TW201719189A - Magnetic field sensing apparatus and detection method thereof - Google Patents
Magnetic field sensing apparatus and detection method thereof Download PDFInfo
- Publication number
- TW201719189A TW201719189A TW105132309A TW105132309A TW201719189A TW 201719189 A TW201719189 A TW 201719189A TW 105132309 A TW105132309 A TW 105132309A TW 105132309 A TW105132309 A TW 105132309A TW 201719189 A TW201719189 A TW 201719189A
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic field
- anisotropic magnetoresistance
- anisotropic
- magnetoresistance
- operational amplifier
- Prior art date
Links
Landscapes
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
本發明是有關於一種磁場感測裝置及感測方法,且特別是有關於一種利用異向性磁電阻所構成的磁場感測裝置及感測方法。The present invention relates to a magnetic field sensing device and a sensing method, and more particularly to a magnetic field sensing device and a sensing method using an anisotropic magnetoresistance.
隨著可攜式電子裝置的普及,能夠感應地磁方向的電子羅盤之技術便受到重視。當電子羅盤應用於體積小的可攜式電子裝置(如智慧型手機)時,電子羅盤除了需符合體積小的需求之外,最好還能夠達到三軸的感測,這是因為使用者以手握持手機時,有可能是傾斜地握持,且各種不同的握持角度也都可能產生。此外,電子羅盤亦可應用於無人機(drone)(例如遙控飛機、遙控直升機等)上。With the popularity of portable electronic devices, the technology of an electronic compass capable of sensing the geomagnetic direction has received attention. When an electronic compass is applied to a small portable electronic device (such as a smart phone), in addition to the small volume requirement, the electronic compass is preferably capable of achieving three-axis sensing because the user When holding the phone in your hand, it may be held obliquely, and various holding angles may also occur. In addition, the electronic compass can also be applied to drones (such as remote control aircraft, remote control helicopters, etc.).
在習知技術中,一般常利用異向性磁電阻(Anisotropic Magneto-Resistive resistor, AMR resistor)並透過惠斯登電橋(Wheatstone bridge)架構來進行磁場的感測動作。在惠斯登電橋(Wheatstone full bridge)架構中,需要建構四個異向性磁電阻來進行磁場的感測。也就是說,習知技術的磁場感測裝置常需要較大的布局面積,造成生產成本的增加。In the prior art, an anisotropic magneto-resistive resistor (AMR resistor) is commonly used and a magnetic field sensing operation is performed through a Wheatstone bridge architecture. In the Wheatstone full bridge architecture, four anisotropic magnetoresistors are needed to sense the magnetic field. That is to say, the magnetic field sensing device of the prior art often requires a large layout area, resulting in an increase in production cost.
本發明提供一種磁場感測裝置及其偵測方法,有效提升磁場感測的精準度、縮小磁場感測裝置的體積,並節省成本。The invention provides a magnetic field sensing device and a detecting method thereof, which can effectively improve the accuracy of magnetic field sensing, reduce the volume of the magnetic field sensing device, and save cost.
本發明的磁場感測裝置包括第一異向性磁電阻、第二異向性磁電阻、電流產生器以及運算器。第一異向性磁電阻的磁化方向被設定為第一方向。第二異向性磁電阻的磁化方向被設定為與第一方向相反或相同的第二方向。當第一異向性磁電阻的電阻值依據受測磁場增大時,第二異向性磁電阻的電阻值對應減小;此外,當第一異向性磁電阻的電阻值依據受測磁場而減小時,第二異向性磁電阻的電阻值對應增大。電流產生器耦接第一異向性磁電阻以及第二異向性磁電阻。電流產生器提供電流沿平行於第一方向的方向以流經第一異向性磁電阻及第二異向性磁電阻。運算器耦接第一異向性磁電阻、第二異向性磁電阻以及電流產生器。運算器依據第一異向性磁電阻兩端間的電壓差獲得第一偵測電壓,依據第二異向性磁電阻兩端間的電壓差獲得第二偵測電壓,再針對第一偵測電壓以及第二偵測電壓進行算術運算以獲得第一磁場偵測結果。The magnetic field sensing device of the present invention includes a first anisotropic magnetoresistance, a second anisotropic magnetoresistance, a current generator, and an arithmetic unit. The magnetization direction of the first anisotropic magnetoresistance is set to the first direction. The magnetization direction of the second anisotropic magnetoresistance is set to a second direction that is opposite or identical to the first direction. When the resistance value of the first anisotropic magnetoresistance increases according to the measured magnetic field, the resistance value of the second anisotropic magnetoresistance decreases correspondingly; in addition, when the resistance value of the first anisotropic magnetoresistance is based on the measured magnetic field When decreasing, the resistance value of the second anisotropic magnetoresistance increases correspondingly. The current generator is coupled to the first anisotropic magnetoresistance and the second anisotropic magnetoresistance. The current generator provides a current in a direction parallel to the first direction to flow through the first anisotropic magnetoresistance and the second anisotropic magnetoresistance. The operator is coupled to the first anisotropic magnetoresistance, the second anisotropic magnetoresistance, and the current generator. The operator obtains the first detection voltage according to the voltage difference between the two ends of the first anisotropic magnetoresistance, obtains the second detection voltage according to the voltage difference between the two ends of the second anisotropic magnetoresistance, and then detects the first detection voltage. The voltage and the second detected voltage are arithmetically operated to obtain a first magnetic field detection result.
在本發明的一實施例中,上述的運算器包括第一運算放大器、第二運算放大器以及算術運算器。第一運算放大器的第一輸入端耦接至第一異向性磁電阻的第一端,第一運算放大器的第二端耦接至第一異向性磁電阻的第二端並耦接至參考接地端,第一運算放大器的輸出端產生第一偵測電壓。第二運算放大器的第一輸入端耦接至第二異向性磁電阻的第一端,第二運算放大器的第二端耦接至第二異向性磁電阻的第二端並耦接至參考接地端,第二運算放大器的輸出端產生第二偵測電壓。算術運算器耦接第一運算放大器的輸出端以及第二運算放大器的輸出端,使第二偵測電壓與第二偵測電壓進行算術運算以獲得第一磁場偵測結果。In an embodiment of the invention, the operator includes a first operational amplifier, a second operational amplifier, and an arithmetic operator. The first input end of the first operational amplifier is coupled to the first end of the first anisotropic magnetoresistance, and the second end of the first operational amplifier is coupled to the second end of the first anisotropic magnetoresistance and coupled to Referring to the ground terminal, the output of the first operational amplifier generates a first detection voltage. The first input end of the second operational amplifier is coupled to the first end of the second anisotropic magnetoresistance, and the second end of the second operational amplifier is coupled to the second end of the second anisotropic magnetoresistance and coupled to Referring to the ground, the output of the second operational amplifier generates a second detection voltage. The arithmetic operator is coupled to the output end of the first operational amplifier and the output end of the second operational amplifier, and performs an arithmetic operation on the second detection voltage and the second detection voltage to obtain a first magnetic field detection result.
在本發明的一實施例中,上述的算術運算器為減法器,算術運算為減法運算。In an embodiment of the invention, the arithmetic operator is a subtractor, and the arithmetic operation is a subtraction operation.
在本發明的一實施例中,上述的電流產生器包括第一電流源以及第二電流源。第一電流源耦接至第一異向性磁電阻的第一端,提供第一電流沿平行於第一方向的方向流經第一異向性磁電阻。第二電流源耦接至第二異向性磁電阻的第一端,提供第二電流沿平行於第一方向的方向流經第二異向性磁電阻。In an embodiment of the invention, the current generator includes a first current source and a second current source. The first current source is coupled to the first end of the first anisotropic magnetoresistance to provide a first current flowing through the first anisotropic magnetoresistance in a direction parallel to the first direction. The second current source is coupled to the first end of the second anisotropic magnetoresistance to provide a second current flowing through the second anisotropic magnetoresistance in a direction parallel to the first direction.
在本發明的一實施例中,上述的運算器包括第一運算放大器、第二運算放大器以及算術運算器。第一運算放大器的第一輸入端耦接至第一異向性磁電阻的第一端,第一運算放大器的第二端耦接至第一異向性磁電阻的第二端以及第二異向性磁電阻的第一端,第一運算放大器的輸出端產生第一偵測電壓。第二運算放大器的第一輸入端耦接至第二異向性磁電阻的第一端,第二運算放大器的第二端耦接至第二異向性磁電阻的第二端並耦接至參考接地端,第二運算放大器的輸出端產生第二偵測電壓。算術運算器耦接第一運算放大器的輸出端以及第二運算放大器的輸出端,使第二偵測電壓與第二偵測電壓進行算術運算以獲得第一磁場偵測結果。In an embodiment of the invention, the operator includes a first operational amplifier, a second operational amplifier, and an arithmetic operator. The first input end of the first operational amplifier is coupled to the first end of the first anisotropic magnetoresistance, and the second end of the first operational amplifier is coupled to the second end of the first anisotropic magnetoresistance and the second At a first end of the directional magnetic resistance, a first detection voltage is generated at an output of the first operational amplifier. The first input end of the second operational amplifier is coupled to the first end of the second anisotropic magnetoresistance, and the second end of the second operational amplifier is coupled to the second end of the second anisotropic magnetoresistance and coupled to Referring to the ground, the output of the second operational amplifier generates a second detection voltage. The arithmetic operator is coupled to the output end of the first operational amplifier and the output end of the second operational amplifier, and performs an arithmetic operation on the second detection voltage and the second detection voltage to obtain a first magnetic field detection result.
在本發明的一實施例中,上述的電流產生器提供第一電流至第一異向性磁電阻的第一端並使第一電流依據平行於第一方向的方向依序流經第一異向性磁電阻以及第二異向性磁電阻。In an embodiment of the invention, the current generator provides a first current to the first end of the first anisotropic magnetoresistance and causes the first current to flow through the first difference according to a direction parallel to the first direction. The directional magnetoresistance and the second anisotropic magnetoresistance.
在本發明的一實施例中,在上述的第一磁場偵測結果產生之後,第一異向性磁電阻的磁化方向被變更為第一方向的反向,第二異向性磁電阻的磁化方向被變更為第二方向的反向,運算器再依據第一異向性磁電阻兩端間的電壓差獲得第三偵測電壓,依據第二異向性磁電阻兩端間的電壓差獲得第四偵測電壓,並針對第三偵測電壓以及第四偵測電壓進行算術運算以獲得第二磁場偵測結果。In an embodiment of the invention, after the first magnetic field detection result is generated, the magnetization direction of the first anisotropic magnetoresistance is changed to the reverse direction of the first direction, and the magnetization of the second anisotropic magnetoresistance The direction is changed to the reverse direction of the second direction, and the operator obtains the third detection voltage according to the voltage difference between the two ends of the first anisotropic magnetoresistance, and obtains the voltage difference between the two ends of the second anisotropic magnetoresistance. The fourth detecting voltage performs an arithmetic operation on the third detecting voltage and the fourth detecting voltage to obtain a second magnetic field detecting result.
在本發明的一實施例中,上述的運算器更包括使第一磁場偵測結果與第二磁場偵測結果進行算術運算以獲得第三磁場偵測結果。In an embodiment of the invention, the computing unit further includes performing an arithmetic operation on the first magnetic field detecting result and the second magnetic field detecting result to obtain a third magnetic field detecting result.
在本發明的一實施例中,上述的第一異向性磁電阻與第二異向性磁電阻配置在相同的基板上。In an embodiment of the invention, the first anisotropic magnetoresistance and the second anisotropic magnetoresistance are disposed on the same substrate.
在本發明的一實施例中,各第一異向性磁電阻及第二異向性磁電阻包括一鐵磁條。鐵磁條包括多個串聯耦接的短路棒,各短路棒具有錐形端點。In an embodiment of the invention, each of the first anisotropic magnetoresistance and the second anisotropic magnetoresistance comprises a ferromagnetic strip. The ferromagnetic strip includes a plurality of shorting bars coupled in series, each shorting bar having a tapered end point.
在本發明的一實施例中,磁場感測裝置更包括多個磁化方向設定元件,分別配置在該第一異向性磁電阻以及該第一異向性磁電阻旁。磁化方向設定元件用以分別設定第一異向性磁電阻以及第一異向性磁電阻的磁化方向。In an embodiment of the invention, the magnetic field sensing device further includes a plurality of magnetization direction setting elements respectively disposed adjacent to the first anisotropic magnetoresistance and the first anisotropy magnetoresistance. The magnetization direction setting element is configured to respectively set a first anisotropy magnetoresistance and a magnetization direction of the first anisotropic magnetoresistance.
本發明的磁場感測方法包括:提供第一異向性磁電阻,並設定其磁化方向為第一方向;提供第二異向性磁電阻,並設定其磁化方向為第二方向,其中第二方向與第一方向相反或相同,且當第一異向性磁電阻的電阻值依據受測磁場增大時,第二異向性磁電阻的電阻值對應減小;當第一異向性磁電阻的電阻值依據受測磁場而減小時,第二異向性磁電阻的電阻值對應增大;提供電流沿平行於第一方向的方向以流經第一異向性磁電阻及第二異向性磁電阻;依據第一異向性磁電阻兩端間的電壓差以及第二異向性磁電阻兩端間的電壓差來分別獲得第一偵測電壓以及第二偵測電壓;以及,針對第一偵測電壓以及第二偵測電壓進行算術運算以獲得第一磁場偵測結果。The magnetic field sensing method of the present invention comprises: providing a first anisotropic magnetoresistance and setting a magnetization direction thereof to a first direction; providing a second anisotropic magnetoresistance and setting a magnetization direction thereof to a second direction, wherein the second The direction is opposite or the same as the first direction, and when the resistance value of the first anisotropic magnetoresistance increases according to the measured magnetic field, the resistance value of the second anisotropic magnetoresistance decreases correspondingly; when the first anisotropic magnetic When the resistance value of the resistor decreases according to the measured magnetic field, the resistance value of the second anisotropic magnetoresistance increases correspondingly; the current is supplied in a direction parallel to the first direction to flow through the first anisotropic magnetoresistance and the second difference a directional magnetic resistance; the first detection voltage and the second detection voltage are respectively obtained according to a voltage difference between the two ends of the first anisotropic magnetoresistive resistor and a voltage difference between the two ends of the second anisotropic magnetoresistance; Performing an arithmetic operation on the first detection voltage and the second detection voltage to obtain a first magnetic field detection result.
基於上述,本發明的實施例提供具有相反或相同的磁化設定方向的第一異向性磁電阻以及第二異向性磁電阻來進行磁場的感測動作,且當第一異向性磁電阻的電阻值依據受測磁場增大時,第二異向性磁電阻的電阻值對應減小;當第一異向性磁電阻的電阻值依據受測磁場而減小時,第二異向性磁電阻的電阻值對應增大。其中,本發明的實施例僅需要透過兩個異向性磁電阻即可完成磁場感測動作,有效降低磁場感測裝置的電路佈局面積,有效降低生產成本。另外,本發明的實施例透過使依據不同電阻變化趨勢的異向性磁電阻所產生的偵測電壓進行算數運算動作,可抵消系統所產生的電性偏移(offset)所可能造成的影響,並可降低環境雜訊以及溫度變化所產生的電性參數漂移所產生的影響,有效提升磁場感測的準確度。Based on the above, embodiments of the present invention provide a first anisotropic magnetoresistance having a reverse or the same magnetization setting direction and a second anisotropic magnetoresistance to perform a sensing action of a magnetic field, and when the first anisotropic magnetoresistance When the resistance value increases according to the measured magnetic field, the resistance value of the second anisotropic magnetoresistance decreases correspondingly; when the resistance value of the first anisotropic magnetoresistance decreases according to the measured magnetic field, the second anisotropic magnetic field The resistance value of the resistor is correspondingly increased. The embodiment of the present invention only needs to pass through two anisotropic magnetoresistors to complete the magnetic field sensing action, effectively reducing the circuit layout area of the magnetic field sensing device, and effectively reducing the production cost. In addition, the embodiment of the present invention can counteract the influence of the electrical offset generated by the system by performing an arithmetic operation on the detection voltage generated by the anisotropic magnetoresistance according to different resistance change trends. It can reduce the influence of environmental noise and electrical parameter drift caused by temperature changes, and effectively improve the accuracy of magnetic field sensing.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
請參照圖1,圖1繪示本發明一實施例的磁場感測裝置的示意圖。磁場感測裝置100包括異向性磁電阻110以及120、電流產生器130以及運算器140。異向性磁電阻110串接在電流產生器130以及運算器140之間,在磁場感測裝置100進行磁場感測前的一初使時間週期間,異向性磁電阻110的磁化方向並可被設定為方向D1。異向性磁電阻120串接在電流產生器130以及運算器140之間,在磁場感測裝置100進行磁場感測前的初使時間週期間,異向性磁電阻120的磁化方向則被可設定為方向D2,其中,方向D1與方向D2相反。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a magnetic field sensing device according to an embodiment of the present invention. The magnetic field sensing device 100 includes anisotropic magnetoresistances 110 and 120, a current generator 130, and an arithmetic unit 140. The anisotropic magnetoresistance 110 is connected in series between the current generator 130 and the arithmetic unit 140, and the magnetization direction of the anisotropic magnetoresistive resistor 110 during an initial period of time before the magnetic field sensing device 100 performs magnetic field sensing. It is set to direction D1. The anisotropic magnetoresistance 120 is connected in series between the current generator 130 and the arithmetic unit 140. The magnetization direction of the anisotropic magnetoresistive resistor 120 is enabled during the initial period of time before the magnetic field sensing device 100 performs magnetic field sensing. Set to direction D2, where direction D1 is opposite to direction D2.
異向性磁電阻110以及120分別提供電阻值R1以及R2。在異向性磁電阻110以及120在未接收外來磁場的影響下,異向性磁電阻110以及120所分別提供的電阻值R1以及R2可以是相同的。而基於異向性磁電阻110以及120所設定的磁化方向是相反的,當異向性磁電阻110以及120接收到外來磁場的影響時,異向性磁電阻110所提供的電阻值R1的變化趨勢與異向性磁電阻120所提供的電阻值R2的變化趨勢是相反的。具體來說明,當異向性磁電阻110所提供的電阻值R1因外來磁場的影響而增加時,異向性磁電阻120所提供的電阻值R2會對應減小。相對的,當異向性磁電阻110所提供的電阻值R1因外來磁場的影響而減小時,異向性磁電阻120所提供的電阻值R2會對應增大。The anisotropic magnetoresistances 110 and 120 provide resistance values R1 and R2, respectively. Under the influence of the anisotropic magnetoresistances 110 and 120, the resistance values R1 and R2 respectively provided by the anisotropic magnetoresistances 110 and 120 may be the same. The magnetization directions set by the anisotropy magnetoresistances 110 and 120 are opposite. When the anisotropic magnetoresistances 110 and 120 receive the influence of the external magnetic field, the resistance value R1 of the anisotropic magnetoresistor 110 is changed. The tendency of the trend and the resistance value R2 provided by the anisotropic magnetoresistive resistor 120 is reversed. Specifically, when the resistance value R1 provided by the anisotropic magnetoresistive resistor 110 is increased by the influence of the external magnetic field, the resistance value R2 provided by the anisotropic magnetoresistive resistor 120 is correspondingly reduced. In contrast, when the resistance value R1 provided by the anisotropic magnetoresistive resistor 110 is reduced by the influence of the external magnetic field, the resistance value R2 provided by the anisotropic magnetoresistive resistor 120 is correspondingly increased.
電流產生器130提供電流I1沿方向D1以流經異向性磁電阻110,並提供電流I2沿平行於方向D1的方向以流經異向性磁電阻120。此外,運算器140則耦接至異向性磁電阻110的兩端點,以及耦接至異向性磁電阻120的兩端點。運算器140並依據異向性磁電阻110兩端點間的電壓差來產生第一偵測電壓,且依據異向性磁電阻120兩端點間的電壓差來產生第二偵測電壓,再透過使第一偵測電壓以及第二偵測電壓進行算數運算來產生磁場偵測結果VO 。Current generator 130 provides current I1 in direction D1 to flow through anisotropic magnetoresistive resistor 110 and provides current I2 in a direction parallel to direction D1 to flow through anisotropic magnetoresistive resistor 120. In addition, the computing unit 140 is coupled to the two ends of the anisotropic magnetoresistive resistor 110 and coupled to the two ends of the anisotropic magnetoresistive resistor 120. The operator 140 generates a first detection voltage according to a voltage difference between two ends of the anisotropic magnetoresistive resistor 110, and generates a second detection voltage according to a voltage difference between two ends of the anisotropic magnetoresistive resistor 120. The magnetic field detection result V O is generated by performing an arithmetic operation on the first detection voltage and the second detection voltage.
關於磁場感測的動作細節,磁場感測裝置100進行磁場感測動作時,異向性磁電阻110、120所提供的電阻值R1以及R2會隨著受測磁場在方向H(其中方向H垂直於異向性磁電阻110、120的延伸方向)上的分量而產生變化。舉例來說明,當受測磁場在方向H的分量不為0時,異向性磁電阻110所提供的電阻值R1可變更為R+DR,異向性磁電阻120所提供的電阻值R1則變更為R-DR。透過電流產生器130所提供電流I1以及I2,異向性磁電阻110的兩端電壓差可隨受測磁場的強度增大而變大,同時,異向性磁電阻120的兩端電壓差可隨受測磁場的強度增大而變小。依據異向性磁電阻110以及120的兩端電壓差,運算器140可分別獲得第一偵測電壓以及第二偵測電壓。並且,針對第一偵測電壓以及該第二偵測電壓進行算術運算(例如減法運算),運算器140可獲得第一磁場偵測結果VO 。Regarding the details of the action of the magnetic field sensing, when the magnetic field sensing device 100 performs the magnetic field sensing action, the resistance values R1 and R2 provided by the anisotropic magnetoresistances 110, 120 will follow the measured magnetic field in the direction H (where the direction H is vertical) A change occurs in the component in the extending direction of the anisotropic magnetoresistances 110, 120. For example, when the component of the measured magnetic field in the direction H is not 0, the resistance value R1 provided by the anisotropic magnetoresistor 110 can be changed to be more R+DR, and the resistance value R1 provided by the anisotropic magnetoresistive resistor 120 is Change to R-DR. Through the currents I1 and I2 supplied from the current generator 130, the voltage difference between the two ends of the anisotropic magnetoresistor 110 can be increased as the strength of the measured magnetic field increases, and the voltage difference between the two ends of the anisotropic magnetoresistive resistor 120 can be It becomes smaller as the strength of the measured magnetic field increases. Based on the voltage difference between the two ends of the anisotropic magnetoresistances 110 and 120, the arithmetic unit 140 can obtain the first detection voltage and the second detection voltage, respectively. And performing an arithmetic operation (for example, subtraction) on the first detection voltage and the second detection voltage, and the operator 140 obtains the first magnetic field detection result V O .
由上述的說明可以得知,當受測磁場H增大時,異向性磁電阻110的兩端電壓差逐漸增大而異向性磁電阻120的兩端電壓差逐漸減小,因此,透過比較異向性磁電阻110的兩端電壓差以及異向性磁電阻120的兩端電壓差的變化趨勢,就可以得知受測磁場的變化趨勢,並反映在第一磁場偵測結果上VO 。As can be seen from the above description, when the measured magnetic field H increases, the voltage difference between the two ends of the anisotropic magnetoresistor 110 gradually increases, and the voltage difference between the two ends of the anisotropic magnetoresistive resistor 120 gradually decreases. Comparing the voltage difference between the two ends of the anisotropic magnetoresistive resistor 110 and the voltage difference between the two ends of the anisotropic magnetoresistive resistor 120, the change trend of the measured magnetic field can be known and reflected in the first magnetic field detection result. O.
在本實施例中,電流產生器130所提供的電流I1以及I2的電流值大小可以是相同的。電流產生器130的建構方式,可以透過電流鏡(current mirror)電路依據鏡射一個預設的參考電流來分別產生電流I1以及I2。當然,上述的電流產生器130的建構方式僅只是一個範例,不用以限縮本發明的範疇。凡本領域具通常知識者所熟知的電流產生電路皆可應用以設計本發明的電流產生器130。In the present embodiment, the magnitudes of the current values of the currents I1 and I2 supplied by the current generator 130 may be the same. The current generator 130 is constructed in such a manner that a current mirror circuit is used to generate a current I1 and I2 according to a predetermined reference current. Of course, the construction of the current generator 130 described above is merely an example and is not intended to limit the scope of the present invention. Current generating circuits well known to those of ordinary skill in the art can be utilized to design the current generator 130 of the present invention.
在本實施例中,異向性磁電阻110以及120可以設置在相同的基板上。而上術的基板的材質可以是矽、玻璃或其他任意可以機械性支撐磁場感測裝置100的材質。在本發明一實施例中,感測裝置100可以設置在半導體晶片上,並透過積體電路的設計方式來形成。In the present embodiment, the anisotropic magnetoresistances 110 and 120 may be disposed on the same substrate. The material of the substrate can be 矽, glass or any other material that can mechanically support the magnetic field sensing device 100. In an embodiment of the invention, the sensing device 100 can be disposed on a semiconductor wafer and formed through the design of the integrated circuit.
以下請參照圖2,圖2繪示本發明另一實施例的磁場感測裝置的示意圖。磁場感測裝置200包括異向性磁電阻210、220、電流產生器230以及運算器240。在本實施例中,電流產生器230包括電流源IS1以及IS2,並依據方向D1分別提供電流I1、I2流向異向性磁電阻210以及220。運算器240則包括運算放大器OP1以及OP2以及算術運算器241,其中,運算放大器OP1的正輸入端耦接至異向性磁電阻210的第一端,運算放大器OP1的負輸入端則耦接至異向性磁電阻210的第二端,並藉以檢測異向性磁電阻210的兩端間的電壓差。運算放大器OP2的正輸入端耦接至異向性磁電阻220的第一端,運算放大器OP2的負輸入端則耦接至異向性磁電阻220的第二端,並藉以檢測異向性磁電阻220的兩端間的電壓差。另外,運算放大器OP1、OP2的負輸入端另耦接至參考接地端GND。Please refer to FIG. 2, which is a schematic diagram of a magnetic field sensing device according to another embodiment of the present invention. The magnetic field sensing device 200 includes anisotropic magnetoresistors 210, 220, a current generator 230, and an operator 240. In the present embodiment, the current generator 230 includes current sources IS1 and IS2, and supplies currents I1, I2 to the anisotropic magnetoresistors 210 and 220, respectively, according to the direction D1. The operator 240 includes an operational amplifier OP1 and an OP2 and an arithmetic operator 241. The positive input terminal of the operational amplifier OP1 is coupled to the first end of the anisotropic magnetoresistive resistor 210, and the negative input terminal of the operational amplifier OP1 is coupled to the The second end of the anisotropic magnetoresistor 210 is used to detect a voltage difference between both ends of the anisotropic magnetoresistor 210. The positive input terminal of the operational amplifier OP2 is coupled to the first end of the anisotropic magnetoresistor 220, and the negative input terminal of the operational amplifier OP2 is coupled to the second end of the anisotropic magnetoresistor 220, thereby detecting the anisotropic magnetic The voltage difference between the two ends of the resistor 220. In addition, the negative input terminals of the operational amplifiers OP1 and OP2 are coupled to the reference ground GND.
算術運算器241則耦接至運算放大器OP1以及OP2的輸出端,接收運算放大器OP1以及OP2所分別產生的第一偵測電壓V1以及第二偵測電壓V2,並針對第一偵測電壓V1以及第二偵測電壓V2進行減法運算以產生第一磁場偵測結果VO 。The arithmetic operator 241 is coupled to the output terminals of the operational amplifiers OP1 and OP2, and receives the first detection voltage V1 and the second detection voltage V2 respectively generated by the operational amplifiers OP1 and OP2, and is configured for the first detection voltage V1 and The second detection voltage V2 is subtracted to generate a first magnetic field detection result V O .
關於磁場感測裝置200的動作細節,在進行感測動作前的初始時間中,可先針對異向性磁電阻210、220的磁化方向進行設定,並使異向性磁電阻210、220的磁化方向相反。在本實施例中,異向性磁電阻210的磁化方向被設定為方向D1,異向性磁電阻220的磁化方向則被設定為方向D2。在完成磁化方向的設定動作後,異向性磁電阻210、220的磁化方向設定動作可以被停止,並開始進行磁場的感測動作。Regarding the details of the operation of the magnetic field sensing device 200, in the initial time before the sensing operation, the magnetization directions of the anisotropic magnetoresistors 210 and 220 can be set first, and the magnetization of the anisotropic magnetoresistors 210 and 220 can be made. The opposite direction. In the present embodiment, the magnetization direction of the anisotropic magnetoresistive resistor 210 is set to the direction D1, and the magnetization direction of the anisotropic magnetoresistive resistor 220 is set to the direction D2. After the setting operation of the magnetization direction is completed, the magnetization direction setting operation of the anisotropic magnetoresistances 210 and 220 can be stopped, and the sensing operation of the magnetic field is started.
依據受測磁場H,異向性磁電阻210、220所分別提供的電阻值R1以及R2依據相反趨勢產生變化,例如,當異向性磁電阻210所提供的電阻值R1增大時,異向性磁電阻220所提供的電阻值R2對應減小時,或者,當異向性磁電阻210所提供的電阻值R1減小時,異向性磁電阻220所提供的電阻值R2對應增大時。附帶一提的,當受測磁場H等於0時,異向性磁電阻210、220所分別提供的電阻值R1以及R2維持等於初始時的狀態。According to the measured magnetic field H, the resistance values R1 and R2 respectively provided by the anisotropic magnetoresistors 210, 220 vary according to the opposite trend, for example, when the resistance value R1 provided by the anisotropic magnetoresistor 210 increases, the anisotropy When the resistance value R2 provided by the magnetic resistance 220 corresponds to decrease, or when the resistance value R1 provided by the anisotropic magnetoresistor 210 decreases, the resistance value R2 provided by the anisotropic magnetoresistor 220 increases correspondingly. Incidentally, when the measured magnetic field H is equal to 0, the resistance values R1 and R2 respectively provided by the anisotropic magnetoresistances 210, 220 are maintained equal to the initial state.
在此同時,電流產生器230中的電流IS1以及IS2依據方向D1分別提供電流I1以及I2以流經異向性磁電阻210以及220。運算放大器OP1以及OP2並分別擷取異向性磁電阻210以及220兩端點間的電壓差,並針對所接收的電壓差進行放大以分別產生第一偵測電壓V1以及第二偵測電壓V2。運算器241則使第一偵測電壓V1減去第二偵測電壓V2以產生第一磁場偵測結果VO 。At the same time, currents IS1 and IS2 in current generator 230 provide currents I1 and I2, respectively, in accordance with direction D1 to flow through anisotropic magnetoresistors 210 and 220. The operational amplifiers OP1 and OP2 respectively extract the voltage difference between the two ends of the anisotropic magnetoresistances 210 and 220, and amplify the received voltage difference to respectively generate the first detection voltage V1 and the second detection voltage V2. . The operator 241 subtracts the second detection voltage V2 from the first detection voltage V1 to generate a first magnetic field detection result V O .
以下請同步參照圖2以及圖3,其中圖3繪示本發明實施例的磁場偵測結果的波形圖。在圖3中,縱軸為第一磁場偵測結果VO 的電壓值,而橫軸則為受測磁場H的大小。在受測磁場H介於固定的範圍中時,異向性磁電阻210以及220所分別提供的電阻值R1以及R2與受測磁場H呈線性關係,且電阻值R1與受測磁場H呈正相關,電阻值R2與受測磁場H則呈負相關。Please refer to FIG. 2 and FIG. 3 simultaneously. FIG. 3 is a waveform diagram of magnetic field detection results according to an embodiment of the present invention. In FIG. 3, the vertical axis represents the voltage value of the first magnetic field detection result V O , and the horizontal axis represents the magnitude of the magnetic field H to be measured. When the measured magnetic field H is in a fixed range, the resistance values R1 and R2 respectively provided by the anisotropic magnetoresistors 210 and 220 are linearly related to the measured magnetic field H, and the resistance value R1 is positively correlated with the measured magnetic field H. The resistance value R2 is negatively correlated with the measured magnetic field H.
在圖3中,當受測磁場H等於H0 時,運算放大器OP1所產生的第一偵測電壓V1 = V + DV而運算放大器OP1所產生的第二偵測電壓V2 = V – DV,其中V為基準電壓(即為當受測磁場H等於0時運算放大器OP1、OP2所產生的電壓)。透過使第一偵測電壓V1與第二偵測電壓V2相減,即可獲得第一磁場偵測結果VO = V + DV – (V – DV) = 2×DV。In FIG 3, when the second detection voltage detected by the operational amplifier OP1 and the magnetic field H 0 is equal to H, the first detection voltage V1 generated by the operational amplifier OP1 = V + DV generated V2 = V - DV, wherein V is the reference voltage (that is, the voltage generated by the operational amplifiers OP1, OP2 when the measured magnetic field H is equal to zero). By subtracting the first detection voltage V1 from the second detection voltage V2, the first magnetic field detection result V O = V + DV - (V - DV) = 2 × DV can be obtained.
由上述的說明可以得知,本發明實施例提供異向性磁電阻210以及220來取得第一、第二偵測電壓V1、V2,並透過使第一、第二偵測電壓V1、V2的相減動作來產生第一磁場偵測結果VO ,如此一來,環境雜訊對磁場感測裝置200所造成的影響可以被降低,並提升偵測結果的準確度。It can be seen from the above description that the embodiments of the present invention provide the anisotropic magnetoresistors 210 and 220 to obtain the first and second detection voltages V1 and V2, and transmit the first and second detection voltages V1 and V2. The subtraction action generates the first magnetic field detection result V O , so that the influence of the environmental noise on the magnetic field sensing device 200 can be reduced, and the accuracy of the detection result can be improved.
以下請參照圖4,圖4繪示本發明圖2實施例的磁場感測裝置的另一感測階段的動作示意圖。為提升磁場感測的準確度,在圖4實施例中透過再一階段的感測動作以產生更準確的第二磁場偵測結果VO ’ 。Please refer to FIG. 4, which is a schematic diagram of another sensing stage of the magnetic field sensing device of the embodiment of FIG. 2 of the present invention. In order to improve the accuracy of the magnetic field sensing, in the embodiment of FIG. 4, a further phase of the sensing action is transmitted to generate a more accurate second magnetic field detecting result V O ' .
在圖4中,當第一磁場偵測結果VO 產生後,可針對異向性磁電阻210以及220的磁化方向進行下一次的設定,並使異向性磁電阻210以及220的磁化方向分別改變為相反的方向D2以及方向D1。在完成異向性磁電阻210以及220的磁化方向的調整後,電流產生器230再次提供電流I1以及I2依方向D1以分別流經異向性磁電阻210以及220。接著,運算放大器OP1以及OP2可分別依據異向性磁電阻210以及220的兩端間的電壓差以產生第一偵測電壓V1’ 以及第二偵測電壓V2’ ,而算術運算器241則可使第一偵測電壓V1’ 以及第二偵測電壓V2’ 執行減法運算以產生第二磁場偵測結果VO ’ 。In FIG. 4, after the first magnetic field detection result V O is generated, the next setting of the magnetization directions of the anisotropic magnetoresistors 210 and 220 can be performed, and the magnetization directions of the anisotropic magnetoresistors 210 and 220 are respectively Change to the opposite direction D2 and direction D1. After the adjustment of the magnetization directions of the anisotropic magnetoresistors 210 and 220 is completed, the current generator 230 again supplies the currents I1 and I2 in the direction D1 to flow through the anisotropic magnetoresistors 210 and 220, respectively. Then, the operational amplifiers OP1 and OP2 can generate the first detection voltage V1 ′ and the second detection voltage V2 ′ according to the voltage difference between the two ends of the anisotropic magnetoresistors 210 and 220, respectively, and the arithmetic operator 241 can The first detection voltage V1 ′ and the second detection voltage V2 ′ are subjected to subtraction to generate a second magnetic field detection result V O ′ .
以下請同步參照圖4以及圖5,其中圖5繪示本發明實施例的第二階段的磁場偵測結果的波形圖。在圖5中,縱軸為第一磁場偵測結果VO 的電壓值,而橫軸則為受測磁場H的大小。在受測磁場H介於固定的範圍中時,異向性磁電阻210以及220所分別提供的電阻值R1以及R2與受測磁場H呈線性關係。而與圖3不相同的,在圖5中,電阻值R1與受測磁場H呈負相關,電阻值R2與受測磁場H則呈正相關。Please refer to FIG. 4 and FIG. 5 simultaneously. FIG. 5 is a waveform diagram of the magnetic field detection result in the second stage of the embodiment of the present invention. In FIG. 5, the vertical axis represents the voltage value of the first magnetic field detection result V O , and the horizontal axis represents the magnitude of the measured magnetic field H. When the measured magnetic field H is in a fixed range, the resistance values R1 and R2 respectively provided by the anisotropic magnetoresistors 210 and 220 are linearly related to the measured magnetic field H. Unlike FIG. 3, in FIG. 5, the resistance value R1 is negatively correlated with the measured magnetic field H, and the resistance value R2 is positively correlated with the measured magnetic field H.
在圖5中,當受測磁場H等於H0 時,運算放大器OP1所產生的第一偵測電壓V1’ = V + DV而運算放大器OP1所產生的第二偵測電壓V2’ = V – DV,其中V為基準電壓。透過使第一偵測電壓V1’ 與第二偵測電壓V2’ 相減,即可獲得第二磁場偵測結果VO ’ = V - DV – (V + DV) = -2×DV。接著,運算電路240並使第一磁場偵測結果VO 與第二磁場偵測結果VO ’ 進行再一次的減法運算,並可獲得等於4×DV的第三磁場偵測結果。In FIG. 5, when the 'second detection voltage V2 and the operational amplifier OP1 = V + DV produced' by measuring the magnetic field H 0 is equal to H, the operational amplifier OP1 generated by the first detection voltage V1 = V - DV Where V is the reference voltage. By subtracting the first detection voltage V1 ' from the second detection voltage V2 ' , the second magnetic field detection result V O ' = V - DV - (V + DV) = -2 × DV can be obtained. Next, the arithmetic circuit 240 performs a further subtraction of the first magnetic field detection result V O and the second magnetic field detection result V O ' , and obtains a third magnetic field detection result equal to 4×DV.
在此請注意,透過使第一磁場偵測結果VO 與第二磁場偵測結果VO ’ 進行再一次的減法運算,運算放大器OP1以及OP2的直流電壓偏移(DC offset)所產生的影響可以有效的獲得補償,並使磁場偵測結果的準確度更為提升。Please note that the influence of the DC offset of the operational amplifiers OP1 and OP2 is further reduced by the first magnetic field detection result V O and the second magnetic field detection result V O ' . The compensation can be effectively obtained and the accuracy of the magnetic field detection result can be improved.
附帶一提的,上述的運算放大器OP1、OP2的正、負輸入端與異向性磁電阻210以及220的端點連接關係是可以被變更的。舉例來說明,圖2、4中的運算放大器OP2的正、負輸入端可以交換,並且,算術運算器241則可對應變更為加法器,如此一來,磁場感測裝置200還是可以產生相同的磁場偵測結果。也就是說,本領域具通常知識者可以依據上述的原理進行運算放大器OP1、OP2與異向性磁電阻210以及220的端點連接關係以及算術運算器241所操作的算術運算進行調整,並使本實施可具以實施。Incidentally, the terminal connection relationship between the positive and negative input terminals of the operational amplifiers OP1 and OP2 and the anisotropy magnetoresistors 210 and 220 can be changed. For example, the positive and negative inputs of the operational amplifier OP2 in FIGS. 2 and 4 can be exchanged, and the arithmetic operator 241 can be correspondingly changed to an adder, so that the magnetic field sensing device 200 can still generate the same. Magnetic field detection results. That is to say, those skilled in the art can adjust the end point connection relationship between the operational amplifiers OP1 and OP2 and the anisotropic magnetoresistors 210 and 220 and the arithmetic operation operated by the arithmetic operator 241 according to the above principle, and This implementation can be implemented.
以下請參照圖6,圖6繪示本發明再一實施例的磁場感測裝置的示意圖。磁場感測裝置600包括異向性磁電阻610、620、電流產生器630以及運算器640。運算器640並包括運算放大器OP1、OP2以及算術運算器641。與前述實施例不同的,本發明實施例中的異向性磁電阻610、620相互串聯耦接,其中,異向性磁電阻610的第一端耦接至電流產生器630以及運算放大器OP1的正輸入端,異向性磁電阻610的第二端耦接至運算放大器OP1的負輸入端,並耦接至異向性磁電阻620的第一端。另外,異向性磁電阻620的第一端並耦接至運算放大器OP2的正輸入端,而異向性磁電阻620的第二端則耦接至運算放大器OP2的負輸入端以及參考接地端GND。Please refer to FIG. 6. FIG. 6 is a schematic diagram of a magnetic field sensing device according to still another embodiment of the present invention. The magnetic field sensing device 600 includes anisotropic magnetoresistances 610, 620, a current generator 630, and an operator 640. The arithmetic unit 640 includes an operational amplifiers OP1 and OP2 and an arithmetic operation unit 641. Different from the foregoing embodiments, the anisotropic magnetoresistors 610 and 620 are coupled in series with each other, wherein the first end of the anisotropic magnetoresistance 610 is coupled to the current generator 630 and the operational amplifier OP1. The second input of the anisotropic magnetoresistance 610 is coupled to the negative input terminal of the operational amplifier OP1 and coupled to the first end of the anisotropic magnetoresistor 620. In addition, the first end of the anisotropic magnetoresistance 620 is coupled to the positive input terminal of the operational amplifier OP2, and the second end of the anisotropic magnetoresistance 620 is coupled to the negative input terminal of the operational amplifier OP2 and the reference ground terminal. GND.
基於異向性磁電阻610、620相互串聯耦接的條件下,電流產生器630僅需單一電流源IS3以產生電流I1。電流產生器630並依據方向D1傳送電流I1依序流經異向性磁電阻610以及620。基於本實施例的架構,透過設定具有相反磁化方向的異向性磁電阻610、620,並透過前述的一階段或二階段的磁場感測方法,本發明實施例的磁場感測裝置600可透過算術運算器641的算術運算來獲得磁場偵測結果VO 。Based on the fact that the anisotropic magnetoresistors 610, 620 are coupled in series with each other, the current generator 630 requires only a single current source IS3 to generate the current I1. The current generator 630 sequentially transmits the current I1 according to the direction D1 through the anisotropic magnetoresistances 610 and 620. Based on the architecture of the present embodiment, the magnetic field sensing device 600 of the embodiment of the present invention can be permeable to the magnetic field sensing device 600 of the embodiment of the present invention by setting the anisotropic magnetoresistance 610, 620 having the opposite magnetization direction and transmitting the magnetic field sensing method of the first or second stage. The arithmetic operation of the arithmetic operator 641 obtains the magnetic field detection result V O .
以下請參照圖7A以及7B,圖7A以及7B繪示本發明不同實施例的異向性磁電阻的佈局方法。其中,異向性磁電阻710以及720可以是具有理髮店招牌(barber pole)狀結構,亦即其表面設有相對於異向性磁電阻710、720的延伸方向傾斜45度延伸的多個短路棒SB(electrical shorting bar),這些短路棒彼此相間隔且平行地設置於鐵磁膜FF(ferromagnetic film)上,而鐵磁膜FF為異向性磁電阻710、720的主體,其延伸方向即為異向性磁電阻FF的延伸方向。此外,鐵磁膜FF的相對兩端可製作成尖端狀。7A and 7B, FIGS. 7A and 7B illustrate a method of laying out an anisotropic magnetoresistance according to various embodiments of the present invention. Wherein, the anisotropic magnetoresistances 710 and 720 may have a barber pole-like structure, that is, a plurality of short circuits whose surfaces are inclined by 45 degrees with respect to the extending direction of the anisotropic magnetoresistances 710 and 720. SB (electrical shorting bar), these shorting bars are disposed on the ferromagnetic film FF (spacer film) spaced apart from each other, and the ferromagnetic film FF is the main body of the anisotropic magnetoresistance 710, 720, and the extending direction thereof is It is the extending direction of the anisotropic magnetoresistance FF. Further, the opposite ends of the ferromagnetic film FF can be formed in a tip shape.
在圖7A中,異向性磁電阻710以及異向性磁電阻720可分隔進行配置。其中,異向性磁電阻710配置在磁化方向設定元件C1上,異向性磁電阻720則配置在磁化方向設定元件C2上,並且,異向性磁電阻710耦接在端點P2以及端點P2間,異向性磁電阻720則耦接在端點P2以及端點P1間。圖7A的異向性磁電阻710、720可分別應用於本發明圖2實施例的異向性磁電阻210、220,其中的端點P1可耦接至運算放大器OP2的正輸入端並接收電流I2,端點P3可耦接至運算放大器OP1的正輸入端並接收電流I1,而端點P2則可耦接至參考接地端GND以及運算放大器OP1、OP2的負輸入端。此外,圖7A的異向性磁電阻710、720也可分別應用於本發明圖6實施例的異向性磁電阻610、620,其中的端點P2可耦接至運算放大器OP1的負輸入端以及運算放大器OP2的正輸入端,端點P3可耦接至運算放大器OP1的正輸入端並接收電流I1,而端點P1則可耦接至參考接地端GND以及運算放大器OP2的負輸入端。磁化方向設定元件C1、C2例如是線圈、導線或導體,其可分別藉由通電流產生平行於鐵磁膜FF的延伸方向、通過鐵磁膜FF且方向相反的兩個的磁場,以將異向性磁電阻710、720的磁化方向分別設定為方向D1與方向D2。In FIG. 7A, the anisotropic magnetoresistor 710 and the anisotropic magnetoresistor 720 can be arranged separately. Wherein, the anisotropic magnetoresistive resistor 710 is disposed on the magnetization direction setting component C1, the anisotropic magnetoresistive resistor 720 is disposed on the magnetization direction setting component C2, and the anisotropic magnetoresistive resistor 710 is coupled to the end point P2 and the end point. Between P2, the anisotropic magnetoresistance 720 is coupled between the end point P2 and the end point P1. The anisotropic magnetoresistances 710, 720 of FIG. 7A can be respectively applied to the anisotropic magnetoresistors 210, 220 of the embodiment of FIG. 2 of the present invention, wherein the terminal P1 can be coupled to the positive input terminal of the operational amplifier OP2 and receive current. I2, the terminal P3 can be coupled to the positive input terminal of the operational amplifier OP1 and receive the current I1, and the terminal P2 can be coupled to the reference ground GND and the negative input terminals of the operational amplifiers OP1, OP2. In addition, the anisotropic magnetoresistors 710 and 720 of FIG. 7A can also be respectively applied to the anisotropic magnetoresistors 610 and 620 of the embodiment of FIG. 6 of the present invention, wherein the terminal P2 can be coupled to the negative input terminal of the operational amplifier OP1. And the positive input terminal of the operational amplifier OP2, the terminal P3 can be coupled to the positive input terminal of the operational amplifier OP1 and receive the current I1, and the terminal P1 can be coupled to the reference ground GND and the negative input terminal of the operational amplifier OP2. The magnetization direction setting elements C1, C2 are, for example, coils, wires or conductors which can respectively generate two magnetic fields which are parallel to the direction in which the ferromagnetic film FF extends, and which pass through the ferromagnetic film FF and are opposite in direction, by means of a current. The magnetization directions of the directional magnetoresistances 710 and 720 are set to the direction D1 and the direction D2, respectively.
在圖7B中,異向性磁電阻730以及異向性磁電阻740則可交錯進行配置。其中,部分的異向性磁電阻730以及部分的異向性磁電阻740交錯配置在磁化方向設定元件C1,另一部分的異向性磁電阻730以及另一部分的異向性磁電阻740交錯配置在磁化方向設定元件C2。異向性磁電阻730耦接在端點P5以及端點P6間,異向性磁電阻720則耦接在端點P5以及端點P4間。值得注意的,配置在相同磁化方向設定元件中的部分異向性磁電阻730以及部分異向性磁電阻740其短路棒的方向是互補的,而配置在相異磁化方向設定元件的部分異向性磁電阻730(或異向性磁電阻740)其短路棒的方向是互補的。In FIG. 7B, the anisotropic magnetoresistance 730 and the anisotropic magnetoresistance 740 are alternately arranged. Among them, a part of the anisotropic magnetoresistance 730 and a part of the anisotropic magnetoresistance 740 are alternately arranged in the magnetization direction setting element C1, and another part of the anisotropic magnetoresistance 730 and another part of the anisotropic magnetoresistance 740 are alternately arranged in The magnetization direction setting element C2. The anisotropic magnetoresistance 730 is coupled between the terminal P5 and the terminal P6, and the anisotropic magnetoresistance 720 is coupled between the terminal P5 and the end point P4. It is to be noted that the partial anisotropic magnetoresistance 730 and the partial anisotropic magnetoresistance 740 disposed in the same magnetization direction setting element are complementary in the direction of the shorting bars, and are partially in the opposite direction of the dissimilar magnetization direction setting elements. The magnetic resistance 730 (or the anisotropic magnetoresistance 740) has complementary directions of the shorting bars.
圖7B中的異向性磁電阻730以及異向性磁電阻740同樣可應用於本發明圖2、6實施例的磁場感測裝置200、600中。應用在磁場感測裝置200時,端點P4可耦接至運算放大器OP2的正輸入端並接收電流I2,端點P6可耦接至運算放大器OP1的正輸入端並接收電流I1,而端點P5則可耦接至參考接地端GND以及運算放大器OP1、OP2的負輸入端。應用在磁場感測裝置600時,端點P5可耦接至運算放大器OP1的負輸入端以及運算放大器OP2的正輸入端,端點P6可耦接至運算放大器OP1的正輸入端並接收電流I1,而端點P4則可耦接至參考接地端GND以及運算放大器OP2的負輸入端。The anisotropic magnetoresistance 730 and the anisotropic magnetoresistor 740 of FIG. 7B are equally applicable to the magnetic field sensing devices 200, 600 of the present embodiment of FIGS. When applied to the magnetic field sensing device 200, the terminal P4 can be coupled to the positive input terminal of the operational amplifier OP2 and receive the current I2. The terminal P6 can be coupled to the positive input terminal of the operational amplifier OP1 and receive the current I1. P5 can be coupled to the reference ground GND and the negative inputs of the operational amplifiers OP1, OP2. When applied to the magnetic field sensing device 600, the terminal P5 can be coupled to the negative input terminal of the operational amplifier OP1 and the positive input terminal of the operational amplifier OP2, and the terminal P6 can be coupled to the positive input terminal of the operational amplifier OP1 and receive the current I1. The terminal P4 can be coupled to the reference ground GND and the negative input of the operational amplifier OP2.
以下請參照圖8,圖8繪示本發明實施例的磁場感測方法的流程圖。步驟S810提供第一異向性磁電阻,並設定其磁化方向為第一方向,步驟S820則提供第二異向性磁電阻,並設定其磁化方向為第二方向,其中第二方向與第一方向相反。接著,步驟S830並提供電流沿第一方向以流經第一異向性磁電阻及第二異向性磁電阻。步驟S840則依據第一異向性磁電阻兩端間的電壓差以及第二異向性磁電阻兩端間的電壓差來分別獲得第一偵測電壓以及第二偵測電壓,並在步驟S850針對第一偵測電壓以及第二偵測電壓進行算術運算以獲得第一磁場偵測結果。Please refer to FIG. 8 . FIG. 8 is a flowchart of a magnetic field sensing method according to an embodiment of the present invention. Step S810 provides a first anisotropic magnetoresistance and sets its magnetization direction to a first direction, and step S820 provides a second anisotropic magnetoresistance and sets its magnetization direction to a second direction, wherein the second direction is first The opposite direction. Next, in step S830, a current is supplied in the first direction to flow through the first anisotropic magnetoresistance and the second anisotropic magnetoresistance. Step S840, respectively, obtaining the first detection voltage and the second detection voltage according to the voltage difference between the two ends of the first anisotropic magnetoresistive resistor and the voltage difference between the two ends of the second anisotropic magnetoresistance, and in step S850. Performing an arithmetic operation on the first detection voltage and the second detection voltage to obtain a first magnetic field detection result.
關於上述步驟的實施細節在前述的多個實施例中已有詳盡的說明,以下恕不多贅述。The implementation details of the above steps have been described in detail in the foregoing various embodiments, and will not be further described below.
請再參照圖7A與圖7B,上述的實施例中異向性磁電阻710與720的磁場設定方向是以兩個相反的方向D1與D2為例,但在另一實施例中,可將圖7A的異向性磁電阻720的短路棒SB方向改成圖7B的標號740右邊的異向性磁電阻740的短路棒SB方向(即和原本相差90度,但短路棒SB的延伸方向都是與鐵磁膜FF的延伸方向夾45度)。關於異向性磁電阻的特性,當外在磁場固定時,而短路棒旋轉90度時,異向性磁電阻的電阻值會從原本的增加一個ΔR值變成減少ΔR值,或從原本的減少一個ΔR值變成增加ΔR值,而ΔR值與垂直於鐵磁膜FF的外在磁場的分量的大小對應;當磁場設定方向變成反向時,也會有此情形;然而,當鐵磁膜FF的電流的方向相反時,則不會有此情形,而是異向性磁電阻的電阻值變化方向維持不變。因此,在此另一實施例中,由於將圖7A的異向性磁電阻720的短路棒SB方向改成圖7B的標號740右邊的異向性磁電阻740的短路棒SB方向,也就是異向性磁電阻210的短路棒SB的延伸方向與異向性磁電阻SB的短路棒SB的延伸方向垂直,此時對異向性磁電阻710的磁場設定方向(方向D1)與對異向性磁電阻720的磁場設定方向(方向D2)可變更成同向,亦即方向D1與方向D2都朝圖7A的左方,或方向D1與方向D2都朝圖7A的右方,如此仍然可使異向性磁電阻710、720對應於受測磁場H的電阻值變化方向相反而變化大小實質上相同,例如兩者的電阻值變化分別為ΔR與-ΔR。而在又一實施例中,在下一時刻,更可使異向性磁電阻710、720的磁場設定方向變為反向,例如方向D1與D2原本都朝左改成都朝右,或方向D1與D2原本都朝右改成都朝左。Referring to FIG. 7A and FIG. 7B again, in the above embodiment, the magnetic field setting directions of the anisotropic magnetoresistors 710 and 720 are exemplified by two opposite directions D1 and D2, but in another embodiment, the figure may be The short-circuit bar SB direction of the anisotropic magnetoresistance 720 of 7A is changed to the short-circuit bar SB direction of the anisotropic magnetoresistance 740 on the right side of the reference numeral 740 of FIG. 7B (that is, 90 degrees difference from the original, but the extension direction of the short-circuit bar SB is It is 45 degrees with the extending direction of the ferromagnetic film FF). Regarding the characteristics of the anisotropic magnetoresistance, when the external magnetic field is fixed and the shorting bar is rotated by 90 degrees, the resistance value of the anisotropic magnetoresistance is changed from a ΔR value to a ΔR value, or from the original value. A ΔR value becomes an increase ΔR value, and a ΔR value corresponds to a magnitude of a component of an external magnetic field perpendicular to the ferromagnetic film FF; this is also the case when the magnetic field setting direction becomes reversed; however, when the ferromagnetic film FF When the direction of the current is reversed, this is not the case, but the direction of change of the resistance value of the anisotropic magnetoresistance remains unchanged. Therefore, in this other embodiment, since the shorting bar SB direction of the anisotropic magnetoresistance 720 of FIG. 7A is changed to the shorting bar SB direction of the anisotropic magnetoresistance 740 of the right side of the reference numeral 740 of FIG. 7B, it is different. The extending direction of the shorting bar SB of the directional magnetoresistive resistor 210 is perpendicular to the extending direction of the shorting bar SB of the anisotropic magnetoresistive SB. At this time, the direction (direction D1) and the anisotropy of the magnetic field of the anisotropic magnetoresistor 710 are set. The magnetic field setting direction (direction D2) of the magnetoresistive 720 can be changed to be in the same direction, that is, both the direction D1 and the direction D2 are toward the left side of FIG. 7A, or both the direction D1 and the direction D2 are toward the right of FIG. 7A, so that The anisotropy magnetoresistances 710 and 720 have substantially the same magnitude of change in the resistance value of the measured magnetic field H, and for example, the resistance values of the two are ΔR and -ΔR, respectively. In still another embodiment, at the next moment, the magnetic field setting direction of the anisotropic magnetoresistance 710, 720 can be reversed. For example, the directions D1 and D2 are both changed to the left, or the direction D1. Both D2 and D2 were originally turned to the left and turned to the left.
綜上所述,本發明的實施例提供成對的第一異向性磁電阻及第二異向性磁電阻,並透過設定第一異向性磁電阻及第二異向性磁電阻具有相反或相同的磁化方向,且當第一異向性磁電阻的電阻值依據受測磁場增大時,第二異向性磁電阻的電阻值對應減小;當第一異向性磁電阻的電阻值依據受測磁場而減小時,第二異向性磁電阻的電阻值對應增大。此外,再藉由偵測第一異向性磁電阻及第二異向性磁電阻接收相同電流所產生的電壓差以計算出磁場偵測結果。如此一來,本發明僅需成對的第一異向性磁電阻及第二異向性磁電阻即可完成磁場感測動作,有效減少磁場感測裝置所需的元件佈局面積,有效降低成本。另外,透過針對成對異向性磁電阻的電壓差進行算術運算可有效降低環境雜訊對感測結果造成的影響,並且,電路元件的直流偏移以及溫度造成的電性漂移也可以一併獲得補償,提升感測結果的準確度。In summary, embodiments of the present invention provide a pair of first anisotropic magnetoresistance and a second anisotropic magnetoresistance, and have opposites by setting a first anisotropic magnetoresistance and a second anisotropic magnetoresistance Or the same magnetization direction, and when the resistance value of the first anisotropic magnetoresistance increases according to the measured magnetic field, the resistance value of the second anisotropic magnetoresistance decreases correspondingly; when the resistance of the first anisotropic magnetoresistance When the value decreases according to the measured magnetic field, the resistance value of the second anisotropic magnetoresistance increases correspondingly. In addition, the magnetic field detection result is calculated by detecting the voltage difference generated by the first anisotropy magnetoresistance and the second anisotropy magnetoresistance receiving the same current. In this way, the present invention only needs the paired first anisotropic magnetoresistance and the second anisotropic magnetoresistance to complete the magnetic field sensing action, effectively reducing the component layout area required for the magnetic field sensing device, and effectively reducing the cost. . In addition, the arithmetic operation of the voltage difference of the paired anisotropic magnetoresistance can effectively reduce the influence of environmental noise on the sensing result, and the DC offset of the circuit component and the electrical drift caused by the temperature can also be combined. Get compensation to improve the accuracy of the sensing results.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100、200、600‧‧‧磁場感測裝置
110、120、210、220、610、620、710、720、730、740‧‧‧異向性磁電阻
130、230、630‧‧‧電流產生器
140、240、640‧‧‧運算器
R1、R2‧‧‧電阻值
D1、D2‧‧‧方向
I1、I2‧‧‧電流
VO
、VO ’
‧‧‧第一磁場偵測結果
V1、V2、V1’、V2’‧‧‧偵測電壓
OP1、OP2‧‧‧運算放大器
241、641‧‧‧算術運算器
IS1~IS3‧‧‧電流源
GND‧‧‧參考接地電壓
H‧‧‧受測磁場
H0‧‧‧磁場量
P1~P6‧‧‧端點
C1、C2‧‧‧磁化方向設定元件
S810~S850‧‧‧磁場感測方法的步驟100, 200, 600‧‧‧ magnetic field sensing device
110, 120, 210, 220, 610, 620, 710, 720, 730, 740‧‧‧ anisotropic magnetoresistance
130, 230, 630‧‧‧ current generator
140, 240, 640‧‧‧ arithmetic
R1, R2‧‧‧ resistance value
D1, D2‧‧‧ direction
I1, I2‧‧‧ current
V O , V O ' ‧ ‧ first magnetic field detection results
V1, V2, V1 ' , V2 ' ‧ ‧ detection voltage
OP1, OP2‧‧‧Operational Amplifier
241, 641‧‧ ‧ Arithmetic Operator
IS1~IS3‧‧‧current source
GND‧‧‧reference ground voltage
H‧‧‧Measured magnetic field
H 0 ‧‧‧Magnetic field
P1~P6‧‧‧ endpoint
C1, C2‧‧‧ Magnetization direction setting component
S810~S850‧‧‧Steps for magnetic field sensing method
圖1繪示本發明一實施例的磁場感測裝置的示意圖。 圖2繪示本發明另一實施例的磁場感測裝置的示意圖。 圖3繪示本發明實施例的磁場偵測結果的波形圖。 圖4繪示本發明圖2實施例的磁場感測裝置的另一感測階段的動作示意圖。 圖5繪示本發明實施例的第二階段的磁場偵測結果的波形圖。 圖6繪示本發明再一實施例的磁場感測裝置的示意圖。 圖7A以及7B繪示本發明不同實施例的異向性磁電阻的佈局方法。 圖8繪示本發明實施例的磁場感測方法的流程圖。FIG. 1 is a schematic diagram of a magnetic field sensing device according to an embodiment of the invention. 2 is a schematic diagram of a magnetic field sensing device according to another embodiment of the present invention. FIG. 3 is a waveform diagram showing magnetic field detection results according to an embodiment of the present invention. 4 is a schematic view showing the operation of another sensing stage of the magnetic field sensing device of the embodiment of FIG. 2 of the present invention. FIG. 5 is a waveform diagram showing magnetic field detection results in the second stage of the embodiment of the present invention. 6 is a schematic diagram of a magnetic field sensing device according to still another embodiment of the present invention. 7A and 7B illustrate a method of laying out an anisotropic magnetoresistance of different embodiments of the present invention. FIG. 8 is a flow chart of a magnetic field sensing method according to an embodiment of the present invention.
100‧‧‧磁場感測裝置 100‧‧‧ Magnetic field sensing device
110、120‧‧‧異向性磁電阻 110, 120‧‧‧ anisotropic magnetoresistance
130‧‧‧電流產生器 130‧‧‧current generator
140‧‧‧運算器 140‧‧‧Operator
R1、R2‧‧‧電阻值 R1, R2‧‧‧ resistance value
D1、D2‧‧‧方向 D1, D2‧‧‧ direction
I1、I2‧‧‧電流 I1, I2‧‧‧ current
H‧‧‧受測磁場 H‧‧‧Measured magnetic field
VO‧‧‧第一磁場偵測結果 V O ‧‧‧First magnetic field detection result
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611035057.0A CN106872914B (en) | 2015-11-27 | 2016-11-23 | Magnetic field sensing device and sensing method |
US15/361,082 US10151807B2 (en) | 2015-11-27 | 2016-11-25 | Magnetic field sensing apparatus with anisotropic magneto-resistive resistors and detection method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562260344P | 2015-11-27 | 2015-11-27 | |
US62/260,344 | 2015-11-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201719189A true TW201719189A (en) | 2017-06-01 |
TWI613458B TWI613458B (en) | 2018-02-01 |
Family
ID=59687681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105132309A TWI613458B (en) | 2015-11-27 | 2016-10-06 | Magnetic field sensing apparatus and detection method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI613458B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI723412B (en) * | 2019-06-05 | 2021-04-01 | 愛盛科技股份有限公司 | Magnetic field sensing apparatus |
CN113640713A (en) * | 2021-10-13 | 2021-11-12 | 苏州纳芯微电子股份有限公司 | Magnetic field sensing element compensation circuit and compensation method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003100449A1 (en) * | 2002-05-28 | 2003-12-04 | Vitec Co., Ltd. | Magnetic sensor and direction sensor |
KR100933834B1 (en) * | 2004-10-07 | 2009-12-24 | 야마하 가부시키가이샤 | Geomagnetic detection device |
US9470764B2 (en) * | 2011-12-05 | 2016-10-18 | Hercules Technology Growth Capital, Inc. | Magnetic field sensing apparatus and methods |
TWI513993B (en) * | 2013-03-26 | 2015-12-21 | Ind Tech Res Inst | 3-axis magnetic field sensor, fabrication method of magnetic sensing structure and magnetic field sensing circuit |
EP3125319B1 (en) * | 2014-03-28 | 2018-09-12 | Alps Electric Co., Ltd. | Magnetic sensor, method for manufacturing magnetic sensor, and current sensor |
-
2016
- 2016-10-06 TW TW105132309A patent/TWI613458B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI723412B (en) * | 2019-06-05 | 2021-04-01 | 愛盛科技股份有限公司 | Magnetic field sensing apparatus |
CN113640713A (en) * | 2021-10-13 | 2021-11-12 | 苏州纳芯微电子股份有限公司 | Magnetic field sensing element compensation circuit and compensation method |
Also Published As
Publication number | Publication date |
---|---|
TWI613458B (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103197265B (en) | Tunneling magnetic resistance reference unit and magnetic field sensing circuit thereof | |
TWI431301B (en) | Magnetic field sensing method and magnetic field sensing apparatus using tunneling magneto-resistor device | |
US9970997B2 (en) | Magnetic field sensing apparatus and magnetic field sensing module | |
US10101413B2 (en) | Magnetic field detection device | |
WO2015172530A1 (en) | Interference elimination method for electronic compass | |
US11397225B2 (en) | Current sensor, magnetic sensor and circuit | |
US20210018573A1 (en) | Methods and Apparatus For Frequency Effect Compensation In Magnetic Field Current Sensors | |
CN103278783B (en) | Magnetic field sensor and hall device | |
JPWO2014111976A1 (en) | Magnetic sensor and manufacturing method thereof | |
US10473732B2 (en) | Magnetometer with a differential-type integrated circuit for MI sensor and GSR | |
CN110109039A (en) | The regulation method and system of tunneling magnetic resistance sensor | |
TWI613458B (en) | Magnetic field sensing apparatus and detection method thereof | |
KR101825313B1 (en) | Magnetic detection apparatus | |
US8261458B2 (en) | Geomagnetic sensor device and digital compass with the same | |
CN109932670B (en) | Closed-loop TMR Magnetic Field Measurement Device Based on Power-on Setting | |
CN106872914B (en) | Magnetic field sensing device and sensing method | |
JP2013088370A (en) | Current sensor | |
JP2009121858A (en) | Amplification circuit | |
US10018688B1 (en) | Method and apparatus for detecting magnetic saturation in AMR sensors | |
JP6927014B2 (en) | Current sensor | |
US20140125328A1 (en) | Magnetic detection device | |
JP2017181409A (en) | Control circuit and control system | |
JP2016142651A (en) | Power sensor | |
JP2007228000A (en) | Magnetic switch |