TW201642097A - Touch panel and touch detection circuit - Google Patents
Touch panel and touch detection circuit Download PDFInfo
- Publication number
- TW201642097A TW201642097A TW104117545A TW104117545A TW201642097A TW 201642097 A TW201642097 A TW 201642097A TW 104117545 A TW104117545 A TW 104117545A TW 104117545 A TW104117545 A TW 104117545A TW 201642097 A TW201642097 A TW 201642097A
- Authority
- TW
- Taiwan
- Prior art keywords
- touch
- sensing circuit
- touch panel
- electrode
- electrodes
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
Abstract
Description
本申請案主張2014年5月30日申請之美國臨時申請案第62/005,509號”電容式觸控螢幕”之權益,其之全部內容併入此處做參考。 The present application claims the benefit of U.S. Provisional Application Serial No. 62/005,509, entitled "Capacitive Touch Screen", filed on May 30, 2014, the entire contents of which is incorporated herein by reference.
本文所提供的背景技術描述是以對本公開的內容作一般性說明為目的。在背景技術部分描述的範圍內,目前提及姓名的發明人的工作,以及本說明書在提交申請時可能尚未成為現有技術的方面,無論明示地還是暗含地,都不應認為是針對本公開的現有技術。 The background description provided herein is for the purpose of general description of the disclosure. The work of the inventor of the presently-referenced name, as well as the aspects of the present specification that may not be prior art at the time of filing the application, whether explicitly or implicitly, should not be considered as being directed to the present disclosure. current technology.
在電腦系統中,觸控螢幕包括可尋址的電極陣列。當手指或導電筆接近電極時,其將會擾亂電場及改變電極的電容。電容變化可經由觸控偵測電路來量測,並隨後轉換成提供給電腦系統的座標。 In computer systems, the touch screen includes an array of addressable electrodes. When a finger or conductive pen approaches the electrode, it will disturb the electric field and change the capacitance of the electrode. Capacitance changes can be measured via a touch detection circuit and subsequently converted to coordinates provided to the computer system.
本發明之目的在於提供一種具有電極陣列的觸控面板。電極陣列包括佈置於第一層上之複數個第一電極,每一第一電極圖案化為包括複數個依序連接的第一電極元件且其成形為細長多邊形,以及佈置於第二層上之複數個第二電極,每一第二電極圖案化為包括複數個依序連接的第二電極元件且其成形為細長多邊形,其中第一層上之第一電極與第二層上之第二電極被佈置成彼此交叉排列,以形成互鎖圖案。 It is an object of the present invention to provide a touch panel having an electrode array. The electrode array includes a plurality of first electrodes disposed on the first layer, each of the first electrodes being patterned to include a plurality of sequentially connected first electrode elements and formed into an elongated polygon, and disposed on the second layer a plurality of second electrodes, each of the second electrodes being patterned to include a plurality of sequentially connected second electrode elements and shaped into an elongated polygon, wherein the first electrode on the first layer and the second electrode on the second layer They are arranged to be arranged to cross each other to form an interlocking pattern.
在一實施例中,第一層上之第一電極元件與第二層上之第二電極元件是六邊形。在另一實施例中,第一層上之第一電極元件與第二層上之第二電極元件是中空六邊形。在範例實施例中,位於第一與第二電極元件之中空六邊形內的第一中空區及介於第一與第二電極元件之相鄰中空六邊形之間的第二中空區包括複數個懸浮區塊。在另一範例中,在每個第一中空區與第二中空區之懸浮區塊包括複數個懸浮區塊。在其他範例中,懸浮區塊是和第一層或第二層共平面。 In an embodiment, the first electrode element on the first layer and the second electrode element on the second layer are hexagonal. In another embodiment, the first electrode element on the first layer and the second electrode element on the second layer are hollow hexagons. In an exemplary embodiment, the first hollow region located within the hollow hexagon of the first and second electrode members and the second hollow region between the adjacent hollow hexagons of the first and second electrode members includes A plurality of floating blocks. In another example, the floating block in each of the first hollow zone and the second hollow zone includes a plurality of floating blocks. In other examples, the floating block is coplanar with the first or second layer.
在一實施例中,電極之至少一個包括位於電極之中間部分的一額外分支。在另一實施例中,第一層上之第一電極與第二層上之第二電極是彼此共平面。 In an embodiment, at least one of the electrodes includes an additional branch located in a middle portion of the electrode. In another embodiment, the first electrode on the first layer and the second electrode on the second layer are coplanar with each other.
在一實施例中,觸控面板包括一顯示器,其中電極陣列是設置於顯示器前方。在其他實施例中,觸控面板包括一顯示器,其中電極陣列係整合至顯示器中。 In an embodiment, the touch panel includes a display, wherein the electrode array is disposed in front of the display. In other embodiments, the touch panel includes a display in which the array of electrodes is integrated into the display.
本發明之目的在於提供一種觸控控制器。觸控控制器具有一觸控偵測電路用以接收觸控面板上之觸摸信號並決定觸摸座標。觸控偵測電路包括一類比前端用以將觸控面板上之觸摸信號轉換成數位信號。類比前端包括一混合感測電路用以根據觸控面板上之接收到的觸摸信號產生一電壓信號。混合感測電路操作在至少一第一模式中是做為自電容感測電路,而混合感測電路操作在第二模式中是做為互電容感測電路。觸控偵測電路更包括一數位信號處理器用以根據從類比前端接收到的數位信號決定觸摸座標。 It is an object of the present invention to provide a touch controller. The touch controller has a touch detection circuit for receiving a touch signal on the touch panel and determining a touch coordinate. The touch detection circuit includes an analog front end for converting a touch signal on the touch panel into a digital signal. The analog front end includes a hybrid sensing circuit for generating a voltage signal according to the received touch signal on the touch panel. The hybrid sensing circuit operates as a self-capacitance sensing circuit in at least one first mode, and the hybrid sensing circuit operates as a mutual capacitance sensing circuit in the second mode. The touch detection circuit further includes a digital signal processor for determining a touch coordinate based on the digital signal received from the analog front end.
在一實施例中,混合感測電路具有一組開關用於改變混合感 測電路在第一模式與第二模式之間的操作。 In an embodiment, the hybrid sensing circuit has a set of switches for changing the sense of mixing The operation of the circuit between the first mode and the second mode is measured.
在另一實施例中,當混合感測電路操作在第一模式時,自電容混合感測電路包括一分壓電路,分壓電路包括設置具有一固定電容之第一電容器以及在觸控面板上並和第一電容器串聯之電極之自電容電容器。在一範例中,當混合感測電路操作在第一模式時,自電容感測電路更包括一操作放大器,操作放大器具有一反饋電容器及一反饋電阻器,反饋電容器及反饋電阻器耦接於操作放大器之一轉換輸入端與一輸出端之間;此外,自電容感測電路包括一電阻器,電阻器具有一第一端及一第二端,第一端耦接於第一電容器與自電容電容器之間的分壓電路,第二端耦接操作放大器之轉換輸入端。在一實施例中,電阻器具有一第一端耦接分壓電路,且電阻器設置為具有一大電阻值,使得分壓電路於正常操作下可忽略來自分壓電路之電流。 In another embodiment, when the hybrid sensing circuit operates in the first mode, the self-capacitance hybrid sensing circuit includes a voltage dividing circuit, and the voltage dividing circuit includes a first capacitor having a fixed capacitance and a touch A self-capacitor capacitor on the panel and connected to the first capacitor in series. In an example, when the hybrid sensing circuit operates in the first mode, the self-capacitance sensing circuit further includes an operational amplifier having a feedback capacitor and a feedback resistor, and the feedback capacitor and the feedback resistor are coupled to the operation. One of the amplifiers converts between the input end and the output end; in addition, the self-capacitance sensing circuit includes a resistor having a first end and a second end, the first end being coupled to the first capacitor and the self-capacitor capacitor A voltage dividing circuit is coupled between the second end and the conversion input of the operational amplifier. In one embodiment, the resistor has a first end coupled to the voltage dividing circuit, and the resistor is configured to have a large resistance value such that the voltage dividing circuit can ignore the current from the voltage dividing circuit under normal operation.
本發明之目的在於提供一種以混合感測電路在兩種操作模式下操作觸控面板之方法。此方法包括:以設置操作於第一操作模式下之混合感測電路感測觸控面板上之觸摸,切換混合感測電路至第二操作模式,以及以操作於第二操作模式下之混合感測電路感測觸控面板上之觸摸。 It is an object of the present invention to provide a method of operating a touch panel in two modes of operation with a hybrid sensing circuit. The method includes: sensing a touch on the touch panel by setting the hybrid sensing circuit operating in the first operating mode, switching the hybrid sensing circuit to the second operating mode, and operating in the second operating mode The measurement circuit senses the touch on the touch panel.
本方法實施例包括以混合感測電路在兩種操作模式下操作觸控面板,其中第一操作模式是感測自電容改變或感測互電容改變其中之一,而第二操作模式則是感測自電容改變或感測互電容改變的另外一個。 The method embodiment includes operating the touch panel in two operation modes by using a hybrid sensing circuit, wherein the first operation mode is one of sensing a self-capacitance change or sensing a mutual capacitance change, and the second operation mode is a sense Measured from capacitance change or sensing another change in mutual capacitance.
100‧‧‧電腦系統 100‧‧‧ computer system
101‧‧‧觸控控制器 101‧‧‧ touch controller
102‧‧‧偵測電路 102‧‧‧Detection circuit
103‧‧‧類比前端 103‧‧‧ analog front end
104‧‧‧數位信號處理器 104‧‧‧Digital Signal Processor
105‧‧‧TX信號產生器 105‧‧‧TX signal generator
106‧‧‧觸控面板 106‧‧‧Touch panel
107‧‧‧電極陣列 107‧‧‧electrode array
110‧‧‧觸控感測裝置 110‧‧‧Touch sensing device
120‧‧‧處理器 120‧‧‧ processor
130‧‧‧顯示裝置 130‧‧‧Display device
140‧‧‧儲存模組 140‧‧‧ storage module
150‧‧‧輸入/輸出裝置 150‧‧‧Input/output devices
210‧‧‧蓋板 210‧‧‧ Cover
220‧‧‧電極 220‧‧‧electrode
230‧‧‧接地 230‧‧‧ Grounding
250‧‧‧手指 250‧‧‧ fingers
260、265‧‧‧電場線 260, 265‧‧‧ electric field lines
270‧‧‧蓋板 270‧‧‧ cover
280‧‧‧驅動電極 280‧‧‧ drive electrodes
290‧‧‧接收電極 290‧‧‧ receiving electrode
300A、300B、300C、300D‧‧‧電極陣列 300A, 300B, 300C, 300D‧‧‧ electrode array
301‧‧‧第一層 301‧‧‧ first floor
302‧‧‧第二層 302‧‧‧ second floor
310、311、312、313‧‧‧電極元件 310, 311, 312, 313‧‧‧ electrode components
320‧‧‧橋樑 320‧‧‧ Bridge
330‧‧‧交叉點 330‧‧‧ intersection
340‧‧‧觸摸點 340‧‧‧ Touch point
350、351‧‧‧懸浮區塊 350, 351‧‧‧ suspended blocks
360、361‧‧‧中空區 360, 361‧‧ hollow area
370、371‧‧‧間隙 370, 371‧‧ ‧ gap
380‧‧‧額外分支 380‧‧‧Extra branch
381‧‧‧側跡線 381‧‧‧ side trace
400‧‧‧觸控面板 400‧‧‧ touch panel
401、402‧‧‧電極 401, 402‧‧‧ electrodes
403‧‧‧屏蔽層 403‧‧‧Shield
410‧‧‧蓋板 410‧‧‧ cover
421、422‧‧‧光學膠 421, 422‧‧ ‧ optical adhesive
430‧‧‧介電層 430‧‧‧ dielectric layer
440‧‧‧基材層 440‧‧‧Substrate layer
450‧‧‧氣隙 450‧‧‧ Air gap
451‧‧‧襯墊 451‧‧‧ cushion
460‧‧‧顯示器 460‧‧‧ display
500A、500B‧‧‧電極陣列 500A, 500B‧‧‧electrode array
501、502、503‧‧‧交叉點 501, 502, 503‧‧ ‧ intersection
600A‧‧‧自電容感測電路 600A‧‧‧Self-capacitance sensing circuit
600B‧‧‧互電容感測電路 600B‧‧‧ mutual capacitance sensing circuit
610‧‧‧輸入電路 610‧‧‧Input circuit
620‧‧‧放大電路 620‧‧‧Amplification circuit
700A、700B‧‧‧偵測電路 700A, 700B‧‧‧Detection Circuit
701‧‧‧調變器 701‧‧‧Transformer
702‧‧‧低通濾波器 702‧‧‧ low pass filter
703‧‧‧類比數位轉換器 703‧‧‧ Analog Digital Converter
704‧‧‧數位解調器 704‧‧‧Digital Demodulator
705‧‧‧低通數位濾波器 705‧‧‧low-pass digital filter
706‧‧‧演算模組 706‧‧‧ calculus module
710‧‧‧類比前端 710‧‧‧ analog front end
715‧‧‧數位信號處理器 715‧‧‧Digital Signal Processor
720‧‧‧混合感測電路 720‧‧‧Mixed sensing circuit
721‧‧‧操作放大器 721‧‧‧Operational Amplifier
730‧‧‧自電容感測電路 730‧‧‧Self-capacitance sensing circuit
740‧‧‧互電容感測電路 740‧‧‧ mutual capacitance sensing circuit
C1-C4、R1-R4、X1-XN、Y1-YN‧‧‧電極 C1-C4, R1-R4, X1-XN, Y1-YN‧‧‧ electrodes
本發明之各種實施例僅為範例,並將配合附加圖式做詳細說明,其中相同標號表示相同元件,其中: 圖1係繪示依照本發明一實施例之包含觸控感測裝置的電腦系統示意圖;圖2A與圖2B係繪示依照本發明一實施例之偵測觸控面板之電極的自電容變化的自電容感測方法示意圖;圖2C與圖2D係繪示依照本發明一實施例之偵測觸控面板之兩電極的互電容變化的互電容感測方法示意圖;圖3A-3D係繪示依照本發明各種實施例之具有不同電極圖案的四種電極陣列示意圖;圖4係繪示依照本發明一實施例之觸控面板的層結構範例的剖面圖;圖5A與圖5B係繪示依照本發明一實施例之兩種電極陣列的示意圖;圖6A與圖6B係繪示依照本發明一實施例之兩種感測電路範例的示意圖;圖7A係繪示依照本發明一實施例之包含混合感測電路720之偵測電路範例的示意圖;以及圖7B係繪示依照本發明一實施例之混合感測電路範例及混合感測電路之兩種轉換電路的示意圖。 The various embodiments of the present invention are intended to be illustrative only, and the same reference 1 is a schematic diagram of a computer system including a touch sensing device according to an embodiment of the invention; FIG. 2A and FIG. 2B are diagrams illustrating detecting a self-capacitance change of an electrode of a touch panel according to an embodiment of the invention; FIG. 2C and FIG. 2D are schematic diagrams showing mutual capacitance sensing methods for detecting mutual capacitance changes of two electrodes of a touch panel according to an embodiment of the invention; FIG. 3A-3D are diagrams according to FIG. FIG. 4 is a cross-sectional view showing an example of a layer structure of a touch panel according to an embodiment of the present invention; FIG. 5A and FIG. 5B are diagrams according to the present invention; FIG. 6A and FIG. 6B are schematic diagrams showing examples of two sensing circuits according to an embodiment of the invention; FIG. 7A is a diagram showing an example of mixing according to an embodiment of the invention; FIG. 7B is a schematic diagram showing two examples of a hybrid sensing circuit and a hybrid sensing circuit.
圖1係繪示依照本發明一實施例之包含觸控感測裝置110的電腦系統100示意圖。在一些實施例中,電腦系統100可相當於個人電腦系 統,例如行動電話、桌上型電腦、筆記型電腦、平板電腦,以及類似裝置。在替代實施例中,電腦系統100可相當於公用電腦系統,例如自動櫃員機(ATM)、自動售貨機、銷售點設備(POS)、訊息亭,以及類似物。如圖所示,電腦系統100包括處理器120,處理器120耦接觸控感測裝置110、顯示裝置130、儲存模組140及輸入/輸出(I/O)裝置150。 FIG. 1 is a schematic diagram of a computer system 100 including a touch sensing device 110 in accordance with an embodiment of the invention. In some embodiments, computer system 100 can be equivalent to a personal computer system Systems such as mobile phones, desktop computers, notebook computers, tablets, and the like. In an alternate embodiment, computer system 100 may be equivalent to a public computer system, such as an automated teller machine (ATM), a vending machine, a point of sale (POS) device, a kiosk, and the like. As shown, the computer system 100 includes a processor 120 coupled to the touch sensing device 110, the display device 130, the storage module 140, and an input/output (I/O) device 150.
觸控感測裝置110係用於偵測手指或導電筆的觸摸,並傳送偵測訊息至處理器120,例如觸控感測裝置110上的觸摸位置。處理器120根據處理器120執行的程式解譯觸摸訊息,然後執行相應的操作。在一實施例中,觸控感測裝置110包括觸控面板106及觸控控制器101。 The touch sensing device 110 is configured to detect a touch of a finger or a conductive pen and transmit a detection message to the processor 120, such as a touch location on the touch sensing device 110. The processor 120 interprets the touch message according to the program executed by the processor 120 and then performs the corresponding operation. In one embodiment, the touch sensing device 110 includes a touch panel 106 and a touch controller 101.
觸控面板106可以是基於電阻、電容、表面聲波及紅外光。在一實施例中,觸控面板106是基於電容,並且包括電極陣列107。在不同實施例中,電極陣列中的電極可具有各種形狀並佈置在不同的位置,從而形成各種電極圖案。在一實施例中,電極陣列107包括帶狀的兩層電極。一層電極被佈置成行,而另一層電極則被佈置成列。列電極及行電極彼此交叉形成矩陣圖案。在另一實施例中,電極陣列107包括兩層電極,且每一電極包括複數個依序連接且呈菱形的電極元件(或晶胞)。類似於矩陣圖案,一層電極被佈置成行,而另一層電極則被佈置成列。列電極及行電極彼此交叉排列,以形成互鎖菱形圖案。 The touch panel 106 can be based on resistance, capacitance, surface acoustic waves, and infrared light. In an embodiment, the touch panel 106 is based on a capacitor and includes an electrode array 107. In various embodiments, the electrodes in the electrode array can have various shapes and be disposed at different locations to form various electrode patterns. In an embodiment, the electrode array 107 comprises a strip of two-layer electrodes. One layer of electrodes is arranged in rows while the other layer of electrodes is arranged in columns. The column electrodes and the row electrodes cross each other to form a matrix pattern. In another embodiment, the electrode array 107 includes two layers of electrodes, and each electrode includes a plurality of electrode elements (or cells) that are sequentially connected and have a diamond shape. Similar to the matrix pattern, one layer of electrodes is arranged in rows while the other layer of electrodes is arranged in columns. The column electrodes and the row electrodes are arranged to cross each other to form an interlocking diamond pattern.
依照本發明的觀點,在一實施例中,電極陣列107是被佈置成中空六邊形圖案,藉此可改善觸控面板106的觸控感測靈敏度。 In accordance with an aspect of the present invention, in one embodiment, the electrode array 107 is arranged in a hollow hexagonal pattern, whereby the touch sensing sensitivity of the touch panel 106 can be improved.
電極陣列107中的電極一般是由任何適合的導電材質所製成。在一實施例中,觸控面板106是透明的電容式觸控面板且被置於顯示裝 置前方,例如顯示裝置130。在這種類型的應用中,電極可以是由透明導電材質所製成,例如銦錫氧化物、金屬薄膜、碳奈米管,以及類似物。在另一實施例中,觸控面板106是非透明的電容式觸控面板並做為觸摸墊,例如筆記型電腦中的觸摸墊。在這種類型的應用中,電極可以是由非透明導電材質所製成,例如銅線。 The electrodes in electrode array 107 are typically fabricated from any suitable electrically conductive material. In an embodiment, the touch panel 106 is a transparent capacitive touch panel and is placed in the display device. Set to the front, for example, display device 130. In this type of application, the electrodes can be made of a transparent conductive material such as indium tin oxide, metal film, carbon nanotubes, and the like. In another embodiment, the touch panel 106 is a non-transparent capacitive touch panel and is used as a touch pad, such as a touch pad in a notebook computer. In this type of application, the electrodes can be made of a non-transparent conductive material, such as a copper wire.
在操作中,當手指或導電筆接近觸控面板106時,不同電極(互電容)之間或電極與地線(自電容)之間的電容值將會改變,而此種電容變化可經由觸控控制器101量測出。因此,在觸控面板106上的觸摸都可以被偵測。 In operation, when a finger or a conductive pen approaches the touch panel 106, the capacitance between different electrodes (mutual capacitance) or between the electrode and the ground (self-capacitance) will change, and such capacitance change can be touched. The controller 101 measures the amount. Therefore, the touch on the touch panel 106 can be detected.
觸控控制器101一般是用於持續地監測在電極陣列之不同位置觸摸的電容變化。特別是,觸控控制器產生驅動信號,稱為發射(TX)信號,並施加電壓於電極陣列107中的電極,以測量在不同驅動電極中的電容值,並且接收在不同驅動電極中表示電容量的信號。根據上述接收信號,觸控控制器101可偵測電極陣列的電容變化,並相應偵測面板106上的觸摸和觸摸位置,然後傳送偵測訊息至處理器120。 Touch controller 101 is typically used to continuously monitor changes in capacitance at different locations of the electrode array. In particular, the touch controller generates a drive signal, referred to as a transmit (TX) signal, and applies a voltage to the electrodes in the electrode array 107 to measure capacitance values in different drive electrodes, and the reception represents electricity in the different drive electrodes. The signal of the capacity. According to the received signal, the touch controller 101 can detect the capacitance change of the electrode array, and detect the touch and touch position on the panel 106 correspondingly, and then transmit the detection message to the processor 120.
在一實施例中,觸控控制器101包括TX信號產生器105。TX信號產生器105係用於產生TX信號,例如脈波,然後循序添加到不同電極。 In an embodiment, the touch controller 101 includes a TX signal generator 105. The TX signal generator 105 is used to generate a TX signal, such as a pulse wave, which is then sequentially added to the different electrodes.
在一實施例中,觸控控制器101還包括偵測電路102。觸控控制器101包括類比前端103及數位信號處理器(DSP)104。類比前端103係用於從不同電極(其上施加有TX信號)連續地接收在觸控面板106上之不同電極中表示電容量的信號,並將此信號轉換成用於後續DSP可處理的信號。在一實施例中,TX信號產生器105係用於產生一脈波,而類比前端可輸出經由電 極陣列之不同電極中的電容量調變過的另一脈波。當電容改變時,上述調變信號將會跟著改變,從而表示電容變化。 In an embodiment, the touch controller 101 further includes a detection circuit 102. The touch controller 101 includes an analog front end 103 and a digital signal processor (DSP) 104. The analog front end 103 is for continuously receiving signals representing capacitances in different electrodes on the touch panel 106 from different electrodes (on which TX signals are applied) and converting the signals into signals that can be processed by subsequent DSPs. . In one embodiment, the TX signal generator 105 is used to generate a pulse, and the analog front end can be output via the power. Another pulse in which the capacitance in the different electrodes of the pole array is modulated. When the capacitance changes, the above modulation signal will change to indicate the capacitance change.
依照本發明的觀點,在一實施例中,類比前端103包括一混合感測電路,當操作在第一模式時,混合感測電路是做為自電容感測電路,而當操作在第二模式時,混合感測電路是做為互電容感測電路。可能需要以兩個獨立的類比前端分別測量互電容與自電容。由於混合式結構,混合式類比前端103可降低晶片上空間使用率及減少硬體成本。 In accordance with an aspect of the present invention, in an embodiment, the analog front end 103 includes a hybrid sensing circuit that operates as a self-capacitance sensing circuit when operating in the first mode and operates in the second mode when operating in the first mode The hybrid sensing circuit is used as a mutual capacitance sensing circuit. It may be necessary to measure the mutual capacitance and the self capacitance with two independent analog front ends. Due to the hybrid architecture, the hybrid analog front end 103 reduces space utilization on the wafer and reduces hardware costs.
DSP 104係用於處理類比前端103之輸出信號,並產生於觸控面板106上執行的觸摸座標訊息。此外,DSP 104可執行各種軟體演算法,以達到觸摸偵測功能或控制功能。舉例來說,DSP 104可執行用於消除充電噪音、偵測手套觸摸、區別故意觸摸(手指)與無意觸摸(手掌),以及類似者的演算法。 The DSP 104 is configured to process the output signal of the analog front end 103 and generate touch coordinate information that is executed on the touch panel 106. In addition, the DSP 104 can perform various software algorithms to achieve touch detection or control functions. For example, the DSP 104 can perform algorithms for eliminating charging noise, detecting glove touches, distinguishing between intentional touches (fingers) and unintentional touches (palms), and the like.
在各種實施例中,當觸控面板106的尺寸很大時,一個觸控控制器101的容量是不足以監控觸控面板106的所有電容變化,因此可使用多個觸控控制器101來監控觸控面板106的不同區域。 In various embodiments, when the size of the touch panel 106 is large, the capacity of one touch controller 101 is insufficient to monitor all capacitance changes of the touch panel 106, so that multiple touch controllers 101 can be used for monitoring. Different areas of the touch panel 106.
在各種實施例中,觸控控制器101可以一個或多個積體電路(IC)來實現,或可使用單獨的元件來實現。在一些實施例中,觸控控制器101包括記憶體模組,用以儲存軟體碼及由觸控控制器101使用的資料。在一些實施例中,觸控控制器101係經由包括複數條導線之軟性電路板(FPC)連接器連接觸控面板106。 In various embodiments, touch controller 101 can be implemented in one or more integrated circuits (ICs) or can be implemented using separate components. In some embodiments, the touch controller 101 includes a memory module for storing the software code and the data used by the touch controller 101. In some embodiments, the touch controller 101 connects the touch panel 106 via a flexible circuit board (FPC) connector that includes a plurality of wires.
處理器120通常可執行軟體碼,例如操作系統軟體、應用程式軟體及其類似者,以處理資料及控制電腦系統100之操作。處理器120可 以是單晶片處理器,或可以和多個元件一起實現。儲存模組130通常可儲存軟體碼及由電腦系統100使用的資料。儲存模組130可包括唯讀記憶體(ROM)、隨機存取記憶體(RAM)、硬碟機、CD-ROM、快取記憶體,以及類似者。I/O裝置150可接收來自電腦系統100的輸入資料,或提供輸出資料至電腦系統100外部。I/O裝置可包括鍵盤、滑鼠、揚聲器、麥克風、相機、網路介面,以及類似物。 The processor 120 typically executes software code, such as operating system software, application software, and the like, to process data and control the operation of the computer system 100. The processor 120 can It can be a single-chip processor or can be implemented with multiple components. The storage module 130 typically stores software code and data used by the computer system 100. The storage module 130 can include read only memory (ROM), random access memory (RAM), hard disk drive, CD-ROM, cache memory, and the like. The I/O device 150 can receive input data from the computer system 100 or provide output data to the outside of the computer system 100. I/O devices can include keyboards, mice, speakers, microphones, cameras, network interfaces, and the like.
顯示裝置130係用於顯示圖形使用者介面(GGUI),以呈現電腦系統100的輸出訊息。在一實施例中,顯示裝置130是一個單獨元件,例如監視器。在另一實施例中,顯示裝置130是和其他元件整合在電腦系統100中,以形成獨立的設備,例如平板電腦或行動電話。在各種實施例中,顯示裝置可以是液晶顯示器(LCD)、陰極射線管(CRT)、電漿顯示器,以及類似物。 Display device 130 is for displaying a graphical user interface (GGUI) to present an output message of computer system 100. In an embodiment, display device 130 is a separate component, such as a monitor. In another embodiment, display device 130 is integrated with other components in computer system 100 to form a stand-alone device, such as a tablet or mobile phone. In various embodiments, the display device can be a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma display, and the like.
圖2A與圖2B係繪示依照本發明一實施例之偵測觸控面板106之電極的自電容變化的自電容感測方法示意圖。在圖2A中,其顯示出沒有手指觸摸的狀況,而電極220是設置於觸控面板106之蓋板(cover lens)210背面。電極220與接地230之間的自電容CS相當於CS0。為了測量自電容CS,添加TX信號至電極220。在圖2B中,當手指250觸摸蓋板時,電容CF會經由人體其電位近似於接地電位被添加至電極220與接地230之間。現在,電極220與接地230之間的自電容CS會從CS0增加到CS0+CF。與電極220相關聯的自電容變化可經由觸控偵測電路102來偵測,進而可偵測手指觸摸。 FIG. 2A and FIG. 2B are schematic diagrams showing a self-capacitance sensing method for detecting a change in self-capacitance of an electrode of the touch panel 106 according to an embodiment of the invention. In FIG. 2A, it shows a situation in which no finger is touched, and the electrode 220 is disposed on the back surface of the cover lens 210 of the touch panel 106. The self-capacitance C S between the electrode 220 and the ground 230 is equivalent to C S0 . To measure the self capacitance C S , a TX signal is added to the electrode 220. In FIG. 2B, when the finger 250 touches the cover, the capacitance C F is added between the electrode 220 and the ground 230 via the human body whose potential is approximately at the ground potential. Now, the self-capacitance C S between the electrode 220 and the ground 230 will increase from C S0 to C S0 + C F . The self-capacitance change associated with the electrode 220 can be detected by the touch detection circuit 102, thereby detecting a finger touch.
圖2C與圖2D係繪示依照本發明一實施例之偵測觸控面板106之兩電極的互電容變化的互電容感測方法示意圖。在圖2C中,其顯示出 沒有手指觸摸的狀況,驅動電極280與接收電極290都是設置於蓋板270背面。驅動電極280與接收電極290之間的互電容CM相當於CM0。為了測量互電容CM,添加TX信號至驅動電極280,並且來自接收電極290之接收信號(RX)會被傳送至觸控偵測電路102。如圖所示,在兩電極280與290之間分佈有複數個電場線。第一部分電場線265稱為近電場線,其靠近兩電極280與290,而第二部分電場線260稱為邊緣電場線,其是從遠離兩邊緣電極280與290投射。 FIG. 2C and FIG. 2D are schematic diagrams showing a mutual capacitance sensing method for detecting mutual capacitance changes of two electrodes of the touch panel 106 according to an embodiment of the invention. In FIG. 2C, it shows that there is no finger touch, and both the drive electrode 280 and the receiving electrode 290 are disposed on the back surface of the cover 270. The mutual capacitance C M between the drive electrode 280 and the reception electrode 290 is equivalent to C M0 . To measure the mutual capacitance C M , a TX signal is added to the drive electrode 280 , and a received signal (RX) from the receive electrode 290 is transmitted to the touch detection circuit 102 . As shown, a plurality of electric field lines are distributed between the two electrodes 280 and 290. The first portion of the electric field line 265 is referred to as the near electric field line, which is adjacent to the two electrodes 280 and 290, and the second portion of the electric field line 260 is referred to as the fringe electric field line, which is projected from away from the two edge electrodes 280 and 290.
在圖2D中,當手指250觸摸蓋板270時,由於驅動電極280與手指250之間的電位差,部分邊緣電場線260會被手指250終止。因此,在兩個電極280與290之間的電場線會減少,導致互電容CM會從CM0減少至CM1。這種驅動電極280與接收電極290附近的互電容變化可以由觸控偵測電路102偵測,進而偵測手指觸摸。 In FIG. 2D, when the finger 250 touches the cover plate 270, a portion of the fringe electric field lines 260 are terminated by the finger 250 due to the potential difference between the drive electrode 280 and the finger 250. Therefore, the electric field lines between the two electrodes 280 and 290 are reduced, causing the mutual capacitance C M to decrease from C M0 to C M1 . The mutual capacitance change between the driving electrode 280 and the receiving electrode 290 can be detected by the touch detection circuit 102 to detect a finger touch.
需要注意的是,在上述互電容變化偵測過程中,當手指觸摸蓋板270時,近電場線265基本上不受影響,而邊緣電場線260則實質會受到影響。因此,邊緣電場線260的變化是造成互電容CM變化的主要因素。 It should be noted that in the above mutual capacitance change detection process, when the finger touches the cover plate 270, the near electric field line 265 is substantially unaffected, and the fringe electric field line 260 is substantially affected. Therefore, the change in the fringe electric field line 260 is a major factor causing the change in the mutual capacitance C M .
此外,依照本揭露的觀點,觸控面板的觸控靈敏度與互電容變化率確實相關。互電容變化率被定義為在變化發生前之互電容變化與原始互電容的比率。因此,為了增加互電容變化率,可降低近電場的強度以減少原始互電容,並且可增加邊緣電場的強度以增加可能的互電容變化。因此,觸控面板的觸控靈敏度可獲得提升。 In addition, according to the disclosed point of view, the touch sensitivity of the touch panel is indeed related to the mutual capacitance change rate. The mutual capacitance change rate is defined as the ratio of the mutual capacitance change to the original mutual capacitance before the change occurs. Therefore, in order to increase the mutual capacitance change rate, the strength of the near electric field can be reduced to reduce the original mutual capacitance, and the strength of the fringe electric field can be increased to increase the possible mutual capacitance change. Therefore, the touch sensitivity of the touch panel can be improved.
另外,帶有厚手套的手指不會影響到互電容CM。因為厚手套是不導電的,透過手套造成的邊緣電場的變化是非常小的,致使此變化 無法被偵測。另一方面,帶有厚手套的手指經由添加電容CF仍然可以明顯地造成自電容CS的變化,如圖2B所示。因此,基於互電容感測的觸控面板無法偵測帶有厚手套的手指觸摸,而基於自電容感測的觸控面板則可以。 In addition, fingers with thick gloves do not affect the mutual capacitance C M . Because thick gloves are not electrically conductive, the change in the fringing electric field caused by the gloves is very small, so that this change cannot be detected. On the other hand, a finger with a thick glove can still significantly cause a change in the self-capacitance C S via the addition of a capacitor C F , as shown in FIG. 2B . Therefore, a touch panel based on mutual capacitance sensing cannot detect a finger touch with a thick glove, and a touch panel based on self-capacitance sensing can.
圖3A-3D係繪示依照本發明各種實施例之具有不同電極圖案的四種電極陣列示意圖。在圖3中,傳統的電極陣列300A包括第一層301均勻分離的電極C1-C4且佈置成行,以及第二層302均勻分離的電極R1-R4且佈置成列。每個電極C1-C4或R1-R4包括一個順序連接的菱形電極元件310且其經由橋樑320連接。列電極R1-R4與行電極C1-C4被佈置於彼此之上,以形成一互鎖圖案。在各種實施例中,第一層301及第二層302可以是共平面,並且在行電極與列電極間的橋樑的每個交叉點330以絕緣體填充,使得行電極與列電極絕緣。在替代實施例中,第一層301及第二層302可被設置在兩個不同平面,並且在這兩層301與302之間夾置一薄介電層。由於電極陣列300A包括菱形電極元件,因此上述電極陣列300A中的電極元件的佈置可稱為菱形圖案。 3A-3D are schematic diagrams showing four electrode arrays having different electrode patterns in accordance with various embodiments of the present invention. In FIG. 3, the conventional electrode array 300A includes electrodes C1-C4 in which the first layer 301 is uniformly separated and arranged in a row, and electrodes R1-R4 in which the second layer 302 is uniformly separated and arranged in a column. Each of the electrodes C1-C4 or R1-R4 includes a sequentially connected rhombic electrode element 310 and is connected via a bridge 320. The column electrodes R1-R4 and the row electrodes C1-C4 are arranged on each other to form an interlocking pattern. In various embodiments, the first layer 301 and the second layer 302 can be coplanar, and each intersection 330 of the bridge between the row and column electrodes is filled with an insulator such that the row electrodes are insulated from the column electrodes. In an alternate embodiment, the first layer 301 and the second layer 302 can be disposed in two different planes with a thin dielectric layer sandwiched between the two layers 301 and 302. Since the electrode array 300A includes a rhombic electrode element, the arrangement of the electrode elements in the above electrode array 300A may be referred to as a diamond pattern.
上述菱形圖案的一個優點是,經由手指觸摸所造成的自電容變化很容易被偵測到,這是因為每個菱形電極元件310具有較大面積,其對於形成電極與手指之間的大自電容是有幫助的。然而,當使用互電容偵測方法時,大面積的電極元件可能導致難以偵測手指觸摸。舉例來說,如圖3A所示,手指觸摸發生在電極元件311之中心,並且觸摸點340小於電極元件311的區域。因為靠近電極元件311之中心的邊緣電場太弱,所以這部分的邊緣電場的變化對互電容影響不大。因此,無法偵測到由觸摸引起的互電容變化率(定義為互電容變化與原始互電容的比率)。此外,由大電極元件 區域引起的大自電容可能會擾亂兩個電極之間的互電容的偵測。舉例來說,當兩個手指觸摸同時發生在兩個電極時,在人體從大地斷開時,兩電極之自電容可能串聯於兩電極之間,因而干擾到兩電極之間的互電容。 One advantage of the above-described diamond pattern is that self-capacitance changes caused by finger touches are easily detected because each of the diamond-shaped electrode elements 310 has a large area for forming a large self-capacitance between the electrodes and the fingers. It is helpful. However, when using the mutual capacitance detection method, a large area of the electrode element may make it difficult to detect a finger touch. For example, as shown in FIG. 3A, a finger touch occurs at the center of the electrode element 311, and the touch point 340 is smaller than the area of the electrode element 311. Since the fringe electric field near the center of the electrode element 311 is too weak, the variation of the fringe electric field of this portion has little effect on the mutual capacitance. Therefore, the mutual capacitance change rate caused by the touch (defined as the ratio of the mutual capacitance change to the original mutual capacitance) cannot be detected. In addition, by large electrode components Large self-capacitance caused by the region may disturb the detection of mutual capacitance between the two electrodes. For example, when two finger touches occur simultaneously on two electrodes, when the human body is disconnected from the earth, the self-capacitance of the two electrodes may be connected in series between the two electrodes, thereby interfering with the mutual capacitance between the two electrodes.
圖3B係繪示具有中空菱形圖案之傳統電極陣列300B的示意圖。電極陣列300B的結構與導電材質類似於圖3A所示之電極陣列300A,除了電極元件312是中空菱形以外,並且在電極元件312之中空區填充有懸浮區塊350。懸浮區塊350是由導電材質所製成,且其可以是和電極的導電材質相同或不同。在一實施例中,電極陣列300B是由透明材質所製成,例如ITO,懸浮區塊也可以是由相同的透明材質所製成,從而使光透射率是均勻的遍及電極陣列300B。在替代實施例中,懸浮區塊350是都設置於電極陣列的頂層。 FIG. 3B is a schematic diagram showing a conventional electrode array 300B having a hollow diamond pattern. The structure and conductive material of the electrode array 300B are similar to the electrode array 300A shown in FIG. 3A except that the electrode member 312 is a hollow diamond shape, and the hollow region of the electrode member 312 is filled with the floating block 350. The suspension block 350 is made of a conductive material and may be the same or different from the conductive material of the electrode. In one embodiment, the electrode array 300B is made of a transparent material, such as ITO, and the floating block may be made of the same transparent material so that the light transmittance is uniform throughout the electrode array 300B. In an alternate embodiment, the floating blocks 350 are all disposed on the top layer of the electrode array.
在上述中空菱形圖案中,懸浮區塊350可以有助於分流由驅動電極發射至接收電極的邊緣電場,進而可增強邊緣電場。當手指觸摸發生時,邊緣電場的變化將會大於發生在圖3A之菱形圖案,導致較高的互電容變化率。較高的互電容變化率可提高電極陣列300B的互電容靈敏度。然而,中空菱形圖案會導致電極的寄生電阻增加,這被定義為電極例如電極C1或R1的電阻。增加的寄生電阻可增加減少電流穿過電極,進而可增加偵測電路中之電容器的充電時間,例如圖1之偵測電路102,因此可減少偵測操作的速度。對一個大的觸控面板來說,較小的電極寄生電阻是較佳的。 In the above hollow diamond pattern, the floating block 350 can help to shunt the fringing electric field emitted from the driving electrode to the receiving electrode, thereby enhancing the fringe electric field. When a finger touch occurs, the edge electric field change will be greater than the diamond pattern occurring in Figure 3A, resulting in a higher mutual capacitance change rate. A higher mutual capacitance change rate can increase the mutual capacitance sensitivity of the electrode array 300B. However, the hollow diamond pattern causes an increase in the parasitic resistance of the electrode, which is defined as the resistance of the electrode such as the electrode C1 or R1. The increased parasitic resistance can increase the current through the electrode, thereby increasing the charging time of the capacitor in the detection circuit, such as the detection circuit 102 of FIG. 1, thereby reducing the speed of the detection operation. For a large touch panel, a smaller electrode parasitic resistance is preferred.
圖3C係繪示具有中空六邊形圖案之電極陣列300C的示意圖。電極陣列300C之電極與懸浮區塊的結構與導電材質類似於圖3B所示之電極陣列300B。然而,電極元件313現在是中空六邊形而不是中空菱形,電 極元件313內的中空區360及介於電極元件313之間的中空區361填充有包含多個分離的懸浮區塊351的懸浮區塊。在替代實施例中,中空區360與361內的懸浮區塊是由一整片的懸浮區塊組成。在其他替代實施例中,電極元件313一般是可成形為細長多邊形,且其具有或不具有內部區為中空的電極。 FIG. 3C is a schematic diagram showing an electrode array 300C having a hollow hexagonal pattern. The structure and conductive material of the electrode and suspension block of the electrode array 300C are similar to the electrode array 300B shown in FIG. 3B. However, the electrode element 313 is now a hollow hexagon rather than a hollow diamond, electricity The hollow region 360 in the pole member 313 and the hollow region 361 interposed between the electrode members 313 are filled with a floating block including a plurality of separated floating blocks 351. In an alternate embodiment, the suspended blocks within hollow regions 360 and 361 are comprised of a single piece of suspended mass. In other alternative embodiments, electrode element 313 is generally shaped as an elongated polygon with or without an electrode having an inner region that is hollow.
依照本揭露的觀點,圖3C所示之中空六邊形圖案中的互電容變化率大於圖3B所示之中空菱形圖案。如圖3C所示,相較於長度L0等於圖3B介於兩相鄰中空菱形之間的間隙長度,介於相鄰六邊形之間的間隙長度L1比較小。在一實施例中,長度L1是長度L0的一半或更小。列電極與行電極之間的互電容主要是由電極元件之邊緣間的附近間隙中的近電場來決定。因此,若間隙長度減小,則相鄰電極之間的互電容跟著減小。因此,依照本揭露的觀點,當手指觸摸發生時,類似於圖3B之中空菱形圖案,圖3C之互電容變化的平均量會隨著中空六邊形圖案而改變。因此,相較於中空菱形圖案,中空六邊形圖案之互電容變化率會增加。 According to the present disclosure, the mutual capacitance change rate in the hollow hexagon pattern shown in FIG. 3C is larger than the hollow diamond pattern shown in FIG. 3B. 3C, compared to the length L 0 of FIG. 3B is equal to the length of a gap interposed between two adjacent hollow rhombus, interposed between adjacent hexagonal gap length L 1 is relatively small. In an embodiment, the length L 1 is half or less of the length L 0 . The mutual capacitance between the column electrode and the row electrode is mainly determined by the near electric field in the vicinity of the gap between the edges of the electrode elements. Therefore, if the gap length is reduced, the mutual capacitance between adjacent electrodes is decreased. Therefore, in accordance with the present disclosure, when a finger touch occurs, similar to the hollow diamond pattern of FIG. 3B, the average amount of mutual capacitance change of FIG. 3C changes with the hollow hexagon pattern. Therefore, the mutual capacitance change rate of the hollow hexagonal pattern is increased as compared with the hollow diamond pattern.
在一實施例中,電極元件313內的中空區360及介於電極元件 313之間的中空區361填充有包含多個分離的懸浮區塊351的懸浮區塊。可以知道的是,分離的懸浮區塊351之間的間隙越多,則從間隙射出的邊緣電場線越多。因此,介於多個分離的懸浮區塊351之間的間隙371會增強中空區360與361中的邊緣電場,進而增加電極陣列300C之邊緣電場分佈的均勻性,並改善電極陣列300C的靈敏度。 In one embodiment, the hollow region 360 within the electrode member 313 and the interposed electrode member The hollow zone 361 between 313 is filled with a floating block comprising a plurality of separate floating blocks 351. It will be appreciated that the more gaps between the separated floating blocks 351, the more fringing the electric field lines exiting the gap. Therefore, the gap 371 between the plurality of separated floating blocks 351 enhances the fringe electric field in the hollow regions 360 and 361, thereby increasing the uniformity of the electric field distribution at the edge of the electrode array 300C and improving the sensitivity of the electrode array 300C.
此外,由於圖3C之六邊形電極元件的邊長比圖3B之菱形電極元件還短,因此如圖3C所示中空六邊形圖案中之每個電極的電阻會減小。此外,如圖2B所示,當觸摸發生超過原始自電容CS0時定義為額外自電 容CF,自電容變化率可以是和圖2C與圖2B的兩種圖案相同,這是因為自電容變化主要是由電極陣列的電極尺寸來決定,並且電極尺寸和圖3B與圖3C所示的兩種圖案相類似。 Further, since the side length of the hexagonal electrode member of Fig. 3C is shorter than that of the rhombic electrode member of Fig. 3B, the electric resistance of each of the hollow hexagonal patterns as shown in Fig. 3C is reduced. In addition, as shown in FIG. 2B, when the touch occurs beyond the original self-capacitance C S0 , it is defined as an additional self-capacitance C F , and the self-capacitance change rate may be the same as the two patterns of FIG. 2C and FIG. 2B because the self-capacitance changes. It is mainly determined by the electrode size of the electrode array, and the electrode size is similar to the two patterns shown in FIG. 3B and FIG. 3C.
在一實施例中,圖3C之六邊形電極元件313的尺寸維持在一定程度之上。當圖3C之六邊形電極元件313的尺寸太小時,相鄰電極元件之間的中空區361的邊緣電場會變弱,進而使觸摸點A所引起的互電容變化率將會較小。因此,邊緣電場的均勻性不能維持。 In one embodiment, the size of the hexagonal electrode member 313 of FIG. 3C is maintained above a certain level. When the size of the hexagonal electrode member 313 of FIG. 3C is too small, the electric field at the edge of the hollow region 361 between adjacent electrode members is weakened, so that the mutual capacitance change rate caused by the touch point A will be small. Therefore, the uniformity of the fringe electric field cannot be maintained.
圖3D係繪示依照本發明一實施例之電極陣列300D的示意圖,其中每個電極在其中間具有一額外分支380。電極陣列300D與圖3C所示之電極300C相同,然而,額外分支380是帶狀的且被包括在每個電極的中間,並且經過每個電極的所有電極元件,藉以降低每個電極的寄生電阻。 3D is a schematic diagram of an electrode array 300D in which each electrode has an additional branch 380 therebetween, in accordance with an embodiment of the present invention. The electrode array 300D is the same as the electrode 300C shown in FIG. 3C, however, the extra branch 380 is strip-shaped and included in the middle of each electrode, and passes through all the electrode elements of each electrode, thereby reducing the parasitic resistance of each electrode. .
傳統上,額外分支380是由如同每個電極之其他部分的導電材質所製成。在替代實施例中,額外分支380可以是由不同於每個電極之其他部分的導電材質所製成。在各種實施例中,額外分支380的寬度可以和電極元件之側跡線381的寬度相同或不同,而且額外分支380的寬度對互電容變化率不會有明顯影響。 Traditionally, the extra branch 380 is made of a conductive material like the rest of each electrode. In an alternate embodiment, the additional branches 380 can be made of a conductive material that is different from the other portions of each electrode. In various embodiments, the width of the additional branches 380 may be the same or different than the width of the side traces 381 of the electrode elements, and the width of the additional branches 380 does not significantly affect the rate of change in mutual capacitance.
圖4係繪示依照本發明一實施例之觸控面板400的層結構範例的剖面圖。如圖所示,觸控面板400包括一電極陣列,電極陣列具有位於第一層之第一電極401及位於第二層之第二電極402。這兩個電極401與402被介電層430所隔離,例如聚酯(PET)。電極陣列被蓋板410覆蓋,並且使用一層光學膠(OCA)421將電極陣列與蓋板410黏合在一起。蓋板可以是由玻璃或塑料製成。電極陣列下方是基材層440,其經由一層OCA 422和電極陣列 黏合。基材層440可以是由玻璃或PET製成,用以提供一個屏蔽層403屏蔽來自顯示器460的干擾信號。屏蔽層403一般是由透明的導電材質所製成,例如ITO。氣隙450係設置於以襯墊451提供支撐之屏蔽層403與顯示器460之間。氣隙450可降低從顯示器460到電極陣列的雜訊干擾。顯示器可以是液晶顯示器(LCD)、發光二極體(LED)顯示器或其他類型的顯示器。 4 is a cross-sectional view showing an example of a layer structure of a touch panel 400 according to an embodiment of the invention. As shown, the touch panel 400 includes an array of electrodes having a first electrode 401 on a first layer and a second electrode 402 on a second layer. The two electrodes 401 and 402 are isolated by a dielectric layer 430, such as polyester (PET). The electrode array is covered by a cover plate 410 and the electrode array is bonded to the cover plate 410 using a layer of optical adhesive (OCA) 421. The cover may be made of glass or plastic. Below the electrode array is a substrate layer 440 that passes through a layer of OCA 422 and an electrode array Bonding. Substrate layer 440 can be made of glass or PET to provide a shielding layer 403 that shields interference signals from display 460. Shield layer 403 is typically made of a transparent conductive material such as ITO. The air gap 450 is disposed between the shield layer 403 provided by the gasket 451 and the display 460. Air gap 450 can reduce noise interference from display 460 to the electrode array. The display can be a liquid crystal display (LCD), a light emitting diode (LED) display, or other type of display.
在不同實施例中,可以有各種不同的層結構。舉例來說,在一實施例中,為了使觸控面板400更薄,圖4之第一層電極與第二層電極可以是共平面,其中絕緣層被用於這兩層之間的交叉點。在替代實施例中,可忽略來自顯示器460的雜訊,因此可移除屏蔽層403和基材層440。在其他實施例中,可將電極陣列整合至顯示器460的結構中,以使觸控面板更薄。舉例來說,電極陣列可被佈置於頂極性層與顯示模組之濾色玻璃層之間,例如顯示器460,以形成”外掛式(on cell)”堆疊結構。在另一範例中,可將一層電極陣列佈置於顯示模組之濾色玻璃層下方,以形成”內嵌式(in cell)”堆疊結構。 In various embodiments, there may be a variety of different layer configurations. For example, in an embodiment, in order to make the touch panel 400 thinner, the first layer electrode and the second layer electrode of FIG. 4 may be coplanar, wherein an insulating layer is used for the intersection between the two layers. . In an alternate embodiment, the noise from display 460 can be ignored, so shield layer 403 and substrate layer 440 can be removed. In other embodiments, the electrode array can be integrated into the structure of display 460 to make the touch panel thinner. For example, the electrode array can be disposed between the top polarity layer and the color filter glass layer of the display module, such as display 460, to form an "on cell" stack structure. In another example, an array of electrodes can be placed under the color filter glass layer of the display module to form an "in cell" stack structure.
圖5A係繪示依照本發明一實施例之一種電極陣列500A的示意圖。其顯示一種掃描過程根據自電容測量來確定觸摸位置。在圖5A中,電極陣列500A包括第一層電極X1-XN佈置成行及第二層電極Y1-YN佈置成列。列電極與行電極彼此相交形成一矩陣圖案。列電極與行電極的每個交叉點可映射至笛卡爾座標系統的一個點並對應於一個唯一座標對,例如x座標與y座標。 FIG. 5A is a schematic diagram of an electrode array 500A according to an embodiment of the invention. It shows a scanning process that determines the touch location based on self-capacitance measurements. In FIG. 5A, the electrode array 500A includes first layer electrodes X1-XN arranged in rows and second layer electrodes Y1-YN arranged in columns. The column electrodes and the row electrodes intersect each other to form a matrix pattern. Each intersection of the column and row electrodes can be mapped to a point of the Cartesian coordinate system and corresponds to a unique coordinate pair, such as the x and y coordinates.
在一實施例中,為了偵測手指觸摸,觸控控制器例如觸控控制器101會一個接一個連續掃描電極陣列500中的電極,並測量每個電極的 自電容CS的量值。當手指觸摸發生在如圖5A所示之觸摸點A時,電極X1與Y1的自電容將會發生變化。舉例來說,電極X1與Y1的自電容會分別增加△CY1和△CX1。觸控控制器偵測此變化,並相應地確定與此變化相關聯的兩電極X1與Y1。 In one embodiment, in order to detect a finger touch, a touch controller such as the touch controller 101 continuously scans the electrodes in the electrode array 500 one by one, and measures the magnitude of the self-capacitance C S of each electrode. When a finger touch occurs at the touch point A as shown in FIG. 5A, the self-capacitance of the electrodes X1 and Y1 will change. For example, the self-capacitance of electrodes X1 and Y1 will increase by ΔC Y1 and ΔC X1 , respectively . The touch controller detects this change and determines the two electrodes X1 and Y1 associated with the change accordingly.
上述自電容偵測方法通常不能夠用來偵測同時發生的多個觸摸。例如,在圖5A中,兩隻手指觸摸同時發生在觸摸點A與B。觸控控制器偵測電極Y1、Y3、X1和X3的自電容變化,並相應地獲得在觸摸點A、B、C和D的四個交叉點,其中觸摸點C與D是假的並稱為”鬼點”。 The above self-capacitance detection method is generally not capable of detecting multiple touches occurring at the same time. For example, in Figure 5A, two finger touches occur simultaneously at touch points A and B. The touch controller detects the self-capacitance changes of the electrodes Y1, Y3, X1 and X3, and correspondingly obtains four intersections at the touch points A, B, C and D, wherein the touch points C and D are false and scaled For "ghost points."
圖5B係繪示依照本發明一實施例之一種電極陣列500B的示意圖。電極陣列500B與圖5A所示之電極陣列500A相同,然而,圖5B所示的是一種掃描過程根據互電容測量來確定觸摸位置。 FIG. 5B is a schematic diagram of an electrode array 500B according to an embodiment of the invention. The electrode array 500B is the same as the electrode array 500A shown in FIG. 5A, however, FIG. 5B shows a scanning process for determining the touch position based on the mutual capacitance measurement.
在一實施例中,為了偵測手指觸摸,觸控控制器例如觸控控制器101會連續掃描電極陣列500中的電極,以測量列電極與行電極之間的互電容Cm的量值。不同於圖5A的掃描過程是測量每個電極的自電容,圖5B是測量兩個電極之間的每個交叉點的互電容。如圖5B所示,當多個手指觸摸發生在觸摸點E、F和G時,可偵測到交叉點501、502和503的互電容變化。因此,可以明確地確定交叉點501、502和503的座標。 In one embodiment, in order to detect a finger touch, a touch controller such as the touch controller 101 continuously scans the electrodes in the electrode array 500 to measure the magnitude of the mutual capacitance Cm between the column electrodes and the row electrodes. Unlike the scanning process of Figure 5A, which measures the self-capacitance of each electrode, Figure 5B measures the mutual capacitance of each of the intersections between the two electrodes. As shown in FIG. 5B, when a plurality of finger touches occur at the touch points E, F, and G, mutual capacitance changes of the intersections 501, 502, and 503 can be detected. Therefore, the coordinates of the intersections 501, 502, and 503 can be definitely determined.
在上述圖5A與5B的範例中,互電容掃描過程會比自電容掃描過程消耗較多的掃描時間。舉例來說,測量圖5A範例的自電容CS的量值是M+N,而測量圖5B範例的互電容CS的量值是M x N。 In the above examples of Figures 5A and 5B, the mutual capacitance scanning process consumes more scanning time than the self capacitance scanning process. For example, the magnitude of the self-capacitance CS measuring the example of FIG. 5A is M+N, and the magnitude of the mutual capacitance CS of the example of FIG. 5B is measured as M x N.
圖6A與圖6B係繪示依照本發明一實施例之兩種感測電路範例的示意圖。這兩個電路分別感測自電容變化或互電容變化,並輸出表示 電容變化的信號。 6A and 6B are schematic diagrams showing examples of two sensing circuits in accordance with an embodiment of the present invention. The two circuits respectively sense self-capacitance changes or mutual capacitance changes, and output representations The signal of the change in capacitance.
圖6A顯示一種包含輸入電路610與放大電路620之自電容感測電路600A的範例示意圖。在輸入電路610中,來自觸控控制器例如觸控控制器101之驅動信號VTX例如脈波信號會被添加至電容器CT的一端點。電容器CT預配置為具有一定的電容值並耦接電容器CS,電容器CS表示當觸摸發生在電極而變化的電極陣列中之一電極的自電容。此外,電阻器RIN耦接輸入電路610至放大電路620。電阻器RIN設置為具有一大電阻值,從而使得流經電阻器RIN的電流可被忽略。其結果是,這兩個電容器CT及CS形成一個分壓器,並且正由驅動信號VTX充電。因此,輸入電路之輸出信號VS的峰值電壓VS’可由下確定:
在放大器電路620中,反饋電容器CF與反饋電阻器RF並聯,並且連接於操作放大器(op amp)之反相輸入端與輸出端之間。電阻器RIN連接操作放大器之反相輸入端,而操作放大器之非反相輸入端則被電壓VCOM施加偏壓。當輸入電路610之輸出信號VS的峰值電壓VS’被添加至電阻器RIN的一端時,反饋電容器CF會被充電,電容器CT(也會對電阻器RF)的壓降會增加,直到來自於電阻器RIN的電流全都經過反饋電阻器RF。其結果是,電阻器RIN與反饋電阻器RF變為一個分壓器。因此,操作放大器之輸出端中的輸出信號VOUT之峰值電壓VOUT’可由下確定:
很明顯的,在圖6A範例中,自電容CS改變會導致自電容感測電路600A之輸出信號VOUT改變,進而造成”調變”效果,其中輸入信號VTX經自電容變化調變後會形成輸出信號VOUT。 Obviously, in the example of FIG. 6A, the change of the self-capacitance C S causes the output signal V OUT of the self-capacitance sensing circuit 600A to change, thereby causing a “modulation” effect, wherein the input signal V TX is modulated by the self-capacitance change. An output signal V OUT is formed.
圖6B顯示一種互電容感測電路600B的範例示意圖。如圖所示,來自觸控控制器例如觸控控制器101之驅動信號VTX例如脈波信號會被添加至電容器CM的一端,其表示介於觸控面板中之兩電極之間的互電容。在電容器CM的另一端會接收到接收信號VRX,並且接收信號VRX會被添加至操作放大器的轉換輸入端。反饋電容器CF與反饋電阻器RF並聯,並且連接於操作放大器(op amp)之反相輸入端與輸出端之間。此外,操作放大器之非轉換輸入端則被電壓VCOM施加偏壓。當脈波驅動信號VTX從最大電壓增加至其峰值電壓時,電容器CM與反饋電容器CF會被充電。因為反饋電阻器RF係設置為具有一大電阻值,而流經電阻器RIN的電流可被忽略,因此,電容器CM與反饋電容器CF形成一個分壓器。因此,操作放大器之輸出端中的輸出信號VOUT之峰值電壓VOUT’可由下確定:
很明顯的,在圖6B範例中,互電容CM改變會導致自電容感測電路600A之輸出信號VOUT改變,進而造成”調變”效果,其中輸入信號VTX經自電容變化調變後會形成輸出信號VOUT。 Obviously, in the example of FIG. 6B, the change of the mutual capacitance C M causes the output signal V OUT of the self-capacitance sensing circuit 600A to change, thereby causing a “modulation” effect, wherein the input signal V TX is modulated by the self-capacitance change. An output signal V OUT is formed.
如上所述,採用自電容感測方法的觸控面板可以耗費較短的掃描時間(導致更少的功率消耗),並且能夠感測厚手套手指觸摸,但不支持感測同時發生的多個觸摸,而採用互電容感測方法的觸控面板可能耗費較長時間(導致更多的功率消耗),並且能夠感測同時發生的多個觸摸,但不支持厚手套觸摸。因此,理想的觸控面板及觸控控制器是能夠同時支持自電容感測與互電容感測。 As described above, a touch panel using a self-capacitance sensing method can consume a short scan time (resulting in less power consumption) and can sense a thick glove finger touch, but does not support sensing multiple simultaneous touches. The touch panel using the mutual capacitance sensing method may take a long time (causing more power consumption), and can sense multiple touches occurring at the same time, but does not support thick glove touch. Therefore, the ideal touch panel and touch controller can simultaneously support self-capacitance sensing and mutual capacitance sensing.
圖7A係繪示依照本發明一實施例之包含混合感測電路720之偵測電路700A範例的示意圖,其能夠同時執行自電容感測與互電容感測。 FIG. 7A is a schematic diagram of an example of a detection circuit 700A including a hybrid sensing circuit 720 capable of simultaneously performing self-capacitance sensing and mutual capacitance sensing, in accordance with an embodiment of the invention.
偵測電路700A類似於圖1之偵測電路102,但其顯示更為詳細。如圖所示,在一實施例中,偵測電路700A包括類比前端710及數位信號處理器(DSP)715。類比前端710用以將表示自電容或互電容變化的觸摸信號VT轉換成數位信號並傳送至DSP 715。DSP 715根據從類比前端接收到的數位信號決定觸控面板上之手指觸摸點的座標,然後提供座標資料給電腦系統,例如電腦系統100。 The detection circuit 700A is similar to the detection circuit 102 of FIG. 1, but the display is more detailed. As shown, in one embodiment, detection circuit 700A includes an analog front end 710 and a digital signal processor (DSP) 715. The analog front end 710 is configured to convert the touch signal V T representing a change in self capacitance or mutual capacitance into a digital signal and transmit it to the DSP 715. The DSP 715 determines the coordinates of the finger touch point on the touch panel based on the digital signal received from the analog front end, and then provides the coordinate information to the computer system, such as the computer system 100.
在一實施例中,類比前端710包括混合感測電路720、低通濾波器702及類比數位轉換器(ADC)703;DSP 715包括數位解調器704、低通數位濾波器705及演算模組706。在操作中,表示電容變化的信號會依序經過上述元件720、702與706。具體而言,混合電路720執行調變器701的功能,其中脈波驅動信號VTX會經由表示電容變化之觸摸信號VT調變,並產生一調變後脈波信號。接著,此調變後脈波信號會經過低通濾波器702以去除高頻雜訊。隨後,上述濾波信號會被ADC 703轉換成數位信號並傳送至DSP 715。在數位解調器704中,上述數位化信號會被解調並傳送至低通數位濾 波器705。低通數位濾波器705接著還原觸摸信號VT並將其傳送至演算模組706,其中觸摸信號VT會被處理,並且使用相關的演算法來確定對應於手指觸摸的座標。 In an embodiment, the analog front end 710 includes a hybrid sensing circuit 720, a low pass filter 702, and an analog digital converter (ADC) 703. The DSP 715 includes a digital demodulator 704, a low pass digital filter 705, and a calculus module. 706. In operation, a signal representative of a change in capacitance will sequentially pass through elements 720, 702, and 706 described above. Specifically, the hybrid circuit 720 performs the function of the modulator 701, wherein the pulse wave drive signal V TX is modulated by the touch signal V T indicating a change in capacitance, and generates a modulated pulse wave signal. Then, the modulated pulse signal passes through the low pass filter 702 to remove high frequency noise. The filtered signal is then converted by the ADC 703 into a digital signal and transmitted to the DSP 715. In digital demodulator 704, the digitized signal described above is demodulated and passed to low pass digital filter 705. The low pass digital filter 705 then restores the touch signal V T and passes it to the calculation module 706 where the touch signal V T is processed and the associated algorithm is used to determine the coordinates corresponding to the finger touch.
圖7B係繪示依照本發明一實施例之混合感測電路720範例及混合感測電路720之兩種轉換電路730與740的示意圖。在一實施例中,混合感測電路720可操作在第一模式中且是做為自電容感測電路,並且混合感測電路720可操作在第二模式中且是做為互電容感測電路。此外,混合感測電路720具有一組開關用於改變混合感測電路在第一模式與第二模式之間的操作。 FIG. 7B is a schematic diagram showing two examples of the hybrid sensing circuit 720 and the two converting circuits 730 and 740 of the hybrid sensing circuit 720 according to an embodiment of the invention. In an embodiment, the hybrid sensing circuit 720 is operable in the first mode and is a self-capacitance sensing circuit, and the hybrid sensing circuit 720 is operable in the second mode and is a mutual capacitance sensing circuit . In addition, hybrid sensing circuit 720 has a set of switches for changing the operation of the hybrid sensing circuit between the first mode and the second mode.
在圖7B範例中,混合感測電路720包括第一組開關S1如圖7B中的標號S1以及第二組開關S2如圖7B中的標號S2。當第一組開關S1及第二組開關S2改變其之開/關狀態時,混合感測電路720可在第一操作模式與第二操作模式之間切換。具體而言,當第一組開關S1是開而第二組開關S2是關時(這種狀況如圖7B所示之S1=ON,S2=OFF),混合感測電路720會轉換成第一模式,其中混合感測電路720是做為自電容感測電路730。同樣地,當第一組開關S1是關而第二組開關S2是開時(這種狀況如圖7B所示之S1=OFF,S2=ON),混合感測電路720會轉換成第二模式,其中混合感測電路720是做為互電容感測電路740。因此,經由改變兩組開關S1與S2的開/關狀態,混合感測電路720可用於感測自電容變化和互電容變化。 In the example of FIG. 7B, the hybrid sensing circuit 720 includes a first set of switches S1 as labeled S1 in FIG. 7B and a second set of switches S2 as referenced S2 in FIG. 7B. When the first group of switches S1 and the second group of switches S2 change their on/off states, the hybrid sensing circuit 720 can switch between the first mode of operation and the second mode of operation. Specifically, when the first group of switches S1 is on and the second group of switches S2 is off (this state is S1=ON, S2=OFF as shown in FIG. 7B), the hybrid sensing circuit 720 converts to the first The mode in which the hybrid sensing circuit 720 is implemented as a self-capacitance sensing circuit 730. Similarly, when the first group of switches S1 is off and the second group of switches S2 is on (this situation is as shown in Figure 7B, S1 = OFF, S2 = ON), the hybrid sensing circuit 720 is converted to the second mode. The hybrid sensing circuit 720 is implemented as a mutual capacitance sensing circuit 740. Thus, by varying the on/off states of the two sets of switches S1 and S2, the hybrid sensing circuit 720 can be used to sense self-capacitance changes and mutual capacitance changes.
如圖7B所示,在混合感測電路720中,用於自電容偵測之驅動信號VTXS會被添加至與電阻器RIN串聯之電容器CT的一端。電阻器RIN連接操作放大器721之反相端。操作放大器721具有一個反饋電容器CF及兩個串 聯在一起的反饋電阻器RF1與RF2。反饋電容器CF及兩個反饋電阻器RF1與RF2係被設置於操作放大器721之轉換輸入端與輸出端之間。此外,操作放大器721之非反相輸入端則被電壓VCOM施加偏壓,而混合感測電路720之輸出信號VOUT會從操作放大器721之輸出端傳送。另外,第一S1開關(屬於第一組開關S1的開關)與RF2並聯,並且第一與第二S2開關與RIN並聯。第三S2開關連接於電容器CT之一端與操作放大器721之輸出端之間。再者,第二S1開關連接自電容電容器CS至電容器CT與電阻器RIN之間的混合感測電路720,並且自電容電容器CS的一端接地。同樣地,第四S2開關連接互電容電容器CM至電容器CT與電阻器RIN之間的混合感測電路720。用於互電容偵測之驅動信號VTXM會被添加至互電容電容器CM。 As shown in FIG. 7B, in the hybrid sensing circuit 720, a driving signal V TXS for self-capacitance detection is added to one end of the capacitor C T in series with the resistor R IN . The resistor R IN is connected to the inverting terminal of the operational amplifier 721. The operational amplifier 721 has a feedback capacitor C F and two feedback resistors R F1 and R F2 connected in series. The feedback capacitor C F and the two feedback resistors R F1 and R F2 are disposed between the conversion input and the output of the operational amplifier 721. In addition, the non-inverting input of the operational amplifier 721 is biased by the voltage V COM , and the output signal V OUT of the hybrid sensing circuit 720 is transmitted from the output of the operational amplifier 721. In addition, the first S1 switch (the switch belonging to the first group of switches S1) is connected in parallel with R F2 , and the first and second S2 switches are connected in parallel with R IN . The third S2 switch is coupled between one of the terminals of the capacitor C T and the output of the operational amplifier 721. Furthermore, the second S1 switch is connected to the self-capacitance capacitor C S to the hybrid sensing circuit 720 between the capacitor C T and the resistor R IN , and one end of the self-capacitance capacitor C S is grounded. Similarly, the fourth S2 switch connects the mutual capacitance capacitor C M to the hybrid sensing circuit 720 between the capacitor C T and the resistor R IN . A drive signal V TXM for mutual capacitance detection is added to the mutual capacitance capacitor C M .
自電容感測電路730與互電容感測電路740分別和圖6A之自電容感測電路600A與圖6B之互電容感測電路600B相同。因此,這兩個感測電路730與740的描述將不再贅述。 The self-capacitance sensing circuit 730 and the mutual capacitance sensing circuit 740 are the same as the self-capacitance sensing circuit 600A of FIG. 6A and the mutual capacitance sensing circuit 600B of FIG. 6B, respectively. Therefore, the description of the two sensing circuits 730 and 740 will not be described again.
在各種實施例中,混合感測電路720連同其他元件包括偵測電路700A中的類比前端710與DSP 715可以單一積體電路(ICs)或多個分離的ICs來實現。這兩組開關S1與S2可使用電晶體例如雙極電晶體或金氧半場效電晶體(MOSFET)或其他適合的技術來實現。 In various embodiments, hybrid sensing circuit 720, along with other components, including analog front end 710 and DSP 715 in detection circuit 700A, may be implemented as a single integrated circuit (ICs) or multiple separate ICs. The two sets of switches S1 and S2 can be implemented using a transistor such as a bipolar transistor or a metal oxide half field effect transistor (MOSFET) or other suitable technique.
300C‧‧‧電極陣列 300C‧‧‧electrode array
313‧‧‧電極元件 313‧‧‧Electrode components
351‧‧‧懸浮區塊 351‧‧‧suspension block
360、361‧‧‧中空區 360, 361‧‧ hollow area
370、371‧‧‧間隙 370, 371‧‧ ‧ gap
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104117545A TWI658384B (en) | 2015-05-29 | 2015-05-29 | Touch panel and touch detection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104117545A TWI658384B (en) | 2015-05-29 | 2015-05-29 | Touch panel and touch detection circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201642097A true TW201642097A (en) | 2016-12-01 |
TWI658384B TWI658384B (en) | 2019-05-01 |
Family
ID=58055607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104117545A TWI658384B (en) | 2015-05-29 | 2015-05-29 | Touch panel and touch detection circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI658384B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI686737B (en) * | 2019-02-15 | 2020-03-01 | 大陸商業成科技(成都)有限公司 | Touch control device and method thereof |
TWI766487B (en) * | 2020-12-10 | 2022-06-01 | 大陸商業成科技(成都)有限公司 | Cover plate assembly and display device using same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201622554U (en) * | 2010-02-04 | 2010-11-03 | 深圳市汇顶科技有限公司 | Capacitance touch sensor, touch detection device, and touch control terminal |
TW201241716A (en) * | 2011-04-15 | 2012-10-16 | Elan Microelectronics Corp | Touch sensing cell, touch sensing element and touch sensing device |
JP6266263B2 (en) * | 2013-08-09 | 2018-01-24 | 株式会社ジャパンディスプレイ | Touch panel and liquid crystal display device provided with touch panel |
WO2015048671A1 (en) * | 2013-09-27 | 2015-04-02 | Cirque Corporation | Logic for changing modes of operation of a touch and proximity sensor that can change sensitivity |
-
2015
- 2015-05-29 TW TW104117545A patent/TWI658384B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI686737B (en) * | 2019-02-15 | 2020-03-01 | 大陸商業成科技(成都)有限公司 | Touch control device and method thereof |
TWI766487B (en) * | 2020-12-10 | 2022-06-01 | 大陸商業成科技(成都)有限公司 | Cover plate assembly and display device using same |
Also Published As
Publication number | Publication date |
---|---|
TWI658384B (en) | 2019-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9846499B2 (en) | Touch panel and touch detection circuit | |
CN101414236B (en) | On-screen input image display system | |
JP6122401B2 (en) | Multipoint touch screen | |
US9367158B2 (en) | Proximity and multi-touch sensor detection and demodulation | |
US8310464B2 (en) | Simultaneous multiple location touch systems | |
KR102602150B1 (en) | Touch input device | |
US20120182252A1 (en) | Differential Capacitive Touchscreen or Touch Panel | |
JP2010055612A (en) | Multi-point touch-sensitive system | |
TW201237681A (en) | Position-sensing and force detection panel | |
CN102880338A (en) | Touch display device | |
US9134870B2 (en) | Capacitive touch-sensitive panel and mobile terminal using the same | |
JP2010055613A (en) | Operation method for multi-point touch-sensitive system | |
US20160092026A1 (en) | Real-time spectral noise monitoring for proximity sensing device | |
TW201416929A (en) | Touch panel device with reconfigurable sensing points and its sensing method | |
US9612704B2 (en) | Apparatus and method for sensing touch | |
TWI658384B (en) | Touch panel and touch detection circuit | |
CN109669585B (en) | Capacitive touch sensing that can determine conductivity type | |
KR102107786B1 (en) | touch screen system | |
US10627969B2 (en) | Touch sensor pattern with floating pads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |