TW201711674A - Carriers and uses thereof - Google Patents
Carriers and uses thereof Download PDFInfo
- Publication number
- TW201711674A TW201711674A TW105115869A TW105115869A TW201711674A TW 201711674 A TW201711674 A TW 201711674A TW 105115869 A TW105115869 A TW 105115869A TW 105115869 A TW105115869 A TW 105115869A TW 201711674 A TW201711674 A TW 201711674A
- Authority
- TW
- Taiwan
- Prior art keywords
- carrier
- metal ion
- hydrogen peroxide
- plga
- outer shell
- Prior art date
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
本發明係關於一種載體及其用途,尤指一種包含親水性內核及疏水性外殼之載體及其用途。 The present invention relates to a carrier and its use, and more particularly to a carrier comprising a hydrophilic core and a hydrophobic outer shell and uses thereof.
微米或奈米載體的最新進展在生命科學領域產生了許多前所未有的機會。特別是在發展各種具有廣泛的功能之微米或奈米載體方面有很大的突破。制定微米或奈米載體內在和外在的特性之能力進一步創造了微米或奈米載體在體內新穎的治療/診斷(治療診斷學)之應用,在此基礎上可以實現對人類疾病更佳地理解和治療。因此,如何制定微米或奈米載體內在和外在的特性,以將其有效的運用在疾病的診斷及治療上是現今生命科學領域之重要的課題。 Recent advances in micro or nano carriers have created many unprecedented opportunities in the life sciences. In particular, there has been a great breakthrough in the development of various micro or nano carriers with a wide range of functions. The ability to develop the intrinsic and extrinsic properties of micro or nano carriers further creates a novel therapeutic/diagnostic (therapeutic diagnostics) application of micro or nano carriers in vivo, on the basis of which a better understanding of human disease can be achieved. And treatment. Therefore, how to formulate the intrinsic and extrinsic characteristics of micron or nano carriers to effectively use them in the diagnosis and treatment of diseases is an important issue in the field of life sciences.
在疾病的診斷方面,由於成本低廉、使用安全、操作無痛、容易獲得以及非侵入性即時成像等特點,超音波(ultrasound,US)被廣泛用於疾病的診斷。超音波影像可藉由將微米或奈米載體做為超音波對比劑來增強,做為超音波對比劑之微米或奈米載體一般內部是充填全氟碳化物(perfluorocarbons)或氮。 Ultrasound (US) is widely used in the diagnosis of diseases due to its low cost, safe use, painless operation, easy access and non-invasive imaging. Ultrasonic images can be enhanced by using micron or nanocarriers as ultrasonic contrast agents. Micron or nanocarriers used as ultrasonic contrast agents are typically filled with perfluorocarbons or nitrogen.
在疾病的治療方面,以癌症為例,近年來微米或奈米載體常被用以攜帶抗癌藥物至體內。然而,目前微米或奈米載體的作用僅僅是單 純的運送抗癌藥物,對於抗癌藥物之功效並無實質的助益。 In the treatment of diseases, taking cancer as an example, in recent years, micron or nano carriers are often used to carry anticancer drugs into the body. However, the current role of micro or nano carriers is only a single Pure delivery of anticancer drugs has no real benefit for the efficacy of anticancer drugs.
此外,心腦血管疾病是全球的頭號死因,先前的研究將這些重要疾病的高死亡率歸咎於缺血再灌注(ischemia-reperfusion,I/R)損傷。一氧化氮(nitric oxide,NO),其為心腦血管系統中的關鍵媒介,由於具有血管舒張和抗細胞凋亡活性,被認為具有抑制I/R損傷的潛力。進一步來說,低濃度的NO可避免營養因子(trophic factor)撤出(withdrawal)、Fas、腫瘤壞死因子α(TNFα)及脂多醣所誘導的細胞凋亡。其抗細胞凋亡機制可藉由表現保護性基因例如熱休克蛋白及B細胞淋巴瘤-2(Bcl-2)以及藉由半胱胺酸硫醇(cysteine thiol)亞硝基化(S-nitrosylation)直接抑制細胞凋亡蛋白酶家族蛋白酶(apoptotic caspase family proteases)來達到抗細胞凋亡的效果。然而,NO在心腦血管疾病的臨床應用主要限於急性心肌梗塞,部分是由於控制這種結構上簡單但化學上複雜的分子在體內多方面活動的困難。發展控制NO的劑量以及它在複雜的生理環境的作用時機、持續時間和位置之策略至為必要,因為這樣的發展不僅可促進我們對NO治療活性的了解,還可擴展NO在其他重要的心腦血管疾病的臨床應用。 In addition, cardiovascular and cerebrovascular diseases are the number one cause of death worldwide. Previous studies have attributed the high mortality of these important diseases to ischemia-reperfusion (I/R) damage. Nitric oxide (NO), a key mediator in the cardiovascular and cerebrovascular system, is thought to have the potential to inhibit I/R damage due to its vasodilation and anti-apoptotic activity. Further, low concentrations of NO can avoid apoptosis induced by trophic factor withdrawal, Fas, tumor necrosis factor alpha (TNFα), and lipopolysaccharide. Its anti-apoptotic mechanism can be characterized by the expression of protective genes such as heat shock protein and B cell lymphoma-2 (Bcl-2) and cysteine thiol (S-nitrosylation). Direct inhibition of apoptotic caspase family proteases to achieve anti-apoptotic effects. However, the clinical application of NO in cardiovascular and cerebrovascular diseases is mainly limited to acute myocardial infarction, in part due to the difficulty of controlling such structurally simple but chemically complex molecules in many aspects of the body. It is necessary to develop strategies to control the dose of NO and its timing, duration and location in complex physiological environments, as such development not only promotes our understanding of the therapeutic activity of NO, but also extends NO in other important hearts. Clinical application of cerebrovascular diseases.
本發明之第一面向係提供一種載體之用途,其係用於製備治療一癌症之藥物,其中該載體包含:一親水性內核,包含一過氧化氫(H2O2);以及一疏水性外殼,包覆該親水性內核,且包含一金屬離子提供者及一高分子化合物,其中:當該過氧化氫與該金屬離子提供者接觸時,該過氧化氫、與該金屬離子提供者所提供之一金屬離子產生一芬頓反應(Fenton reaction)而生成一反應性含氧物種(reactive oxygen species,ROS)。 The first aspect of the present invention provides a use of a carrier for the preparation of a medicament for treating a cancer, wherein the carrier comprises: a hydrophilic core comprising a hydrogen peroxide (H 2 O 2 ); and a hydrophobicity An outer shell encasing the hydrophilic core and comprising a metal ion donor and a polymer compound, wherein: when the hydrogen peroxide is in contact with the metal ion donor, the hydrogen peroxide and the metal ion donor Providing one of the metal ions produces a Fenton reaction to form a reactive oxygen species (ROS).
本發明之第二面向係提供一種載體之用途,其係用於製備治療一心血管疾病之藥物,其中該載體包含:一親水性內核,包含一S-亞硝基硫醇(S-nitrosothiols,RSNO);一疏水性外殼,包覆該親水性內核,且包含一催化劑,其中:當該S-亞硝基硫醇與該催化劑接觸時,會產生一催化反應而生成一一氧化氮(nitric oxide,NO)。 The second aspect of the present invention provides a use of a carrier for the preparation of a medicament for treating a cardiovascular disease, wherein the carrier comprises: a hydrophilic core comprising an S-nitrosothiols (RSNO) a hydrophobic outer shell encapsulating the hydrophilic core and comprising a catalyst, wherein: when the S-nitrosothiol is contacted with the catalyst, a catalytic reaction is generated to form nitric oxide , NO).
本發明之第三面向係提供一種載體之用途,其係用於製備治療一疾病之藥物,其中該載體包含:一親水性內核,包含一化合物;以及一疏水性外殼,包覆該親水性內核,且包含一金屬奈米粒子及一兩性分子化合物,其中:當該化合物與該金屬奈米粒子接觸時,會產生一化學反應而生成一功能產物。 The third aspect of the present invention provides a use of a carrier for preparing a medicament for treating a disease, wherein the carrier comprises: a hydrophilic core comprising a compound; and a hydrophobic outer shell encapsulating the hydrophilic core And comprising a metal nanoparticle and an amphoteric compound, wherein: when the compound is in contact with the metal nanoparticle, a chemical reaction is generated to form a functional product.
本發明之第四面向係提供一種載體,包含:一親水性內核,包含一物質;一疏水性外殼,包覆該親水性內核,且包含一奈米粒子及一兩性分子化合物,其中:當該物質與該奈米粒子接觸而產生一化學反應時,將生成一功能產物。 The fourth aspect of the present invention provides a carrier comprising: a hydrophilic core comprising a substance; a hydrophobic outer shell encapsulating the hydrophilic core, and comprising a nanoparticle and an amphiphilic compound, wherein: When a substance reacts with the nanoparticle to produce a chemical reaction, a functional product is formed.
10、20、30、40‧‧‧載體 10, 20, 30, 40 ‧ ‧ carriers
101、201、301、401‧‧‧親水性內核 101, 201, 301, 401‧‧ ‧ hydrophilic core
102、202、302、402‧‧‧疏水性外殼 102, 202, 302, 402‧‧‧ hydrophobic shell
103‧‧‧過氧化氫 103‧‧‧ Hydrogen peroxide
104‧‧‧金屬離子提供者 104‧‧‧Metal ion donor
105、205‧‧‧高分子化合物 105, 205‧‧‧ polymer compound
106‧‧‧反應性含氧物種 106‧‧‧Reactive oxygen species
107‧‧‧穩定劑 107‧‧‧ Stabilizer
108‧‧‧帶正電荷分子 108‧‧‧ positively charged molecules
203‧‧‧S-亞硝基硫醇 203‧‧‧S-nitrosothiol
204‧‧‧催化劑 204‧‧‧ Catalyst
206‧‧‧一氧化氮 206‧‧‧ Nitric oxide
303‧‧‧化合物 303‧‧‧ compounds
304‧‧‧金屬奈米粒子 304‧‧‧Metal Nanoparticles
305‧‧‧兩性分子化合物 305‧‧‧Amphiphilic compounds
306、406‧‧‧功能產物 306, 406‧‧‧ functional products
403‧‧‧物質 403‧‧‧ substances
404‧‧‧奈米粒子 404‧‧‧Nano particles
405‧‧‧兩性分子化合物 405‧‧‧Amphiphilic compounds
第一圖顯示本發明第一實施例之載體。 The first figure shows the carrier of the first embodiment of the present invention.
第二圖顯示本發明第一實施例之載體。 The second figure shows the carrier of the first embodiment of the present invention.
第三圖顯示本發明第二實施例之載體。 The third figure shows the carrier of the second embodiment of the present invention.
第四圖顯示本發明第三實施例之載體。 The fourth figure shows the carrier of the third embodiment of the present invention.
第五圖顯示本發明第四實施例之載體。 The fifth figure shows the carrier of the fourth embodiment of the present invention.
第六圖(a)顯示本發明之四氧化三鐵(Fe3O4)-聚乳酸甘醇酸 (poly(lactic-co-glycolic acid),PLGA)載體之低解析度穿透式電子顯微鏡影像。 FIG sixth (a) shows triiron tetraoxide present invention (Fe 3 O 4) - polylactic glycolic acid (poly (lactic-co-glycolic acid), PLGA) low-resolution transmission electron microscope image of the carrier .
第六圖(b)顯示本發明之Fe3O4-PLGA載體之高放大倍率穿透式電子顯微鏡影像。 Figure 6 (b) shows a high magnification transmission electron microscope image of the Fe 3 O 4 -PLGA carrier of the present invention.
第六圖(c)顯示本發明之H2O2/Fe3O4-PLGA載體之低解析度穿透式電子顯微鏡影像。 Figure 6 (c) shows a low resolution transmission electron microscope image of the H 2 O 2 /Fe 3 O 4 -PLGA carrier of the present invention.
第六圖(d)顯示本發明之H2O2/Fe3O4-PLGA載體之高放大倍率穿透式電子顯微鏡影像。 Figure 6 (d) shows a high magnification transmission electron microscope image of the H 2 O 2 /Fe 3 O 4 -PLGA carrier of the present invention.
第六圖(c)顯示本發明之H2O2/Fe3O4-PLGA載體之低解析度穿透式電子顯微鏡影像。 Figure 6 (c) shows a low resolution transmission electron microscope image of the H 2 O 2 /Fe 3 O 4 -PLGA carrier of the present invention.
第六圖(d)顯示本發明之H2O2/Fe3O4-PLGA載體之高放大倍率穿透式電子顯微鏡影像。 Figure 6 (d) shows a high magnification transmission electron microscope image of the H 2 O 2 /Fe 3 O 4 -PLGA carrier of the present invention.
第六圖(e)顯示本發明之注入200μL過氧化氫的H2O2/Fe3O4-PLGA載體之穿透式電子顯微鏡影像。 Fig. 6(e) shows a transmission electron microscope image of the H 2 O 2 /Fe 3 O 4 -PLGA carrier infused with 200 μL of hydrogen peroxide of the present invention.
第六圖(f)顯示本發明之注入400μL過氧化氫載體的H2O2/Fe3O4-PLGA之穿透式電子顯微鏡影像。 Figure 6 (f) shows a transmission electron microscope image of H 2 O 2 /Fe 3 O 4 -PLGA infused with 400 μL of hydrogen peroxide carrier of the present invention.
第七圖(a)顯示本發明之H2O2/Fe3O4-PLGA載體的比色試驗(colormetric test)之校正曲線。 Figure 7 (a) shows the calibration curve of the colormetric test of the H 2 O 2 /Fe 3 O 4 -PLGA carrier of the present invention.
第七圖(b)顯示本發明之H2O2/Fe3O4-PLGA載體的比色試驗之不同濃度過氧化氫的比較。 Figure 7 (b) shows a comparison of different concentrations of hydrogen peroxide in the colorimetric assay of the H 2 O 2 /Fe 3 O 4 -PLGA carrier of the present invention.
第八圖顯示本發明之H2O2(600μL)/Fe3O4-PLGA及Fe3O4-PLGA載體的安全性評估。 The eighth panel shows the safety evaluation of the H 2 O 2 (600 μL)/Fe 3 O 4 -PLGA and Fe 3 O 4 -PLGA carriers of the present invention.
第九圖顯示本發明之H2O2(600μL)/Fe3O4-PLGA載體在磷酸鹽緩衝液(phosphate buffered saline,PBS)(pH 5)的穩定性評估。 The ninth panel shows the stability evaluation of the H 2 O 2 (600 μL)/Fe 3 O4-PLGA carrier of the present invention in phosphate buffered saline (PBS) (pH 5).
第十圖顯示本發明之微超音波觸發的H2O2/Fe3O4-PLGA載體崩解。 The tenth graph shows the micro-ultrasonic-triggered H 2 O 2 /Fe3O4-PLGA carrier disintegration of the present invention.
第十一圖顯示本發明之載體與Ru(dpp)3Cl2的反應。 Figure 11 shows the reaction of the carrier of the present invention with Ru(dpp) 3 Cl 2 .
第十二圖顯示本發明之載體在瓊脂凝膠模型之體外產生聲波性能。 Figure 12 shows the acoustic properties of the carrier of the invention in vitro on an agar gel model.
第十三圖顯示本發明之Fe3O4奈米粒子和H2O2的反應。 The thirteenth chart shows the reaction of the Fe 3 O 4 nanoparticles of the present invention and H 2 O 2 .
第十四圖顯示本發明之H2O2/Fe3O4-PLGA載體之超音波照射時間與反應性含氧物種產量的關係。 Figure 14 shows the relationship between the ultrasonic irradiation time of the H 2 O 2 /Fe3O4-PLGA carrier of the present invention and the yield of reactive oxygen species.
第十五圖顯示本發明之H2O2(600μL)/Fe3O4-PLGA載體產生聲波性能之動物實驗的結果。 The fifteenth graph shows the results of an animal experiment in which the acoustic properties of the H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier of the present invention were produced.
第十六圖(a)及第十六圖(b)顯示本發明之H2O2(600μL)/Fe3O4-PLGA載體在使用和不使用磁鐵的情形下產生聲波性能之動物實驗的結果。 Figure 16 (a) and Figure 16 (b) show an animal experiment of the acoustic properties of the H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier of the present invention with and without the use of a magnet result.
第十七圖顯示本發明之H2O2(600μL)/Fe3O4-PLGA載體抗腫瘤效果之動物實驗的結果。 Fig. 17 shows the results of an animal experiment of the antitumor effect of the H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier of the present invention.
第十八圖顯示本發明之動物實驗中腫瘤照射超音波之熱重量分析結果。 Fig. 18 shows the results of thermogravimetric analysis of tumor-irradiated ultrasound in the animal experiment of the present invention.
第十九圖顯示本發明之H2O2(600μL)/Fe3O4-PLGA載體之毒性評估的結果。 The nineteenth chart shows the results of toxicity evaluation of the H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier of the present invention.
第二十圖顯示本發明之S-亞硝基穀胱甘肽(S-nitrosoglutathione,GSNO)GSNO/金(Au)-PLGA載體之產生NO的原理。 Figure 20 shows the principle of the production of NO by the S-nitrosoglutathione (GSNO) GSNO/gold (Au)-PLGA carrier of the present invention.
第二十一圖顯示本發明之GSNO與金奈米粒子反應中GSNO濃度與NO產量的關係。 The twenty-first graph shows the relationship between the GSNO concentration and the NO production in the reaction of the GSNO and the gold nanoparticles of the present invention.
第二十二圖顯示本發明之GSNO與金奈米粒子反應中金奈米粒子濃度與NO產量的關係。 The twenty-second chart shows the relationship between the concentration of the gold nanoparticles and the NO production in the reaction of the GSNO and the gold nanoparticles of the present invention.
第二十三圖顯示本發明之GSNO與硫化銅(Cu2-XS)奈米粒子金奈米粒子反應中不同尺寸之金奈米粒子的反應活性。 The twenty-third graph shows the reactivity of different sizes of gold nanoparticles in the reaction of the GSNO of the present invention with the copper sulfide (Cu 2-X S) nanoparticle gold nanoparticles.
第二十四圖顯示本發明之GSNO與硫化銅(Cu2-XS)奈米粒子反應中GSNO濃度與NO產量的關係。 The twenty-fourth graph shows the relationship between the GSNO concentration and the NO yield in the reaction of the GSNO of the present invention with copper sulfide (Cu 2-X S) nanoparticles.
第二十五圖顯示本發明之GSNO與硫化銅(Cu2-XS)奈米粒子反應中硫化銅奈米粒子濃度與NO產量的關係。 The twenty-fifth graph shows the relationship between the concentration of copper sulfide nanoparticles and the NO yield in the reaction of the GSNO and copper sulfide (Cu 2-X S) nanoparticles of the present invention.
第二十六圖顯示本發明之H2O2/Mn3O4-PLGA載體氧氣生成的情況。 The twenty-sixth graph shows the case of oxygen generation of the H 2 O 2 /Mn 3 O 4 -PLGA carrier of the present invention.
有關本發明之技術內容、特點及功效,藉由以下較佳實施例的詳細說明將可清楚的呈現。 The details of the present invention will be apparent from the following detailed description of the preferred embodiments.
請參閱第一圖,本發明第一實施例係提供一種載體10之用途,其係用於製備治療一癌症之藥物,其中該載體10包含:一親水性內核101,包含一過氧化氫(H2O2)103;以及一疏水性外殼102,包覆該親水性內核101,且包含一金屬離子提供者104及一高分子化合物105,其中:當該過氧化氫103與該金屬離子提供者104接觸時,該過氧化氫103、與該金屬離子提供者104所提供之一金屬離子產生一芬頓反應(Fenton reaction)而生成一反應性含氧物種(reactive oxygen species,ROS)106。 Referring to the first figure, a first embodiment of the present invention provides a use of a carrier 10 for preparing a medicament for treating a cancer, wherein the carrier 10 comprises: a hydrophilic core 101 comprising a hydrogen peroxide (H). 2 O 2 ) 103; and a hydrophobic outer shell 102 covering the hydrophilic core 101 and comprising a metal ion donor 104 and a polymer compound 105, wherein: the hydrogen peroxide 103 and the metal ion donor When the 104 is in contact, the hydrogen peroxide 103 generates a reactive oxygen species (ROS) 106 by generating a Fenton reaction with one of the metal ions provided by the metal ion donor 104.
該金屬離子提供者104可為包含Fe2+、Cu2+、Cu+、Ce3+、Cr2+或Mo5+之金屬或金屬化合物奈米粒子,較佳為四氧化三鐵(Fe3O4)奈米粒子,但不限於此。該金屬或金屬化合物奈米粒子的尺寸可為1-30nm,但不 限於此。該金屬離子可為Fe2+、Cu2+、Cu+、Ce3+、Cr2+或Mo5+,但不限於此。該高分子化合物105可為所有兩性的高分子化合物,例如聚乳酸甘醇酸(poly(lactic-co-glycolic acid),PLGA),但不限於此。PLGA具有高生物相容性及生物可分解性,為美國食品藥品管理局(Food and Drug Administration,FDA)所認可本發明中所使用之PLGA的分子量與乳酸和甘醇酸的比例不受限制。 The metal ion donor 104 may be a metal or metal compound nanoparticle comprising Fe 2+ , Cu 2+ , Cu + , Ce 3+ , Cr 2+ or Mo 5+ , preferably ferric oxide (Fe 3 ) O 4 ) nanoparticles, but are not limited thereto. The metal or metal compound nanoparticle may have a size of 1 to 30 nm, but is not limited thereto. The metal ion may be Fe 2+ , Cu 2+ , Cu + , Ce 3+ , Cr 2+ or Mo 5+ , but is not limited thereto. The polymer compound 105 may be any amphoteric polymer compound such as poly(lactic-co-glycolic acid, PLGA), but is not limited thereto. PLGA has high biocompatibility and biodegradability, and the ratio of the molecular weight of PLGA used in the present invention to lactic acid and glycolic acid is not limited by the Food and Drug Administration (FDA).
芬頓反應的機制如下:(1)Mn++H2O2→M(n+1)+HO‧+OH- The mechanism of the Fenton reaction is as follows: (1) M n+ + H 2 O 2 → M (n+1) + HO‧ + OH -
(2)M(n+1)+H2O2→Mn++HOO‧+H+芬頓反應所生成的反應性含氧物種(ROS)是一群高反應性氧衍生的分子,包括超氧化物陰離子自由基(‧O2 -)、氫氧自由基(‧OH)、單重態氧和過氧化氫(H2O2)等分子。 (2) M (n+1) + H 2 O 2 → M n + + HOO‧ + H + The reactive oxygen species (ROS) produced by the Fenton reaction is a group of highly reactive oxygen-derived molecules, including superoxide Molecules such as anion radicals (‧O 2 - ), hydroxyl radicals ( ‧ OH), singlet oxygen and hydrogen peroxide (H 2 O 2 ).
該治療包含:將該藥物遞送至一標靶部位;在該藥物遞送至該標靶部位後,對該標靶部位施以一刺激以破壞該載體10之該疏水性外殼102,其中該刺激為一診斷用超音波、一光源或一溫度;當該疏水性外殼102被破壞時,該過氧化氫103被釋放並與該金屬離子提供者104接觸;以及當該過氧化氫103與該金屬離子提供者104接觸時,該過氧化氫103、與該金屬離子提供者104所提供之該金屬離子產生該芬頓反應而生成該反應性含氧物種106。 The treatment comprises: delivering the drug to a target site; after the drug is delivered to the target site, applying a stimulus to the target site to destroy the hydrophobic outer shell 102 of the carrier 10, wherein the stimulus is a diagnostic ultrasonic wave, a light source or a temperature; when the hydrophobic outer casing 102 is broken, the hydrogen peroxide 103 is released and brought into contact with the metal ion donor 104; and when the hydrogen peroxide 103 and the metal ion When the donor 104 is in contact, the hydrogen peroxide 103 and the metal ion provided by the metal ion donor 104 generate the Fenton reaction to form the reactive oxygen species 106.
該診斷用超音波的一平均強度為0.0001-10W/cm2,且該診斷用超音波的一平均頻率為20KHz-100MHz;該光源為一近紅外光、一紫外光或一可見光;以及該反應性含氧物種106的一生成速率係藉由該刺激之 一強度、一頻率、一時間點及一時間長度來調控。 An average intensity of the ultrasonic wave for diagnosis is 0.0001 to 10 W/cm 2 , and an average frequency of the ultrasonic wave for diagnosis is 20 kHz to 100 MHz; the light source is a near-infrared light, an ultraviolet light or a visible light; and the reaction A rate of generation of the oxygen-containing species 106 is regulated by one of the intensity of the stimulus, a frequency, a time point, and a length of time.
該載體10生成該反應性含氧物種以殺死一癌細胞,生成氧氣以做為一超音波影像的一回音來源,且提供核磁共振造影所需的一磁性;以及該治療更包含:藉由一步驟將該載體10導引至該標靶部位,該步驟為在該載體10表面修飾一抗體,或提供一磁場產生裝置以產生一磁場標靶。該抗體可為抗癌細胞表面抗原之抗體,而該磁場產生裝置可為磁鐵,但不限於此。 The carrier 10 generates the reactive oxygen species to kill a cancer cell, generate oxygen as an echo source of an ultrasound image, and provide a magnetic property required for nuclear magnetic resonance imaging; and the treatment further includes: The carrier 10 is directed to the target site in a step of modifying an antibody on the surface of the carrier 10 or providing a magnetic field generating device to generate a magnetic field target. The antibody may be an antibody against a cancer cell surface antigen, and the magnetic field generating device may be a magnet, but is not limited thereto.
請參閱第二圖。該親水性內核更包含一穩定劑107,該穩定劑107可為二磷酸三鈉(trisodium diphosphate,TSDP)或焦磷酸四鈉(tetrasodium pyrophosphate,TSPP),但不限於此。該反應性含氧物種106的一產量係藉由該過氧化氫103的一濃度與該金屬離子提供者104的一數量來調控。該載體10表面可修飾一帶正電荷分子108,該帶正電荷分子108可為牛血清白蛋白(bovine serum albumin,BSA),但不限於此。修飾該帶正電荷分子108可避免載體10被血液中的單核細胞或巨噬細胞吞噬。 Please refer to the second picture. The hydrophilic core further comprises a stabilizer 107, which may be trisodium diphosphate (TSDP) or tetrasodium pyrophosphate (TSPP), but is not limited thereto. A yield of the reactive oxygen species 106 is regulated by a concentration of the hydrogen peroxide 103 and an amount of the metal ion donor 104. The surface of the carrier 10 may be modified with a positively charged molecule 108. The positively charged molecule 108 may be bovine serum albumin (BSA), but is not limited thereto. Modification of the positively charged molecule 108 prevents the carrier 10 from being engulfed by monocytes or macrophages in the blood.
自從芬頓反應在1894年被發現,其已被運用在處理廢水和被污染的土壤和氧化有機污染物,以及化療、放療及光療上。儘管ROS在各種細胞訊號傳導途徑中扮演著重要的角色以調節細胞生長,ROS的過度生產可導致細胞功能的氧化損傷。ROS的角色取決於其量。這種矛盾在利用ROS壓力用於癌症治療的發展上導致了很大的挑戰。此外,腫瘤細胞對額外的ROS所造成的的損害比正常細胞更脆弱。因此,ROS的增加的量可以抑制腫瘤的生長。所以,外源性的ROS可用於消滅癌細胞,從而在癌症治療提供有希望的治療選擇。不幸的是,過量的ROS的生產通常是無法控制的。 Since the Fenton reaction was discovered in 1894, it has been used in the treatment of wastewater and contaminated soils and oxidized organic pollutants, as well as chemotherapy, radiotherapy and phototherapy. Although ROS plays an important role in various cell signaling pathways to regulate cell growth, overproduction of ROS can lead to oxidative damage in cell function. The role of ROS depends on its quantity. This contradiction has led to great challenges in the use of ROS stress for the development of cancer treatment. In addition, tumor cells are more vulnerable to additional ROS than normal cells. Thus, an increased amount of ROS can inhibit tumor growth. Therefore, exogenous ROS can be used to destroy cancer cells, providing a promising therapeutic option for cancer treatment. Unfortunately, the production of excess ROS is often uncontrollable.
非手術治療方法,包括化學療法、放射線療法和光照療法,可被用來產生ROS。化療主要依賴藉由產生ROS的抗癌藥物增加在癌細胞中的內源性ROS。光照療法是利用光敏劑照光產生單重態氧。為了達到控制ROS,放射線療法和光照療法是藉由使用電磁波透過外界的刺激操作。然而,光線難以滲透到深層組織是光照療法的主要障礙。此外,在放射線療法中,放射線被用於在去氧核糖核酸(DNA)上產生自由基,在有氧條件下導致進一步的氧化,導致DNA雙鏈斷裂。氧氣的需求極度限制了放射線療法和光照療法在固態腫瘤的低氧區域之應用。 Non-surgical treatments, including chemotherapy, radiation therapy, and phototherapy, can be used to produce ROS. Chemotherapy relies primarily on increasing endogenous ROS in cancer cells by anti-cancer drugs that produce ROS. Phototherapy is the use of photosensitizers to produce singlet oxygen. In order to achieve control of ROS, radiation therapy and phototherapy are operated by stimulating the use of electromagnetic waves through the outside world. However, the difficulty of light penetration into deep tissues is a major obstacle to phototherapy. Furthermore, in radiotherapy, radiation is used to generate free radicals on deoxyribonucleic acid (DNA), resulting in further oxidation under aerobic conditions, resulting in DNA double-strand breaks. The demand for oxygen has extremely limited the use of radiotherapy and phototherapy in hypoxic regions of solid tumors.
本發明之載體10分別在疏水性外殼102中攜帶金屬離子提供者104,以及在親水性內核101攜帶過氧化氫103,使得載體10被破壞導致過氧化氫103與該金屬離子提供者104接觸後自然產生芬頓反應而生成ROS。因此不像光照療法需要光敏劑才能產生ROS,也不受深層組織光線難以滲透及固態腫瘤的低氧區域氧氣不足等限制。而且,反應性含氧物種106的產量係藉由該過氧化氫103的濃度與該金屬離子提供者104的數量來調控,且該反應性含氧物種106的生成速率係藉由診斷用超音波、光源或溫度等刺激之強度、頻率、時間點及時間長度來調控。解決了習知ROS產量無法控制的問題。 The carrier 10 of the present invention carries the metal ion donor 104 in the hydrophobic outer casing 102, respectively, and carries the hydrogen peroxide 103 in the hydrophilic core 101 such that the carrier 10 is destroyed resulting in contact of the hydrogen peroxide 103 with the metal ion donor 104. Naturally, the Fenton reaction is generated to generate ROS. Therefore, unlike phototherapy, photosensitizers are required to produce ROS, and it is not limited by the difficulty of penetration of deep tissue light and the lack of oxygen in the hypoxic regions of solid tumors. Moreover, the yield of the reactive oxygen species 106 is regulated by the concentration of the hydrogen peroxide 103 and the number of metal ion donors 104, and the rate of formation of the reactive oxygen species 106 is by diagnostic ultrasound. The intensity, frequency, time point and length of time of the stimulus such as light source or temperature are regulated. Solved the problem that the conventional ROS production cannot be controlled.
如前所述,超音波技術已被廣泛用於疾病的診斷。除了診斷的目的外,高強度聚焦超音波(high-intensity focused ultrasound,HIFU)常被用來破壞載體以使藥物釋放或透過高溫消融惡性腫瘤。因此,高強度聚焦超音波需要小心操作,因為其容易造成目標部位周圍的健康組織之損傷。診斷用超音波提供了對健康組織無害以及對接受者無痛之優勢。藉由本發明 之載體10,可使用診斷用超音波來同時執行成像和治療,又可避免高強度聚焦超音波的危險性,使用上安全、方便又經濟。 As mentioned earlier, ultrasonic technology has been widely used in the diagnosis of diseases. In addition to the purpose of diagnosis, high-intensity focused ultrasound (HIFU) is often used to destroy the carrier to release the drug or to ablate the malignant tumor through high temperature. Therefore, high-intensity focused ultrasound requires careful handling because it tends to cause damage to healthy tissue around the target site. Diagnostic ultrasound provides the advantage of being harmless to healthy tissue and painless to the recipient. By the present invention The carrier 10 can use imaging ultrasonic waves to simultaneously perform imaging and treatment, and avoids the danger of high-intensity focused ultrasound, which is safe, convenient, and economical to use.
習知增強超音波影像的方法,常是在微米或奈米載體內充填全氟碳化物或氮。本發明之載體10則是充填過氧化氫103,過氧化氫103會生成氧氣以做為超音波影像的回音來源,藉此增強超音波影像。過氧化氫103具有良好的成本效益,使用過氧化氫103較習知方法經濟許多。 Conventional methods for enhancing ultrasound images are often filled with perfluorocarbons or nitrogen in micro or nano carriers. The carrier 10 of the present invention is filled with hydrogen peroxide 103, which generates oxygen as an echo source for the ultrasound image, thereby enhancing the ultrasound image. Hydrogen peroxide 103 is cost effective, and the use of hydrogen peroxide 103 is much more economical than conventional methods.
本發明之載體10由於具有金屬離子提供者104,例如四氧化三鐵(Fe3O4),因此可提供核磁共振造影所需的磁性,且可藉由提供磁場產生裝置以產生磁場標靶,而將該載體10導引至該標靶部位,藉此達到標靶治療的效果。 The carrier 10 of the present invention can provide magnetic properties required for nuclear magnetic resonance imaging by having a metal ion donor 104, such as triiron tetroxide (Fe 3 O 4 ), and can generate a magnetic field target by providing a magnetic field generating device. The vector 10 is guided to the target site, thereby achieving the effect of the target treatment.
請參閱第三圖,本發明第二實施例係提供一種載體20之用途,其係用於製備治療一心腦血管疾病之藥物,其中該載體20包含:一親水性內核201,包含一S-亞硝基硫醇(S-nitrosothiols,RSNO)203;一疏水性外殼202,包覆該親水性內核201,且包含一催化劑204,其中:當該S-亞硝基硫醇203與該催化劑204接觸時,會產生一催化反應而生成一一氧化氮(nitric oxide,NO)206。該催化劑204可為包含Fe2+、Cu2+或Cu+之金屬或金屬化合物奈米粒子,例如可為金奈米粒子或硫化銅(Cu2-XS)(0<x<1)奈米粒子,但不限於此。該親水性內核201可更包含一高分子化合物205,該高分子化合物205可為所有兩性的高分子化合物,例如聚乳酸甘醇酸(poly(lactic-co-glycolic acid),PLGA),但不限於此。 Referring to the third figure, a second embodiment of the present invention provides a use of a carrier 20 for preparing a medicament for treating a cardiovascular and cerebrovascular disease, wherein the carrier 20 comprises: a hydrophilic core 201 comprising an S- S-nitrosothiols (RSNO) 203; a hydrophobic outer shell 202 encapsulating the hydrophilic core 201 and comprising a catalyst 204, wherein: when the S-nitrosothiol 203 and the catalyst 204 Upon contact, a catalytic reaction is produced to form nitric oxide (NO) 206. The catalyst 204 may be a metal or metal compound nanoparticle containing Fe 2+ , Cu 2+ or Cu + , and may be, for example, a gold nanoparticle or a copper sulfide (Cu 2-X S) (0<x<1) Nai. Rice particles, but are not limited to this. The hydrophilic core 201 may further comprise a polymer compound 205, which may be a polymer compound of all amphoteric properties, such as poly(lactic-co-glycolic acid, PLGA), but not Limited to this.
該治療包含以下步驟:將該藥物遞送至一標靶部位;在該藥物遞送至該標靶部位後,對該標靶部位施以一刺激以破壞該載體20之該疏 水性外殼202,其中該刺激為一診斷用超音波、一光源或一溫度;當該疏水性外殼202被破壞時,該S-亞硝基硫醇203被釋放並與該催化劑204接觸;以及當該S-亞硝基硫醇203與該催化劑204接觸時,產生該催化反應而生成該一氧化氮206,其中該一氧化氮206用以引起血管舒張及抑制細胞凋亡至少其中之一,以及做為一超音波影像的一回音來源。 The treatment comprises the steps of: delivering the drug to a target site; after the drug is delivered to the target site, applying a stimulus to the target site to destroy the carrier 20 a water-based outer casing 202, wherein the stimulus is a diagnostic ultrasonic wave, a light source or a temperature; when the hydrophobic outer casing 202 is broken, the S-nitrosothiol 203 is released and brought into contact with the catalyst 204; When the S-nitrosothiol 203 is contacted with the catalyst 204, the catalytic reaction is generated to generate the nitric oxide 206, wherein the nitric oxide 206 is used to cause at least one of vasodilation and inhibition of apoptosis, and As an echo source for an ultrasound image.
該S-亞硝基硫醇203係為一S-亞硝基穀胱甘肽(S-nitrosoglutathione,GSNO)、一亞硝基白蛋白(S-nitrosoalbumin,AlbSNO)、一S-亞硝基穀胱甘肽(S-nitrosocysteine,CySNO)或其組合;該催化劑204為一金屬或一金屬化合物;以及該一氧化氮206的一產量係藉由該S-亞硝基硫醇203的一濃度與該催化劑204的一數量來調控。 The S-nitrosothiol 203 is a S-nitrosoglutathione (GSNO), a nitrosoalbumin (AlbSNO), and an S-nitroso Valley. S-nitrosocysteine (CySNO) or a combination thereof; the catalyst 204 is a metal or a metal compound; and a yield of the nitric oxide 206 is obtained by a concentration of the S-nitrosothiol 203 The amount of the catalyst 204 is regulated.
請參閱第四圖,本發明第三實施例係提供一種載體30之用途,其係用於製備治療一疾病之藥物,其中該載體30包含:一親水性內核301,包含一化合物303;以及一疏水性外殼302,包覆該親水性內核,且包含一金屬奈米粒子304及一兩性分子化合物305,其中:當該化合物303與該金屬奈米粒子304接觸時,會產生一化學反應而生成一功能產物306。 Referring to the fourth embodiment, a third embodiment of the present invention provides a use of a carrier 30 for preparing a medicament for treating a disease, wherein the carrier 30 comprises: a hydrophilic core 301 comprising a compound 303; a hydrophobic outer shell 302 covering the hydrophilic core and comprising a metal nanoparticle 304 and an amphiphilic compound 305, wherein when the compound 303 is in contact with the metal nanoparticle 304, a chemical reaction is generated to generate A functional product 306.
該疾病可為癌症或心腦血管疾病;該化學反應可為一芬頓反應或一催化反應,該催化反應可為產生一氧化氮的催化反應或產生氧氣的催化反應,但不限於此。該化合物303可為過氧化氫或S-亞硝基硫醇;該金屬奈米粒子304可為包含Fe2+、Cu2+、Cu+、Ce3+、Cr2+或Mo5+之金屬或金屬化合物奈米粒子,較佳可為四氧化三鐵奈米粒子、金奈米粒子或硫化銅奈米粒子,但不限於此。該兩性分子化合物305可為所有兩性的高分子化合物,例如聚乳酸甘醇酸(poly(lactic-co-glycolic acid),PLGA),但不限於此。 The disease may be cancer or cardiovascular disease; the chemical reaction may be a Fenton reaction or a catalytic reaction, which may be a catalytic reaction for generating nitric oxide or a catalytic reaction for generating oxygen, but is not limited thereto. The compound 303 may be hydrogen peroxide or S-nitrosothiol; the metal nanoparticle 304 may be a metal containing Fe 2+ , Cu 2+ , Cu + , Ce 3+ , Cr 2+ or Mo 5+ The metal compound nanoparticle is preferably a ferroferric oxide nanoparticle, a gold nanoparticle or a copper sulfide nanoparticle, but is not limited thereto. The amphiphilic compound 305 may be a polymer compound of all amphoteric properties, such as poly(lactic-co-glycolic acid, PLGA), but is not limited thereto.
請參閱第五圖,本發明第四實施例係提供一種載體40,包含:一親水性內核401,包含一物質403;以及一疏水性外殼402,包覆該親水性內核401,且包含一奈米粒子404及一兩性分子化合物405,其中:當該物質與該奈米粒子接觸而產生一化學反應時,將生成一功能產物406。 Referring to FIG. 5, a fourth embodiment of the present invention provides a carrier 40 comprising: a hydrophilic core 401 comprising a substance 403; and a hydrophobic outer shell 402 covering the hydrophilic core 401 and including a Rice particles 404 and an amphiphilic compound 405, wherein a functional product 406 is formed when the material is contacted with the nanoparticle to produce a chemical reaction.
該物質403可為一化合物,該化合物可為過氧化氫或S-亞硝基硫醇,但不限於此。該奈米粒子404可為一金屬或金屬化合物奈米粒子,該金屬或金屬化合物奈米粒子可為包含Fe2+、Cu2+、Cu+、Ce3+、Cr2+或Mo5+之金屬或金屬化合物奈米粒子,較佳可為四氧化三鐵奈米粒子、金奈米粒子或硫化銅奈米粒子,但不限於此。該兩性分子化合物405可為所有兩性的高分子化合物,例如聚乳酸甘醇酸(poly(lactic-co-glycolic acid),PLGA),但不限於此。該化學反應可為一芬頓反應或一催化反應,該催化反應可為產生一氧化氮的催化反應或產生氧氣的催化反應,但不限於此。 The substance 403 may be a compound which may be hydrogen peroxide or S-nitrosothiol, but is not limited thereto. The nanoparticle 404 can be a metal or metal compound nanoparticle, and the metal or metal compound nanoparticle can be composed of Fe 2+ , Cu 2+ , Cu + , Ce 3+ , Cr 2+ or Mo 5+ . The metal or metal compound nanoparticle is preferably a ferroferric oxide nanoparticle, a gold nanoparticle or a copper sulfide nanoparticle, but is not limited thereto. The amphiphilic compound 405 may be any amphoteric polymer compound such as poly(lactic-co-glycolic acid, PLGA), but is not limited thereto. The chemical reaction may be a Fenton reaction or a catalytic reaction, which may be a catalytic reaction for generating nitric oxide or a catalytic reaction for generating oxygen, but is not limited thereto.
實驗例Experimental example
1. Fe3O4-PLGA載體及H2O2/Fe3O4-PLGA載體的製備: 1. Preparation of Fe 3 O 4 -PLGA carrier and H 2 O 2 /Fe 3 O 4 -PLGA carrier:
請參閱第六圖(a)至第六圖(f)。在第一次乳化過程(水/油,w/o)中,過氧化氫(H2O2)及二磷酸三鈉(trisodium diphosphate,TSDP)或焦磷酸四鈉(tetrasodium pyrophosphate,TSPP)(穩定劑)被裝入聚乳酸甘醇酸(poly(lactic-co-glycolic acid),PLGA)載體的親水性內核中。方法為首先準備含有10mg/mL聚乳酸甘醇酸(poly(lactic-co-glycolic acid),PLGA)的4mL二氯甲烷油相溶液,含有8mg聚乙烯醇(polyvinyl alcohol,PVA)的水相溶液被溶解在含有y μL 30% H2O2(y=0、200、400及600)及10μL 0.1M TSDP或TSPP之x mL去離子中(200μL時x=0.6、400μL時x=0.4以及600μL時x= 0.2)。第一次乳化過程中,油相溶液在超音波處理下被緩慢加入PVA溶液中,接著冰水浴2小時。接著,在第二次乳化過程(水/油/水,w/o/w)中,四氧化三鐵(Fe3O4)奈米粒子(10.6±0.8nm)被嵌入PLGA載體的疏水性外殼中。方法為將1400ppm的四氧化三鐵Fe3O4奈米粒子分散於0.5mL的二氯甲烷中,然後被加入第一乳化溶液中。為了將Fe3O4奈米粒子嵌入PLGA殼體中,首先將含有Fe3O4奈米粒子的乳化溶液逐滴加入12ml(10mg/mL)的PVA溶液中,並使用均質機冰浴20分鐘。第六圖(a)及第六圖(b)分別為不含過氧化氫的Fe3O4-PLGA載體之穿透式電子顯微鏡(transmission electron microscope,TEM)影像,顯示合成的Fe3O4-PLGA載體(412±86nm)形狀為球形,且10-nm的Fe3O4奈米粒子被成功地包埋於其中。第六圖(c)及第六圖(d)分別為含有過氧化氫的Fe3O4-PLGA載體(H2O2/Fe3O4-PLGA(H2O2/Fe3O4-PLGA))之穿透式電子顯微鏡影像。在第一次乳化過程中,可以調整過氧化氫(H2O2)的濃度以決定注入載體的量。三種不同濃度的過氧化氫(200、400及600μl)分別被注入H2O2/Fe3O4-PLGA載體中。從第六圖(e)及第六圖(f)可知,過氧化氫的濃度不同並未造成載體結構形態及大小的明顯變化。製備過程中PLGA濃度可為0.01-1000mg/mL;PVA濃度可為0.01-100mg/mL;Fe3O4奈米粒子濃度可為0-10000ppm;穩定劑濃度可為0.001M-10M;而H2O2可為0-600μL。 Please refer to the sixth figure (a) to the sixth figure (f). In the first emulsification process (water/oil, w/o), hydrogen peroxide (H 2 O 2 ) and trisodium diphosphate (TSDP) or tetrasodium pyrophosphate (TSPP) (stabilized) The agent is loaded into a hydrophilic core of a poly(lactic-co-glycolic acid, PLGA) carrier. The method is to first prepare a 4 mL dichloromethane oil phase solution containing 10 mg/mL poly(lactic-co-glycolic acid, PLGA), and an aqueous phase solution containing 8 mg of polyvinyl alcohol (PVA). Dissolved in x mL deionized with y μL 30% H 2 O 2 (y=0, 200, 400 and 600) and 10 μL 0.1M TSDP or TSPP (x=0.6 at 200μL, x=0.4 and 600μL at 400μL) When x = 0.2). During the first emulsification, the oil phase solution was slowly added to the PVA solution under ultrasonic treatment, followed by an ice water bath for 2 hours. Next, in the second emulsification process (water/oil/water, w/o/w), ferroferric oxide (Fe 3 O 4 ) nanoparticles (10.6 ± 0.8 nm) are embedded in the hydrophobic shell of the PLGA carrier. in. The method of triiron tetroxide 1400ppm Fe 3 O 4 nanoparticles dispersed in 0.5mL of dichloromethane, and then added to the first solution emulsified. In order to embed Fe 3 O 4 nanoparticles into the PLGA shell, the emulsified solution containing Fe 3 O 4 nanoparticles was first added dropwise to 12 ml (10 mg/mL) of PVA solution, and homogenized using an ice bath for 20 minutes. . Figure 6 (a) and Figure 6 (b) are transmission electron microscope (TEM) images of hydrogen peroxide-free Fe 3 O 4 -PLGA carrier, respectively, showing synthetic Fe 3 O 4 The -PLGA carrier (412 ± 86 nm) was spherical in shape, and 10-nm Fe 3 O 4 nanoparticles were successfully embedded therein. Figure 6 (c) and Figure 6 (d) are respectively Fe 3 O 4 -PLGA carriers containing hydrogen peroxide (H 2 O 2 /Fe 3 O 4 -PLGA(H 2 O 2 /Fe 3 O 4 - Transmissive electron microscope image of PLGA)). During the first emulsification, the concentration of hydrogen peroxide (H 2 O 2 ) can be adjusted to determine the amount of carrier injected. Three different concentrations of hydrogen peroxide (200, 400 and 600 μl) were injected into the H 2 O 2 /Fe 3 O 4 -PLGA carrier, respectively. It can be seen from the sixth graph (e) and the sixth graph (f) that the different concentrations of hydrogen peroxide do not cause significant changes in the morphology and size of the support structure. The PLGA concentration during the preparation may be 0.01-1000 mg/mL; the PVA concentration may be 0.01-100 mg/mL; the Fe 3 O 4 nanoparticle concentration may be 0-10000 ppm; the stabilizer concentration may be 0.001 M-10 M; and H 2 O 2 can be 0-600 μL.
2. H2O2/Fe3O4-PLGA載體及H2O2/PLGA載體之比色試驗(colormetric test): 2. Colorimetric test of H 2 O 2 /Fe 3 O 4 -PLGA carrier and H 2 O 2 /PLGA carrier:
請參閱第七圖(a)及第七圖(b)。本試驗之原理為碘化鉀和過氧化氫反應會產生黃色,黃色是由碘化鉀(KI)和過氧化氫的反應產物I3 -而來。加入Fe3O4-PLGA載體之0.1M碘化鉀溶液顏色並無變化;加入 H2O2(600μL)/Fe3O4-PLGA載體之0.1M碘化钾溶液加熱至45℃後產生黃色。接著以I3 -的吸收值來定量載體中過氧化氫的濃度,校正曲線是由固定濃度的碘化鉀和不同濃度的過氧化氫獲得。注入200、400及600μl過氧化氫的載體在過量之0.1M碘化鉀溶液中在50℃中加熱15分鐘,接著離心取得黃色上清液進行紫外光/可見光測量,結果注入200、400及600μl過氧化氫的載體之過氧化氫濃度分別為3.5、8.6及14.3mM。 Please refer to Figure 7 (a) and Figure 7 (b). The principle of this test is that the reaction of potassium iodide and hydrogen peroxide produces yellow color, and the yellow color is derived from the reaction product I 3 - of potassium iodide (KI) and hydrogen peroxide. The color of the 0.1 M potassium iodide solution added to the Fe 3 O 4 -PLGA carrier did not change; a 0.1 M potassium iodide solution added with H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier was heated to 45 ° C to produce a yellow color. The concentration of hydrogen peroxide in the carrier is then quantified by the absorption value of I 3 - , which is obtained from a fixed concentration of potassium iodide and different concentrations of hydrogen peroxide. The carrier injecting 200, 400 and 600 μl of hydrogen peroxide was heated in an excess of 0.1 M potassium iodide solution at 50 ° C for 15 minutes, followed by centrifugation to obtain a yellow supernatant for UV/visible measurement, and the result was 200, 400 and 600 μl peroxidation. The hydrogen peroxide carrier had a hydrogen peroxide concentration of 3.5, 8.6, and 14.3 mM, respectively.
3. 在H2O2/Fe3O4-PLGA載體上修飾牛血清白蛋白(bovine serum albumin,BSA): 3. Modification of bovine serum albumin (BSA) on H 2 O 2 /Fe 3 O 4 -PLGA carrier:
為了避免載體被血液中的單核細胞或巨噬細胞吞噬,加入帶正電荷的BSA修飾H2O2(600μL)/Fe3O4-PLGA載體的表面,來與帶負電荷的PLGA靜電交互作用。將BSA接上H2O2(600μL)/Fe3O4-PLGA載體表面後,離心以收集上清液來進行紫外光/可見光測量,結果吸附於H2O2/Fe3O4-PLGA載體的BSA濃度為100ppm H2O2/Fe3O4-PLGA載體中1.63μg BSA。 In order to prevent the vector from being phagocytosed by monocytes or macrophages in the blood, the surface of the positively charged BSA modified H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier was added to electrostatically interact with the negatively charged PLGA. effect. BSA was attached to the surface of H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier, and then centrifuged to collect the supernatant for UV/visible measurement, and the result was adsorbed to H 2 O 2 /Fe 3 O 4 -PLGA. The BSA concentration of the carrier was 1.63 μg BSA in a 100 ppm H 2 O 2 /Fe 3 O 4 -PLGA carrier.
4. H2O2(600μL)/Fe3O4-PLGA及Fe3O4-PLGA載體的安全性評估: 4. Safety evaluation of H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA and Fe 3 O 4 -PLGA carriers:
請參閱第八圖。為了評估載體的安全性,將不同濃度的H2O2(600μL)/Fe3O4-PLGA及Fe3O4-PLGA載體加入HeLa細胞中。經過一天的培養後測量細胞存活率,結果顯示H2O2(600μL)/Fe3O4-PLGA及Fe3O4-PLGA載體對HeLa細胞並未產生毒性。 Please refer to the eighth picture. To assess the safety of the vector, different concentrations of H 2 O 2 (600 μL)/Fe 3 O 4 -PLGA and Fe 3 O 4 -PLGA carriers were added to HeLa cells. Cell viability was measured after one day of culture, and the results showed that H 2 O 2 (600 μL)/Fe 3 O 4 -PLGA and Fe 3 O 4 -PLGA carriers were not toxic to HeLa cells.
5. H2O2(600μL)/Fe3O4-PLGA載體的穩定性評估: 5. Stability evaluation of H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier:
穩定性評估顯示H2O2(600μL)/Fe3O4-PLGA載體可被分散在37℃之磷酸鹽緩衝液(phosphate buffered saline,PBS)(pH 7)、PBS(pH 5)、 細胞培養基(Dulbecco’s modified Eagle medium,DMEM)以及10%胎牛血清(10% fetal bovine serum)中七天而不形成沉澱。然而,從第九圖中可見,PBS(pH 5)中的H2O2(600μL)/Fe3O4-PLG載體產生小孔,顯示酸性環境會促進載體的分解。H2O2/Fe3O4-PLGA因此可以做為對pH敏感的藥物遞送載體在酸性環境中逐漸釋放治療物質。 Stability evaluation showed that H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier can be dispersed in phosphate buffered saline (PBS) (pH 7), PBS (pH 5), cell culture medium at 37 °C. (Dulbecco's modified Eagle medium, DMEM) and 10% fetal bovine serum did not form a precipitate for seven days. However, it can be seen from the ninth figure that the H 2 O 2 (600 μL) / Fe 3 O 4 -PLG carrier in PBS (pH 5) produces pores, indicating that the acidic environment promotes decomposition of the carrier. H 2 O 2 /Fe 3 O 4 -PLGA can therefore be used as a pH-sensitive drug delivery vehicle to gradually release therapeutic substances in an acidic environment.
6. 微超音波觸發的H2O2/Fe3O4-PLGA載體崩解: 6. Micro-ultrasonic-triggered H 2 O 2 /Fe 3 O 4 -PLGA carrier disintegration:
微超音波診斷探針(VisualSonics,40MHz)的照射下,載體表現超音波觸發的崩解作用,據推測係來自氣穴效應。請參閱第十圖。當暴露時間延長時,超音波處理過程促進了載體的逐步破壞,超音波照射30分鐘後載體的結構完全破壞。此外,在37℃,43KHz的超音波下亦觀察到載體的破壞(Delta超音波洗淨機D200H)。 Under the illumination of the micro-ultrasonic diagnostic probe (VisualSonics, 40MHz), the carrier exhibits a supersonic-triggered disintegration, presumably from the cavitation effect. Please refer to the tenth figure. When the exposure time is prolonged, the ultrasonic treatment process promotes the gradual destruction of the carrier, and the structure of the carrier is completely destroyed after the ultrasonic irradiation for 30 minutes. In addition, damage of the carrier (Delta Ultrasonic Cleaner D200H) was also observed at 37 ° C, 43 KHz ultrasonic.
7. 載體在超音波照射下會產生O2: 7. The carrier will produce O 2 under ultrasonic illumination:
請參閱第十一圖。為了證明載體中O2的存在,使用對O2反應敏感的指示劑Ru(dpp)3Cl2,O2的存在會造成其螢光強度的下降。製備不含Fe3O4之包埋H2O2的PLGA(H2O2-PLGA)載體來和Ru(dpp)3Cl2反應,當H2O2(600μL)-PLGA照射超音波30分鐘導致載體被破壞時,Ru(dpp)3Cl2的螢光明顯下降,顯示O2被釋放。而沒有超音波觸發時由於沒有O2被釋放,Ru(dpp)3Cl2的螢光並未下降。 Please refer to Figure 11. In order to present a carrier 2 on O, O 2 sensitive to the use of the indicator Ru (dpp) proved 3 Cl 2, O 2 in the presence of which causes a reduction of the fluorescence intensity. Preparation of a packed H 2 O 2 -free PLGA (H 2 O 2 -PLGA) carrier containing no Fe 3 O 4 to react with Ru(dpp) 3 Cl 2 , when H 2 O 2 (600 μL)-PLGA was irradiated with ultrasonic wave 30 When the carrier was destroyed in minutes, the fluorescence of Ru(dpp) 3 Cl 2 was markedly lowered, indicating that O 2 was released. In the absence of ultrasonic triggering, the fluorescence of Ru(dpp) 3 Cl 2 did not decrease because no O 2 was released.
8. 載體在瓊脂凝膠模型之體外產生聲波性能: 8. The carrier produces acoustic properties in vitro outside the agar gel model:
請參閱第十二圖。接著試驗了H2O2(600μL)/Fe3O4-PLGA聚合物囊泡在瓊脂凝膠模型的體外產生聲波性能(in vitro echogenic performance)。沒有H2O2的Fe3O4-PLGA在超音波暴露下並無產生回波信號。 相反地,可觀的回波信號在常規的B模式被捕獲,在H2O2(600μL)/Fe3O4-PLGA注入凝膠後立刻被觀察到,表明O2的產生是超音波共振的原因。對比加強可持續至少30分鐘。 Please refer to Figure 12. Next, H 2 O 2 (600 μL)/Fe 3 O 4 -PLGA polymer vesicles were tested for in vitro echogenic performance in vitro on an agar gel model. Fe 3 O 4 -PLGA without H 2 O 2 did not produce an echo signal under ultrasonic exposure. Conversely, an appreciable echo signal was captured in the conventional B mode and was observed immediately after H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA injection into the gel, indicating that the O 2 generation is ultrasonic resonance. the reason. Contrast strengthens for at least 30 minutes.
8. 確認Fe3O4奈米粒子可和H2O2反應產生反應性含氧物種: 8. Confirm that Fe 3 O 4 nanoparticles can react with H 2 O 2 to produce reactive oxygen species:
請參閱第十三圖。由於超音波觸發載體變形,封裝的H2O2可以滲透並通過降解的PLGA和封裝在載體膜內的Fe3O4反應而產生氫氧自由基(‧OH,反應性含氧物種的一種)。為了確認Fe3O4奈米粒子可和H2O2反應並產生‧OH,使用Fe3O4@PLGA進行實驗,Fe3O4@PLGA製備方法是將Fe3O4奈米粒子披覆上PLGA後轉移到水相溶液中。3’-(p-aminophenyl)fluorescein(APF)被做為試劑用於有效地檢測‧OH,APF藉由與‧OH反應會發射520nm的強烈螢光,其可被測量以確定形成‧OH。結果包含了Fe3O4@PLGA奈米粒子和H2O2的溶液快速產生‧OH。且在15分鐘的反應時間後,溶液的螢光增加了2.5倍,證實Fe3O4@PLGA奈米粒子和H2O2的混合物可進行芬頓反應。加入TSPP到包含Fe3O4@PLGA奈米粒子和H2O2的溶液中溶液的螢光增加了1.8倍,顯示TSPP提供了一定程度的H2O2穩定。 Please refer to the thirteenth map. Due to the deformation of the ultrasonic trigger carrier, the encapsulated H 2 O 2 can penetrate and react with the degraded PLGA and Fe 3 O 4 encapsulated in the carrier film to generate hydroxyl radicals (‧OH, one of the reactive oxygen species) . To confirm the Fe 3 O 4 nanoparticles and H 2 O 2 can react and produce ‧OH, the use of Fe 3 O 4 @PLGA experiment, Fe 3 O 4 @PLGA preparation method is Fe 3 O 4 nanoparticles coated Transfer to the aqueous phase solution after the upper PLGA. 3'-(p-aminophenyl)fluorescein (APF) was used as a reagent for the efficient detection of ‧ OH, which reacts with ‧ OH to emit intense fluorescence at 520 nm, which can be measured to determine the formation of ‧ OH The result contained a solution of Fe 3 O 4 @PLGA nanoparticles and H 2 O 2 to rapidly produce ‧ OH. And after a reaction time of 15 minutes, the fluorescence of the solution was increased by 2.5 times, and it was confirmed that a mixture of Fe 3 O 4 @PLGA nanoparticles and H 2 O 2 can carry out a Fenton reaction. The fluorescence of the solution in which TSPP was added to a solution containing Fe 3 O 4 @PLGA nanoparticles and H 2 O 2 was increased by a factor of 1.8, indicating that TSPP provided a certain degree of H 2 O 2 stabilization.
9. 超音波照射時間與反應性含氧物種產量的關係: 9. Relationship between ultrasonic irradiation time and the yield of reactive oxygen species:
請參閱第十四圖。為了進一步了解H2O2/Fe3O4-PLGA載體如何在超音波場影響下產生氫氧自由基(‧OH),以不同的時間對H2O2/Fe3O4-PLGA載體進行超音波照射來觀察‧OH的形成。接受較長時間超音波照射的H2O2(600μL)/Fe3O4-PLGA載體導致更多的‧OH產量,因為結構上增加的破壞導致更強的芬頓反應。 Please refer to Figure 14. To further understand how the H 2 O 2 /Fe 3 O 4 -PLGA carrier generates hydroxyl radicals (‧OH) under the influence of ultrasonic fields, the H 2 O 2 /Fe 3 O 4 -PLGA carriers are carried out at different times. Ultrasonic irradiation was used to observe the formation of ‧ OH. The H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier, which received longer-time ultrasonic illumination, resulted in more ‧ OH production because the structurally increased damage resulted in a stronger Fenton reaction.
10. H2O2(600μL)/Fe3O4-PLGA載體產生聲波性能之動物實 驗: 10. Animal experiments with acoustic properties of H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier:
請參閱第十五圖。對裸鼠進行腫瘤內注射以證明H2O2(600μL)/Fe3O4-PLGA載體對腫瘤超音波影像的潛力。具有HeLa細胞癌腫瘤的裸鼠接受5mg[Fe]/kg的劑量。根據B模式(VisualSonics,40MHz)的對比度在不同的時間間隔(5,15和30分鐘)被記錄,其顯示明顯的對比度增強且在超音波場下5分鐘內灰階的定量增加到最大的強度。雖然回波信號隨著暴露時間延長顯示下降的趨勢,連續成像可長達30分鐘,這和體外瓊脂凝膠模型的結果是一致的。 Please refer to the fifteenth figure. In nude mice were injected intratumorally to demonstrate the potential of H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA vectors for tumor ultrasound imaging. Nude mice bearing HeLa cell carcinoma tumors received a dose of 5 mg [Fe]/kg. The contrast according to the B mode (VisualSonics, 40MHz) is recorded at different time intervals (5, 15 and 30 minutes), which shows a significant contrast enhancement and the quantitative increase of the gray scale to the maximum intensity within 5 minutes of the ultrasonic field . Although the echo signal shows a decreasing trend with prolonged exposure time, continuous imaging can be as long as 30 minutes, which is consistent with the results of the in vitro agar gel model.
11. 使用和不使用磁鐵的情形下H2O2(600μL)/Fe3O4-PLGA載體產生聲波性能之動物實驗: 11. Animal experiments for the acoustic properties of H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carriers with and without magnets:
請參閱第十六圖(a)。透過尾靜脈注射進行靜脈給藥以進行H2O2(600μL)/Fe3O4-PLGA載體之超音波產生聲波性能的進一步評估。因為H2O2(600μL)/Fe3O4-PLGA載體具有有利的磁性特性,使用和不使用磁鐵的吸引力被分別進行以比較對比度的增強。具有腫瘤的小鼠接受兩次5mg[Fe]/kg劑量的靜脈注射。使用磁鐵的吸引力的情形,在每次注射後,磁鐵被放置在腫瘤的頂端20分鐘。第2次注射載體後,腫瘤組織(大小:405mm3)的超音波對比度立即變亮且灰階的強度增加。增強在15分鐘逐漸達到高峰,然後經過30分鐘的暴露後略有下降。反之,並沒有觀察到沒有磁鐵的組別在超音波照射30分鐘的期間有任何的對比度增強。 Please refer to Figure 16 (a). Intravenous administration via tail vein injection for further evaluation of the acoustic properties of the ultrasonic generation of the H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier. Since the H 2 O 2 (600 μL)/Fe 3 O 4 -PLGA support has favorable magnetic properties, the attractiveness of using and not using magnets is separately performed to compare the contrast enhancement. Tumor-bearing mice received an intravenous injection of 5 mg [Fe]/kg twice. In the case of the attraction of the magnet, after each injection, the magnet was placed on the tip of the tumor for 20 minutes. After the second injection of the vector, the ultrasound contrast of the tumor tissue (size: 405 mm 3 ) immediately became bright and the intensity of the gray scale increased. The enhancement gradually peaked in 15 minutes and then decreased slightly after 30 minutes of exposure. On the contrary, it was not observed that the group without the magnet had any contrast enhancement during the ultrasonic irradiation for 30 minutes.
請參閱第十六圖(b),其顯示了核磁共振成像(MR imaging)能見度以監控相同的靜脈注射操作後載體的堆積。腫瘤(405mm3)使用9.4動物微核磁共振成像系統(micro MRI system)。第二次注射後,暴露超音波 30分鐘後腫瘤的對比度變暗且信號持續下降到77%。雖然基於第十圖載體在超音波暴露30分鐘後被破壞,留在腫瘤內之釋放的Fe3O4奈米粒子仍持續貢獻核磁共振成像。腫瘤較小的組對比度變化表現也相似。 See Figure 16 (b), which shows the MR imaging visibility to monitor the accumulation of carriers after the same intravenous procedure. Tumor (405mm 3 ) using 9.4 Animal micro nuclear magnetic resonance imaging system (micro MRI system). After the second injection, the contrast of the tumor darkened and the signal continued to drop to 77% after 30 minutes of exposure to ultrasound. Although the carrier was destroyed after exposure to ultrasound for 30 minutes based on the tenth image, the released Fe 3 O 4 nanoparticles remaining in the tumor continued to contribute to magnetic resonance imaging. The contrast change of the smaller tumor group was similar.
12. H2O2(600μL)/Fe3O4-PLGA載體抗腫瘤效果之動物實驗: 12. Animal experiment of anti-tumor effect of H 2 O 2 (600 μL)/Fe 3 O 4 -PLGA carrier:
請參閱第十七圖。過度產生活性氧可導致細胞功能的氧化損傷。此外,癌細胞比正常細胞對額外的活性氧所造成的損害更脆弱。因此,超音波觸發後‧OH的產生提供了可抑制腫瘤生長的癌症療法。將HeLa細胞皮下移植到裸鼠的大腿,並將十五隻具有HeLa腫瘤的裸鼠分為五組。分別為PBS、PBS加超音波、載體加超音波、載體加磁鐵及載體加超音波/磁鐵。按照和超音波及核磁共振成像相同的給藥程序,小鼠接受經尾靜脈之5mg[Fe]/kg劑量的兩次連續注射。考慮來自TEM、超音波和核磁共振成像獲得的資訊,PBS加超音波、載體加超音波及載體加超音波/磁鐵治療之小鼠的組別在每次靜脈注射後均經歷30分鐘的超音波照射。腫瘤生長的退化效能以腫瘤體積變化來監測。在24小時後進行核磁共振成像腫瘤組織,發現對比度持續改善負對比效果,這可能暗示載體不斷累積到腫瘤。 Please refer to Figure 17. Excessive production of reactive oxygen species can lead to oxidative damage to cellular function. In addition, cancer cells are more vulnerable to damage caused by extra reactive oxygen species than normal cells. Thus, the generation of ‧ OH after ultrasound triggering provides a cancer therapy that inhibits tumor growth. HeLa cells were subcutaneously transplanted into the thighs of nude mice, and fifteen nude mice with HeLa tumors were divided into five groups. For PBS, PBS plus ultrasonic, carrier plus ultrasonic, carrier plus magnet and carrier plus ultrasonic / magnet. Mice received two consecutive injections of 5 mg [Fe]/kg via the tail vein in accordance with the same dosing procedure as ultrasound and MRI. Considering the information obtained from TEM, ultrasound and MRI, the group of mice treated with PBS plus ultrasound, carrier plus ultrasound and carrier plus ultrasound/magnetism experienced 30 minutes of ultrasound after each intravenous injection. Irradiation. The degenerative efficacy of tumor growth is monitored as changes in tumor volume. Magnetic resonance imaging of the tumor tissue after 24 hours revealed that the contrast continued to improve the negative contrast effect, which may suggest that the vector continues to accumulate in the tumor.
超音波治療的小鼠在第2天接受1小時額外的超音波暴露。使用磁鐵吸引力的組別在抗腫瘤效果上具有統計的顯著性,表明載體位於腫瘤的量是重要的治療因子。當磁鐵的吸引力是在沒有超音波照射下提供,腫瘤生長在開始的8天被抑制,但隨著天數延長慢慢復發。開始的抑制可能是在腫瘤的酸性環境中載體降解而釋放‧OH引起的。相反地,將磁性標的載體聚焦在腫瘤再加上超音波照射導致完整的腫瘤生長抑制。超音波觸發及載體在酸性條件下降解同時促成這一有效的抗腫瘤功效。 Ultrasound-treated mice received 1 hour of additional ultrasound exposure on day 2. The group using magnet attraction is statistically significant in antitumor effect, indicating that the amount of the vector located in the tumor is an important therapeutic factor. When the attraction of the magnet is provided without ultrasound, tumor growth is inhibited in the first 8 days, but slowly relapses as the number of days increases. The initial inhibition may be caused by carrier degradation and release of ‧ OH in the acidic environment of the tumor. Conversely, focusing the magnetic target carrier on the tumor plus ultrasound illumination results in complete tumor growth inhibition. Ultrasonic triggering and degradation of the carrier under acidic conditions contribute to this effective anti-tumor effect.
13. 腫瘤照射超音波之熱重量分析: 13. Thermogravimetric analysis of tumor-irradiated ultrasound:
請參閱第十八圖。使用Thermo Tracer H2640(NEC,Japan)camera進行腫瘤溫度的熱重量分析以監控腫瘤在超音波暴露(30分鐘)的過程,腫瘤位置標示為P1。結果溫度持續保持在約22℃,沒有增加的跡象,這表明了超音波場下的非熱過程。 Please refer to Figure 18. Thermogravimetric analysis of tumor temperature was performed using a Thermo Tracer H2640 (NEC, Japan) camera to monitor the course of the tumor during ultrasound exposure (30 minutes), with the tumor location indicated as P1. As a result, the temperature was continuously maintained at about 22 ° C with no sign of increase, indicating a non-thermal process under the ultrasonic field.
14. H2O2(600μL)/Fe3O4-PLGA載體之毒性評估: 14. Toxicity assessment of H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA carrier:
請參閱第十九圖。對於載體之毒性評估,在沒有腫瘤的健康小鼠經由尾靜脈注射5mg[Fe]/kg的H2O2(600μL)/Fe3O4-PLGA載體。所有的小鼠在30天的實驗期間都存活。生物分佈表明載體在一個月內逐漸消滅。此外,組織學和血液生化分析顯示其作為癌症藥物沒有急性毒性。 Please refer to the nineteenth figure. For toxicity assessment of the vehicle, 5 mg [Fe]/kg of H 2 O 2 (600 μL) / Fe 3 O 4 -PLGA vector was injected via the tail vein in healthy mice without tumor. All mice survived during the 30-day experiment. The biological distribution indicates that the vector is gradually eliminated within one month. In addition, histology and blood biochemical analysis showed no acute toxicity as a cancer drug.
15. 本發明載體使用金奈米粒子及S-亞硝基穀胱甘肽(S-nitrosoglutathione,GSNO)用於心血管疾病的方法: 15. The method of the present invention uses gold nanoparticles and S-nitrosoglutathione (GSNO) for cardiovascular diseases:
請參閱第二十圖。將GSNO裝載於PLGA載體之親水性內核中,另外將4nm之油相金奈米粒子包埋於疏水性外殼中,形成GSNO/Au-PLGA載體,在生物體內注射GSNO/Au-PLGA載體後,在患部施予600nm的近紅外光雷射或是超音波,金奈米粒子可以吸收該波段之近紅外光而產生熱,高溫或是超音波可以使GSNO/Au-PLGA載體的PLGA殼層產生破洞,進而使GSNO釋放出來,當GSNO流經金奈米粒子表面時,GSNO上的硫會鍵結在金奈米粒子表面,進而釋放出一氧化氮(nitric oxide,NO)氣體來進行心血管疾病的治療。 Please refer to the twentieth map. GSNO was loaded into the hydrophilic core of the PLGA carrier, and 4 nm of oil phase gold nanoparticles were embedded in a hydrophobic shell to form a GSNO/Au-PLGA vector. After the GSNO/Au-PLGA vector was injected into the organism, Applying a 600 nm near-infrared laser or ultrasonic wave to the affected part, the gold nanoparticles can absorb the near-infrared light in the band to generate heat, and the high temperature or ultrasonic wave can generate the PLGA shell of the GSNO/Au-PLGA carrier. The hole is broken, and then the GSNO is released. When GSNO flows through the surface of the gold nanoparticles, the sulfur on the GSNO is bonded to the surface of the gold nanoparticles, and then nitric oxide (NO) gas is released to carry out the heart. Treatment of vascular disease.
16. GSNO濃度與NO產量的關係: 16. Relationship between GSNO concentration and NO production:
請參閱第二十一圖。以固定濃度(100ppm)之13nm的金奈米 粒子與不同濃度(10-7、10-6、10-5、10-4、10-3及5×10-3M)的GSNO反應產生NO,並藉由一氧化氮呈色分析套組(Nitric Oxide Colorimetric Assay Kit(BioVision K262-200))量測NO的含量。結果可以發現隨著GSNO濃度的增加,所產生的NO也會增加。 Please refer to the twenty-first figure. Producing NO at a fixed concentration (100 ppm) of 13 nm gold nanoparticles and GSNO at different concentrations (10 -7 , 10 -6 , 10 -5 , 10 -4 , 10 -3 , and 5 × 10 -3 M ), The content of NO was measured by a Nitric Oxide Colorimetric Assay Kit (BioVision K262-200). As a result, it was found that as the concentration of GSNO increases, the amount of NO produced also increases.
17. 金奈米粒子濃度與NO產量的關係: 17. Relationship between the concentration of gold nanoparticles and the yield of NO:
請參閱第二十二圖。以固定濃度(5×10-3M)之GSNO與不同濃度(0ppm、10ppm、20ppm、30ppm、50ppm、100ppm、200ppm、300ppm及400ppm)之13nm金奈米粒子反應產生NO,結果可以發現當金奈米粒子濃度達到100ppm以上時可以得到NO產生的上限。 Please refer to the twenty-second figure. The GSNO at a fixed concentration (5×10 -3 M) is reacted with 13 nm gold nanoparticles of different concentrations (0 ppm, 10 ppm, 20 ppm, 30 ppm, 50 ppm, 100 ppm, 200 ppm, 300 ppm, and 400 ppm) to produce NO. The result can be found in gold. When the concentration of the nanoparticle reaches 100 ppm or more, the upper limit of NO production can be obtained.
18. 不同尺寸之金奈米粒子的反應活性: 18. Reactivity of different sizes of gold nanoparticles:
請參閱第二十三圖。使用固定濃度(100ppm)之4nm金奈米粒子與不同濃度(10-7、10-6、10-5、10-4、10-3及10-2M)之GSNO反應產生NO,結果發現最低產生NO之GSNO濃度為10-4M,即4nm金奈米粒子比13nm金奈米粒子有更高的反應活性。 Please refer to the twenty-third figure. Using a fixed concentration (100 ppm) of 4 nm gold nanoparticles to react with different concentrations (10 -7 , 10 -6 , 10 -5 , 10 -4 , 10 -3 , and 10 -2 M ) of GSNO to produce NO, the lowest The concentration of GSNO producing NO is 10 -4 M, that is, the 4 nm gold nanoparticle has higher reactivity than the 13 nm gold nanoparticle.
19. 硫化銅(Cu2-XS)奈米粒子與GSNO之載體: 19. Carrier of copper sulfide (Cu 2-X S) nanoparticles and GSNO:
在PLGA疏水性外殼中包埋4nm油相硫化銅(Cu2-XS)奈米粒子,親水性內核中則裝載GSNO,形成GSNO/Cu2-XS-PLGA載體,當利用633nm雷射照射載體後,Cu2-XS會吸收能量並產生高溫,進而破壞PLGA球殼,使GSNO釋放出來,其流經硫化銅表面與Cu+反應生成NO.,因而可應用於心血管之疾病。其反應式如下:
20. GSNO濃度與NO產量的關係: 20. Relationship between GSNO concentration and NO production:
請參閱第二十四圖。利用過氧化氫比色試驗套組(Nitric Oxide Colorimetric Assay Kit)(BioVision K262-200)測定NO的產量。固定濃度(100ppm)之4nm Cu2-XS奈米粒子與不同濃度(10-7、10-6、10-5、10-4、10-3及10-2M)之GSNO反應可產生NO,且最低產生NO之GSNO濃度為10-3M。 Please refer to the twenty-fourth figure. The yield of NO was measured using a Nitric Oxide Colorimetric Assay Kit (BioVision K262-200). A fixed concentration (100ppm) of 4nm Cu 2-X S nanoparticles can react with GSNO at different concentrations (10 -7 , 10 -6 , 10 -5 , 10 -4 , 10 -3 and 10 -2 M ) to produce NO The lowest GSNO concentration of NO is 10 -3 M.
21. 硫化銅奈米粒子濃度與NO產量的關係: 21. Relationship between copper sulfide nanoparticle concentration and NO production:
請參閱第二十五圖。固定濃度(10-3M)之GSNO與不同濃度(0ppm、10ppm、20ppm、30ppm、50ppm、100ppm、200ppm、300ppm及400ppm)之Cu2-XS奈米粒子反應產生NO,結果發現當Cu2-XS奈米粒子濃度達到100ppm以上時,可以得到NO產生的上限。 Please refer to the twenty-fifth map. A fixed concentration (10 -3 M) of GSNO reacted with different concentrations (0 ppm, 10 ppm, 20 ppm, 30 ppm, 50 ppm, 100 ppm, 200 ppm, 300 ppm, and 400 ppm) of Cu 2-X S nanoparticles to produce NO, which was found to be Cu 2 When the concentration of the -X S nanoparticle reaches 100 ppm or more, the upper limit of NO production can be obtained.
22. 使用氧化錳及過氧化氫用於產生氧氣之載體: 22. Use manganese oxide and hydrogen peroxide to produce oxygen:
將油相10nm四氧化三錳(Mn3O4)奈米顆粒包埋於PLGA載體之疏水性外殼之中,而親水性內核中裝載H2O2水溶液,形成H2O2/Mn3O4-PLGA載體,可將此材料應用於生物醫學領域作為磁振造影與超音波的顯影劑,將H2O2/Mn3O4-PLGA載體注射於生物體內,當H2O2/Mn3O4-PLGA載體累積在腫瘤位置時,其處於一個酸性的環境,此時大量的氫質子流入H2O2/Mn3O4-PLGA載體,當流經Mn3O4表面時,會溶解出Mn2+離子並擴散離開載體,也會流入載體之核中,大量的Mn2+離子可以提供磁振造影T1之顯影效果(影像變亮),而流入核中之Mn2+會與H2O2反應產生大量的氧氣,可以提供顯著的超音波顯影能力。相較於只包有過氧化氫的載體,雖然其也有超音波顯影能力,但並無法在酸性環境增強顯影能力, 而H2O2/Mn3O4-PLGA載體則會在酸性環境(腫瘤)下增加磁振造影顯影能力,另一方面也有更顯著的超音波顯影效果。 The oil phase 10 nm trimanganese tetraoxide (Mn 3 O 4 ) nanoparticle is embedded in the hydrophobic outer shell of the PLGA carrier, and the hydrophilic core is loaded with H 2 O 2 aqueous solution to form H 2 O 2 /Mn 3 O. 4- PLGA carrier, which can be applied to the biomedical field as a developer of magnetic resonance imaging and ultrasonic waves, and injects H 2 O 2 /Mn 3 O 4 -PLGA carrier into living organisms, when H 2 O 2 /Mn When the 3 O 4 -PLGA carrier accumulates at the tumor site, it is in an acidic environment, when a large amount of hydrogen protons flow into the H 2 O 2 /Mn 3 O 4 -PLGA carrier, and when flowing through the surface of Mn 3 O 4 , Dissolving Mn 2+ ions and diffusing away from the carrier will also flow into the core of the carrier. A large amount of Mn 2+ ions can provide the development effect of magnetic resonance imaging T1 (image becomes bright), while Mn 2+ flowing into the nucleus will The H 2 O 2 reaction produces a large amount of oxygen, which can provide significant ultrasonic development capabilities. Compared with a carrier containing only hydrogen peroxide, although it also has ultrasonic development ability, it cannot enhance the developing ability in an acidic environment, and the H 2 O 2 /Mn 3 O 4 -PLGA carrier is in an acidic environment (tumor). Under the magnetic resonance imaging development ability, on the other hand, there is a more significant ultrasonic development effect.
23. H2O2/Mn3O4-PLGA載體氧氣生成的情況: 23. H 2 O 2 /Mn 3 O 4 -PLGA carrier oxygen generation:
請參閱第二十六圖。第二十六圖顯示H2O2/Mn3O4-PLGA載體氧氣生成的情況,氧氣的量測以Ru(dpp)3Cl2作為偵測試劑(螢光百分比越低代表氧氣產生越多),結果發現H2O2/Mn3O4-PLGA載體在酸性條件下有更大量的氧氣產生。 Please refer to the twenty-sixth figure. Figure 26 shows the oxygen generation of the H 2 O 2 /Mn 3 O 4 -PLGA carrier. The measurement of oxygen is based on Ru(dpp) 3 Cl 2 as the detection reagent (the lower the percentage of fluorescence, the more oxygen is produced. As a result, it was found that the H 2 O 2 /Mn 3 O 4 -PLGA carrier produced a larger amount of oxygen under acidic conditions.
實施例Example
1. 一種載體之用途,其係用於製備治療一癌症之藥物,其中該載體包含:一親水性內核,包含一過氧化氫(H2O2);以及一疏水性外殼,包覆該親水性內核,且包含一金屬離子提供者及一高分子化合物,其中:當該過氧化氫與該金屬離子提供者接觸時,該過氧化氫、與該金屬離子提供者所提供之一金屬離子產生一芬頓反應(Fenton reaction)而生成一反應性含氧物種(reactive oxygen species,ROS)。 A use of a carrier for the preparation of a medicament for treating a cancer, wherein the carrier comprises: a hydrophilic core comprising a hydrogen peroxide (H 2 O 2 ); and a hydrophobic outer shell encapsulating the hydrophilic a core comprising a metal ion donor and a polymer compound, wherein: when the hydrogen peroxide is contacted with the metal ion donor, the hydrogen peroxide is generated from a metal ion provided by the metal ion donor A reactive Fenton reaction produces a reactive oxygen species (ROS).
2. 如實施例1所述的用途,其中該治療包含:將該藥物遞送至一標靶部位;在該藥物遞送至該標靶部位後,對該標靶部位施以一刺激以破壞該載體之該疏水性外殼,其中該刺激為一診斷用超音波、一光源或一溫度;當該疏水性外殼被破壞時,該過氧化氫被釋放並與該金屬離子提供者接觸;以及當該過氧化氫與該金屬離子提供者接觸時,該過氧化氫、與該金屬 離子提供者所提供之該金屬離子產生該芬頓反應而生成該反應性含氧物種。 2. The use of embodiment 1, wherein the treating comprises: delivering the drug to a target site; after the drug is delivered to the target site, applying a stimulus to the target site to destroy the carrier The hydrophobic outer casing, wherein the stimulus is a diagnostic ultrasonic wave, a light source or a temperature; when the hydrophobic outer casing is broken, the hydrogen peroxide is released and contacts the metal ion donor; and when When hydrogen peroxide is in contact with the metal ion donor, the hydrogen peroxide and the metal The metal ion provided by the ion donor generates the Fenton reaction to form the reactive oxygen species.
3. 如實施例1-2所述的用途,其中:該診斷用超音波的一平均強度為0.0001-10W/cm2,且該診斷用超音波的一平均頻率為20KHz-100MHz;該光源為一近紅外光、一紫外光或一可見光;以及該反應性含氧物種的一生成速率係藉由該刺激之一強度、一頻率、一時間點及一時間長度來調控。 3. The use of embodiment 1-2, wherein: an average intensity of the diagnostic ultrasonic wave is 0.0001 - 10 W/cm 2 , and an average frequency of the diagnostic ultrasonic wave is 20 kHz - 100 MHz; A near-infrared light, an ultraviolet light, or a visible light; and a rate of generation of the reactive oxygen-containing species is regulated by one of the intensity, a frequency, a time point, and a length of time of the stimulus.
4. 如實施例1-3所述的用途,其中:該載體生成該反應性含氧物種以殺死一癌細胞,生成氧氣以做為一超音波影像的一回音來源,且提供核磁共振造影所需的一磁性;以及該治療更包含:藉由一步驟將該載體導引至該標靶部位,該步驟為在該載體表面修飾一抗體,或提供一磁場產生裝置以產生一磁場標靶。 4. The use of embodiment 1-3, wherein: the vector generates the reactive oxygen species to kill a cancer cell, generate oxygen as an echo source of an ultrasound image, and provide nuclear magnetic resonance imaging a desired magnetic property; and the treatment further comprises: directing the carrier to the target site by a step of modifying an antibody on the surface of the carrier or providing a magnetic field generating device to generate a magnetic field target .
5. 如實施例1-4所述的用途,其中:該親水性內核更包含一穩定劑;該金屬離子提供者所提供之該金屬離子係為Fe2+、Cu2+、Cu+、Ce3+、Cr2+、Mo5+或其組合;以及該反應性含氧物種的一產量係藉由該過氧化氫的一濃度與該金屬離子提供者的一數量來調控。 5. The use of any of embodiments 1-4, wherein: the hydrophilic core further comprises a stabilizer; the metal ion provided by the metal ion donor is Fe 2+ , Cu 2+ , Cu + , Ce 3+ , Cr 2+ , Mo 5+ or a combination thereof; and a yield of the reactive oxygen species is regulated by a concentration of the hydrogen peroxide and an amount of the metal ion donor.
6. 一種載體之用途,其係用於製備治療一心血管疾病之藥物,其中該載體包含: 一親水性內核,包含一S-亞硝基硫醇(S-nitrosothiols,RSNO);一疏水性外殼,包覆該親水性內核,且包含一催化劑,其中:當該S-亞硝基硫醇與該催化劑接觸時,會產生一催化反應而生成一一氧化氮(nitric oxide,NO)。 6. Use of a carrier for the preparation of a medicament for the treatment of a cardiovascular disease, wherein the carrier comprises: a hydrophilic core comprising an S-nitrosothiols (RSNO); a hydrophobic outer shell encapsulating the hydrophilic core and comprising a catalyst, wherein: when the S-nitrosothiol Upon contact with the catalyst, a catalytic reaction is produced to form nitric oxide (NO).
7. 如實施例6所述的用途,其中該治療包含以下步驟:將該藥物遞送至一標靶部位;在該藥物遞送至該標靶部位後,對該標靶部位施以一刺激以破壞該載體之該疏水性外殼,其中該刺激為一診斷用超音波、一光源或一溫度;當該疏水性外殼被破壞時,該S-亞硝基硫醇被釋放並與該催化劑接觸;以及當該S-亞硝基硫醇與該催化劑接觸時,產生該催化反應而生成該一氧化氮,其中該一氧化氮用以引起血管舒張及抑制細胞凋亡至少其中之一,以及做為一超音波影像的一回音來源。 7. The use of embodiment 6, wherein the treatment comprises the steps of: delivering the drug to a target site; after the drug is delivered to the target site, applying a stimulus to the target site to destroy a hydrophobic outer shell of the carrier, wherein the stimulus is a diagnostic ultrasonic wave, a light source or a temperature; when the hydrophobic outer shell is destroyed, the S-nitrosothiol is released and contacted with the catalyst; When the S-nitrosothiol is contacted with the catalyst, the catalytic reaction is generated to generate the nitric oxide, wherein the nitric oxide is used to cause at least one of vasodilation and inhibition of apoptosis, and as one An echo source for ultrasound images.
8. 如實施例6-7所述的用途,其中:該S-亞硝基硫醇係為一S-亞硝基穀胱甘肽(S-nitrosoglutathione,GSNO)、一S-亞硝基白蛋白(S-nitrosoalbumin,AlbSNO)、一S-亞硝基穀胱甘肽(S-nitrosocysteine,CySNO)或其組合;該催化劑為一金屬或一金屬化合物;以及該一氧化氮的一產量係藉由該S-亞硝基硫醇的一濃度與該催化劑的一數量來調控。 8. The use according to any of embodiments 6-7, wherein the S-nitrosothiol is a S-nitrosoglutathione (GSNO), an S-nitroso white Protein (S-nitrosoalbumin, AlbSNO), S-nitrosocysteine (CySNO) or a combination thereof; the catalyst is a metal or a metal compound; and a yield of the nitric oxide is borrowed A concentration of the S-nitrosothiol is regulated by a quantity of the catalyst.
9. 一種載體之用途,其係用於製備治療一疾病之藥物,其中該載體包含:一親水性內核,包含一化合物;以及 一疏水性外殼,包覆該親水性內核,且包含一金屬奈米粒子及一兩性分子化合物,其中:當該化合物與該金屬奈米粒子接觸時,會產生一化學反應而生成一功能產物。 9. A use of a carrier for the preparation of a medicament for treating a disease, wherein the carrier comprises: a hydrophilic core comprising a compound; A hydrophobic outer shell encasing the hydrophilic core and comprising a metal nanoparticle and an amphoteric compound, wherein when the compound is in contact with the metal nanoparticle, a chemical reaction is generated to form a functional product.
10. 一種載體,包含:一親水性內核,包含一物質;一疏水性外殼,包覆該親水性內核,且包含一奈米粒子及一兩性分子化合物,其中:當該物質與該奈米粒子接觸而產生一化學反應時,將生成一功能產物。 10. A carrier comprising: a hydrophilic core comprising a substance; a hydrophobic outer shell encasing the hydrophilic core and comprising a nanoparticle and an amphiphilic compound, wherein: the substance and the nanoparticle When a chemical reaction occurs upon contact, a functional product is formed.
40‧‧‧載體 40‧‧‧ Carrier
401‧‧‧親水性內核 401‧‧‧Hydrophilic core
402‧‧‧疏水性外殼 402‧‧‧hydrophobic shell
403‧‧‧物質 403‧‧‧ substances
404‧‧‧奈米粒子 404‧‧‧Nano particles
405‧‧‧兩性分子化合物 405‧‧‧Amphiphilic compounds
406‧‧‧功能產物 406‧‧‧ functional product
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562164212P | 2015-05-20 | 2015-05-20 | |
US62/164,212 | 2015-05-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201711674A true TW201711674A (en) | 2017-04-01 |
TWI616211B TWI616211B (en) | 2018-03-01 |
Family
ID=59256854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105115869A TWI616211B (en) | 2015-05-20 | 2016-05-20 | Carriers and uses thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI616211B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI637013B (en) * | 2016-07-01 | 2018-10-01 | 國防醫學院 | Complex particles for delivering nitric oxide, method of producing the same, and application of the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI365751B (en) * | 2009-04-20 | 2012-06-11 | Univ Nat Cheng Kung | Poly (d, l-lactide-co-glycolide) nanoparticles |
-
2016
- 2016-05-20 TW TW105115869A patent/TWI616211B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI637013B (en) * | 2016-07-01 | 2018-10-01 | 國防醫學院 | Complex particles for delivering nitric oxide, method of producing the same, and application of the same |
Also Published As
Publication number | Publication date |
---|---|
TWI616211B (en) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qian et al. | Micro/nanoparticle‐augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation | |
Hu et al. | New anti-cancer explorations based on metal ions | |
Saeed et al. | Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances | |
Serpe et al. | Nanosonotechnology: the next challenge in cancer sonodynamic therapy | |
Xu et al. | Nanoparticles in sonodynamic therapy: state of the art review | |
Li et al. | Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome | |
Wysocki et al. | Excited state and reactive oxygen species against cancer and pathogens: A review on sonodynamic and sono‐photodynamic therapy | |
Li et al. | A photosensitizer-conjugated magnetic iron oxide/gold hybrid nanoparticle as an activatable platform for photodynamic cancer therapy | |
You et al. | Porphyrin-grafted lipid microbubbles for the enhanced efficacy of photodynamic therapy in prostate cancer through ultrasound-controlled in situ accumulation | |
Wang et al. | Multifunctional MnO2/Ag3SbS3 nanotheranostic agent for single-laser-triggered tumor synergistic therapy in the NIR-II biowindow | |
Shakeri-Zadeh et al. | Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice | |
AU2019337699B2 (en) | Small highly uniform nanomedicine compositions for therapeutic, imaging and theranostic applications | |
Yan et al. | HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy | |
Feng et al. | Magnetic manganese oxide sweetgum-ball nanospheres with large mesopores regulate tumor microenvironments for enhanced tumor nanotheranostics | |
EA016541B1 (en) | Magnetic nanoparticles compositions and uses thereof | |
Nittayacharn et al. | Iridium (III) complex-loaded perfluoropropane nanobubbles for enhanced sonodynamic therapy | |
Shahalaei et al. | A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications | |
Nafiujjaman et al. | Biodegradable hollow manganese silicate nanocomposites to alleviate tumor hypoxia toward enhanced photodynamic therapy | |
Luo et al. | Low intensity focused ultrasound ignited “deep-penetration nanobomb”(DPNB) for tetramodal imaging guided hypoxia-tolerant sonodynamic therapy against hypoxic tumors | |
Jiang et al. | Manganese dioxide-based nanomaterials for medical applications | |
Liu et al. | Manganese dioxide/gold-based active tumor targeting nanoprobes for enhancing photodynamic and low-temperature-photothermal combination therapy in lung cancer | |
Wen et al. | NIR-II light-activated gold nanorods for synergistic thermodynamic and photothermal therapy of tumor | |
Aigbe et al. | Utility of magnetic nanomaterials for theranostic nanomedicine | |
Abd El-Kaream et al. | Electroporation assisted delivery of Roussin salt porphyrin-based conjugated carbon nanoparticles for sono–X-ray–photodynamic prostate cancer in vitro and in vivo treatment | |
TWI616211B (en) | Carriers and uses thereof |