自旋電子裝置、以及類似物)。 At 1104, the first transistor 150 can be formed in, on, or around the substrate. The first transistor 150 can include a first diffusion region 152 (eg, a source), a gate region 155, and a second diffusion region 156 (eg, a drain). The first transistor 150 may include a metal oxide semiconductor (MOS) transistor, a tri-gate transistor, a german-type field effect transistor (FinFET), a wraparound gate column transistor, or any other current function that provides a transistor-like function. Or a device, system, or combination of systems and devices in future development (eg, carbon nanotubes, spintronics, and the like).
在1106,源極線140可被沉積、圖案化或以任何其他方式在第一金屬層中被形成。在至少部分實施方式中, 第一金屬層可包括零金屬(M0)層,例如如同圖1、8A-8C、以及9A-9C所描繪。源極線140可使用任何當前或未來開發的沉積、移除、和/或圖案化技術,在第一金屬層中、上、或周圍被沉積或圖案化。在各種實施方式中,實例沉積技術可包括但不局限於,物理氣相沉積(PVD)、化學氣相沉積(CVD)、電化學沉積(ECD)、分子束磊晶(MBE)、以及原子層沉積(ALD)。在各種實施方式中,實例移除技術可包括但不局限於,濕式蝕刻移除、乾式蝕刻移除、以及化學機械研磨。在各種實施方式中,實例圖案化技術可包括但不局限於,光蝕刻法。 At 1106, source line 140 can be deposited, patterned, or formed in the first metal layer in any other manner. In at least some embodiments, The first metal layer can include a zero metal (M0) layer, such as depicted in Figures 1, 8A-8C, and 9A-9C. Source line 140 may be deposited or patterned in, on, or around the first metal layer using any current or future developed deposition, removal, and/or patterning techniques. In various embodiments, example deposition techniques may include, but are not limited to, physical vapor deposition (PVD), chemical vapor deposition (CVD), electrochemical deposition (ECD), molecular beam epitaxy (MBE), and atomic layers. Deposition (ALD). In various implementations, example removal techniques can include, but are not limited to, wet etch removal, dry etch removal, and chemical mechanical polishing. In various embodiments, example patterning techniques can include, but are not limited to, photolithography.
在1108,第一電晶體150之第一擴散區域152(例如,源極區)可導電地被耦合到源極線140。在部分實施方式中,第一擴散區域152可使用一或多個導電結構154,例如一或多個柱狀通孔,導電地被耦合到源極線140。在至少部分實施方式中,全部或部分的導電結構154可至少部分地被設置在提供進入擴散區域152之溝槽或類似結構之內。 At 1108, a first diffusion region 152 (eg, a source region) of the first transistor 150 is electrically coupled to the source line 140. In some embodiments, the first diffusion region 152 can be electrically coupled to the source line 140 using one or more conductive structures 154, such as one or more pillar vias. In at least some embodiments, all or a portion of the electrically conductive structure 154 can be at least partially disposed within a trench or similar structure that provides access to the diffusion region 152.
在1110,SHE電極130可以被沉積。儘管被描繪為實心矩形構件,SHE電極130可包括使用GSHE材料形成之任何數目或組合的構件,其具有任何三維形狀、三維形狀之組合、和/或三維形狀的幾何形狀。其他SHE電極形狀、尺寸、以及配置可被替代。在部分實施方式,SHE電極130可包括非均質構件。在該實施方式,設置在鄰近 MTJ裝置110的SHE電極130之中心部分202,其可以由任何當前或未來開發的GSHE材料或諸如β-鉭、β-鎢、鉑、硒化鉍或類似物的材料被形成。在該實施方式中,SHE電極130之類似周圍區域204、206的一或多個端部的至少一部分,其可以由提供低電阻或具有高導電性材料之材料製成,例如銅、銀、金。在部分實施方式中,SHE電極130可有利地與一或多個材料摻雜,其包括但不局限於:銥、鉍、3d、4d、5d、4f、以及5f週期群的任何元素、金、銀、鉑、銅、或類似物。 At 1110, the SHE electrode 130 can be deposited. Although depicted as a solid rectangular member, the SHE electrode 130 can comprise any number or combination of members formed using a GSHE material having any three-dimensional shape, a combination of three-dimensional shapes, and/or a three-dimensional shape. Other SHE electrode shapes, sizes, and configurations can be substituted. In some embodiments, the SHE electrode 130 can include a heterogeneous member. In this embodiment, set in proximity The central portion 202 of the SHE electrode 130 of the MTJ device 110, which may be formed from any current or future developed GSHE material or material such as beta-bismuth, beta-tungsten, platinum, strontium selenide or the like. In this embodiment, the SHE electrode 130 is similar to at least a portion of one or more ends of the surrounding regions 204, 206, which may be made of a material that provides a low electrical resistance or a material having a high electrical conductivity, such as copper, silver, gold. . In some embodiments, the SHE electrode 130 can be advantageously doped with one or more materials including, but not limited to: 铱, 铋, 3d, 4d, 5d, 4f, and any element of the 5f periodic group, gold, Silver, platinum, copper, or the like.
在1112,第一電晶體150之第二擴散區域156(例如,汲極)可導電地被耦合到SHE電極130。在部分實施方式中,第二擴散區域156可使用一或多個導電結構158,例如一或多個柱狀通孔,導電地被耦合到SHE電極130。 At 1112, a second diffusion region 156 (eg, a drain) of the first transistor 150 is electrically coupled to the SHE electrode 130. In some embodiments, the second diffusion region 156 can be electrically coupled to the SHE electrode 130 using one or more conductive structures 158, such as one or more pillar vias.
在1114,MTJ裝置110可被形成在至少一部分的SHE電極130。在至少部分實施方式,MTJ裝置110可在SHE電極130之中間點被形成,在導電耦合到第一電晶體150之第二擴散區域156和第二電晶體160之第二擴散區域166之間的位置。MTJ裝置可被設置在鄰近使用一或多個GSHE金屬製造或以其他方式形成的SHE電極130之部分202。在部分實施方式中,MTJ裝置堆疊可包括自由磁性層112、隧道氧化物層116、以及固定磁性層114。在部分實施方式中,MTJ堆疊可另外地包括導電地導通、合成反鐵磁(SAF)層,其有助於固定固定磁性層114之 磁場。在部分實施例中,SAF層可包括但不局限於,釕層122和鈷/鐵層126。在部分實施方式中,MTJ裝置堆疊可另外包括導電地導通、反強磁性層(AFM)126,其被設置鄰近SAF層,與固定磁性層114相反。 At 1114, the MTJ device 110 can be formed on at least a portion of the SHE electrode 130. In at least some embodiments, the MTJ device 110 can be formed at an intermediate point of the SHE electrode 130 between the second diffusion region 156 electrically coupled to the first transistor 150 and the second diffusion region 166 of the second transistor 160. position. The MTJ device can be disposed adjacent to portion 202 of SHE electrode 130 fabricated or otherwise formed using one or more GSHE metals. In some embodiments, the MTJ device stack can include a free magnetic layer 112, a tunnel oxide layer 116, and a fixed magnetic layer 114. In some embodiments, the MTJ stack can additionally include a conductively conductive, synthetic antiferromagnetic (SAF) layer that facilitates fixing the fixed magnetic layer 114 magnetic field. In some embodiments, the SAF layer can include, but is not limited to, a tantalum layer 122 and a cobalt/iron layer 126. In some embodiments, the MTJ device stack can additionally include an electrically conductive, anti-ferromagnetic layer (AFM) 126 disposed adjacent the SAF layer, as opposed to the fixed magnetic layer 114.
在1116,MTJ裝置110之自由磁性層112被耦合到SHE電極130。 At 1116, the free magnetic layer 112 of the MTJ device 110 is coupled to the SHE electrode 130.
在1118,寫入位元線144可被沉積或以其他方式圖案化在半導體晶粒之內的金屬層中。在部分實施方式中,寫入位元線144可以被沉積、圖案化、或以其他方式形成在零金屬(M0)層中。在該實施方式中,寫入位元線144可從任何也可以在零金屬層中被形成的源極線140被隔離。在部分實施方式中,寫入位元線144可以被沉積、圖案化、或以其他方式形成在第二金屬(M2)層中。 At 1118, write bit line 144 can be deposited or otherwise patterned in a metal layer within the semiconductor die. In some embodiments, write bit line 144 can be deposited, patterned, or otherwise formed in a zero metal (M0) layer. In this embodiment, write bit line 144 can be isolated from any source line 140 that can also be formed in a zero metal layer. In some embodiments, write bit line 144 can be deposited, patterned, or otherwise formed in a second metal (M2) layer.
寫入位元線144可使用任何當前或未來開發的沉積、移除、和/或圖案化技術,在金屬層中、上、或周圍被沉積或圖案化。在各種實施方式中,實例沉積技術可包括但不局限於,物理氣相沉積(PVD)、化學氣相沉積(CVD)、電化學沉積(ECD)、分子束磊晶(MBE)、以及原子層沉積(ALD)。在各種實施方式中,實例移除技術可包括但不局限於,濕式蝕刻移除、乾式蝕刻移除、以及化學機械研磨。在各種實施方式中,實例圖案化技術可包括但不局限於,光蝕刻法。 The write bit line 144 can be deposited or patterned in, on, or around the metal layer using any current or future developed deposition, removal, and/or patterning techniques. In various embodiments, example deposition techniques may include, but are not limited to, physical vapor deposition (PVD), chemical vapor deposition (CVD), electrochemical deposition (ECD), molecular beam epitaxy (MBE), and atomic layers. Deposition (ALD). In various implementations, example removal techniques can include, but are not limited to, wet etch removal, dry etch removal, and chemical mechanical polishing. In various embodiments, example patterning techniques can include, but are not limited to, photolithography.
在1120,讀取位元線142可被沉積或以其他方式圖案化在半導體晶粒之內的第四金屬(M4)層中。讀取位 元線142可使用任何當前或未來開發的沉積、移除、和/或圖案化技術,在金屬層中、上、或周圍被沉積或圖案化。在各種實施方式中,實例沉積技術可包括但不局限於,物理氣相沉積(PVD)、化學氣相沉積(CVD)、電化學沉積(ECD)、分子束磊晶(MBE)、以及原子層沉積(ALD)。在各種實施方式中,實例移除技術可包括但不局限於,濕式蝕刻移除、乾式蝕刻移除、以及化學機械研磨。在各種實施方式中,實例圖案化技術可包括但不局限於,光蝕刻法。 At 1120, the read bit line 142 can be deposited or otherwise patterned in a fourth metal (M4) layer within the semiconductor die. Read bit The line 142 can be deposited or patterned in, on, or around the metal layer using any current or future developed deposition, removal, and/or patterning techniques. In various embodiments, example deposition techniques may include, but are not limited to, physical vapor deposition (PVD), chemical vapor deposition (CVD), electrochemical deposition (ECD), molecular beam epitaxy (MBE), and atomic layers. Deposition (ALD). In various implementations, example removal techniques can include, but are not limited to, wet etch removal, dry etch removal, and chemical mechanical polishing. In various embodiments, example patterning techniques can include, but are not limited to, photolithography.
在1122,薄膜選擇器160可以被沉積、圖案化、或以其他方式被形成在半導體經歷之一或多個層中、上、或周圍。薄膜選擇器160可包括能夠控制SHE電極130之第二端部134和寫入位元線144之間的寫入電流的任何組合或數量的裝置和/或系統。在實施方式中,薄膜選擇器160可包括但不局限於,至少一雙向定限開關(OTS)。在實施方式中,薄膜選擇器160可係被表徵為電流具有相對高的電阻,直到跨越薄膜選擇器160之正或負電壓差超過臨界值。 At 1122, the film selector 160 can be deposited, patterned, or otherwise formed in, on, or around one or more layers of the semiconductor experience. The thin film selector 160 can include any combination or number of devices and/or systems capable of controlling the write current between the second end 134 of the SHE electrode 130 and the write bit line 144. In an embodiment, the membrane selector 160 can include, but is not limited to, at least one bidirectional limit switch (OTS). In an embodiment, the thin film selector 160 can be characterized as the current having a relatively high resistance until the positive or negative voltage difference across the thin film selector 160 exceeds a critical value.
在部分實施方式中,薄膜選擇器160可包括但不局限於,藉由薄、無定形硫屬合金層從第二電極被分離之第一電極。在至少部分實施方式中,第一電極和第二電極的任一個或兩者可包括任何數量之碳電極或含碳電極的組合。在部分實施方式中,薄膜選擇器160之開啟時間可隨著施加電壓(例如,施加電壓大於臨界值可縮短薄膜選擇器之 開啟時間)而變化。在部分實施方式中,薄膜選擇器160之關閉時間可隨著施加電壓(例如,施加電壓小於臨界值可縮短薄膜選擇器之關閉時間)而變化。 In some embodiments, the membrane selector 160 can include, but is not limited to, a first electrode that is separated from the second electrode by a thin, amorphous chalcogenide layer. In at least some embodiments, either or both of the first electrode and the second electrode can comprise any number of carbon electrodes or a combination of carbon-containing electrodes. In some embodiments, the turn-on time of the thin film selector 160 can be shortened with the applied voltage (eg, the applied voltage is greater than the critical value to shorten the thin film selector) Change time). In some embodiments, the turn-off time of the thin film selector 160 can vary with the applied voltage (eg, the applied voltage is less than the threshold to shorten the turn-off time of the thin film selector).
在1124,在實施方式中,薄膜選擇器160之第一電極可導電地被耦合到SHE電極130之第二端部134。在實施方式中,第二電極可導電地被耦合到寫入位元線142,使得SHE電極130和寫入位元線142之間的超過大約0.8V的電壓差將引起超過20μA之電流流通過薄膜選擇器160。 At 1124, in an embodiment, a first electrode of thin film selector 160 is electrically coupled to second end 134 of SHE electrode 130. In an embodiment, the second electrode is electrically coupled to the write bit line 142 such that a voltage difference between the SHE electrode 130 and the write bit line 142 exceeding approximately 0.8 V will cause a current flow of more than 20 μA to pass Film selector 160.
在1126,MTJ裝置110之固定磁性層114可直接地或間接地導電地被耦合到讀取位元線142。在部分實施方式中,導電地導通、合成反鐵磁(SAF)層可被設置在固定電極114和讀取位元線142之間。在該實施方式中,SAF層可包括但不局限於,釕層122和鈷/鐵層124。在部分實施方式中,導電地導通、反強磁性(AFM)層126可被設置在SAF層和讀取位元線142之間。在部分實施方式中,一或多個導電結構,例如一或多個通孔120,可導電地耦合MTJ裝置110之AFM層126到讀取位元線142。方法1100在1128結束。 At 1126, the fixed magnetic layer 114 of the MTJ device 110 can be electrically coupled to the read bit line 142, either directly or indirectly. In some embodiments, a conductively conductive, synthetic antiferromagnetic (SAF) layer can be disposed between the fixed electrode 114 and the read bit line 142. In this embodiment, the SAF layer can include, but is not limited to, a tantalum layer 122 and a cobalt/iron layer 124. In some embodiments, a conductively conductive, antiferromagnetic (AFM) layer 126 can be disposed between the SAF layer and the read bit line 142. In some embodiments, one or more conductive structures, such as one or more vias 120, are electrically coupled to the AFM layer 126 of the MTJ device 110 to the read bit line 142. Method 1100 ends at 1128.
圖12係為根據本發明揭露之至少一實施例,描繪實例1T-1S-1MTJ-STT-SHE-MRAM位元胞100之示例性寫入操作的高階流程圖1200。方法1200從1202開始。 12 is a high level flow diagram 1200 depicting an exemplary write operation of the example 1T-1S-1MTJ-STT-SHE-MRAM bit cell 100, in accordance with at least one embodiment of the present disclosure. Method 1200 begins at 1202.
在1204,寫入電流510、520流通過SHE電極130。寫入電流之自旋極化引起藉由在MTJ裝置110中的自由 磁性層112產生磁場,呈現二定義方向中的一者,其至少部分地取決於寫入電流流通過SHE電極130的方向。在實施方式中,藉由自由磁性層112產生之磁場的第一方向可對應到邏輯的「低」狀態或數值,並且藉由自由磁性層112產生之磁場的第二方向可對應到邏輯的「高」狀態或數值。由於寫入電流不流通過MTJ裝置110本身,與在其中寫入電流流通過MTJ裝置110之其他設計相較,較高寫入電流(例如,超過100μA知寫入電流)係為可能。較高電流之使用有利地允許更快的寫入週期,同時寫入錯誤維持在相同或低於可接受誤差水平。 At 1204, write currents 510, 520 flow through SHE electrode 130. The spin polarization of the write current is caused by the freedom in the MTJ device 110 The magnetic layer 112 generates a magnetic field that exhibits one of two defined directions that depends, at least in part, on the direction of the write current flow through the SHE electrode 130. In an embodiment, the first direction of the magnetic field generated by the free magnetic layer 112 may correspond to a logical "low" state or value, and the second direction of the magnetic field generated by the free magnetic layer 112 may correspond to a logical " High state or value. Since the write current does not flow through the MTJ device 110 itself, a higher write current (eg, more than 100 μA known write current) is possible compared to other designs in which the write current flows through the MTJ device 110. The use of higher currents advantageously allows for faster write cycles while the write errors remain at or below the acceptable error level.
在部分實例中,為了將第一邏輯值寫入MTJ裝置110,寫入位元線144之電位可被維持在相較於源極線140之電位較高水平上。在該實例中,寫入電流510可流通過寫入位元線144、通過第一電晶體150、在第一方向512中通過SHE電極130(例如,從SHE電極130之第一端部132到第二端部134)、以及通過第二電晶體160到源極線140。 In some examples, to write the first logic value to the MTJ device 110, the potential of the write bit line 144 can be maintained at a higher level than the potential of the source line 140. In this example, write current 510 can flow through write bit line 144, through first transistor 150, through SHE electrode 130 in first direction 512 (eg, from first end 132 of SHE electrode 130 to The second end 134), and through the second transistor 160 to the source line 140.
在部分實例中,為了將第二邏輯值寫入MTJ裝置110,源極線140之電位可被維持在相較於寫入位元線144之電位較高水平上。在該實例中,寫入電流520可流通過源極線140、通過第二電晶體160、在第二方向522通過SHE電極130(例如,從SHE電極130之第二端部134到第一端部132)並且通過第一電晶體150到寫入位元線144。方法在1206結束。 In some examples, to write the second logic value to the MTJ device 110, the potential of the source line 140 can be maintained at a higher level than the potential of the write bit line 144. In this example, write current 520 may flow through source line 140, through second transistor 160, through SHE electrode 130 in second direction 522 (eg, from second end 134 of SHE electrode 130 to first end) Portion 132) and through the first transistor 150 to the write bit line 144. The method ends at 1206.
圖13係為根據本發明揭露之至少一實施例描繪以處理器為基礎之環境1300,在其中至少一部份的非揮發性儲存可包括1T-1S-1MTJ-STT-SHE-MRAM位元胞100。以處理器為基礎之環境1300包括一或多個以處理器為基礎之裝置1302,其可通訊地被耦合到一或多個非暫態以處理器為基礎之儲存裝置1304。相關的非暫態處理器可讀儲存媒體1304係經由一或多個通訊通道,通訊地被耦合到一或多個以處理器為基礎之裝置1302,例如一或多個高速通訊之並聯纜線、串聯纜線、或無線通道纜線,例如經由BLUETOOTH®、通用序列匯流排(USB)、FIREWIRE®、或類似物。 13 is a processor-based environment 1300 in which at least a portion of the non-volatile storage can include a 1T-1S-1MTJ-STT-SHE-MRAM bit cell, in accordance with at least one embodiment of the present disclosure. 100. The processor-based environment 1300 includes one or more processor-based devices 1302 communicatively coupled to one or more non-transitory processor-based storage devices 1304. The associated non-transitory processor readable storage medium 1304 is communicatively coupled to one or more processor-based devices 1302 via one or more communication channels, such as one or more parallel cables for high speed communication , tandem cable, or wireless channel cable, for example via BLUETOOTH ® , Universal Serial Bus (USB), FIREWIRE ® , or the like.
一或多個以處理器為基礎之裝置1302可以可通訊地被耦合到使用一或多個無線或有線網路介面1360的一或多個外部裝置。實例無線網路介面1360可包括但不局限於,BLUETOOTH®、近場通訊(NFC)、ZigBee、IEEE802.11(Wi-Fi)、3G、4G、LTE、CDMA、GSM、以及其類似物。實例有線網路介面1360可包括但不局限於,IEEE802.3(乙太網路)、以及類似物。除非另有說明,否則圖13中所闡示之各種方塊圖之結構和操作係為常規設計。因此,如熟悉本相關技術領域之人員可以理解的,不需要在本發明中進一步地詳細說明該些方塊圖。 One or more processor-based devices 1302 can be communicatively coupled to one or more external devices using one or more wireless or wired network interfaces 1360. Examples of wireless network interfaces 1360 can include, but are not limited to, BLUETOOTH ®, Near Field Communication (NFC), ZigBee, IEEE802.11 ( Wi-Fi), 3G, 4G, LTE, CDMA, GSM, and the like. The example wired network interface 1360 can include, but is not limited to, IEEE 802.3 (Ethernet), and the like. The structure and operation of the various block diagrams illustrated in Figure 13 are conventional designs unless otherwise stated. Therefore, as will be understood by those skilled in the relevant art, the block diagrams are not required to be further described in detail in the present invention.
以處理器為基礎之系統1300可包括可執行處理器可讀指令之一或多個電路,用以提供任何數量的專用處理電路1312、系統記憶體1314以及系統通訊鏈1316,其雙向 可通訊地耦合包括系統記憶體1314之各種系統元件到處理電路1312。處理電路1312可包括但不局限於,能夠處理一或多個處理器可讀指令集之任何電路,諸如一或多個單或多核心中央處理單位(CPUs)、數位訊號處理器(DSPs)、特殊應用積體電路(ASICs)、場域可程式閘陣列(FPGAs)、單晶片系統(SOCs)。通訊鏈1316可採用任何已知的匯流排結構或架構,包括具有記憶體控制器之記憶體匯流排、週邊匯流排、以及/或區域匯流排。系統記憶體1314包括唯讀記憶體(“ROM”)1318和隨機存取記憶體(“RAM”)1320。在至少部分實施方式中,至少部分的RAM1320包括STT-SHE-MRAM位元胞。在至少部分實施方式中,至少部分的RAM1320包括1T-1S-1MTJ-STT-SHE MRAM位元胞100。可以形成ROM1318的一部份的基本輸出入系統(“BIOS”)1322,其包含可引起以處理器為基礎之裝置1302之內的元件之間的傳輸資訊的基本常式,諸如在啟動期間。 The processor-based system 1300 can include one or more circuits of executable processor readable instructions to provide any number of dedicated processing circuits 1312, system memory 1314, and system communication chains 1316 that are bidirectional The various system components including system memory 1314 are communicatively coupled to processing circuitry 1312. Processing circuitry 1312 may include, but is not limited to, any circuitry capable of processing one or more sets of processor readable instructions, such as one or more single or multiple core central processing units (CPUs), digital signal processors (DSPs), Special application integrated circuits (ASICs), field programmable gate arrays (FPGAs), single chip systems (SOCs). Communication link 1316 can take any known bus structure or architecture, including a memory bus with a memory controller, a peripheral bus, and/or a regional bus. System memory 1314 includes read only memory ("ROM") 1318 and random access memory ("RAM") 1320. In at least some embodiments, at least a portion of RAM 1320 includes STT-SHE-MRAM bit cells. In at least some embodiments, at least a portion of RAM 1320 includes a 1T-1S-1MTJ-STT-SHE MRAM bit cell 100. A basic input-output system ("BIOS") 1322, which may form part of ROM 1318, may contain a basic routine that may cause transmission of information between elements within processor-based device 1302, such as during startup.
以處理器為基礎之裝置1302可包括一或多個磁碟驅動器1324、一或多個光學儲存裝置1328、一或多個磁性儲存裝置1330、以及/或一或多個原子或量子儲存裝置1332。一或多個光學儲存裝置1328可包括但不局限於一或多個CD-ROM驅動器。一或多個磁性儲存裝置可包括但不局限於,磁片或磁盤。一或多個磁碟驅動器1324、一或多個光學儲存裝置1328、一或多個磁性儲存裝置1330、以及一或多個原子/量子儲存裝置1332可包括集成 或離散介面或控制器(未顯示)。 The processor-based device 1302 can include one or more disk drives 1324, one or more optical storage devices 1328, one or more magnetic storage devices 1330, and/or one or more atomic or quantum storage devices 1332 . One or more optical storage devices 1328 can include, but are not limited to, one or more CD-ROM drives. One or more magnetic storage devices may include, but are not limited to, a magnetic disk or a magnetic disk. One or more disk drives 1324, one or more optical storage devices 1328, one or more magnetic storage devices 1330, and one or more atomic/quantum storage devices 1332 may include integration Or discrete interface or controller (not shown).
處理器可讀指令集可全部或部分地被儲存或以其他方式保留在系統記憶體1314中。該處理器可讀指令集可包括但不局限於,操作系統1336、一或多個應用程式1338、其他程式或模組1340以及程式數據1342。儘管在圖13顯示係為被儲存在系統記憶體1314中,操作系統1336、應用程式1338、其他程式/模組1340、程式數據1342以及瀏覽器1344可以被儲存在一或多個磁碟驅動器1324、一或多個光學儲存裝置1328、一或多個磁性儲存裝置1330、以及/或一或多個原子或量子儲存裝置1332中。 The processor readable instruction set may be stored, in whole or in part, or otherwise retained in system memory 1314. The processor readable instruction set can include, but is not limited to, an operating system 1336, one or more applications 1338, other programs or modules 1340, and program data 1342. Although shown in FIG. 13 as being stored in system memory 1314, operating system 1336, application 1338, other programs/modules 1340, program data 1342, and browser 1344 may be stored in one or more disk drives 1324. One or more optical storage devices 1328, one or more magnetic storage devices 1330, and/or one or more atomic or quantum storage devices 1332.
系統使用者可使用一或多個實體輸入裝置1370輸入命令和資訊到以處理器為基礎之裝置1302中。實例實體輸入裝置1370包括但不局限於,一或多個鍵盤1372、一或多個觸控式螢幕I/O裝置1374、一或多個音訊輸入裝置1376(例如,麥克風)以及/或一或多個指向裝置1378。該些和其他實體輸入裝置1350可通過一或多個有線或無線介面可溝通地被耦合到以處理器為基礎之裝置1302,諸如通用序列匯流排(USB)連接和/或無線BLUETOOTH®連接。 The system user can use one or more physical input devices 1370 to enter commands and information into the processor-based device 1302. The example entity input device 1370 includes, but is not limited to, one or more keyboards 1372, one or more touch screen I/O devices 1374, one or more audio input devices 1376 (eg, microphones), and/or one or A plurality of pointing devices 1378. The plurality of input devices and other entities may communicate with the interface 1350 may be coupled to the processor-based device 1302 through one or more wired or wireless, such as Universal Serial Bus (USB) connection and / or BLUETOOTH ® wireless connector.
系統使用者可經由一或多個實體輸出裝置1380,從以處理器為基礎之裝置1302接收輸出。實例實體輸出裝置1380可包括但不局限於,一或多個視覺或視訊輸出裝置1382、一或多個觸覺或觸感輸出裝置1384、以及/或一 或多個音訊輸出裝置1386。一或多個視訊或視覺輸出裝置1382、一或多個觸覺輸出裝置1384、以及一或多個音訊輸出裝置1386可經由一或多介面或轉接器,可通訊地被耦合到通訊鏈1316。 The system user can receive output from the processor-based device 1302 via one or more physical output devices 1380. The instance entity output device 1380 can include, but is not limited to, one or more visual or video output devices 1382, one or more haptic or tactile output devices 1384, and/or a Or a plurality of audio output devices 1386. One or more video or visual output devices 1382, one or more haptic output devices 1384, and one or more audio output devices 1386 can be communicatively coupled to communication link 1316 via one or more interfaces or adapters.
以下實例涉及之實施例使用本發明所描述之部分或全部描述的1T-1S-1MTJ-STT-SHE MRAM位元胞設備、系統、以及方法。所包含之實例不應該被視為窮舉無遺,所附之實例也不應該被解釋為屏除本發明所揭露之系統、方法、以及設備以及在此並無具體列舉之其他組合。 The following examples relate to embodiments using the 1T-1S-1MTJ-STT-SHE MRAM bit cell device, system, and method described in part or in full. The examples are not to be considered as exhaustive, and the examples are not to be construed as limiting the systems, methods, and apparatus disclosed herein, and other combinations not specifically enumerated herein.
根據實例1,提供了一電晶體、一選擇器、一磁性隧道接面(1T-1S-1MTJ)、自旋轉矩轉移(STT)、自旋霍爾效應(SHE)磁阻式隨機存取記憶體(MRAM)設備。1T-1S-1MTJ-STT-SHE MRAM裝置可包括自旋霍爾效應(SHE)電極。1T-1S-1MTJ-STT-SHE MRAM裝置可另外包括第一電晶體和薄膜選擇器。1T-1S-1MTJ-STT-SHEMRAM設備可另外包括磁性隧道接面(MTJ)裝置,在其中該MTJ裝置包括在到第一電晶體之該導電耦合與到薄膜選擇器之該導電耦合之間的位置,導電地被耦合到該SHE電極的自由磁性層。 According to the example 1, a transistor, a selector, a magnetic tunnel junction (1T-1S-1MTJ), spin torque transfer (STT), and spin Hall effect (SHE) magnetoresistive random access are provided. Memory (MRAM) device. The 1T-1S-1MTJ-STT-SHE MRAM device can include a spin Hall effect (SHE) electrode. The 1T-1S-1MTJ-STT-SHE MRAM device may additionally include a first transistor and a thin film selector. The 1T-1S-1MTJ-STT-SHEMRAM device can additionally include a magnetic tunnel junction (MTJ) device, wherein the MTJ device includes between the conductive coupling to the first transistor and the conductive coupling to the thin film selector. Position, electrically coupled to the free magnetic layer of the SHE electrode.
實例2可包括實例1之元件,其中第一電晶體導電地被耦合在SHE電極和源極線之間、第一電晶體藉由字線被控制、以及其中薄膜選擇器導電地被耦合在SHE電極和寫入位元線之間。 Example 2 can include the component of Example 1, wherein the first transistor is conductively coupled between the SHE electrode and the source line, the first transistor is controlled by a word line, and wherein the thin film selector is electrically coupled to the SHE Between the electrode and the write bit line.
實例3可包括實例1之元件,其中第一電晶體導電地 被耦合在SHE電極和寫入位元線之間、第一電晶體藉由寫入致動線被控制、以及薄膜選擇器導電地被耦合在SHE電極和源極線之間。 Example 3 can include the component of Example 1, wherein the first transistor is electrically conductive Coupled between the SHE electrode and the write bit line, the first transistor is controlled by the write actuator line, and the thin film selector is conductively coupled between the SHE electrode and the source line.
實例4可包括實例2之元件,其中MTJ裝置可包括導電地耦合到讀取位元線的固定磁性層。 Example 4 can include the elements of Example 2, wherein the MTJ device can include a fixed magnetic layer that is electrically coupled to the read bit line.
實例5可包括實例4之元件,其中寫入位元線和讀取位元線可被形成在二不同金屬層。 Example 5 can include the elements of Example 4, wherein the write bit line and the read bit line can be formed in two different metal layers.
實例6可包括實例1之元件,其中SHE電極可包括具有第一端部和相反的第二端部的SHE材料、其中第一電晶體可導電地耦合到SHE電極的第一端部、以及其中薄膜選擇器可導電地耦合到SHE電極之第二端部。 Example 6 can include the element of Example 1, wherein the SHE electrode can include a SHE material having a first end and an opposite second end, wherein the first transistor is electrically conductively coupled to the first end of the SHE electrode, and wherein A membrane selector is electrically coupled to the second end of the SHE electrode.
實例7可包括實例1之元件,其中源極線可被形成在零金屬(M0)層。 Example 7 can include the element of Example 1, wherein the source line can be formed in a zero metal (M0) layer.
實例8可包括實例1之元件,其中該第一電晶體、該SHE電極、以及該薄膜選擇器在寫入操作期間形成可逆電路。 Example 8 can include the component of Example 1, wherein the first transistor, the SHE electrode, and the thin film selector form a reversible circuit during a write operation.
實例9可包括實例8之元件,其中在第一方向中的電流通過該SHE電極在該MTJ裝置中,以與在該MTJ裝置中的固定磁性平行對準放置該自由磁性,其放置該MTJ裝置在低電阻狀態。 Example 9 can include the element of Example 8, wherein a current in a first direction is passed through the SHE electrode in the MTJ device to place the free magnetic parallel alignment with a fixed magnetic in the MTJ device, the MTJ device being placed In a low resistance state.
實例10可包括實例9之元件,其中在與該第一方向相反之第二方向中的電流,通過該SHE電極在該MTJ裝置中,在其中在第一方向中的電流通過該SHE電極在該MTJ裝置中,以與在該MTJ裝置中的固定磁性逆平行對 準放置該自由磁性,其放置該MTJ裝置在高電阻狀態。 Example 10 can include the element of Example 9, wherein a current in a second direction opposite the first direction passes through the SHE electrode in the MTJ device, wherein a current in the first direction passes through the SHE electrode at In the MTJ device, in anti-parallel pair with the fixed magnetic field in the MTJ device The free magnetism is placed, which places the MTJ device in a high resistance state.
實例11可包括實例1到10之任一元件,其中SHE電極包含圖案化的SHE電極。 Example 11 can include any of the components of Examples 1 through 10, wherein the SHE electrode comprises a patterned SHE electrode.
實例12可包括實例11之元件,其中SHE電極可包括β-鉭(β-Ta)、β-鎢(β-W)、鉑(Pt)、或銅(Cu)。 Example 12 can include the elements of Example 11, wherein the SHE electrode can include β-钽 (β-Ta), β-tungsten (β-W), platinum (Pt), or copper (Cu).
實例13可包括實例12之元件,其中SHE電極可包括從以下所構成之群組選擇的一或多個摻雜物:銥、鉍、任何3D同族元素、任何4D同族元素、任何5D同族元素、任何4F同族元素、任何5F同族元素、銀、金、銅、以及鉑。 Example 13 can include the elements of Example 12, wherein the SHE electrode can comprise one or more dopants selected from the group consisting of: ruthenium, osmium, any 3D congener element, any 4D congener element, any 5D congener element, Any 4F congener element, any 5F congener element, silver, gold, copper, and platinum.
實例14可包括實例1到10之任一元件,其中SHE電極可包括具有寬度和長度之橢圓圖案的MTJ裝置。 Example 14 can include any of the elements of Examples 1 through 10, wherein the SHE electrode can include an MTJ device having an elliptical pattern of width and length.
實例15可包括實例4到10之任一元件,其中MTJ裝置可物理地被設置在包括源極線之零金屬層和至少包括位元線和數據線之第二金屬層之間,以及其中源極線、位元線、以及數據線平行於彼此。 Example 15 can include any of the components of Examples 4 through 10, wherein the MTJ device can be physically disposed between a zero metal layer comprising a source line and a second metal layer comprising at least a bit line and a data line, and wherein the source The polar lines, bit lines, and data lines are parallel to each other.
實例16可包括實例4到10之任一元件,其中薄膜選擇器可包括氧化鈮(NbOx)薄膜選擇器。 Example 16 may include any one of Examples 4-10 of the element, wherein the selector may comprise a thin film of niobium oxide (NbO x) film selector.
實例17可包括實例16之元件,其中氧化鈮(NbOx)薄膜選擇器可包括單層氧化鈮(NbOx)薄膜選擇器。 Example 17 Example 16 may include a member of which the niobium oxide (NbO x) may comprise a single layer film selected niobium oxide (NbO x) film selector.
實例18可包括實例16之元件,其中氧化鈮(NbOx)薄膜選擇器可包括多層氧化鈮(NbOx)薄膜選 擇器。 Examples may include 18 instances of element 16, wherein a niobium oxide (NbO x) may comprise a multilayer film selective niobium oxide (NbO x) film selector.
實例19可包括申請專利範圍4到10之任一元件,其中薄膜選擇器可包括具有約0.7伏特之開啟電壓的薄膜選擇器。 Example 19 can include any of the components of claims 4 through 10, wherein the membrane selector can include a membrane selector having an opening voltage of about 0.7 volts.
根據實例20,提供了一電晶體、一選擇器、一磁性隧道接面(1T-1S-1MTJ)、自旋轉矩轉移(STT)、自旋霍爾效應(SHE)磁阻式隨機存取記憶體(MRAM)方法。方法可進一步包括形成具有源極區、汲極區、以及閘極區的第一電晶體,在第一金屬層中形成源極線,並導電地耦合第一電晶體之源極區到源極線。方法也可進一步包括形成SHE電極並且導電地耦合第一電晶體之汲極到SHE電極。方法可包括形成MTJ裝置,其包括自由磁性層和固定磁性層,並且導電地耦合MTJ裝置之自由磁性層到SHE電極。方法可進一步包括在第二金屬層中形成寫入位元線和形成讀取位元線。方法也可包括形成薄膜選擇器,和在SHE電極之間導電地耦合薄膜選擇器和到寫入位元線,以及導電地耦合MTJ裝置之固定磁性層用以讀取位元線。 According to Example 20, a transistor, a selector, a magnetic tunnel junction (1T-1S-1MTJ), spin torque transfer (STT), and spin Hall effect (SHE) magnetoresistive random access are provided. Memory (MRAM) method. The method can further include forming a first transistor having a source region, a drain region, and a gate region, forming a source line in the first metal layer, and electrically coupling the source region to the source of the first transistor line. The method can also further include forming a SHE electrode and electrically coupling the drain of the first transistor to the SHE electrode. The method can include forming an MTJ device comprising a free magnetic layer and a fixed magnetic layer and electrically coupling the free magnetic layer of the MTJ device to the SHE electrode. The method can further include forming a write bit line and forming a read bit line in the second metal layer. The method can also include forming a thin film selector, and electrically coupling the thin film selector and the write bit line between the SHE electrodes, and conductively coupling the fixed magnetic layer of the MTJ device for reading the bit lines.
實例21可包括實例20之元件,並且可進一步包括導電地耦合第一電晶體之閘極區到字線。 Example 21 can include the elements of Example 20, and can further include electrically conductively coupling a gate region of the first transistor to the word line.
實例22可包括實例20之元件,以及其中導電地耦合MTJ裝置之自由磁性層到SHE電極可包括,在該第一電晶體之該汲極區與該薄膜選擇器之間的點,導電地耦合該MTJ裝置之該自由磁性層到該SHE電極。 Example 22 can include the elements of Example 20, and wherein the free magnetic layer that electrically couples the MTJ device to the SHE electrode can include electrically conductively coupled at a point between the drain region of the first transistor and the thin film selector The free magnetic layer of the MTJ device is to the SHE electrode.
實例23可包括實例20之元件,並且可另外包括導電地耦合至少一額外MTJ裝置之自由磁性層到該SHE電極。 Example 23 can include the elements of Example 20, and can additionally include a free magnetic layer that electrically couples at least one additional MTJ device to the SHE electrode.
實例24可包括實例20之元件,其中形成MTJ裝置可包括形成具有長度和寬度之一般的橢圓形MTJ裝置。 Example 24 can include the elements of Example 20, wherein forming the MTJ device can include forming a generally elliptical MTJ device having a length and a width.
實例25可包括實例20到2242之任一元件,其中在第一金屬層形成源極線包括在零金屬(M0)層形成源極線。 Example 25 can include any of the elements of Examples 20 through 2242, wherein forming the source line in the first metal layer comprises forming a source line in the zero metal (M0) layer.
實例26可包括實例25之元件,其中在第二金屬層形成讀取位元線可包括在第四金屬(M4)層形成讀取位元線。 Example 26 can include the element of example 25, wherein forming the read bit line in the second metal layer can include forming a read bit line in the fourth metal (M4) layer.
實例27可包括實例26之元件,其中形成寫入位元線可包括在零金屬(M0)層形成寫入位元線。 Example 27 can include the elements of example 26, wherein forming the write bit line can include forming a write bit line at the zero metal (M0) layer.
實例28可包括實例26之元件,其中形成寫入位元線可包括在第二金屬(M2)層形成寫入位元線。 Example 28 can include the element of example 26, wherein forming the write bit line can include forming a write bit line at the second metal (M2) layer.
實例29可包括實例20之元件,其中形成SHE電極可包括形成包括β-鉭(β-Ta)、β-鎢(β-W)、鉑(Pt)、或銅(Cu)的SHE電極。 Example 29 can include the element of Example 20, wherein forming the SHE electrode can include forming a SHE electrode comprising beta-tellurium (beta-Ta), beta-tungsten (beta-W), platinum (Pt), or copper (Cu).
實例30可包括實例29之元件,其中形成SHE電極可進一步包括形成SHE電極,其包括從以下之群組選擇的一或多個摻雜物:銥、鉍、任何3D同族元素、任何4D同族元素、任何5D同族元素、任何4F同族元素、任何5F同族元素、銀、金、銅、以及鉑。 Example 30 can include the element of Example 29, wherein forming the SHE electrode can further comprise forming a SHE electrode comprising one or more dopants selected from the group consisting of: 铱, 铋, any 3D congener, any 4D congener Any 5D congener element, any 4F congener element, any 5F congener element, silver, gold, copper, and platinum.
根據實例31,提供了一電晶體、一選擇器、一磁性 隧道接面(1T-1S-1MTJ)、自旋轉矩轉移(STT)、自旋霍爾效應(SHE)磁阻式隨機存取記憶體(MRAM)方法。方法可包括選擇性地寫入二元數值到MRAM單元,其包括耦合到SHE電極的MTJ。方法可包括引起寫入電流在以下任一方向流通過電極,耦合到SHE電極的MTJ:放置在第一狀態中磁性地耦合到SHE電極之MTJ裝置之電阻值的第一方向,或放置在不同於第一狀態之第二狀態中磁性地耦合到SHE電極之MTJ裝置之電阻值的第二方向。 According to example 31, a transistor, a selector, a magnetic Tunnel junction (1T-1S-1MTJ), spin torque transfer (STT), spin Hall effect (SHE) magnetoresistive random access memory (MRAM) method. The method can include selectively writing a binary value to an MRAM cell that includes an MTJ coupled to the SHE electrode. The method can include causing the write current to flow through the electrode in either of the following directions, the MTJ coupled to the SHE electrode: placing the first direction of the resistance value of the MTJ device magnetically coupled to the SHE electrode in the first state, or placing it differently The second direction of the resistance value of the MTJ device of the SHE electrode is magnetically coupled in the second state of the first state.
實例32可包括實例31之元件,其中選擇性地引起寫入電流在第一方向流通過自旋霍爾效應電極,其可包括選擇性地引起該寫入電流從源極線通過第一電晶體、在該第一方向中通過該SHE電極、以及通過薄膜選擇器流到較該源極線電位低的寫入位元線。 Example 32 can include the element of example 31, wherein selectively causing a write current to flow through the spin Hall effect electrode in a first direction, can include selectively causing the write current to pass from the source line through the first transistor And flowing through the SHE electrode in the first direction and through the thin film selector to a write bit line having a lower potential than the source line.
實例33可包括實例32之元件,其中選擇性地引起寫入電流在第二方向流通過自旋霍爾效應電極,其可包括選擇性地引起該寫入電流從寫入位元線通過薄膜選擇器、在第二方向中通過SHE電極、以及通過第一電晶體流到叫該寫入位元線電位低的源極線。 Example 33 can include the element of example 32, wherein selectively causing a write current to flow through the spin Hall effect electrode in a second direction, which can include selectively causing the write current to pass from the write bit line through the thin film selection The device passes through the SHE electrode in the second direction and flows through the first transistor to a source line having a low potential of the write bit line.
實例34可包括實例32或33之任一元件,其中寫入電流通過SHE電極約10奈秒(ns)。 Example 34 can include any of the elements of Example 32 or 33, wherein the write current passes through the SHE electrode for about 10 nanoseconds (ns).
實例35可包括實例31之元件,並且可另外包括從包括耦合到SHE電極之MTJ之MRAM單元,藉由引起讀取電流流通過MTJ,選擇性地讀取二元數值。 Example 35 can include the elements of Example 31, and can additionally include selectively reading binary values from the MRAM cell including the MTJ coupled to the SHE electrode by causing a read current flow through the MTJ.
實例36可包括實例35之元件,其中藉由引起讀取電流流通過,選擇型地從MRAM單元MTJ讀取二元數值,其可選擇性地引起讀取電流從讀取位元線通過MTJ、通過SHE電極、以及通過第一電晶體流到源極線。 Example 36 can include the component of example 35, wherein the binary value is selectively read from the MRAM cell MTJ by causing a read current flow to pass, which can selectively cause the read current to pass from the read bit line through the MTJ, Flows through the SHE electrode and through the first transistor to the source line.
實例37可包括實例35或36之任一元件,其中藉由引起讀取電流流通過MTJ,從MRAM單元選擇性地讀取二元數值,其可包括寫入位元線之電位浮動。 Example 37 can include any of the elements of example 35 or 36, wherein the binary value is selectively read from the MRAM cell by causing a read current flow through the MTJ, which can include a potential floating of the write bit line.
實例38可包括實例36之元件,其中寫入電流可包括比讀取電流之電流值大至少五倍的電流值。 Example 38 can include the component of example 36, wherein the write current can comprise a current value that is at least five times greater than a current value of the read current.
實例39可包括實例36之元件,其中寫入電流可係為大約100μA並且讀取電流可係為大約10μA。 Example 39 can include the elements of Example 36, wherein the write current can be about 100 μA and the read current can be about 10 μA.
根據實例40,提供了一電晶體、一選擇器、一磁性隧道接面(1T-1S-1MTJ)、自旋轉矩轉移(STT)、自旋霍爾效應(SHE)、磁阻式隨機存取記憶體(MRAM)系統。系統可包括裝置,用於選擇性地將二元數值寫入到MRAM單元,其包括藉由導致寫入電流在以下任一方向流通過電極,耦合到SHE電極的MTJ:放置在第一狀態中磁性地耦合到SHE電極之MTJ裝置之電阻值的第一方向,或放置在不同於第一狀態之第二狀態中磁性地耦合到SHE電極之MTJ裝置之電阻值的第二方向。 According to the example 40, a transistor, a selector, a magnetic tunnel junction (1T-1S-1MTJ), a spin torque transfer (STT), a spin Hall effect (SHE), and a magnetoresistive random memory are provided. Take the memory (MRAM) system. The system can include means for selectively writing a binary value to the MRAM cell, the MTJ coupled to the SHE electrode by causing the write current to flow through the electrode in any of the following directions: placed in the first state A first direction of resistance value magnetically coupled to the MTJ device of the SHE electrode, or a second direction of resistance value of the MTJ device magnetically coupled to the SHE electrode in a second state different from the first state.
實例41可包括實例40之元件,其中選擇性地引起寫入電流在第一方向流通過自旋霍爾效應電極之方法,其可包括選擇性地引起該寫入電流從源極線通過第一電晶體、在該第一方向中通過該SHE電極、以及通過薄膜選擇器 流到較該源極線電位低的寫入位元線之方法。 Example 41 can include the element of example 40, wherein the method of selectively causing a write current to flow through the spin Hall effect electrode in a first direction, can include selectively causing the write current to pass from the source line through the first a transistor, passing the SHE electrode in the first direction, and passing through a membrane selector A method of flowing to a write bit line that is lower than the source line potential.
實例42可包括實例41之元件,其中選擇性地引起寫入電流從源極線通過第一電晶體、在第一方向通過SHE電極、以及通過薄膜選擇器流到較該源極線電位低的寫入位元線之方法,其包括選擇性地引起至少100μA之寫入電流從源極線通過第一電晶體、在第一方向通過SHE電極、並且通過薄膜選擇器流到較源極線電位低的寫入位元線之方法。 Example 42 can include the element of example 41, wherein selectively causing a write current to flow from the source line through the first transistor, through the SHE electrode in a first direction, and through the thin film selector to a lower potential than the source line A method of writing a bit line, comprising selectively causing a write current of at least 100 μA to pass from a source line through a first transistor, through a SHE electrode in a first direction, and through a thin film selector to a source line potential A low method of writing bit lines.
實例43可包括實例41或42之任一元件,其中選擇性地引起寫入電流從源極線通過第一電晶體、在第一方向通過SHE電極、以及通過薄膜選擇器流到較該源極線電位低的寫入位元線之方法,其包括選擇性地引起寫入電流最大10奈秒(ns)地從源極線通過第一電晶體、在第一方向通過SHE電極、並且通過薄膜選擇器流到較源極線電位低的寫入位元線之方法。 Example 43 can include any of the elements of example 41 or 42, wherein selectively causing a write current to flow from the source line through the first transistor, through the SHE electrode in a first direction, and through the thin film selector to the source A method of writing a bit line with a low line potential, comprising selectively causing a write current to pass from a source line through a first transistor, a first direction through a SHE electrode, and through a thin film at a maximum of 10 nanoseconds (ns) The selector flows to a write bit line that has a lower potential than the source line.
實例44可包括實例40之元件,其中選擇性地引起寫入電流在第二方向流通過自旋霍爾效應電極之方法,其可包括選擇性地引起該寫入電流從寫入位元線通過薄膜選擇器、在第二方向中通過SHE電極、以及通過第一電晶體流到較該寫入位元線電位低的源極線之方法。 Example 44 can include the element of example 40, wherein the method of selectively causing a write current to flow through the spin Hall effect electrode in a second direction can include selectively causing the write current to pass from the write bit line The thin film selector, the method of flowing through the SHE electrode in the second direction, and flowing through the first transistor to a source line having a lower potential than the write bit line.
實例45可包括實例44之元件,其中選擇性地引起寫入電流從寫入位元線通過薄膜選擇器、在第二方向通過SHE電極、以及通過第一電晶體流到較該寫入位元線電位低的源極線之方法,其可包括用於選擇性地引起至少 100μA之寫入電流從寫入位元線通過薄膜選擇器、在第二方向通過SHE電極、以及通過第一電晶體流到較該寫入位元線電位低的源極線之方法。 Example 45 can include the component of example 44, wherein selectively causing a write current to flow from the write bit line through the thin film selector, through the SHE electrode in the second direction, and through the first transistor to the write bit a method of a source line having a low line potential, which may include selectively causing at least A write current of 100 μA flows from the write bit line through the thin film selector, through the SHE electrode in the second direction, and through the first transistor to a source line having a lower potential than the write bit line.
實例46可包括實例44或45之任一元件,其中選擇性地引起寫入電流從寫入位元線通過薄膜選擇器、在第二方向通過SHE電極、以及通過第一電晶體流到較該寫入位元線電位低的源極線之方法,其可包括用於選擇性地引起寫入電流最大10奈秒(ns)地從寫入位元線通過薄膜選擇器、在第二方向通過SHE電極、以及通過第一電晶體流到較該寫入位元線電位低的源極線之方法。 Example 46 can include any of the elements of example 44 or 45, wherein selectively causing write current to flow from the write bit line through the thin film selector, through the SHE electrode in the second direction, and through the first transistor A method of writing a source line having a low potential of a bit line, which may include selectively causing a write current to be maximally 10 nanoseconds (ns) from a write bit line through a film selector, passing in a second direction The SHE electrode, and a method of flowing through the first transistor to a source line having a lower potential than the write bit line.
實例47可包括實例40之元件,並且可另外包括從包括耦合到SHE電極之MTJ之MRAM單元選擇性地讀取二元數值之方法。 Example 47 can include the elements of example 40, and can additionally include a method of selectively reading binary values from an MRAM cell that includes an MTJ coupled to the SHE electrode.
實例48可包括實例47之元件,其中選擇性地從MRAM單元MTJ讀取二元數值之方法,其可選擇性地引起讀取電流從讀取位元線通過MTJ、通過SHE電極、以及通過第一電晶體流到源極線之方法。 Example 48 can include the element of example 47, wherein the method of selectively reading a binary value from the MRAM cell MTJ can selectively cause a read current to pass from the read bit line through the MTJ, through the SHE electrode, and through the A method of flowing a transistor to a source line.
在此使用的術語和表達被用作描述性而非限制性之術語,並且在使用這些術語和表達時,並不意圖排除和所闡示和描述特徵(或其部分)之任何同等物,並且可被理解的是在申請專利範圍之範疇內的各種修改係為可能。因此,申請專利範圍旨在覆蓋所有該同等物。 The terms and expressions used herein are used to describe and not to limit the terms, and the use of such terms and expressions are not intended to exclude and describe any equivalents of the features (or portions thereof) and It will be understood that various modifications are possible within the scope of the patent application. Therefore, the scope of the patent application is intended to cover all such equivalents.
100‧‧‧磁阻式隨機存取記憶體位元胞 100‧‧‧Magnetoresistive random access memory location cells
110‧‧‧磁性隧道接面裝置 110‧‧‧Magnetic tunnel junction device
112‧‧‧自由磁性層 112‧‧‧ free magnetic layer
114‧‧‧固定磁性層 114‧‧‧Fixed magnetic layer
116‧‧‧氧化物 116‧‧‧Oxide
122‧‧‧釕 122‧‧‧钌
124‧‧‧鈷/鐵 124‧‧‧cobalt/iron
126‧‧‧反強磁性層 126‧‧‧anti-magnetic layer
130‧‧‧自旋霍爾效應(SHE)電極 130‧‧‧ Spin Hall Effect (SHE) Electrode
132‧‧‧第一端部 132‧‧‧First end
134‧‧‧第二端部 134‧‧‧second end
140‧‧‧源極線 140‧‧‧ source line
142‧‧‧讀取位元線 142‧‧‧Read bit line
144‧‧‧寫入位元線 144‧‧‧Write bit line
146‧‧‧字線 146‧‧‧ word line
150‧‧‧第一電晶體 150‧‧‧First transistor
152‧‧‧擴散區域 152‧‧‧Diffusion area
154‧‧‧導電結構 154‧‧‧Electrical structure
155‧‧‧閘極 155‧‧‧ gate
156‧‧‧擴散區域 156‧‧‧Diffusion area
158‧‧‧導電結構 158‧‧‧Electrical structure
160‧‧‧薄膜選擇器 160‧‧‧Film Selector
Claims (25)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/052357 WO2017052622A1 (en) | 2015-09-25 | 2015-09-25 | Spin hall effect mram with thin-film selector |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201724594A true TW201724594A (en) | 2017-07-01 |
Family
ID=58387014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105126395A TW201724594A (en) | 2015-09-25 | 2016-08-18 | Spin hall effect MRAM with thin-film selector |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201724594A (en) |
WO (1) | WO2017052622A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108344956A (en) * | 2018-01-23 | 2018-07-31 | 湖北工业大学 | Application circuit based on autoexcitation single electron spin electromagnetic crystals pipe |
US10600463B2 (en) | 2018-03-13 | 2020-03-24 | Toshiba Memory Corporation | Magnetic storage device having a memory cell including a magnetoresistive effect element and a selector which includes titanium (Ti), germanium (Ge) and tellurium (Te) |
TWI713240B (en) * | 2018-12-27 | 2020-12-11 | 中央研究院 | Electrically controlled nanomagnet and spin orbit torque magnetic random access memory including the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019005172A1 (en) * | 2017-06-30 | 2019-01-03 | Intel Corporation | Reduced area spin orbit torque (sot) memory devices and their methods of fabrication |
US10438996B2 (en) * | 2018-01-08 | 2019-10-08 | Spin Memory, Inc. | Methods of fabricating magnetic tunnel junctions integrated with selectors |
US10762942B1 (en) | 2019-03-29 | 2020-09-01 | Honeywell International Inc. | Magneto-resistive random access memory cell with spin-dependent diffusion and state transfer |
CN112186098B (en) * | 2019-07-02 | 2023-04-07 | 中电海康集团有限公司 | Spin orbit torque based magnetic memory device and SOT-MRAM memory cell |
KR102657583B1 (en) | 2019-07-19 | 2024-04-15 | 삼성전자주식회사 | variable resistance memory device |
CN112420097A (en) * | 2020-11-20 | 2021-02-26 | 复旦大学 | Single word line spin-orbit moment magnetic random access memory |
US12063788B2 (en) * | 2021-01-25 | 2024-08-13 | Nutech Ventures | Thin film molecular memory |
US11961544B2 (en) | 2021-05-27 | 2024-04-16 | International Business Machines Corporation | Spin-orbit torque (SOT) magnetoresistive random-access memory (MRAM) with low resistivity spin hall effect (SHE) write line |
CN114335328B (en) * | 2021-11-29 | 2023-10-20 | 电子科技大学 | Giant spin Hall angle material of metal-titanium oxide composite particle film and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002230965A (en) * | 2001-01-24 | 2002-08-16 | Internatl Business Mach Corp <Ibm> | Non-volatile memory device |
US8159870B2 (en) * | 2008-04-04 | 2012-04-17 | Qualcomm Incorporated | Array structural design of magnetoresistive random access memory (MRAM) bit cells |
US8976577B2 (en) * | 2011-04-07 | 2015-03-10 | Tom A. Agan | High density magnetic random access memory |
US8767446B2 (en) * | 2011-10-12 | 2014-07-01 | International Business Machines Corporation | Multi-bit spin-momentum-transfer magnetoresistence random access memory with single magnetic-tunnel-junction stack |
US9543507B2 (en) * | 2012-04-12 | 2017-01-10 | Intel Corporation | Selector for low voltage embedded memory |
-
2015
- 2015-09-25 WO PCT/US2015/052357 patent/WO2017052622A1/en active Application Filing
-
2016
- 2016-08-18 TW TW105126395A patent/TW201724594A/en unknown
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108344956A (en) * | 2018-01-23 | 2018-07-31 | 湖北工业大学 | Application circuit based on autoexcitation single electron spin electromagnetic crystals pipe |
CN108344956B (en) * | 2018-01-23 | 2020-06-12 | 湖北工业大学 | Application Circuit Based on Self-excited Single Electron Spin Electromagnetic Transistor |
US10600463B2 (en) | 2018-03-13 | 2020-03-24 | Toshiba Memory Corporation | Magnetic storage device having a memory cell including a magnetoresistive effect element and a selector which includes titanium (Ti), germanium (Ge) and tellurium (Te) |
TWI702743B (en) * | 2018-03-13 | 2020-08-21 | 日商東芝記憶體股份有限公司 | Magnetic storage device |
TWI713240B (en) * | 2018-12-27 | 2020-12-11 | 中央研究院 | Electrically controlled nanomagnet and spin orbit torque magnetic random access memory including the same |
Also Published As
Publication number | Publication date |
---|---|
WO2017052622A1 (en) | 2017-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201724594A (en) | Spin hall effect MRAM with thin-film selector | |
US12238937B2 (en) | Magnetic tunnel junction structures and related methods | |
US11699474B2 (en) | SOT-MRAM with shared selector | |
US9666793B2 (en) | Method of manufacturing magnetoresistive element(s) | |
US9236105B2 (en) | Magnetic memory devices and methods of writing data to the same | |
TWI749377B (en) | Integrated chip, memory cell, and operation method thereof | |
US9236416B2 (en) | High density nonvolatile memory | |
US11569439B2 (en) | Double spin filter tunnel junction | |
US9461243B2 (en) | STT-MRAM and method of manufacturing the same | |
US20160149124A1 (en) | Mram having spin hall effect writing and method of making the same | |
US11257862B2 (en) | MRAM having spin hall effect writing and method of making the same | |
WO2017052542A1 (en) | Spin hall effect magnetic random access memory bitcell | |
JPWO2011087038A1 (en) | Magnetic memory, magnetic memory manufacturing method, and magnetic memory driving method | |
US20140247648A1 (en) | Electronic device | |
US9741929B2 (en) | Method of making a spin-transfer-torque magnetoresistive random access memory (STT-MRAM) | |
US7755153B2 (en) | Structure and method for a magnetic memory device with proximity writing | |
US10964366B2 (en) | Magnetic memory, recording method of magnetic memory, and reading method of magnetic memory | |
US20140246741A1 (en) | Magnetoresistive memory cell and method of manufacturing the same | |
US11081153B2 (en) | Magnetic memory device with balancing synthetic anti-ferromagnetic layer | |
JP2014520402A (en) | Spin-torque transfer memory cell structure with symmetric switching and unidirectional programming | |
TW202337039A (en) | Magnetic array and method of manufacturing magnetic array | |
CN114512596A (en) | Magnetic memory device |