TW201637842A - Film for stacking transparent conductive layer, manufacturing method thereof and transparent conductive film - Google Patents
Film for stacking transparent conductive layer, manufacturing method thereof and transparent conductive film Download PDFInfo
- Publication number
- TW201637842A TW201637842A TW105105221A TW105105221A TW201637842A TW 201637842 A TW201637842 A TW 201637842A TW 105105221 A TW105105221 A TW 105105221A TW 105105221 A TW105105221 A TW 105105221A TW 201637842 A TW201637842 A TW 201637842A
- Authority
- TW
- Taiwan
- Prior art keywords
- refractive index
- index layer
- transparent conductive
- low refractive
- conductive film
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
Abstract
Description
本發明係有關一種透明導電膜積層用薄膜、該薄膜的製造方法及使用該薄膜來製造之透明導電性薄膜者。 The present invention relates to a film for a transparent conductive film laminate, a method for producing the film, and a transparent conductive film produced using the film.
能夠藉由與圖像顯示部直接接觸而輸入資訊之觸控面板係一種將透光之輸入裝置配置在各種顯示器上者,作為代表性形式可舉出電阻膜式觸控面板和靜電容量式觸控面板。 A touch panel capable of inputting information by directly contacting an image display unit is a type of light-transmitting input device disposed on various displays. As a representative form, a resistive touch panel and a capacitive touch can be cited. Control panel.
在該等觸控面板中使用由錫摻雜氧化銦(ITO)等構成之透明導電膜積層於透明塑料基材上之透明導電性薄膜。 A transparent conductive film in which a transparent conductive film made of tin-doped indium oxide (ITO) or the like is laminated on a transparent plastic substrate is used for the touch panels.
靜電容量式觸控面板中,為了感測手指的接觸位置,積層透明導電膜之後,两片呈線形圖案之透明導電性薄膜被配置成使上述透明導電膜彼此交叉成格子狀。如此獲得之靜電容量式觸控面板中存在積層有透明導電膜之部位和沒有積層之部位,且因透明導電膜的有無而使反射率和透光率不同,因此導致識別出藉由两片透明導電性薄膜形成之透明導電膜的格子狀圖案,結果存在導致作為顯示器的辨識性下降之問題。 In the electrostatic capacitance type touch panel, in order to sense the contact position of the finger, after laminating the transparent conductive film, the two transparent conductive films having a linear pattern are arranged such that the transparent conductive films cross each other in a lattice shape. The electrostatic capacitance type touch panel thus obtained has a portion in which a transparent conductive film is laminated and a portion in which no layer is laminated, and the reflectance and the light transmittance are different due to the presence or absence of the transparent conductive film, thereby causing recognition by two pieces of transparency. The lattice pattern of the transparent conductive film formed of the conductive film causes a problem that the visibility of the display is lowered.
為了不易辨識該格子狀圖案亦即積層有透明導電膜之部分,提出在透明基材薄膜(透明塑料基材)上依次積層高折射率層、低折射率層及透明導電膜而成之透明導電性薄膜 (參閱專利文獻1及2)。 In order to make it difficult to recognize the lattice pattern, that is, a portion in which a transparent conductive film is laminated, it is proposed to laminate a high refractive index layer, a low refractive index layer, and a transparent conductive film on a transparent base film (transparent plastic substrate). Film (See Patent Documents 1 and 2).
專利文獻1:日本特開2014-197080號公報 Patent Document 1: Japanese Laid-Open Patent Publication No. 2014-197080
專利文獻2:日本特開2014-119475號公報 Patent Document 2: Japanese Laid-Open Patent Publication No. 2014-119475
專利文獻1中記載之透明導電性薄膜中,為了獲得所期望的折射率,利用含有10質量份的熱塑性樹脂和12.24質量份的氧化鈦之組成物在透明塑料基材上形成高折射率層,並其之上,利用含有10質量份的活性能量硬化型樹脂和100質量份的中空二氧化矽溶膠之組成物形成低折射率層(專利文獻1中0066段、0069段及0071段)。然而,在該種透明導電性薄膜中導致透明導電膜的電阻值成為高於所期望的值。 In the transparent conductive film described in Patent Document 1, a high refractive index layer is formed on a transparent plastic substrate by using a composition containing 10 parts by mass of a thermoplastic resin and 12.24 parts by mass of titanium oxide in order to obtain a desired refractive index. Further, a low refractive index layer is formed by using a composition containing 10 parts by mass of the active energy curing resin and 100 parts by mass of the hollow cerium oxide sol (paragraphs 0066, 0069, and 0071 in Patent Document 1). However, in such a transparent conductive film, the resistance value of the transparent conductive film is made higher than a desired value.
並且,專利文獻2中記載之透明導電性薄膜中,為了獲得所期望的折射率,利用含有58質量份的聚合性單體和37質量份的聚合性寡聚物之組成物在聚對苯二甲酸乙二酯薄膜上形成硬塗層,在其之上利用含有高折射率樹脂之組成物形成高折射率層,且在其之上利用含有60質量份的聚合性單體和35質量份的含氟化合物之組成物形成低折射率層(專利文獻2中0113段、0115段、0118段及0125段~0126段)。然而,該種透明導電性薄膜中,在低折射率層中高折射率層的相反側的面塗佈用於形成銀配線等至銀漿料時產生浮起,或使所 形成之銀配線相對於該面之黏附性下降。而且,在低折射率層的該面貼合黏著材時,亦會使該面與黏著材之間的黏附性不夠充分。 Further, in the transparent conductive film described in Patent Document 2, in order to obtain a desired refractive index, a composition containing 58 parts by mass of a polymerizable monomer and 37 parts by mass of a polymerizable oligomer is used in polyparaphenylene. A hard coat layer is formed on the ethylene formate film, and a high refractive index layer is formed thereon by using a composition containing a high refractive index resin, and 60 parts by mass of the polymerizable monomer and 35 parts by mass are used thereon. The composition of the fluorine-containing compound forms a low refractive index layer (paragraphs 0113, 0115, 0118, and 0125 to 0126 in Patent Document 2). However, in such a transparent conductive film, the surface on the opposite side of the high refractive index layer in the low refractive index layer is coated with a silver wiring or the like to form a silver paste, or floats. The adhesion of the formed silver wiring to the surface is lowered. Further, when the adhesive material is bonded to the surface of the low refractive index layer, the adhesion between the surface and the adhesive material is also insufficient.
本發明係鑑於上述實情而完成者,其目的為提供一種能夠不易辨識透明導電膜的圖案,且能夠將透明導電膜的電阻值設定為所期望的值,並且在低折射率層的表面設置配線等時的加工性優異之透明導電膜積層用薄膜、該薄膜的製造方法及使用該薄膜來製造之透明導電性薄膜。另外,在本說明書中,低折射率層的“表面”沒有特別限定時表示低折射率層中透明塑料基材或高折射率層的相反側的面。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a pattern in which a transparent conductive film can be easily recognized, and a resistance value of a transparent conductive film can be set to a desired value, and wiring can be provided on the surface of the low refractive index layer. A film for a transparent conductive film laminate which is excellent in workability at the same time, a method for producing the film, and a transparent conductive film produced using the film. Further, in the present specification, the "surface" of the low refractive index layer is not particularly limited, and means a surface on the opposite side of the transparent plastic substrate or the high refractive index layer in the low refractive index layer.
為了解決上述目的,第一、本發明提供透明導電膜積層用薄膜(發明1),前述透明導電膜積層用薄膜包括:透明塑料基材;及低折射率層,設置於前述透明塑料基材的至少一面側,透明導電膜積層用薄膜的特徵為:前述低折射率層的折射率為1.30~1.50,在前述低折射率層中之前述透明塑料基材的相反側的面上任意選擇4.992μm的四方的正方形區域,將與前述正方形的一個邊相對應之前述低折射率層的前述面上之表面長度和與前述一個邊正交之另一個邊相對應之前述低折射率層的前述面的表面長度之積作為實際表面積時,藉由下式(I)計算之各值如下:
在上述發明(發明1)中,低折射率層的折射率足夠低,因此不易辨識透明導電膜的圖案。而且,低折射率層的厚度不過於厚,因此可充分確保透明導電膜的圖案的不可見性。並且,低折射率層的表面的平滑性足夠高,因此在該表面積層透明導電膜時,能夠將該透明導電膜的電阻值設為所期望的值。而且,低折射率層的表面自由能足夠高,因此可抑制在低折射率層的表面塗佈銀漿料時產生浮起,且該表面與銀配線之間的黏附性亦變得充分。並且,在該表面貼合黏著材時,該表面與黏著材之間的黏附性亦變得充分。 In the above invention (Invention 1), since the refractive index of the low refractive index layer is sufficiently low, it is difficult to recognize the pattern of the transparent conductive film. Moreover, since the thickness of the low refractive index layer is not too thick, the invisibility of the pattern of the transparent conductive film can be sufficiently ensured. Further, since the smoothness of the surface of the low refractive index layer is sufficiently high, when the surface layer is a transparent conductive film, the resistance value of the transparent conductive film can be set to a desired value. Further, since the surface free energy of the low refractive index layer is sufficiently high, it is possible to suppress the occurrence of floating when the silver paste is applied to the surface of the low refractive index layer, and the adhesion between the surface and the silver wiring is also sufficient. Further, when the adhesive material is bonded to the surface, the adhesion between the surface and the adhesive material is also sufficient.
在上述發明(發明1)中,前述低折射率層不含有折射率調整用粒子,或相對於構成前述低折射率層的基質樹脂組成物100質量份含有小於100質量份的含量的折射率調整用粒子為較佳(發明2)。 In the above invention (Invention 1), the low refractive index layer does not contain the particles for refractive index adjustment, or the refractive index is adjusted to be contained in an amount of less than 100 parts by mass based on 100 parts by mass of the matrix resin composition constituting the low refractive index layer. It is preferred to use particles (Invention 2).
在上述發明(發明1、2)中,前述透明塑料基材與前述低折射率層之間夾著具有比前述低折射率層的折射率大的折射率之高折射率層為較佳(發明3)。 In the above inventions (Inventions 1 and 2), it is preferred that a high refractive index layer having a refractive index larger than a refractive index of the low refractive index layer is interposed between the transparent plastic substrate and the low refractive index layer (invention 3).
在上述發明(發明3)中,前述高折射率層的折射率為1.60~1.90為較佳(發明4)。 In the above invention (Invention 3), it is preferred that the refractive index of the high refractive index layer is from 1.60 to 1.90 (Invention 4).
第二、本發明提供透明導電膜積層用薄膜的製造方法,前述透明導電膜積層用薄膜(發明1~4)的製造方法的特徵為包括:形成前述低折射率層時,塗佈構成前述低折射率層之材料之後,以30~70℃的溫度進行10秒~3分鐘的加熱 處理(發明5)。 Secondly, the present invention provides a method for producing a film for a transparent conductive film layer, and the method for producing a film for a transparent conductive film layer (Inventions 1 to 4) is characterized in that, when the low refractive index layer is formed, the coating composition is low. After the material of the refractive index layer, the heating is performed at a temperature of 30 to 70 ° C for 10 seconds to 3 minutes. Treatment (Invention 5).
第三、本發明提供透明導電性薄膜,其特徵為包括:前述透明導電膜積層用薄膜(發明1~4);及透明導電膜,積層於前述低折射率層中前述透明塑料基材的相反側的一個面側(發明6)。 Thirdly, the present invention provides a transparent conductive film characterized by comprising: a film for laminating a transparent conductive film (Inventions 1 to 4); and a transparent conductive film laminated on the opposite side of the transparent plastic substrate in the low refractive index layer. One side of the side (Invention 6).
在上述發明(發明6)中,在前述透明導電性薄膜中蝕刻前述透明導電膜時,前述蝕刻前後的波長400nm下的反射率(%)之差的絕對值為9以下為較佳(發明7)。 In the above invention (Invention 6), when the transparent conductive film is etched in the transparent conductive film, the absolute value of the difference in reflectance (%) at a wavelength of 400 nm before and after the etching is preferably 9 or less (Invention 7) ).
依本發明,可提供一種能夠不易辨識透明導電膜的圖案,且能夠將透明導電膜的電阻值設定為所期望的值,並且在低折射率層的表面設置配線等時的加工性優異之透明導電膜積層用薄膜、該薄膜的製造方法及使用該薄膜來製造的透明導電性薄膜。 According to the present invention, it is possible to provide a pattern in which the transparent conductive film can be easily recognized, and it is possible to set the resistance value of the transparent conductive film to a desired value, and to provide transparency in the processability when wiring or the like is provided on the surface of the low refractive index layer. A film for conducting a conductive film, a method for producing the film, and a transparent conductive film produced using the film.
1‧‧‧透明導電膜積層用薄膜 1‧‧‧Transparent film for transparent conductive film
2‧‧‧透明塑料基材 2‧‧‧Transparent plastic substrate
3‧‧‧高折射率層 3‧‧‧High refractive index layer
4‧‧‧低折射率層 4‧‧‧Low refractive index layer
10‧‧‧透明導電性薄膜 10‧‧‧Transparent conductive film
5‧‧‧透明導電膜 5‧‧‧Transparent conductive film
第1圖係本發明的一實施形態之透明導電膜積層用薄膜的剖面圖。 Fig. 1 is a cross-sectional view showing a film for a transparent conductive film laminate according to an embodiment of the present invention.
第2圖係本發明的一實施形態之透明導電性薄膜的剖面圖。 Fig. 2 is a cross-sectional view showing a transparent conductive film according to an embodiment of the present invention.
以下,對本發明的實施形態進行說明。 Hereinafter, embodiments of the present invention will be described.
〔透明導電膜積層用薄膜〕 [Thin film for transparent conductive film laminate]
第1圖係本發明的一實施形態之透明導電膜積層用薄膜的 剖面圖。本實施形態之透明導電膜積層用薄膜1由透明塑料基材2、積層於透明塑料基材2的其中一個面(第1圖中為上側)之高折射率層3、積層於高折射率層3中透明塑料基材2的相反側的面(第1圖中為上側)之低折射率層4構成。 Fig. 1 is a film for a transparent conductive film laminate according to an embodiment of the present invention. Sectional view. The transparent conductive film laminate film 1 of the present embodiment is made of a transparent plastic substrate 2, and a high refractive index layer 3 laminated on one surface (upper side in FIG. 1) of the transparent plastic substrate 2, laminated on a high refractive index layer. The low refractive index layer 4 of the surface (the upper side in FIG. 1) on the opposite side of the transparent plastic base material 2 is comprised.
本實施形態之透明導電膜積層用薄膜1中,低折射率層4的折射率作為1.30~1.50而足夠低,低折射率層4和低折射率層4積層所之層的折射率差亦足夠大,因此不易辨識透明導電膜的圖案。而且,低折射率層4的厚度為2~70nm,該厚度不過於厚,因此可充分確保透明導電膜的圖案的不可見性。並且,低折射率層4的表面積增加率為5%以下,且低折射率層4的表面的平滑性足夠高,因此在該表面積層透明導電膜時,能夠將該透明導電膜的電阻值設為所期望的值。而且,低折射率層4的表面自由能作為25.0~100.0mJ/m2而足夠高,因此即便在低折射率層4的表面塗佈銀漿料等,亦可抑制浮起的產生,並且形成於該表面之銀配線的黏附性亦變得充分。並且,在該表面貼合黏著材時,該表面與黏著材之間的黏附性亦變得充分。 In the film 1 for a transparent conductive film laminate of the present embodiment, the refractive index of the low refractive index layer 4 is sufficiently low as 1.30 to 1.50, and the refractive index difference of the layers of the low refractive index layer 4 and the low refractive index layer 4 is sufficient. Large, so it is difficult to recognize the pattern of the transparent conductive film. Further, the thickness of the low refractive index layer 4 is 2 to 70 nm, and the thickness is not excessively thick, so that the invisibility of the pattern of the transparent conductive film can be sufficiently ensured. Further, the surface area increase rate of the low refractive index layer 4 is 5% or less, and the smoothness of the surface of the low refractive index layer 4 is sufficiently high. Therefore, when the surface area layer is transparent conductive film, the resistance value of the transparent conductive film can be set. For the expected value. Further, since the surface free energy of the low refractive index layer 4 is sufficiently high as 25.0 to 100.0 mJ/m 2 , even if a silver paste or the like is applied to the surface of the low refractive index layer 4, generation of floating can be suppressed and formed. The adhesion of the silver wiring on the surface is also sufficient. Further, when the adhesive material is bonded to the surface, the adhesion between the surface and the adhesive material is also sufficient.
<低折射率層> <low refractive index layer>
本實施形態之透明導電膜積層用薄膜1的低折射率層4係折射率比較低的層。低折射率層4的折射率為1.30~1.50,1.32~1.48為較佳,1.34~1.47尤為佳。低折射率層4的折射率在規定範圍內,因此低折射率層4與積層有低折射率層4之高折射率層3或透明塑料基材2之間的折射率差變得充分,從而能夠不易辨識透明導電膜的圖案。並且,若低折射率層4的 折射率在上述範圍內,則無需限定所能使用之材料等,因此能夠優化透明性等其他特性。另外,本說明書中之折射率為按實施例所示之方式測定之值。 The low refractive index layer 4 of the thin film 1 for a transparent conductive film laminate of the present embodiment is a layer having a relatively low refractive index. The refractive index of the low refractive index layer 4 is 1.30 to 1.50, preferably 1.32 to 1.48, and particularly preferably 1.34 to 1.47. Since the refractive index of the low refractive index layer 4 is within a predetermined range, the refractive index difference between the low refractive index layer 4 and the high refractive index layer 3 or the transparent plastic substrate 2 in which the low refractive index layer 4 is laminated becomes sufficient, thereby The pattern of the transparent conductive film can be easily recognized. And, if the low refractive index layer 4 When the refractive index is within the above range, it is not necessary to limit the materials that can be used, and the like, and other characteristics such as transparency can be optimized. Further, the refractive index in the present specification is a value measured in the manner shown in the examples.
本實施形態之透明導電膜積層用薄膜1的低折射率層4的表面的平滑性比較高。具體而言,在低折射率層中透明塑料基材2的相反側的面任意選擇4.992μm的四方的正方形區域,將與上述正方形的一個邊相對應之上述低折射率層的上述面上之表面長度和與上述一個邊正交之另一個邊相對應之上述低折射率層的上述面之表面長度之積作為實際表面積時,藉由下式(I)計算之結果如下:
本實施形態之透明導電膜積層用薄膜1中,低折射率層4的表面自由能為25.0~100.0mJ/m2,28.0~70.0mJ/m2為較佳,30.0~60.0mJ/m2尤為佳。低折射率層4的表面自由能為25.0~100.0mJ/m2,因此在低折射率層4的表面設置配線等時的加工性變得優異。另外,本說明書中之表面自由能係藉由測定各種液滴(分散成分/偶極成分/氫鍵成分)相對於低折射率層4的表面之接觸角,並以該值為基礎藉由北崎.畑(Kitazaki/Hata)理論來求出者。接觸角係使用接觸角計(試驗例中為Kyowa Interface Science Co.,Ltd.製造DM-701),藉由靜滴法以JIS R3257為準測定者。具體測定條件如後述試驗例所示。 In the film 1 for a transparent conductive film laminate of the present embodiment, the surface free energy of the low refractive index layer 4 is 25.0 to 100.0 mJ/m 2 , 28.0 to 70.0 mJ/m 2 is preferable, and 30.0 to 60.0 mJ/m 2 is particularly preferable. good. Since the surface free energy of the low refractive index layer 4 is 25.0 to 100.0 mJ/m 2 , the workability when wiring or the like is provided on the surface of the low refractive index layer 4 is excellent. In addition, the surface free energy in the present specification is determined by measuring the contact angle of various droplets (dispersion component/dipole component/hydrogen bond component) with respect to the surface of the low refractive index layer 4, and based on this value, by Kitasaki .畑(Kitazaki/Hata) theory to find the person. The contact angle was measured by a contact angle meter (DM-701, manufactured by Kyowa Interface Science Co., Ltd. in the test example), and JIS R3257 was measured by an intravenous drip method. The specific measurement conditions are as shown in the test examples described later.
本實施形態中之低折射率層4的厚度為2~70nm,10~60nm為較佳,20~40nm尤為佳。低折射率層4的厚度為70nm以下,因此能夠確保透明導電膜的圖案的不可見性。並且,低折射率層4的厚度為2nm以上,因此能夠充分確保低折射率層4的表面的平滑性。另外,本說明書中之低折射率層4的厚度為藉由橢圓偏光儀測定之值,具體測定條件如後述試驗例所示。 The thickness of the low refractive index layer 4 in the present embodiment is 2 to 70 nm, preferably 10 to 60 nm, and particularly preferably 20 to 40 nm. Since the thickness of the low refractive index layer 4 is 70 nm or less, the invisibility of the pattern of the transparent conductive film can be ensured. Further, since the thickness of the low refractive index layer 4 is 2 nm or more, the smoothness of the surface of the low refractive index layer 4 can be sufficiently ensured. Further, the thickness of the low refractive index layer 4 in the present specification is a value measured by an ellipsometer, and specific measurement conditions are as shown in the test examples described later.
構成本實施形態的低折射率層4之材料並沒有特別限定於滿足上述物性者,低折射率層4由矽氧烷化合物構成為較佳。作為矽氧烷化合物能夠使用無機矽系化合物、聚有機矽氧烷系化合物及它們的混合物。無機矽系化合物包含聚矽酸。 The material constituting the low refractive index layer 4 of the present embodiment is not particularly limited to those satisfying the above physical properties, and the low refractive index layer 4 is preferably composed of a siloxane compound. As the siloxane compound, an inorganic lanthanoid compound, a polyorganosiloxane compound, and a mixture thereof can be used. The inorganic lanthanide compound contains polydecanoic acid.
作為矽氧烷化合物使用聚有機矽氧烷系化合物時,從獲得所期望的表面自由能之觀點考慮,使用在Si原子上鍵合小於两個的甲基者為較佳。 When a polyorganosiloxane compound is used as the siloxane compound, it is preferred to use a methyl group having less than two bonds to Si atoms from the viewpoint of obtaining a desired surface free energy.
矽氧烷化合物只要是以公知的方法製造者即可,例如可以是將以下列通式(A)亦即,R1 nSi(OR2)4-n......(A) The oxoxane compound may be produced by a known method, and for example, it may be the following general formula (A), that is, R 1 n Si(OR 2 ) 4-n (A)
表示的(R1作為非水解性基,為烷基、取代烷基(作為取代基為鹵原子、羥基、硫基、環氧基、(甲基)丙烯醯氧基等。)、鏈烯基、芳基或芳烷基,R2為低級烷基,n為0~3的整數。R1基及OR2基分別存在複數個時,複數個R1基可以相同,亦可以不同,並且複數個OR2基可以相同,亦可以不同。)烷氧基矽烷化合物,使用鹽酸、硫酸等無機酸或草酸、醋酸等有機酸來局部或完全水解,並藉由縮聚來獲得者。進行該反應時,為了使水解進行得均勻,可以使用有機溶媒,並且亦可以依據需要使用適當量的氯化鋁和三烷氧基鋁等鋁化合物。另外,本說明書中之“(甲基)丙烯醯氧基”表示丙烯醯氧基及甲基丙烯醯氧基這兩個。對於其他類似術語亦做相同解釋。 (R 1 is a non-hydrolyzable group, and is an alkyl group or a substituted alkyl group (the substituent is a halogen atom, a hydroxyl group, a thio group, an epoxy group, a (meth) acryloxy group, etc.), an alkenyl group. , aryl or aralkyl, R 2 is lower alkyl, n is an integer from 0 to 3. When there are a plurality of R 1 groups and OR 2 groups, respectively, the plurality of R 1 groups may be the same or different, and plural The OR 2 groups may be the same or different. The alkoxydecane compound is obtained by partial or complete hydrolysis using an inorganic acid such as hydrochloric acid or sulfuric acid or an organic acid such as oxalic acid or acetic acid, and is obtained by polycondensation. In order to carry out the reaction, an organic solvent may be used in order to make the hydrolysis uniform, and an appropriate amount of an aluminum compound such as aluminum chloride or trialkoxy aluminum may be used as needed. In addition, the "(meth) propylene fluorenyl group" in this specification means two of an acryloxy group and a methacryloxy group. The same explanation is given for other similar terms.
上述通式(A)中,當n=0時,烷氧基矽烷化合物成為四烷氧基矽烷,但藉由將該四烷氧基矽烷完全水解而縮聚,可獲得無機矽系化合物,藉由局部水解而縮聚,可獲得聚有機矽氧烷系化合物或無機矽系化合物和聚有機矽氧烷系化合物的混合物。 In the above formula (A), when n = 0, the alkoxydecane compound becomes a tetraalkoxynonane, but by polycondensing the tetraalkoxydecane completely, polyfluorene-based compound can be obtained, whereby an inorganic quinone compound can be obtained by By partial hydrolysis and polycondensation, a polyorganosiloxane compound or a mixture of an inorganic lanthanide compound and a polyorganosiloxane compound can be obtained.
上述通式(A)中,當n=1~3時,烷氧基矽烷化合物具有非水解性基,藉由將該化合物局部或完全水解而縮 聚,可獲得聚有機矽氧烷系化合物。 In the above formula (A), when n = 1 to 3, the alkoxydecane compound has a non-hydrolyzable group, which is reduced by partial or complete hydrolysis of the compound. Poly, a polyorganosiloxane compound can be obtained.
作為以上述通式(A)表示之烷氧基矽烷化合物的例子可舉出,四甲氧基矽烷、四乙氧基矽烷、四正丙氧基矽烷、四異丙氧基矽烷、四正丁氧基矽烷、四異丁氧基矽烷、四仲丁氧基矽烷、四叔丁氧基矽烷、甲基三甲氧基矽烷、甲基三乙氧基矽烷、甲基三丙氧基矽烷、甲基三異丙氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、丙基三乙氧基矽烷、丁基三甲氧基矽烷、苯基三甲氧基矽烷、苯基三乙氧基矽烷、γ-縮水甘油醚丙基三甲氧基矽烷、γ-丙烯醯氧基丙基三甲氧基矽烷、γ-甲基丙烯醯氧基丙基三甲氧基矽烷、二甲基二甲氧基矽烷、甲基苯基二甲氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、二乙烯基二甲氧基矽烷、二乙烯基二乙氧基矽烷、三乙烯基甲氧基矽烷、三乙烯基乙氧基矽烷等。該等可以單獨使用,亦可以組合两種以上使用。 Examples of the alkoxydecane compound represented by the above formula (A) include tetramethoxynonane, tetraethoxydecane, tetra-n-propoxydecane, tetraisopropoxydecane, and tetra-n-butyl Oxydecane, tetraisobutoxydecane, tetra-sec-butoxydecane, tetra-tert-butoxydecane, methyltrimethoxydecane, methyltriethoxydecane, methyltripropoxydecane, methyl Triisopropoxy decane, ethyl trimethoxy decane, ethyl triethoxy decane, propyl triethoxy decane, butyl trimethoxy decane, phenyl trimethoxy decane, phenyl triethoxy矽, γ-glycidyl ether propyl trimethoxy decane, γ-propylene methoxy propyl trimethoxy decane, γ-methyl propylene methoxy propyl trimethoxy decane, dimethyl dimethoxy decane , methyl phenyl dimethoxy decane, vinyl trimethoxy decane, vinyl triethoxy decane, divinyl dimethoxy decane, divinyl diethoxy decane, trivinyl methoxy Decane, trivinyl ethoxy decane, and the like. These may be used singly or in combination of two or more.
矽氧烷化合物除了係藉由上述方法來獲得者之外,還可以係藉由將偏矽酸鈉、原矽酸鈉或水玻璃(矽酸鈉混合物)等矽化合物水解而獲得者。該水解能夠使鹽酸、硫酸、硝酸等酸或氯化鎂、硫酸鉀等金屬化合物發揮作用來促進反應。藉由該水解而生成游離型矽酸,且藉由該矽酸的聚合而獲得鏈狀、環狀或網格狀的矽氧烷化合物。有時依據作為原料之矽化合物的種類確定鏈狀、環狀及網格狀中的任一種狀態。例如,從水玻璃獲得之矽氧烷化合物中,以下列通式(B)亦即【化學式1】
作為矽氧烷化合物以外的其他例子,可舉出無機矽系化合物亦即矽膠(SiOX.nH2O)。 Examples of the other examples of the siloxane compound include cerium (SiO X . nH 2 O) which is an inorganic quinone compound.
本實施形態的低折射率層4可以由以活性能量射線使含有活性能量射線硬化型化合物之組成物硬化之硬化物構成。在此,活性能量射線硬化型化合物表示在電磁波或帶電粒子束中具有能量量子者亦即藉由照射紫外線或電子束等來進行交聯、硬化之聚合性化合物。作為該種活性能量射線硬化型化合物例如能夠舉出光聚合性預聚物和/或光聚合性單體。 The low refractive index layer 4 of the present embodiment can be composed of a cured product obtained by curing a composition containing an active energy ray-curable compound with an active energy ray. Here, the active energy ray-curable compound is a polymerizable compound which has an energy quantum in an electromagnetic wave or a charged particle beam, that is, a crosslinking or curing by irradiation with ultraviolet rays or electron beams. Examples of such an active energy ray-curable compound include a photopolymerizable prepolymer and/or a photopolymerizable monomer.
作為上述光聚合性預聚物有自由基聚合型和陽離子聚合型,作為自由基聚合型光聚合性預聚物例如可舉出聚酯丙烯酸酯系、環氧丙烯酸酯系、聚氨酯丙烯酸酯系、多元醇丙烯酸酯系等。在此,作為聚酯丙烯酸酯系預聚物例如能夠藉由在將藉由多元羧酸和多元醇的縮合而獲得之兩個末端具有羥基之聚酯寡聚物的羥基用(甲基)丙烯酸酯化而獲得,或者藉由將在多元羧酸附加環氧烷而獲得之寡聚物的末端的羥基用(甲基)丙烯酸進行酯化而獲得。 The photopolymerizable prepolymer has a radical polymerization type and a cationic polymerization type, and examples of the radical polymerization type photopolymerizable prepolymer include a polyester acrylate type, an epoxy acrylate type, and a urethane acrylate type. Polyol acrylate or the like. Here, as the polyester acrylate-based prepolymer, for example, (meth)acrylic acid can be used for the hydroxyl group of the polyester oligomer having a hydroxyl group at both terminals obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol. Obtained by esterification or obtained by esterifying a hydroxyl group at the terminal of the oligomer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth)acrylic acid.
環氧丙烯酸酯系預聚物例如能夠藉由在分子量比較低的雙酚型環氧樹脂或酚醛型環氧樹脂的環氧乙烷環使(甲基)丙烯酸反應而酯化,從而獲得。作為環氧丙烯酸酯系預聚 物的例子可舉出苯酚酚醛系預聚物。聚氨酯丙烯酸酯系預聚物例如能夠將聚醚多元醇或藉由聚酯多元醇和聚異氰酸酯的反應而獲得之聚氨酯寡聚物用(甲基)丙烯酸進行酯化來獲得。而且,多元醇丙烯酸酯系預聚物能夠藉由將聚醚多元醇的羥基用(甲基)丙烯酸進行酯化來獲得。該等光聚合性預聚物可以使用一種,亦可以組合两種以上來使用。 The epoxy acrylate-based prepolymer can be obtained, for example, by reacting (meth)acrylic acid with an oxirane ring having a relatively low molecular weight or an oxirane ring of a novolac epoxy resin to obtain a (meth)acrylic acid. Epoxy acrylate prepolymerization An example of the substance is a phenol novolac type prepolymer. The urethane acrylate-based prepolymer can be obtained, for example, by esterifying a polyether polyol or a polyurethane oligomer obtained by a reaction of a polyester polyol and a polyisocyanate with (meth)acrylic acid. Further, the polyol acrylate-based prepolymer can be obtained by esterifying a hydroxyl group of a polyether polyol with (meth)acrylic acid. These photopolymerizable prepolymers may be used alone or in combination of two or more.
另一方面,作為陽離子聚合型光聚合性預聚物通常使用環氧系樹脂。作為該環氧系樹脂例如可舉出在雙酚型樹脂或酚醛樹脂等多元酚系中利用表氯醇等環氧化之化合物、利用過氧化物等將直鏈狀烯烴化合物或環狀烯烴化合物氧化而獲得之化合物等。 On the other hand, an epoxy resin is usually used as the cationic polymerization type photopolymerizable prepolymer. The polyepoxy resin such as a bisphenol resin or a phenol resin is oxidized by a epoxidized compound such as epichlorohydrin, and a linear olefin compound or a cyclic olefin compound is oxidized by a peroxide or the like. And the obtained compound and the like.
並且,作為光聚合性單體例如可舉出1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、新戊二醇己二酸二(甲基)丙烯酸酯、羥基新戊酸新戊二醇二(甲基)丙烯酸酯、二環戊基二(甲基)丙烯酸酯、己內酯改性二環戊基二(甲基)丙烯酸酯、環氧乙烷改性磷酸二(甲基)丙烯酸酯、烯丙基化環己基二(甲基)丙烯酸酯、異氰脲酸酯二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、二季戊四醇三(甲基)丙烯酸酯、丙酸改性二季戊四醇三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、環氧丙烷改性三羥甲基丙烷三(甲基)丙烯酸酯、三(丙烯醯氧乙基)異氰脲酸酯、丙酸改性二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、己內酯改性二季戊四醇六(甲基)丙烯酸 酯等多官能丙烯酸酯。在該等丙烯酸酯中,從容易獲得低折射率層4的所期望的物性之觀點考慮,使用二季戊四醇六丙烯酸酯為較佳。該等光聚合性單體可以使用一種,亦可以組合两種以上來使用,並且亦可以與上述光聚合性預聚物並用。 Further, examples of the photopolymerizable monomer include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, and neopentyl glycol di(methyl). Acrylate, polyethylene glycol di(meth)acrylate, neopentyl glycol adipate di(meth)acrylate, hydroxypivalic acid neopentyl glycol di(meth)acrylate, dicyclopentan Di(meth)acrylate, caprolactone modified dicyclopentyl di(meth)acrylate, ethylene oxide modified di(meth)acrylate, allylated cyclohexyl di(a) Acrylate, isocyanurate di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, propionic acid modified dipentaerythritol tris (a) Acrylate, pentaerythritol tri(meth)acrylate, propylene oxide modified trimethylolpropane tri(meth)acrylate, tris(propylene oxyethyl)isocyanurate, propionic acid modification Dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, caprolactone modified dipentaerythritol hexa(meth) acrylate A multifunctional acrylate such as an ester. Among these acrylates, dipentaerythritol hexaacrylate is preferably used from the viewpoint of easily obtaining desired physical properties of the low refractive index layer 4. These photopolymerizable monomers may be used singly or in combination of two or more kinds, and may be used in combination with the above photopolymerizable prepolymer.
該等聚合性化合物能夠按照要求並用光聚合引發劑。作為該光聚合引發劑,相對於自由基聚合型光聚合性預聚物或光聚合性單體,例如可舉出安息香、安息香甲醚、安息香乙醚、安息香異丙醚、安息香正丁醚、安息香異丁醚、苯乙酮、二甲氨基苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基-2-苯基苯乙酮、2-羥基-2-甲基-1-苯丙基-1-酮、1-羥基環己基苯基酮、2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉代-丙-1-酮、4-(2-羥基乙氧基)苯基-2(羥基-2-丙基)酮、二苯甲酮、對-苯基二苯甲酮、4,4’-二乙基氨基二苯甲酮、二氯二苯甲酮、2-甲基蒽醌、2-乙基蒽醌、2-叔丁基蒽醌、2-氨基蒽醌、2-甲基噻噸酮、2-乙基噻噸酮、2-氯噻噸酮、2,4-二甲基噻噸酮、2,4-二乙基噻噸酮、苯偶醯二甲基縮酮、苯乙酮二甲基縮酮、對-二甲基氨基苯甲酸酯等。其中,使用1-羥基環己基苯基酮為較佳。並且,作為相對於陽離子聚合型光聚合性預聚物之光聚合引發劑例如可舉出由芳香硫鎓離子、芳香氧基硫鎓離子、芳香碘鎓離子等鎓、四氟硼酸鹽、六氟磷酸鹽、六氟銻酸鹽、六氟砷酸鹽等陰離子構成之化合物。該等可使用一種,亦可以組合两種以上來使用。並且,其配合量相對於上述光聚合性預聚物和/或光聚合性單體100質量份通常在0.2~10質量份的範圍內適當選擇。 These polymerizable compounds can be used in combination with a photopolymerization initiator as required. The photopolymerization initiator may, for example, be benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin, for the radical polymerization type photopolymerizable prepolymer or photopolymerizable monomer. Isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2 -hydroxy-2-methyl-1-phenylpropyl-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholine Generation-propan-1-one, 4-(2-hydroxyethoxy)phenyl-2(hydroxy-2-propyl)one, benzophenone, p-phenylbenzophenone, 4,4' -diethylaminobenzophenone, dichlorobenzophenone, 2-methyloxime, 2-ethylhydrazine, 2-tert-butylhydrazine, 2-aminopurine, 2-methylthiazide Tons of ketone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, benzoin dimethyl ketal, benzene Ethyl ketone dimethyl ketal, p-dimethylamino benzoate, and the like. Among them, 1-hydroxycyclohexyl phenyl ketone is preferably used. In addition, examples of the photopolymerization initiator for the cationic polymerization type photopolymerizable prepolymer include anthracene sulfonium ion, aryloxy sulfonium ion, aromatic iodonium ion, etc., tetrafluoroborate, and hexafluorocarbon. A compound composed of an anion such as phosphate, hexafluoroantimonate or hexafluoroarsenate. These may be used alone or in combination of two or more. In addition, the amount thereof is appropriately selected in the range of 0.2 to 10 parts by mass based on 100 parts by mass of the photopolymerizable prepolymer and/or the photopolymerizable monomer.
本實施形態的低折射率層4從實現所期望的折射率之觀點考慮時可以包含折射率調整用粒子。尤其,本實施形態的低折射率層4作為材料由含有活性能量射線硬化型化合物之組成物構成時,對該組成物添加折射率調整用粒子為較佳。作為折射率調整用粒子的例子可舉出二氧化矽溶膠、多孔二氧化矽微粒子及中空二氧化矽微粒子。 The low refractive index layer 4 of the present embodiment may contain particles for refractive index adjustment from the viewpoint of achieving a desired refractive index. In particular, when the low refractive index layer 4 of the present embodiment is composed of a composition containing an active energy ray-curable compound, it is preferred to add particles for refractive index adjustment to the composition. Examples of the particles for adjusting the refractive index include cerium oxide sol, porous cerium oxide fine particles, and hollow cerium oxide fine particles.
作為二氧化矽溶膠平均粒徑為0.005~1μm左右,能夠適當地使用10nm~100nm的二氧化矽微粒子在醇系或溶纖劑系的有機溶劑中以膠體狀態懸浮而成之膠體二氧化矽為較佳。另外,平均粒徑能夠藉由動態的光散射法來求出。 As the cerium oxide sol having an average particle diameter of about 0.005 to 1 μm, colloidal cerium oxide in which a cerium oxide microparticle of 10 nm to 100 nm is suspended in an organic solvent of an alcoholic or cellosolve type in a colloidal state can be suitably used. Preferably. Further, the average particle diameter can be obtained by a dynamic light scattering method.
並且,中空二氧化矽微粒子或多孔二氧化矽微粒子在微粒子內以開口狀態或閉口狀態具有微細的空隙,其內被填充氣體例如折射率為1的空氣,因此該微粒子具有本身的折射率較低的特徵。不在塗膜中形成該微粒子的集合體,而將其均勻地分散時,降低塗膜的折射率之效果變高,同時透明性優異。與不具有空隙之一般的膠體二氧化矽粒子(折射率n=1.46左右)相比,具有空隙之中空二氧化矽微粒子或多孔二氧化矽微粒子的折射率為1.20~1.45,而較低。 Further, the hollow ceria particles or the porous ceria particles have fine voids in the open state or the closed state in the fine particles, and are filled with a gas such as air having a refractive index of 1, so that the fine particles have a low refractive index per se. Characteristics. When the aggregate of the fine particles is not formed in the coating film, when it is uniformly dispersed, the effect of lowering the refractive index of the coating film is increased, and the transparency is excellent. The refractive index of the hollow ceria particles or the porous ceria particles having voids is 1.20 to 1.45, which is lower than that of the general colloidal ceria particles having no voids (refractive index n = 1.46 or so).
中空二氧化矽微粒子或多孔二氧化矽微粒子的平均粒徑為5nm~300nm左右,5nm~200nm為較佳,10nm~100nm的微粒子時尤為佳,空隙的平均孔徑為10nm~100nm左右,且為具有含空氣之獨立氣泡和/或連續氣泡之中空二氧化矽微粒子或多孔二氧化矽微粒子。微粒子整體的折射率為1.20~1.45左右。將本實施形態中所使用之中空二氧化矽微粒 子或多孔二氧化矽微粒子添加到活性能量射線硬化型化合物中來構成低折射率層4,因此即便活性能量射線硬化型化合物的硬化物的折射率為1.45以上,亦能夠降低整體的折射率。並且,中空二氧化矽微粒子或多孔二氧化矽微粒子分散於低折射率層4中,因此低折射率層4的透明性優異。另外,平均粒徑能夠藉由動態的光散射法來求出。 The average particle diameter of the hollow ceria particles or the porous ceria particles is about 5 nm to 300 nm, preferably 5 nm to 200 nm, and particularly preferably 10 nm to 100 nm, and the average pore diameter of the void is about 10 nm to 100 nm, and has Hollow ceria particles or porous ceria particles containing air-containing closed cells and/or continuous cells. The refractive index of the entire microparticle is about 1.20 to 1.45. The hollow cerium oxide particles used in the embodiment Since the sub- or porous ceria fine particles are added to the active energy ray-curable compound to form the low refractive index layer 4, even if the refractive index of the cured product of the active energy ray-curable compound is 1.45 or more, the overall refractive index can be lowered. Further, since the hollow ceria particles or the porous ceria particles are dispersed in the low refractive index layer 4, the low refractive index layer 4 is excellent in transparency. Further, the average particle diameter can be obtained by a dynamic light scattering method.
並且,折射率調整用粒子上可以鍵合含有聚合性不飽和基的有機化合物。例如可以在二氧化矽微粒子上鍵合含有聚合性不飽和基的有機化合物。鍵合含有聚合性不飽和基的有機化合物之二氧化矽微粒子能夠藉由在平均粒徑為0.005~1μm左右的二氧化矽微粒子表面的矽烷醇基上使具有經過與該矽烷醇基反應而獲得之官能基之含有聚合性不飽和基的有機化合物反應來獲得。作為聚合性不飽和基例如可舉出自由基聚合性的丙烯醯基和甲基丙烯基等。 Further, the refractive index adjusting particles may be bonded to an organic compound containing a polymerizable unsaturated group. For example, an organic compound containing a polymerizable unsaturated group may be bonded to the cerium oxide microparticles. The cerium oxide microparticles bonded to the organic compound containing a polymerizable unsaturated group can be obtained by reacting with the stanol group on the stanol group on the surface of the cerium oxide microparticle having an average particle diameter of about 0.005 to 1 μm. It is obtained by reacting a functional group-containing organic compound containing a polymerizable unsaturated group. Examples of the polymerizable unsaturated group include a radical polymerizable acrylonitrile group and a methacryl group.
本實施形態的低折射率層4中之折射率調整用粒子相對於基質樹脂組成物之配合比例被適當地設定,以使所形成之低折射率層4的折射率及表面積增加率在上述範圍內。例如,折射率調整用粒子相對於基質樹脂組成物100質量份為小於100質量份為佳,60質量份以下尤為較佳,30質量份以下更為佳。然而,如上所述,從實現表面的優異之平滑性之觀點考慮,低折射率層4不具有折射率調整用粒子為較佳。 The mixing ratio of the particles for refractive index adjustment in the low refractive index layer 4 of the present embodiment to the matrix resin composition is appropriately set so that the refractive index and surface area increase rate of the formed low refractive index layer 4 are in the above range. Inside. For example, the particles for refractive index adjustment are preferably less than 100 parts by mass based on 100 parts by mass of the matrix resin composition, more preferably 60 parts by mass or less, more preferably 30 parts by mass or less. However, as described above, it is preferable that the low refractive index layer 4 does not have particles for refractive index adjustment from the viewpoint of achieving excellent smoothness of the surface.
本實施形態中之低折射率層4能夠在不妨礙本發明的效果之範圍內含有所期望的各種添加劑。作為各種添加劑例如可舉出分散劑、染料、顏料、交聯劑、硬化劑、抗氧劑等。 The low refractive index layer 4 in the present embodiment can contain various desired additives within a range that does not impair the effects of the present invention. Examples of the various additives include a dispersant, a dye, a pigment, a crosslinking agent, a curing agent, and an antioxidant.
作為構成本實施形態的低折射率層4之材料可以並用前述矽氧烷化合物和活性能量射線硬化型化合物。而且,可以對該等添加前述折射率調整用粒子。然而,從容易顯現所期望的物性之觀點考慮,低折射率層4僅由矽氧烷化合物構成或組合活性能量射線硬化型化合物和折射率調整用粒子而構成為佳。 As the material constituting the low refractive index layer 4 of the present embodiment, the above-described siloxane compound and active energy ray-curable compound can be used in combination. Further, the particles for refractive index adjustment may be added to the above. However, from the viewpoint of easily exhibiting desired physical properties, the low refractive index layer 4 is preferably composed of only a siloxane compound or a combination of an active energy ray-curable compound and particles for refractive index adjustment.
<高折射率層> <High refractive index layer>
本實施形態之透明導電膜積層用薄膜1中,可以在透明塑料基材2與低折射率層4之間夾著具有比低折射率層4的折射率大的折射率之高折射率層3。此時,高折射率層3直接積層於透明塑料基材2或經由易接著層積層於高折射率層。藉由設置高折射率層3,能夠藉由低折射率層4和高折射率層3來實現透明導電膜的圖案的不可見化。 In the film 1 for a transparent conductive film laminate of the present embodiment, a high refractive index layer 3 having a refractive index larger than that of the low refractive index layer 4 may be interposed between the transparent plastic substrate 2 and the low refractive index layer 4. . At this time, the high refractive index layer 3 is directly laminated on the transparent plastic substrate 2 or laminated on the high refractive index layer via the easy adhesion layer. By providing the high refractive index layer 3, the inconsistency of the pattern of the transparent conductive film can be achieved by the low refractive index layer 4 and the high refractive index layer 3.
本實施形態之透明導電膜積層用薄膜1的高折射率層3的折射率為1.60~1.90為較佳,1.65~1.85尤為佳,1.68~1.80更為佳。高折射率層3的折射率為1.60~1.90,因此能夠充分確保與低折射率層4之間的折射率差,且能夠有效地實現透明導電膜的圖案的不可見化,並且成為優化本實施形態之透明導電膜積層用薄膜1的透明性等的物性者。 The high refractive index layer 3 of the transparent conductive film laminate film 1 of the present embodiment preferably has a refractive index of 1.60 to 1.90, more preferably 1.65 to 1.85, and more preferably 1.68 to 1.80. Since the refractive index of the high refractive index layer 3 is 1.60 to 1.90, the refractive index difference with the low refractive index layer 4 can be sufficiently ensured, and the pattern of the transparent conductive film can be effectively invisible, and this embodiment can be optimized. The physical properties of the thin film 1 for a transparent conductive film laminate in the form of transparency.
作為構成本實施形態中之高折射率層3之材料,可舉出熱塑性樹脂、活性能量射線硬化型化合物等。 The material constituting the high refractive index layer 3 in the present embodiment may, for example, be a thermoplastic resin or an active energy ray-curable compound.
使用熱塑性樹脂來構成本實施形態中之高折射率層3時,含有該熱塑性樹脂之高折射率層3與透明塑料基材2之間的黏附性及其與低折射率層4之間的黏附性優異,且其本 身發揮與易接著層相同的作用。 When the high refractive index layer 3 in the present embodiment is formed using a thermoplastic resin, the adhesion between the high refractive index layer 3 containing the thermoplastic resin and the transparent plastic substrate 2 and adhesion to the low refractive index layer 4 Excellent, and its The body plays the same role as the easy-to-back layer.
具體而言,高折射率層3中所含之熱塑性樹脂具有接近透明塑料基材2的表面之極性(或組成),且相對於透明塑料基材2顯示出較高的親和性,因此能夠將高折射率層3緊貼於透明塑料基材2。另一方面,若將含有有機溶劑之低折射率層4的材料塗佈到高折射率層3上,則低折射率層4的材料中的有機溶劑會使高折射率層3中的熱塑性樹脂溶解,且藉由該溶解之熱塑性樹脂能夠將低折射率層4緊貼(熔著)於高折射率層3。藉此,無需另設易接著層,亦能夠簡化透明導電膜積層用薄膜1的層結構。 Specifically, the thermoplastic resin contained in the high refractive index layer 3 has a polarity (or composition) close to the surface of the transparent plastic substrate 2, and exhibits a high affinity with respect to the transparent plastic substrate 2, so that it can be The high refractive index layer 3 is in close contact with the transparent plastic substrate 2. On the other hand, if a material of the low refractive index layer 4 containing an organic solvent is applied onto the high refractive index layer 3, the organic solvent in the material of the low refractive index layer 4 causes the thermoplastic resin in the high refractive index layer 3 Dissolved, and the low refractive index layer 4 can be adhered (fused) to the high refractive index layer 3 by the dissolved thermoplastic resin. Thereby, the layer structure of the film 1 for transparent conductive film lamination can be simplified without separately providing an easy-adhesion layer.
作為熱塑性樹脂的具體例子可舉出聚酯樹脂、聚氨酯樹脂、丙烯酸系樹脂、聚烯烴系樹脂、聚氯乙烯、聚苯乙烯、聚乙烯醇、聚偏二氯乙烯等。其中,從與透明塑料基材2的黏附性及與低折射率層4的熔著性的觀點考慮,選自聚酯樹脂、聚氨酯樹脂、丙烯酸系樹脂之至少1種為較佳,選自聚酯樹脂及聚氨酯樹脂之至少1種更為佳,聚酯樹脂為進一步較佳。 Specific examples of the thermoplastic resin include a polyester resin, a polyurethane resin, an acrylic resin, a polyolefin resin, polyvinyl chloride, polystyrene, polyvinyl alcohol, and polyvinylidene chloride. In particular, at least one selected from the group consisting of a polyester resin, a urethane resin, and an acrylic resin is preferable from the viewpoint of adhesion to the transparent plastic substrate 2 and fusion property with the low refractive index layer 4, and is selected from the group consisting of At least one of the ester resin and the urethane resin is more preferable, and the polyester resin is further preferable.
使用活性能量射線硬化型化合物來構成本實施形態中之高折射率層3時,能夠使用與用於構成低折射率層4之活性能量射線硬化型化合物相同者。用活性能量射線來硬化含有該活性能量射線硬化型化合物之組成物,藉此能夠形成高折射率層3。在此,高折射率層3的折射率需要比低折射率層4高。從該觀點考慮,作為為了構成低折射率層4而使用之活性能量射線硬化型化合物,選擇分子內不具有芳香環及雜環者為較佳,另一方面,作為為了構成高折射率層3而使用之活性能 量射線硬化型化合物,選擇分子內具有芳香環和/或雜環者為較佳。而且,例如藉由使高折射率層3含有後述金屬氧化物,能夠提高高折射率層3的折射率。作為構成高折射率層3之材料,從容易獲得高折射率層3的所期望的物性之觀點考慮,在前述活性能量射線硬化型化合物中使用苯酚酚醛系預聚物為較佳。另外,亦可以組合活性能量射線硬化型化合物和前述熱塑性樹脂來構成高折射率層3。 When the high refractive index layer 3 in the present embodiment is used to form the high refractive index layer 3 in the present embodiment, the active energy ray-curable compound for constituting the low refractive index layer 4 can be used. The composition containing the active energy ray-curable compound is hardened with an active energy ray, whereby the high refractive index layer 3 can be formed. Here, the refractive index of the high refractive index layer 3 needs to be higher than that of the low refractive index layer 4. From the viewpoint of the active energy ray-curable compound used for constituting the low refractive index layer 4, it is preferred to select an aromatic ring and a heterocyclic ring in the molecule, and to form the high refractive index layer 3 Active energy used The amount of the radiation hardening type compound is preferably a group having an aromatic ring and/or a hetero ring in the molecule. Further, for example, by causing the high refractive index layer 3 to contain a metal oxide to be described later, the refractive index of the high refractive index layer 3 can be increased. As a material constituting the high refractive index layer 3, a phenol novolak type prepolymer is preferably used for the active energy ray-curable compound from the viewpoint of easily obtaining desired physical properties of the high refractive index layer 3. Further, the active energy ray-curable compound and the thermoplastic resin may be combined to form the high refractive index layer 3.
本實施形態中之高折射率層3含有用於調整折射率之材料(以下,有時稱為“折射率調整劑”。)例如金屬氧化物為較佳。能夠包含於高折射率層3之金屬氧化物並無特別限定,例如可舉出氧化鈦、氧化鋯、氧化鉭、氧化鋅、氧化銦、氧化鉿、氧化鈰、氧化錫、氧化鈮、錫摻雜氧化銦(ITO)、銻摻雜氧化錫(ATO)等。該等金屬氧化物可以單獨使用一種,亦可以組合两種以上來使用。其中,從折射率的觀點考慮,使用氧化鈦和/或氧化鋯為較佳。 The high refractive index layer 3 in the present embodiment contains a material for adjusting the refractive index (hereinafter sometimes referred to as "refractive index adjusting agent"). For example, a metal oxide is preferable. The metal oxide which can be contained in the high refractive index layer 3 is not particularly limited, and examples thereof include titanium oxide, zirconium oxide, hafnium oxide, zinc oxide, indium oxide, antimony oxide, antimony oxide, tin oxide, antimony oxide, and tin-doping. Indium oxide (ITO), antimony doped tin oxide (ATO), and the like. These metal oxides may be used alone or in combination of two or more. Among them, titanium oxide and/or zirconia are preferably used from the viewpoint of refractive index.
上述金屬氧化物以微粒子的形態含在高折射率層3中為較佳。此時,金屬氧化物微粒子的平均粒徑為0.005~1μm為較佳,0.01~0.1μm更為佳。另外,將本說明書中之金屬氧化物微粒子的平均粒徑作為藉由使用zeta電位測定法之測定法來測定之值。 It is preferred that the above metal oxide is contained in the high refractive index layer 3 in the form of fine particles. In this case, the average particle diameter of the metal oxide fine particles is preferably 0.005 to 1 μm, more preferably 0.01 to 0.1 μm. In addition, the average particle diameter of the metal oxide fine particles in the present specification is a value measured by a measurement method using zeta potential measurement method.
高折射率層3中之金屬氧化物的配合比例被適當地設定,以便高折射率層3的折射率在上述範圍內。具體而言,相對於活性能量射線硬化型化合物和/或熱塑性樹脂100質量份為50~1000質量份左右為較佳,80~800質量份尤為佳, 100~500質量份更為佳。 The compounding ratio of the metal oxide in the high refractive index layer 3 is appropriately set so that the refractive index of the high refractive index layer 3 is within the above range. Specifically, it is preferably about 50 to 1000 parts by mass, more preferably 80 to 800 parts by mass, per 100 parts by mass of the active energy ray-curable compound and/or the thermoplastic resin. 100 to 500 parts by mass is more preferable.
本實施形態中之高折射率層3能夠在不妨礙本發明的效果之範圍內含有所期望的各種添加劑。作為各種添加劑例如可舉出分散劑、染料、顏料、交聯劑、硬化劑、抗氧劑等。 The high refractive index layer 3 in the present embodiment can contain various desired additives within a range that does not impair the effects of the present invention. Examples of the various additives include a dispersant, a dye, a pigment, a crosslinking agent, a curing agent, and an antioxidant.
高折射率層3的厚度為20~150nm,30~130nm為較佳,50~110nm更為佳。高折射率層3的厚度在該範圍內,因此能夠不易辨識透明導電膜的圖案,並且高折射率層3與透明塑料基材2及低折射率層4之間的黏附性變得優異,而且高折射率層3的表面的平滑性變得充分。另外,本說明書中之高折射率層3的厚度為藉由橢圓偏光儀來測定之值,具體的測定條件如後述實施例所示。 The high refractive index layer 3 has a thickness of 20 to 150 nm, preferably 30 to 130 nm, more preferably 50 to 110 nm. Since the thickness of the high refractive index layer 3 is in this range, the pattern of the transparent conductive film can be hardly recognized, and the adhesion between the high refractive index layer 3 and the transparent plastic substrate 2 and the low refractive index layer 4 becomes excellent, and The smoothness of the surface of the high refractive index layer 3 becomes sufficient. Further, the thickness of the high refractive index layer 3 in the present specification is a value measured by an ellipsometer, and specific measurement conditions are as shown in the examples below.
<透明塑料基材> <Transparent plastic substrate>
作為本實施形態中使用之透明塑料基材2並無特別限定,能夠從作為現有光學用基材的公知的塑料薄膜中適當地選用具有透明性者。作為該種塑料薄膜例如可舉出聚對苯二甲酸乙二酯(PET)、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯(PEN)等聚酯薄膜、聚乙烯薄膜、聚丙烯薄膜、賽璐玢、二乙醯纖維素薄膜、三乙醯纖維素薄膜、乙醯丁酸纖維素薄膜、聚氯乙烯薄膜、聚偏二氯乙烯薄膜、聚乙烯醇薄膜、乙烯-乙酸乙烯共聚物薄膜、聚苯乙烯薄膜、聚碳酸酯薄膜、聚甲基戊烯薄膜、聚砜薄膜、聚醚醚酮薄膜、聚醚碼薄膜、聚醚醯亞胺薄膜、聚醯亞胺薄膜、氟樹脂薄膜、聚醯胺薄膜、丙烯酸樹脂薄膜、降冰片烯系樹脂薄膜、環烯烴樹脂薄膜等塑料薄膜或該等的積層薄膜。 The transparent plastic substrate 2 used in the present embodiment is not particularly limited, and those having a transparency can be suitably selected from known plastic films which are conventional optical substrates. Examples of such a plastic film include a polyester film such as polyethylene terephthalate (PET), polybutylene terephthalate or polyethylene naphthalate (PEN), polyethylene film, and poly Propylene film, cellophane, diacetyl cellulose film, triethylene glycol film, cellulose acetate butyrate film, polyvinyl chloride film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate Copolymer film, polystyrene film, polycarbonate film, polymethylpentene film, polysulfone film, polyetheretherketone film, polyether film, polyether quinone film, polyimine film, fluorine A plastic film such as a resin film, a polyamide film, an acrylic resin film, a norbornene resin film, or a cycloolefin resin film, or a laminated film of these.
上述薄膜中,由於具有適於觸摸面板等之強度,因此聚酯薄膜、聚碳酸酯薄膜、聚醯亞胺薄膜、降冰片烯系樹脂薄膜、環烯烴樹脂薄膜等為較佳。該等中,從透明性和厚度精度等觀點考慮,聚酯薄膜尤為佳,聚對苯二甲酸乙二酯(PET)更為佳。 Among the above films, a polyester film, a polycarbonate film, a polyimide film, a norbornene resin film, a cycloolefin resin film, or the like is preferable because it has strength suitable for a touch panel or the like. Among these, polyester film is particularly preferable from the viewpoints of transparency and thickness precision, and polyethylene terephthalate (PET) is more preferable.
作為透明塑料基材2使用聚對苯二甲酸乙二酯(PET)時,PET的黏附性優異,因此可以不設置提高與高折射率層之間的接著性之易接著層。而且,不設置易接著層時,PET具有1.65之較高的折射率,且PET可取代高折射率層發揮其功能,因此無需一定設置高折射率層3。 When polyethylene terephthalate (PET) is used as the transparent plastic substrate 2, since PET has excellent adhesion, it is not necessary to provide an easy-adhesion layer for improving adhesion to the high refractive index layer. Further, when the easy-adhesion layer is not provided, PET has a high refractive index of 1.65, and PET can perform its function instead of the high refractive index layer, so that it is not necessary to provide the high refractive index layer 3.
透明塑料基材2的厚度並無特別限定,可依據用途適當選定,通常為15~300μm,30~250μm的範圍為較佳。並且,該透明塑料基材2以提高設置於其表面之層之間的黏附性之目的,能夠依據要求在其中一個面或兩個面藉由氧化法或凹凸化法等實施表面處理。作為上述氧化法例如採用電暈放電處理、鉻酸處理(濕式)、火焰處理、熱風處理、臭氧/紫外線照射處理等,作為凹凸化法例如採用噴砂法、溶射處理法等。該等表面處理法依據透明塑料基材2的種類來適當選擇,但一般考慮到效果及操作性等方面而使用電暈放電處理法為較佳。 The thickness of the transparent plastic substrate 2 is not particularly limited and may be appropriately selected depending on the application, and is usually 15 to 300 μm, preferably 30 to 250 μm. Further, the transparent plastic substrate 2 can be subjected to surface treatment by an oxidation method, an unevenness method, or the like on one or both sides as needed in order to improve the adhesion between the layers provided on the surface thereof. The oxidation method is, for example, a corona discharge treatment, a chromic acid treatment (wet), a flame treatment, a hot air treatment, an ozone/ultraviolet irradiation treatment, or the like, and a blasting method, a spray treatment method, or the like is used as the unevenness method. These surface treatment methods are appropriately selected depending on the type of the transparent plastic substrate 2, but it is generally preferred to use a corona discharge treatment method in view of effects and workability.
<透明導電膜積層用薄膜的製造> <Manufacture of Thin Film for Transparent Conductive Film Lamination>
上述透明導電膜積層用薄膜1例如能夠藉由以下所示方法來製造。在此,對在低折射率層4與透明塑料基材2之間設置有高折射率層3之透明導電膜積層用薄膜1的製造例進行說明。另外,由低折射率層4直接積層於透明塑料基材2上而成 之透明導電膜積層用薄膜在以下說明之製造例中,省略了高折射率層3的製備/形成製程,並以相同方式進行其他製程來製造。 The transparent conductive film laminate film 1 can be produced, for example, by the method described below. Here, a production example of the transparent conductive film laminate film 1 in which the high refractive index layer 3 is provided between the low refractive index layer 4 and the transparent plastic substrate 2 will be described. In addition, the low refractive index layer 4 is directly laminated on the transparent plastic substrate 2 In the production example of the transparent conductive film laminate described below, the preparation/forming process of the high refractive index layer 3 is omitted, and other processes are performed in the same manner.
首先,製備含有構成高折射率層3之材料和有機溶劑之高折射率層3用塗佈劑,並且製備含有構成低折射率層4之材料和有機溶劑之低折射率層4用塗佈劑。 First, a coating agent for a high refractive index layer 3 containing a material constituting the high refractive index layer 3 and an organic solvent is prepared, and a coating agent for a low refractive index layer 4 containing a material constituting the low refractive index layer 4 and an organic solvent is prepared. .
作為構成高折射率層3之材料使用活性能量射線硬化型化合物時,製備高折射率層3用塗佈劑時使用之有機溶劑為該活性能量射線硬化型化合物的溶解性優異且前述折射率調整劑的分散性優異者為較佳。作為該種有機溶劑的具體例,能夠舉出環己酮、甲乙酮、甲基異丁基酯、甲苯、醋酸乙酯等為較佳。 When an active energy ray-curable compound is used as the material constituting the high refractive index layer 3, the organic solvent used for preparing the coating agent for the high refractive index layer 3 is excellent in solubility of the active energy ray-curable compound and the refractive index is adjusted. It is preferred that the dispersibility of the agent is excellent. Specific examples of such an organic solvent include cyclohexanone, methyl ethyl ketone, methyl isobutyl ester, toluene, ethyl acetate, and the like.
另一方面,作為構成低折射率層4之材料使用活性能量射線硬化型化合物時,製備低折射率層4用塗佈劑時使用之有機溶劑為該活性能量射線硬化型化合物的溶解性優異且前述折射率調整用粒子的分散性亦優異者為較佳。該種有機溶劑的具體例子,作為構成高折射率層3之材料與使用活性能量射線硬化型化合物時之前述有機溶劑的具體例相同。 On the other hand, when an active energy ray-curable compound is used as the material constituting the low refractive index layer 4, the organic solvent used in the preparation of the coating agent for the low refractive index layer 4 is excellent in solubility of the active energy ray-curable compound. It is preferred that the particles for refractive index adjustment are also excellent in dispersibility. Specific examples of such an organic solvent are the same as the specific examples of the organic solvent in the case where the active energy ray-curable compound is used as the material constituting the high refractive index layer 3.
並且,低折射率層4由矽氧烷化合物構成時,從溶解分散性的觀點考慮,製備低折射率層4用塗佈劑時使用之有機溶劑使用醇系溶劑為較佳。醇系溶劑例如可舉出異丙醇、異丁醇等。 Further, when the low refractive index layer 4 is composed of a siloxane compound, it is preferred to use an alcohol solvent for the organic solvent used for preparing the coating agent for the low refractive index layer 4 from the viewpoint of solubility and dispersibility. Examples of the alcohol solvent include isopropanol and isobutanol.
製備高折射率層3用及低折射率層4用塗佈劑之後,首先在透明塑料基材2的其中一個面塗佈高折射率層3用 塗佈劑。之後,將塗佈劑乾燥,並照射活性能量射線來硬化塗膜,藉此形成高折射率層3。 After preparing the coating agent for the high refractive index layer 3 and the low refractive index layer 4, first, coating the high refractive index layer 3 on one surface of the transparent plastic substrate 2 Coating agent. Thereafter, the coating agent is dried and irradiated with an active energy ray to harden the coating film, thereby forming the high refractive index layer 3.
接著,在高折射率層3上塗佈低折射率層4用塗佈劑。作為構成低折射率層4之材料使用矽氧烷化合物時,藉由將塗佈劑乾燥以形成低折射率層4。另一方面,作為構成低折射率層4之材料使用活性能量射線硬化型化合物時,將塗佈劑乾燥之後照射活性能量射線,以硬化塗膜,從而形成低折射率層4。藉由以上方法獲得透明導電膜積層用薄膜1。 Next, a coating agent for the low refractive index layer 4 is applied onto the high refractive index layer 3. When a siloxane compound is used as the material constituting the low refractive index layer 4, the coating agent is dried to form the low refractive index layer 4. On the other hand, when an active energy ray-curable compound is used as the material constituting the low refractive index layer 4, the coating agent is dried and then irradiated with an active energy ray to harden the coating film to form the low refractive index layer 4. The film 1 for a transparent conductive film laminate was obtained by the above method.
作為塗佈劑的塗佈方法例如可舉出棒塗佈法、刮刀塗佈法、輥塗佈法、刮板塗佈法、模具塗佈法、凹版塗佈法等。 Examples of the coating method of the coating agent include a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, and a gravure coating method.
在高折射率層3上形成低折射率層4時,以30~70℃的溫度對低折射率層4用塗佈劑施加10秒~3分鐘左右的加熱處理(乾燥處理)為較佳。作為構成低折射率層4之材料使用矽氧烷化合物時,進行乾燥處理之後,進一步以110~150℃的溫度進行5秒~3分鐘左右的加熱,從而硬化塗佈劑。並且,作為構成低折射率層4之材料使用活性能量射線硬化型化合物時,進行上述乾燥處理之後,照射活性能量射線,從而硬化塗佈劑。如上所述,藉由以30~70℃的溫度進行10秒~3分鐘左右的加熱處理(乾燥處理),從而能夠在低折射率層4的材料結束硬化之前局部或完全蒸發溶劑,且能夠抑制由溶劑的蒸發引起之低折射率層4表面的粗糙的產生。 When the low refractive index layer 4 is formed on the high refractive index layer 3, it is preferable to apply a heat treatment (drying treatment) to the low refractive index layer 4 with a coating agent at a temperature of 30 to 70 ° C for about 10 seconds to 3 minutes. When a siloxane compound is used as the material constituting the low refractive index layer 4, after drying, the coating agent is further cured by heating at a temperature of 110 to 150 ° C for about 5 seconds to 3 minutes. When the active energy ray-curable compound is used as the material constituting the low refractive index layer 4, the drying treatment is performed, and then the active energy ray is irradiated to cure the coating agent. As described above, by performing heat treatment (drying treatment) at a temperature of 30 to 70 ° C for about 10 seconds to 3 minutes, it is possible to partially or completely evaporate the solvent before the material of the low refractive index layer 4 is cured, and it is possible to suppress The generation of roughness of the surface of the low refractive index layer 4 caused by evaporation of the solvent.
作為上述活性能量射線通常使用紫外線、電子束等,紫外線尤為佳。活性能量射線的照射量依據能量射線的種 類而不同,例如為紫外線時,光量為50~1000mJ/cm2為較佳,100~500mJ/cm2尤為佳。並且,為電子束時,0.1~50kGy左右為較佳。紫外線照射能夠藉由高壓水銀燈、融合H燈、疝氣燈等進行。並且,電子束照射能夠藉由電子束加速器等進行。 Ultraviolet rays, electron beams, and the like are usually used as the active energy ray, and ultraviolet rays are particularly preferable. The amount of irradiation of the active energy ray varies depending on the type of the energy ray. For example, when the ultraviolet ray is used, the amount of light is preferably 50 to 1000 mJ/cm 2 , more preferably 100 to 500 mJ/cm 2 . Further, in the case of an electron beam, it is preferably about 0.1 to 50 kGy. The ultraviolet irradiation can be performed by a high pressure mercury lamp, a fused H lamp, a xenon lamp, or the like. Further, the electron beam irradiation can be performed by an electron beam accelerator or the like.
如上獲得之透明導電膜積層用薄膜1適宜用作接下來要說明之透明導電性薄膜的製造材料。 The film 1 for a transparent conductive film layer obtained as described above is suitably used as a material for producing a transparent conductive film to be described later.
〔透明導電性薄膜〕 [Transparent Conductive Film]
第2圖為本發明的一實施形態之透明導電性薄膜的剖面圖。本實施形態之透明導電性薄膜10係在上述透明導電膜積層用薄膜1的低折射率層4中高折射率層3的相反側的一面側(第2圖中為低折射率層4的上側)進一步積層有透明導電膜5者。該透明導電性薄膜10因高折射率層3及低折射率層4的存在而成為不易辨識透明導電膜5的圖案者。 Fig. 2 is a cross-sectional view showing a transparent conductive film according to an embodiment of the present invention. The transparent conductive film 10 of the present embodiment is on the opposite side of the high refractive index layer 3 in the low refractive index layer 4 of the transparent conductive film laminate film 1 (the upper side of the low refractive index layer 4 in Fig. 2) Further, a transparent conductive film 5 is laminated. The transparent conductive film 10 is a pattern in which the transparent conductive film 5 is not easily recognized by the presence of the high refractive index layer 3 and the low refractive index layer 4.
<透明導電膜> <Transparent Conductive Film>
作為本實施形態之透明導電性薄膜10中透明導電膜5的材料,只要係同時具有透明性和導電性之材料即可使用,無特別限制,例如可舉出錫摻雜氧化銦(ITO)、氧化銥(IrO2)、氧化銦(In2O3)、氧化錫(SnO2)、摻氟氧化錫(FTO)、氧化銦-氧化鋅(IZO)、氧化鋅(ZnO)、摻鎵氧化鋅(GZO)、摻鋁氧化鋅(AZO)、氧化鉬(MoO3)、氧化鈦(TiO2)等透明導電性金屬氧化物。該等金屬氧化物的薄膜藉由採用適當的造模條件,從而成為兼具透明性和導電性之透明導電膜。 The material of the transparent conductive film 5 in the transparent conductive film 10 of the present embodiment can be used as long as it has a material having both transparency and conductivity, and is not particularly limited, and examples thereof include tin-doped indium oxide (ITO). Cerium oxide (IrO 2 ), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), fluorine-doped tin oxide (FTO), indium oxide-zinc oxide (IZO), zinc oxide (ZnO), gallium-doped zinc oxide (GZO), a transparent conductive metal oxide such as aluminum-doped zinc oxide (AZO), molybdenum oxide (MoO 3 ), or titanium oxide (TiO 2 ). The thin film of the metal oxide is a transparent conductive film having both transparency and conductivity by adopting appropriate mold-forming conditions.
透明導電膜5的厚度為4~800nm為較佳,5~500nm更為佳,10~100nm尤為佳。透明導電膜5的厚度在該 範圍內,則成為連續之薄膜且可獲得穩定之導電性,並且不會導致透明性下降。 The thickness of the transparent conductive film 5 is preferably 4 to 800 nm, more preferably 5 to 500 nm, and particularly preferably 10 to 100 nm. The thickness of the transparent conductive film 5 is in the Within the range, it becomes a continuous film and stable conductivity can be obtained without causing a decrease in transparency.
並且,透明導電膜5的折射率為1.90~2.05左右為較佳。 Further, the refractive index of the transparent conductive film 5 is preferably about 1.90 to 2.05.
<物性> <physical property>
透明導電性薄膜10中,在蝕刻透明導電膜5時,蝕刻前後的波長400nm下的反射率(%)之差的絕對值為9以下為較佳,8以下尤為佳,6以下更為佳。在此,蝕刻前後的反射率之差係在對透明導電膜5進行蝕刻處理前後,分別按照JIS K7142測定波長400nm附近下之反射率(単位:%)時的、該波長下之蝕刻前後的差量之值。 In the transparent conductive film 10, when the transparent conductive film 5 is etched, the absolute value of the difference in reflectance (%) at a wavelength of 400 nm before and after etching is preferably 9 or less, more preferably 8 or less, and even more preferably 6 or less. Here, the difference in reflectance before and after the etching is the difference between the etching before and after the etching at a wavelength of 400 nm in accordance with JIS K7142 before and after the etching treatment of the transparent conductive film 5, respectively. The value of the quantity.
蝕刻透明導電膜5時的蝕刻前後的波長400nm下之反射率差的絕對值為9以下,因此本實施形態之透明導電性薄膜10具有優異之透明性,並且成為在反射光下不易辨識透明導電膜5之圖案者。 When the transparent conductive film 5 is etched, the absolute value of the reflectance difference at a wavelength of 400 nm before and after the etching is 9 or less. Therefore, the transparent conductive film 10 of the present embodiment has excellent transparency and is not easily recognized as transparent conductive under reflected light. The pattern of the film 5 is.
<透明導電性薄膜的製造> <Manufacture of Transparent Conductive Film>
本實施形態之透明導電性薄膜10例如能夠藉由以下所示之方法來製造。首先,如上所述製造透明導電膜積層用薄膜1之後,依據上述材料的種類和所需要的膜厚適當選擇真空蒸鍍法、濺鍍法、CVD法、離子電鍍法、噴塗法、溶膠-凝膠法等公知的方法,在設置有該透明導電膜積層用薄膜1的低折射率層4之面側積層透明導電膜5,從而能夠製造透明導電性薄膜10。 The transparent conductive film 10 of the present embodiment can be produced, for example, by the method described below. First, after the film 1 for a transparent conductive film laminate is produced as described above, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, or a sol-condensation are appropriately selected depending on the type of the material and the required film thickness. In a known method such as a gel method, the transparent conductive film 5 is laminated on the surface of the low refractive index layer 4 on which the thin film 1 for a transparent conductive film layer is provided, whereby the transparent conductive film 10 can be manufactured.
另外,如上製造上述透明導電膜5之後,藉由光 微影法形成規定圖案的抗蝕劑遮罩,並藉由公知的方法實施蝕刻處理,從而能夠形成例如線形圖案等。 In addition, after the above transparent conductive film 5 is manufactured as above, by light The lithography method forms a resist mask of a predetermined pattern, and an etching process is performed by a known method, whereby a linear pattern or the like can be formed, for example.
本實施形態之透明導電性薄膜10使用本實施形態之透明導電膜積層用薄膜1來製造,從而能夠不易辨識積層有透明導電膜之部分,且能夠將透明導電膜的電阻值設定為所期望的值,並且在低折射率層的表面設置配線等時的加工性優異。 In the transparent conductive film 10 of the present embodiment, the transparent conductive film laminate film 1 of the present embodiment is used, and the portion in which the transparent conductive film is laminated can be easily identified, and the resistance value of the transparent conductive film can be set to a desired value. The value is excellent in workability when wiring or the like is provided on the surface of the low refractive index layer.
以上說明之實施形態係便於理解本發明而記載者,並非係為限定本發明而記載者。因此,宗旨為上述實施形態中公開之各要件亦包含本發明的技術範圍所屬之所有設計變更和等價物。 The embodiments described above are described to facilitate the understanding of the present invention, and are not intended to limit the invention. Therefore, it is intended that all the features and equivalents of the technical scope of the invention are included in the embodiments disclosed herein.
以下,藉由實施例等對本發明進一步進行具體說明,但本發明的範圍並不限定於該等實施例等。 Hereinafter, the present invention will be specifically described by way of Examples and the like, but the scope of the present invention is not limited to the Examples and the like.
另外,以下所示之實施例或比較例中之高折射率層及低折射率層的厚度在形成該些層之階段利用分光橢圓偏光儀(J.A.WOOLLAM Co製造,產品名稱:M-2000)來測定。 Further, the thicknesses of the high refractive index layer and the low refractive index layer in the examples or comparative examples shown below were formed by a spectroscopic ellipsometer (manufactured by JAWOOLLAM Co, product name: M-2000) at the stage of forming the layers. Determination.
〔製備例1〕(高折射率層用塗佈劑H-1) [Preparation Example 1] (coating agent H-1 for high refractive index layer)
利用作為稀釋溶劑的MIBK來稀釋作為活性能量射線硬化型化合物的苯酚酚醛系紫外線硬化型預聚物(Hitachi Chemical Company,Ltd.製造,HITALOID7663,固形物80%,甲基異丁基酯(MIBK)稀釋)100質量份(固形物換算;下同)、作為折射率調整劑的平均粒徑為10nm的氧化鋯300質量份、以及作為光聚合引發劑的1-羥基環己基苯基酮(BASF company Ltd. 製造,商品名稱:Irgacure184)5質量份,從而製備高折射率層用塗佈劑H-1。 A phenol novolac-based ultraviolet curable prepolymer (manufactured by Hitachi Chemical Company, Ltd., HITALOID7663, solid content 80%, methyl isobutyl ester (MIBK)) as an active energy ray-curable compound was diluted with MIBK as a diluent solvent. Diluted) 100 parts by mass (solid content conversion; the same applies hereinafter), 300 parts by mass of zirconium oxide having an average particle diameter of 10 nm as a refractive index adjusting agent, and 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator (BASF company) Ltd. Manufactured, trade name: Irgacure 184) 5 parts by mass to prepare a coating agent H-1 for a high refractive index layer.
〔製備例2〕(高折射率層用塗佈劑H-2) [Preparation Example 2] (coating agent H-2 for high refractive index layer)
除了作為折射率調整劑使用平均粒徑為10nm的氧化鈦以外,以與製備例1相同的方式製備高折射率層用塗佈劑H-2。 A coating agent H-2 for a high refractive index layer was prepared in the same manner as in Production Example 1, except that titanium oxide having an average particle diameter of 10 nm was used as the refractive index adjusting agent.
〔製備例3〕(低折射率層用塗佈劑L-1) [Preparation Example 3] (Coating Agent L-1 for Low Refractive Index Layer)
利用作為稀釋溶劑的MIBK來稀釋作為活性能量射線硬化型化合物的二季戊四醇六丙烯酸酯(Shin-Nakamura Chemical Co.,Ltd.製造,商品名稱:NK酯A-DPH,固形物濃度100質量%)100質量份、作為折射率調整用粒子的平均粒徑為60nm的中空二氧化矽25質量份、以及作為光聚合引發劑的1-羥基環己基苯基酮(BASF company Ltd.製造,商品名稱:Irgacure 184)5質量份,從而製備低折射率層用塗佈劑L-1。 Dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-DPH, solid content 100% by mass) 100 as an active energy ray-curable compound was diluted with MIBK as a diluent solvent. 25 parts by mass of hollow cerium oxide having an average particle diameter of 60 nm as a refractive index adjusting particle, and 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator (manufactured by BASF company Ltd., trade name: Irgacure) 184) 5 parts by mass to prepare a coating agent L-1 for a low refractive index layer.
〔製備例4〕(低折射率層用塗佈劑L-2) [Preparation Example 4] (Coating Agent L-2 for Low Refractive Index Layer)
利用作為稀釋溶劑的異丙基醇(IPA)來稀釋作為矽氧烷化合物的矽氧烷樹脂(COLCOAT Co,.Ltd.製造,商品名稱:COLCOAT P)100質量份,從而製備低折射率層用塗佈劑L-2。 Using a isopropyl alcohol (IPA) as a diluent solvent to dilute 100 parts by mass of a decyl alkane resin (manufactured by COLCOAT Co., Ltd., trade name: COLCOAT P) as a siloxane compound, thereby preparing a low refractive index layer Coating agent L-2.
〔製備例5〕(低折射率層用塗佈劑L-3) [Preparation Example 5] (Coating agent L-3 for low refractive index layer)
除了將折射率調整用粒子的配合量改為50質量份以外,以與製備例3相同的方式製備低折射率層用塗佈劑L-3。 The coating agent L-3 for a low refractive index layer was prepared in the same manner as in Production Example 3 except that the blending amount of the particles for refractive index adjustment was changed to 50 parts by mass.
〔製備例6〕(低折射率層用塗佈劑L-4) [Preparation Example 6] (Coating agent L-4 for low refractive index layer)
除了將折射率調整用粒子的配合量改為12.5質量份以外,以與製備例3相同的方式製備低折射率層用塗佈劑L-4。 A coating agent L-4 for a low refractive index layer was prepared in the same manner as in Production Example 3 except that the blending amount of the particles for refractive index adjustment was changed to 12.5 parts by mass.
〔製備例7〕(低折射率層用塗佈劑L-5) [Preparation Example 7] (Coating agent L-5 for low refractive index layer)
除了將折射率調整用粒子的配合量改為12.5質量份,且進一步添加將作為防污劑的反應性氟寡聚物(DIC Coporation製造,商品名稱:MEGAFACE RS-75,固形物40%,MIBK稀釋)8.2質量份以外,以與製備例3相同的方式製備低折射率層用塗佈劑L-5。 In addition to changing the blending amount of the particles for refractive index adjustment to 12.5 parts by mass, a reactive fluorine oligomer to be used as an antifouling agent (manufactured by DIC Co., Ltd., trade name: MEGAFACE RS-75, solid content 40%, MIBK) was further added. A coating agent L-5 for a low refractive index layer was prepared in the same manner as in Production Example 3 except for 8.2 parts by mass.
〔製備例8〕(低折射率層用塗佈劑L-6) [Preparation Example 8] (coating agent L-6 for low refractive index layer)
除了未添加折射率調整用粒子以外,以與製備例3相同的方式製備低折射率層用塗佈劑L-6。 A coating agent L-6 for a low refractive index layer was prepared in the same manner as in Production Example 3 except that the particles for refractive index adjustment were not added.
〔製備例9〕(低折射率層用塗佈劑L-7) [Preparation Example 9] (coating agent L-7 for low refractive index layer)
除了將折射率調整用粒子的配合量改為100質量份以外,以與製備例3相同的方式製備低折射率層用塗佈劑L-7。 A coating agent L-7 for a low refractive index layer was prepared in the same manner as in Production Example 3 except that the amount of the particles for refractive index adjustment was changed to 100 parts by mass.
〔製備例10〕(低折射率層用塗佈劑L-8) [Preparation Example 10] (coating agent L-8 for low refractive index layer)
除了將防污劑的配合量改為11.8質量份以外,以與製備例7相同的方式製備低折射率層用塗佈劑L-8。 A coating agent L-8 for a low refractive index layer was prepared in the same manner as in Production Example 7, except that the blending amount of the antifouling agent was changed to 11.8 parts by mass.
在此,在表1示出製備例1~10的配合。另外,表1中記載的略號等詳細內容如下: Here, the blending of Preparation Examples 1 to 10 is shown in Table 1. In addition, the details such as the abbreviations shown in Table 1 are as follows:
〔稀釋溶劑〕 [diluting solvent]
MIBK:甲基異丁基酯 MIBK: methyl isobutyl ester
IPA:異丙醇 IPA: isopropanol
【表1】
〔實施例1〕 [Example 1]
在作為透明塑料基材的、其中一個面具有易接著層之聚對苯二甲酸乙二酯(PET)薄膜(TOYOBO Co.,Ltd.製造,商品名稱:Cosmoshine A4100,厚度50μm)的易接著層的相反側的面利用邁耶棒來塗佈在製備例3中獲得之低折射率層用塗佈劑L-1。在烘箱中以50℃的溫度將其乾燥1分鐘之後,在氮氣氛圍下利用高壓水銀燈照射200mJ/cm2的紫外線,從而形成厚度為35nm的低折射率層,以獲得透明導電膜積層用薄膜。利用ITO靶(氧化錫10質量%)在所獲之透明導電膜積層用薄膜的低折射率層上進行濺鍍,以形成厚度為30nm的透明導電膜,從而製作透明導電性薄膜。另外,依據利用後述分光橢圓偏光儀來進行之測定,透明導電膜的折射率為1.95。並且,因考慮到後述辨識性試驗,從而以殘留有未積層透明導電膜之部分之方式形成透明導電膜。 An easy-to-layer layer of a polyethylene terephthalate (PET) film (manufactured by TOYOBO Co., Ltd., trade name: Cosmoshine A4100, thickness: 50 μm) having an easy-to-adhere layer as one of the transparent plastic substrates The surface of the opposite side was coated with the coating agent L-1 for the low refractive index layer obtained in Preparation Example 3 using a Meyer rod. After drying at 50 ° C for 1 minute in an oven, ultraviolet rays of 200 mJ/cm 2 were irradiated with a high-pressure mercury lamp under a nitrogen atmosphere to form a low refractive index layer having a thickness of 35 nm to obtain a film for a transparent conductive film laminate. A transparent conductive film having a thickness of 30 nm was formed by sputtering on the low refractive index layer of the obtained film for transparent conductive film laminate using an ITO target (10% by mass of tin oxide) to form a transparent conductive film. Further, the refractive index of the transparent conductive film was 1.95 in accordance with measurement by a spectroscopic ellipsometer described later. Further, the transparent conductive film is formed so as to leave a portion where the transparent conductive film is not laminated, in consideration of the identification test described later.
〔實施例2〕 [Example 2]
除了將低折射率層的厚度設為50nm以外,以與實施例1相同的方式製作透明導電性薄膜。 A transparent conductive film was produced in the same manner as in Example 1 except that the thickness of the low refractive index layer was changed to 50 nm.
〔實施例3〕 [Example 3]
在作為透明塑料基材的、其中一個面具有易接著層之聚對苯二甲酸乙二酯(PET)薄膜(TOYOBO Co.,Ltd.製造,商品名稱:Cosmoshine A4100,厚度50μm)的易接著層的相反側的面利用邁耶棒塗佈在製備例4中獲得之低折射率層用塗佈劑L-2。在烘箱中以50℃的溫度將其乾燥20秒之後,以130℃的溫度加熱40秒鐘將其硬化,以形成厚度為35nm的低折射率層, 從而獲得透明導電膜積層用薄膜。利用ITO靶(氧化錫10質量%)在所獲之透明導電膜積層用薄膜的低折射率層上進行濺鍍,以形成厚度為30nm的透明導電膜,從而製作透明導電性薄膜。另外,依據利用後述分光橢圓偏光儀進行之測定,透明導電膜的折射率為1.95。並且,因考慮到後述辨識性試驗,從而以殘留有未積層透明導電膜之部分之方式形成透明導電膜。 An easy-to-layer layer of a polyethylene terephthalate (PET) film (manufactured by TOYOBO Co., Ltd., trade name: Cosmoshine A4100, thickness: 50 μm) having an easy-to-adhere layer as one of the transparent plastic substrates The surface of the opposite side was coated with the coating agent L-2 for the low refractive index layer obtained in Preparation Example 4 using a Meyer bar. After drying in an oven at a temperature of 50 ° C for 20 seconds, it was hardened by heating at a temperature of 130 ° C for 40 seconds to form a low refractive index layer having a thickness of 35 nm. Thus, a film for laminating a transparent conductive film was obtained. A transparent conductive film having a thickness of 30 nm was formed by sputtering on the low refractive index layer of the obtained film for transparent conductive film laminate using an ITO target (10% by mass of tin oxide) to form a transparent conductive film. Further, the refractive index of the transparent conductive film was 1.95 based on measurement by a spectroscopic ellipsometer described later. Further, the transparent conductive film is formed so as to leave a portion where the transparent conductive film is not laminated, in consideration of the identification test described later.
〔實施例4〕 [Example 4]
除了作為低折射率層用塗佈劑使用了在製備例5中獲得之低折射率層用塗佈劑L-3以外,以與實施例1相同的方式製作透明導電性薄膜。 A transparent conductive film was produced in the same manner as in Example 1 except that the coating agent L-3 for a low refractive index layer obtained in Preparation Example 5 was used as a coating agent for a low refractive index layer.
〔實施例5〕 [Example 5]
除了作為低折射率層用塗佈劑使用了在製備例6中獲得之低折射率層用塗佈劑L-4以外,以與實施例1相同的方式製作透明導電性薄膜。 A transparent conductive film was produced in the same manner as in Example 1 except that the coating agent L-4 for a low refractive index layer obtained in Preparation Example 6 was used as a coating agent for a low refractive index layer.
〔實施例6〕 [Example 6]
除了作為低折射率層用塗佈劑使用了在製備例7中獲得之低折射率層用塗佈劑L-5以外,以與實施例1相同的方式製作透明導電性薄膜。 A transparent conductive film was produced in the same manner as in Example 1 except that the coating agent L-5 for a low refractive index layer obtained in Preparation Example 7 was used as a coating agent for a low refractive index layer.
〔實施例7〕 [Example 7]
除了作為透明塑料基材使用其中一面具有高折射率性的易接著層,另一面具有低干涉性的易接著層之聚對苯二甲酸乙二酯(PET)薄膜(MITSUBISHI PLASICS Inc製造,商品名稱:DIAFOIL O 901,厚度為125μm),並且在該薄膜的具有高折射率性的易接著層之面塗佈低折射率層用塗佈劑以外,以 與實施例1相同的方式製作透明導電性薄膜。 In addition to being used as a transparent plastic substrate, an easy-to-adhere layer having a high refractive index on one side and a polyethylene terephthalate (PET) film having a low interfering layer on the other side (manufactured by MITSUBISHI PLASICS Inc., trade name) : DIAFOIL O 901, having a thickness of 125 μm), and coating a coating agent for a low refractive index layer on the surface of the film having an adhesive layer having high refractive index, A transparent conductive film was produced in the same manner as in Example 1.
〔實施例8〕 [Example 8]
在作為透明塑料基材的、其中一個面具有易接著層之聚對苯二甲酸乙二酯(PET)薄膜(TOYOBO Co.,Ltd.製造,商品名稱:Cosmoshine A4100,厚度125μm)的易接著層的相反側的面利用邁耶棒塗佈在製備例1中獲得之高折射率層用塗佈劑H-1。在烘箱中以50℃的溫度將其乾燥1分鐘之後,在氮氣氛圍下利用高壓水銀燈照射200mJ/cm2的紫外線,從而形成厚度為50nm的高折射率層。而且,利用邁耶棒在高折射率層上塗佈在製備例3中獲得之低折射率層用塗佈劑L-1。在烘箱中以50℃的溫度將其乾燥1分鐘之後,在氮氣氛圍下利用高壓水銀燈照射200mJ/cm2的紫外線,以形成厚度為35nm的低折射率層,從而獲得透明導電膜積層用薄膜。利用ITO靶(氧化錫10質量%)在所獲之透明導電膜積層用薄膜的低折射率層上進行濺鍍,以形成厚度為30nm的透明導電膜,從而製作透明導電性薄膜。另外,依據利用後述分光橢圓偏光儀進行之測定,透明導電膜的折射率為1.95。並且,因考慮到後述辨識性試驗,從而以殘留有未積層透明導電膜之部分之方式形成透明導電膜。 An easy-to-layer layer of a polyethylene terephthalate (PET) film (manufactured by TOYOBO Co., Ltd., trade name: Cosmoshine A4100, thickness: 125 μm) having an easy-to-adhere layer as one of the transparent plastic substrates The surface of the opposite side was coated with the coating agent H-1 for high refractive index layer obtained in Preparation Example 1 using a Meyer bar. After drying at 50 ° C for 1 minute in an oven, ultraviolet rays of 200 mJ/cm 2 were irradiated with a high-pressure mercury lamp under a nitrogen atmosphere to form a high refractive index layer having a thickness of 50 nm. Further, the coating agent L-1 for a low refractive index layer obtained in Preparation Example 3 was coated on the high refractive index layer using a Meyer rod. After drying at 50 ° C for 1 minute in an oven, ultraviolet rays of 200 mJ/cm 2 were irradiated with a high-pressure mercury lamp under a nitrogen atmosphere to form a low refractive index layer having a thickness of 35 nm, thereby obtaining a film for a transparent conductive film laminate. A transparent conductive film having a thickness of 30 nm was formed by sputtering on the low refractive index layer of the obtained film for transparent conductive film laminate using an ITO target (10% by mass of tin oxide) to form a transparent conductive film. Further, the refractive index of the transparent conductive film was 1.95 based on measurement by a spectroscopic ellipsometer described later. Further, the transparent conductive film is formed so as to leave a portion where the transparent conductive film is not laminated, in consideration of the identification test described later.
〔實施例9〕 [Example 9]
除了作為透明塑料基材使用其中一面具有高折射率性的易接著層,另一面具有低干涉性的易接著層之聚對苯二甲酸乙二酯(PET)薄膜(MITSUBISHI PLASICS Inc製造,商品名稱:DIAFOIL O 901,厚度為125μm),且在該薄膜的具有高 折射率性的易接著層之面塗佈高折射率層用塗佈劑,而且作為高折射率層用塗佈劑使用在製備例2中獲得之高折射率層用塗佈劑H-2以外,以與實施例8相同的方式製作透明導電性薄膜。 In addition to being used as a transparent plastic substrate, an easy-to-adhere layer having a high refractive index on one side and a polyethylene terephthalate (PET) film having a low interfering layer on the other side (manufactured by MITSUBISHI PLASICS Inc., trade name) :DIAFOIL O 901, thickness 125 μm), and has a high in the film The coating agent for a high refractive index layer is applied to the surface of the refractive index-sensitive adhesive layer, and the coating agent H2 for high refractive index layer obtained in Preparation Example 2 is used as a coating agent for a high refractive index layer. A transparent conductive film was produced in the same manner as in Example 8.
〔比較例1〕 [Comparative Example 1]
除了將低折射率層的厚度設為80nm以外,以與實施例1相同的方式製作透明導電性薄膜。 A transparent conductive film was produced in the same manner as in Example 1 except that the thickness of the low refractive index layer was changed to 80 nm.
〔比較例2〕 [Comparative Example 2]
除了作為低折射率層用塗佈劑使用了在製備例8中獲得之低折射率層用塗佈劑L-6以外,以與實施例1相同的方式製作透明導電性薄膜。 A transparent conductive film was produced in the same manner as in Example 1 except that the coating agent L-6 for a low refractive index layer obtained in Preparation Example 8 was used as a coating agent for a low refractive index layer.
〔比較例3〕 [Comparative Example 3]
除了作為低折射率層用塗佈劑使用了在製備例9中獲得之低折射率層用塗佈劑L-7以外,以與實施例1相同的方式製作透明導電性薄膜。 A transparent conductive film was produced in the same manner as in Example 1 except that the coating agent L-7 for a low refractive index layer obtained in Preparation Example 9 was used as a coating agent for a low refractive index layer.
〔比較例4〕 [Comparative Example 4]
除了作為低折射率層用塗佈劑使用了在製備例10中獲得之低折射率層用塗佈劑L-8以外,以與實施例1相同的方式製作透明導電性薄膜。 A transparent conductive film was produced in the same manner as in Example 1 except that the coating agent L-8 for a low refractive index layer obtained in Preparation Example 10 was used as a coating agent for a low refractive index layer.
〔試驗例1〕(折射率的測定) [Test Example 1] (Measurement of refractive index)
將在製備例1~10中獲得之高折射率層用塗佈劑及低折射率層用塗佈劑分別塗佈到在其中一個面具有易接著層之聚對苯二甲酸乙二酯(PET)薄膜(TOYOBO Co.,Ltd.製造,商品名稱:Cosmoshine A4100,厚度為50μm)的易接著層的相反側的面,並以與實施例及比較例相同的條件形成低折射率層及 高折射率層。 The coating agent for a high refractive index layer and the coating agent for a low refractive index layer obtained in Preparation Examples 1 to 10 were respectively applied to polyethylene terephthalate (PET) having an easy adhesion layer on one surface thereof. a film (manufactured by TOYOBO Co., Ltd., trade name: Cosmoshine A4100, thickness: 50 μm) on the opposite side of the easy-adhesion layer, and a low refractive index layer was formed under the same conditions as in the examples and the comparative examples. High refractive index layer.
以測定波長為589nm、測定溫度23℃的條件,利用分光橢圓偏光儀(J.A.WOOLLAM Co.,Ltd.製造,產品名稱:M-2000)來測定所獲之低折射率層及高折射率層的折射率。進行測定時,用砂紙擦拭形成低折射率層或高折射率層之面的相反面,並且用油性筆(ZEBRA Co.,Ltd.製造,mack黑色)塗黑來進行測定。採用波長589nm下的折射率。在表2中示出結果。 The obtained low refractive index layer and high refractive index layer were measured by a spectroscopic ellipsometer (manufactured by JAWOOLLAM Co., Ltd., product name: M-2000) under the conditions of a measurement wavelength of 589 nm and a measurement temperature of 23 ° C. Refractive index. In the measurement, the opposite side of the surface on which the low refractive index layer or the high refractive index layer was formed was wiped with a sandpaper, and the measurement was performed by black coating with an oil-based pen (manufactured by ZEBRA Co., Ltd., mack black). A refractive index at a wavelength of 589 nm is used. The results are shown in Table 2.
並且,利用上述分光橢圓偏光儀以上述條件測定了其中一面具有高折射率性的易接著層,另一面具有低干涉性的易接著層之聚對苯二甲酸乙二酯(PET)薄膜(MITSUBISHI PLASICS Inc製造,商品名稱:DIAFOIL O 901,厚度為125μm)的易接著層的折射率。在表2中示出結果。 Further, a polyethylene terephthalate (PET) film having an easy adhesion layer having a high refractive index on one side and an easy adhesion layer having a low interference property on the other side (MITSUBISHI) was measured by the above-described spectroscopic ellipsometer. The refractive index of the easy-adhesion layer manufactured by PLASICS Inc., trade name: DIAFOIL O 901, thickness 125 μm). The results are shown in Table 2.
〔試驗例2〕(低折射率層的表面積增加率的測定) [Test Example 2] (Measurement of surface area increase rate of low refractive index layer)
對於在實施例及比較例中獲得之各透明導電性薄膜,利用雷射顯微放大裝置(KEYENCE Co.,Ltd.製造,產品名稱:VK-9700),以900倍的倍率獲取低折射率層中透明塑料基材的相反側的面的圖像。 For each of the transparent conductive films obtained in the examples and the comparative examples, a low refractive index layer was obtained at a magnification of 900 times using a laser microscopic magnification device (manufactured by KEYENCE Co., Ltd., product name: VK-9700). An image of the face on the opposite side of the transparent plastic substrate.
在所獲取之圖像上任意選擇4.992μm的四方的正方形區域,並測定與該正方形的一個邊相對應之低折射率層的該面上之表面長度,將此作為縱向的表面長度。而且,測定與該一邊正交之另一個邊相對應之低折射率層的該面上之表面長度,將其作為橫向的表面長度。 A square area of 4.992 μm square was arbitrarily selected on the acquired image, and the surface length of the surface of the low refractive index layer corresponding to one side of the square was measured, which was taken as the longitudinal surface length. Further, the surface length of the surface of the low refractive index layer corresponding to the other side orthogonal to the one side was measured, and this was taken as the lateral surface length.
再進行2次該種正方形的選取及表面長度的測定。依據所獲之三個縱向的表面長度計算其平均值,並且依據所獲 之三個橫向的表面長度計算其平均值。將該等平均值的積作為實際表面積,並藉由下式(I)計算表面積增加率。在表2中示出結果。 The selection of the square and the measurement of the surface length were carried out twice. Calculate the average value based on the obtained three longitudinal surface lengths, and obtain The average of the three lateral surface lengths is calculated. The product of the average values was taken as the actual surface area, and the surface area increase rate was calculated by the following formula (I). The results are shown in Table 2.
〔試驗例3〕(透明導電膜的電阻值的測定) [Test Example 3] (Measurement of Resistance Value of Transparent Conductive Film)
利用ITO靶(氧化錫10質量%)在實施例及比較例中獲得之各透明導電膜積層用薄膜的低折射率層上進行濺鍍之後,以150℃的溫度進行30分鐘退火,以使ITO結晶化。 After sputtering on the low refractive index layer of each of the transparent conductive film laminate films obtained in the examples and the comparative examples, the ITO target (tin oxide 10% by mass) was annealed at a temperature of 150 ° C for 30 minutes to form ITO. Crystallization.
將該樣品放到玻璃板上,並使用安裝有探針(MITSUBISHI CHEMICAL ANALYTECH Co.,Ltd.製造,四探針ASP探針,產品名稱:MCP-TP03P)之電阻率計(MITSUBISHI CHEMICAL ANALYTECH Co.,Ltd.製造,產品名稱:Loresta-AX)來測定透明導電膜的電阻值。在表2中示出結果。另外,電阻值為400Ω/□以下時,判斷為良好。 The sample was placed on a glass plate, and a resistivity meter (MITSUBISHI CHEMICAL ANALYTECH Co.) equipped with a probe (manufactured by MITSUBISHI CHEMICAL ANALYTECH Co., Ltd., four-probe ASP probe, product name: MCP-TP03P) was used. , manufactured by Ltd., product name: Loresta-AX) to determine the resistance value of the transparent conductive film. The results are shown in Table 2. Further, when the resistance value was 400 Ω/□ or less, it was judged to be good.
〔試驗例4〕(不可見化性能的評價) [Test Example 4] (Evaluation of invisibility performance)
對於在實施例及比較例中獲得之各透明導電性薄膜,利用分光光度計(SHIMADZU Co.,Ltd.製造,產品名稱:UV-3600)來分別測定設置有透明導電膜之部分及沒有設置透明導電膜之部分在波長400nm下的反射率(単位:%)。計算設置有透明導電膜之部分及沒有設置透明導電膜之部分的反射率差,並求出其絕對值。在表2中示出結果。 For each of the transparent conductive films obtained in the examples and the comparative examples, a portion provided with a transparent conductive film and a transparent portion were separately measured by a spectrophotometer (manufactured by SHIMADZU Co., Ltd., product name: UV-3600). The reflectance (単: %) of a portion of the conductive film at a wavelength of 400 nm. The difference in reflectance between the portion where the transparent conductive film is provided and the portion where the transparent conductive film is not provided is calculated, and the absolute value thereof is obtained. The results are shown in Table 2.
而且,依據反射率差的絕對值,按以下所示基準 評價不可見化性能。在表2中示出評價結果。 Moreover, according to the absolute value of the reflectance difference, the following criteria are used. Evaluate invisibility performance. The evaluation results are shown in Table 2.
○:反射率差的絕對值為0~7 ○: The absolute value of the reflectance difference is 0~7
△:反射率差的絕對值為7~9 △: The absolute value of the reflectance difference is 7~9
×:反射率差的絕對值超過9 ×: The absolute value of the reflectance difference exceeds 9
並且,不可見化性能亦能夠藉由肉眼評價。以使透明導電膜朝白色熒光燈側之方式將在實施例及比較例中獲得之各透明導電性薄膜設置到距白色熒光灯(27W;3波長)為1m的位置。在向透明導電性薄膜投射白色熒光燈之狀態下,從距離在設置有白色熒光燈之相同一側之透明導電性薄膜為30cm的位置,肉眼觀察積層有透明導電性薄膜的透明導電膜之端部附近。之後,按照以下所示基準評價積層有透明導電膜之部位和沒有積層透明導電膜之部位之間的邊界(有無透明導電膜的邊界)色調有無變化。在表2中示出結果。 Moreover, the invisibility performance can also be evaluated by the naked eye. Each of the transparent conductive films obtained in the examples and the comparative examples was placed at a position of 1 m from the white fluorescent lamp (27 W; 3 wavelength) so that the transparent conductive film faced the white fluorescent lamp side. In the state where the white fluorescent lamp was projected onto the transparent conductive film, the end portion of the transparent conductive film in which the transparent conductive film was laminated was visually observed from a position at a distance of 30 cm from the transparent conductive film on the same side where the white fluorescent lamp was provided. . Thereafter, the boundary between the portion where the transparent conductive film was laminated and the portion where the transparent conductive film was not laminated (the boundary of the transparent conductive film) was evaluated as follows according to the following criteria. The results are shown in Table 2.
○:在有無透明導電膜之邊界看不到色調的変化。 ○: No change in color tone was observed at the boundary of the presence or absence of the transparent conductive film.
△:在有無透明導電膜之邊界看到一些色調的変化。 △: Some color tone is seen at the boundary of the presence or absence of the transparent conductive film.
×:在有無透明導電膜之邊界看到色調的変化。 ×: The color tone was observed at the boundary of the presence or absence of the transparent conductive film.
〔試驗例5〕(低折射率層的表面自由能的測定) [Test Example 5] (Measurement of surface free energy of low refractive index layer)
對於在實施例及比較例中所獲得之各透明導電膜積層用薄膜,測定各種液滴相對於存在低折射率層之面之接觸角,以該值為基礎藉由北崎.畑(Kitazaki-Hata)理論求出低折射率層的表面自由能(mJ/m2)。使用接觸角計(Kyowa Interface Science Co.,Ltd.製造,DM-701),藉由靜滴法以JIS R3257為準測定接觸角。對於液滴,作為“分散成分”使用二碘甲烷,作為“偶極成分”使用1-溴萘,作為“氫鍵成分”使用蒸餾水。在表 2示出結果。 With respect to the films for the respective transparent conductive film laminates obtained in the examples and the comparative examples, the contact angles of the various droplets with respect to the surface on which the low refractive index layer was present were measured, and the value was based on the Northakis. The surface free energy (mJ/m 2 ) of the low refractive index layer was determined by the Kitazaki-Hata theory. The contact angle was measured by a static drop method in accordance with JIS R3257 using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DM-701). For the droplets, diiodomethane was used as the "dispersion component", 1-bromonaphthalene was used as the "dipole component", and distilled water was used as the "hydrogen bond component". The results are shown in Table 2.
〔試驗例6〕(低折射率層的配線加工性的評價) [Test Example 6] (Evaluation of wiring processability of low refractive index layer)
對於在實施例及比較例中獲得之各透明導電性薄膜的透明導電膜所在之面,以銀漿料(FUJIKURA KASEI Co.,Ltd.製造,商品名稱:FA-401CA)進行絲網印刷,並形成銀漿料寬度為5mm及銀漿料之間的間隔為0.5mm的銀配線。按以下所示基準肉眼評價所形成之銀配線。在表2示出結果。 The surface of the transparent conductive film of each of the transparent conductive films obtained in the examples and the comparative examples was screen-printed with silver paste (manufactured by FUJIKURA KASEI Co., Ltd., trade name: FA-401CA), and A silver wiring having a silver paste width of 5 mm and an interval between silver pastes of 0.5 mm was formed. The silver wiring formed was visually evaluated according to the criteria shown below. The results are shown in Table 2.
○:整齊地形成配線。 ○: Wiring is formed neatly.
×:由於產生漿料的浮起,且端部成為鋸齒形等,因此配線形成得不整齊。 X: Since the floating of the slurry occurs and the end portion has a zigzag shape or the like, the wiring is not formed neatly.
在表2中示出實施例1~9及比較例1~4的結構以及試驗例1~6的測定結果。另外,表2中記載的略號等詳細內容如下: Table 2 shows the structures of Examples 1 to 9 and Comparative Examples 1 to 4 and the measurement results of Test Examples 1 to 6. In addition, the details such as the abbreviations shown in Table 2 are as follows:
〔基材〕 [substrate]
Cosmoshine A4100:在其中一個面具有易接著層之聚對苯二甲酸乙二酯(PET)薄膜(TOYOBO Co.,Ltd.製造,商品名稱:Cosmoshine A4100,厚度為50μm) Cosmoshine A4100: Polyethylene terephthalate (PET) film having an easy-to-adhere layer on one of the faces (manufactured by TOYOBO Co., Ltd., trade name: Cosmoshine A4100, thickness: 50 μm)
DIAFOIL O 901:在其中一面具有高折射率性的易接著層,且在另一面具有低干涉性的易接著層之聚對苯二甲酸乙二酯(PET)薄膜(MITSUBISHI PLASICS Inc製造,商品名稱:DIAFOIL O 901,厚度為125μm) DIAFOIL O 901: a polyethylene terephthalate (PET) film having an easy adhesion layer having a high refractive index on one side and an easy adhesion layer on the other side (manufactured by MITSUBISHI PLASICS Inc., trade name :DIAFOIL O 901, thickness 125μm)
【表2】
從表2可知,在實施例中製作之透明導電性薄膜與比較例相比顯示更低的表面積增加率,並且顯示更高的表面 自由能。而且,在實施例中製作之透明導電性薄膜中透明導電膜的電阻值較低,且顯示出優異之不可見化性能,並且顯示出優異之配線加工性。 As is clear from Table 2, the transparent conductive film produced in the examples showed a lower surface area increase rate than the comparative example, and showed a higher surface. Free Energy. Further, in the transparent conductive film produced in the examples, the transparent conductive film has a low electric resistance value and exhibits excellent invisibility, and exhibits excellent wiring workability.
相對於此,在低折射率層的厚度較厚的比較例1中,圖案的不可見化性能變得不夠充分。並且,在低折射率層的折射率較高的比較例2中,圖案的不可見化性能變得不夠充分。並且,在低折射率層的折射率調整用粒子的含量較高的比較例3中,低折射率層的表面積增加率變大,且透明導電層的電阻值變高。並且,在低折射率層包含含氟化合物之比較例4中,且表面自由能變低,配線加工性變差。 On the other hand, in Comparative Example 1 in which the thickness of the low refractive index layer was thick, the invisibility of the pattern became insufficient. Further, in Comparative Example 2 in which the refractive index of the low refractive index layer was high, the invisibility of the pattern became insufficient. Further, in Comparative Example 3 in which the content of the refractive index adjusting particles in the low refractive index layer is high, the surface area increasing rate of the low refractive index layer is increased, and the resistance value of the transparent conductive layer is increased. Further, in Comparative Example 4 in which the low refractive index layer contains a fluorine-containing compound, the surface free energy was lowered, and wiring workability was deteriorated.
本發明適於生產用於靜電容量式觸摸面板的透明導電性薄膜。 The present invention is suitable for producing a transparent conductive film for an electrostatic capacity type touch panel.
1‧‧‧透明導電膜積層用薄膜 1‧‧‧Transparent film for transparent conductive film
2‧‧‧透明塑料基材 2‧‧‧Transparent plastic substrate
3‧‧‧高折射率層 3‧‧‧High refractive index layer
4‧‧‧低折射率層 4‧‧‧Low refractive index layer
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049828A JP6419610B2 (en) | 2015-03-12 | 2015-03-12 | Film for laminating transparent conductive film, method for producing the same, and transparent conductive film |
JP2015-049828 | 2015-03-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201637842A true TW201637842A (en) | 2016-11-01 |
TWI696554B TWI696554B (en) | 2020-06-21 |
Family
ID=56982023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105105221A TWI696554B (en) | 2015-03-12 | 2016-02-23 | Thin film for transparent conductive film stacking, manufacturing method thereof, and transparent conductive film |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6419610B2 (en) |
KR (1) | KR102547451B1 (en) |
CN (1) | CN105976895B (en) |
TW (1) | TWI696554B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6628974B2 (en) * | 2015-03-30 | 2020-01-15 | リンテック株式会社 | Transparent conductive film |
JP6441973B2 (en) * | 2017-01-24 | 2018-12-19 | 星和電機株式会社 | Substrate protective film and adhesion preventing member |
US11815957B2 (en) * | 2019-12-10 | 2023-11-14 | Asahi Kasei Kabushiki Kaisha | Conductive film and roll thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006195077A (en) * | 2005-01-12 | 2006-07-27 | Idemitsu Kosan Co Ltd | A transparent conductive film laminated substrate provided with Al wiring and a method for manufacturing the same. |
JP5352644B2 (en) * | 2006-03-30 | 2013-11-27 | 富士フイルム株式会社 | Manufacturing method of optical film |
JP2010002750A (en) * | 2008-06-20 | 2010-01-07 | Bridgestone Corp | Method of manufacturing filter for display |
JP5621486B2 (en) * | 2009-10-06 | 2014-11-12 | 三菱化学株式会社 | Method for producing silica-based porous body |
JP5601264B2 (en) * | 2011-03-30 | 2014-10-08 | Jnc株式会社 | Transparent conductive film and manufacturing method |
JP2013097562A (en) * | 2011-10-31 | 2013-05-20 | Teijin Dupont Films Japan Ltd | Laminate for capacitive touch panel electrode |
CN104067352B (en) * | 2012-01-31 | 2015-07-15 | 东丽薄膜先端加工股份有限公司 | Transparent conductive film, touch panel, and display device |
KR102021630B1 (en) * | 2012-02-03 | 2019-09-16 | 키모토 컴파니 리미티드 | Base with transparent conductive film and touch panel |
CN104334342B (en) * | 2012-06-06 | 2016-03-09 | 东丽株式会社 | The manufacture method of the laminated body of laminated body, conductive laminate and touch panel and coating composition and this coating composition of use |
JP6001943B2 (en) * | 2012-07-17 | 2016-10-05 | 株式会社カネカ | Substrate for conductive material with inorganic thin film, substrate with transparent electrode, and manufacturing method thereof |
KR101525286B1 (en) * | 2012-09-03 | 2015-06-02 | (주)엘지하우시스 | Coating composition for high refractive layer and transparent conductive film including the same |
JP5962995B2 (en) * | 2012-12-13 | 2016-08-03 | 東レフィルム加工株式会社 | Base film for transparent conductive film for touch panel and transparent conductive film for touch panel |
JP6166930B2 (en) | 2013-03-29 | 2017-07-19 | リンテック株式会社 | Transparent conductive film |
-
2015
- 2015-03-12 JP JP2015049828A patent/JP6419610B2/en active Active
-
2016
- 2016-02-23 TW TW105105221A patent/TWI696554B/en active
- 2016-03-01 CN CN201610115875.5A patent/CN105976895B/en active Active
- 2016-03-09 KR KR1020160028496A patent/KR102547451B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6419610B2 (en) | 2018-11-07 |
KR20160110200A (en) | 2016-09-21 |
CN105976895B (en) | 2019-08-06 |
CN105976895A (en) | 2016-09-28 |
KR102547451B1 (en) | 2023-06-23 |
TWI696554B (en) | 2020-06-21 |
JP2016168736A (en) | 2016-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI631012B (en) | Transparent conductive film having protection film | |
CN105829999B (en) | Optical sheet, conductive sheet, and display device including the optical sheet | |
TWI460742B (en) | Transparent conductive film | |
KR101540159B1 (en) | Method for fabricating transparent conductive film | |
TWI564586B (en) | Film for laminating transparent conductive coatings, method of producing the same, and transparent conductive film | |
JPWO2012005271A1 (en) | Transparent conductive film and manufacturing method | |
TWI694004B (en) | Transparent conductive film | |
KR20120106603A (en) | Transparent conductive film and touch panel | |
TWI619125B (en) | Transparent conductive film for electrostatic capacitance type touch panel | |
KR20160117165A (en) | Transparent conductive film | |
TW201636216A (en) | Transparent conductive film | |
KR102193536B1 (en) | The film for stacking of transparent conductive layer and transparent conductive film | |
TW201637842A (en) | Film for stacking transparent conductive layer, manufacturing method thereof and transparent conductive film | |
JP2015535859A (en) | High refractive layer coating composition and transparent conductive film | |
KR20140048675A (en) | Transparent conductive film with excellent visibility and manufacturing method thereof | |
JPWO2016051247A1 (en) | Anti-Newton ring laminate and capacitive touch panel using the anti-Newton ring laminate | |
KR20160150499A (en) | The conductive film | |
JP2015166184A (en) | Transparent conductive film and touch panel |