TW201634908A - Polarized light measuring device and polarized light irradiation device - Google Patents
Polarized light measuring device and polarized light irradiation device Download PDFInfo
- Publication number
- TW201634908A TW201634908A TW104130245A TW104130245A TW201634908A TW 201634908 A TW201634908 A TW 201634908A TW 104130245 A TW104130245 A TW 104130245A TW 104130245 A TW104130245 A TW 104130245A TW 201634908 A TW201634908 A TW 201634908A
- Authority
- TW
- Taiwan
- Prior art keywords
- polarized light
- polarizing element
- light
- unit
- polarizing
- Prior art date
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Liquid Crystal (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
本發明是有關於一種偏光光測定裝置、及偏光光照射裝置。The present invention relates to a polarized light measuring device and a polarized light irradiating device.
在進行液晶顯示元件的配向膜(oriented film)、或視角補償膜(film)的配向膜等的配向處理時,對被照射體照射規定波長的偏光光。 這種配向處理方法被稱爲光配向(optical alignment)法。 爲了進行廣範圍的配向處理而需要長的偏光元件,但難以製造長的偏光元件。 因此,使用呈直線狀排列設置的多個偏光元件進行配向處理。 然而,如果使用多個偏光元件,則可能會因安裝誤差等而導致照射至被照射體的偏光光的偏光方向産生不均。 因此,提出有如下技術:使用被稱爲檢偏元件(analyzer)的偏光元件(polarizer)來測定偏光光的偏光方向的不均,並基於測定結果而進行偏光方向的調整。When an alignment process of an alignment film of a liquid crystal display element or an alignment film of a viewing angle compensation film or the like is performed, the object to be irradiated is irradiated with polarized light of a predetermined wavelength. This alignment treatment method is called an optical alignment method. A long polarizing element is required in order to perform a wide range of alignment processing, but it is difficult to manufacture a long polarizing element. Therefore, the alignment treatment is performed using a plurality of polarizing elements arranged in a line. However, if a plurality of polarizing elements are used, unevenness in the polarization direction of the polarized light that is irradiated onto the object to be irradiated may occur due to an installation error or the like. Therefore, there has been proposed a technique of measuring the unevenness of the polarization direction of the polarized light using a polarizer called an analyzer, and adjusting the polarization direction based on the measurement result.
此處,在使用光配向法的情况下,優選也測定照射至被照射體的偏光光的光量。 在測定偏光光的光量的情况下,如果安裝有檢偏元件,則無法準確地測定偏光光的光量。 因此,在測定偏光光的偏光方向時,作業人員將檢偏元件安裝於檢測部,且在測定偏光光的光量時,作業人員將檢偏元件從檢測部卸除。 然而,如果作業人員進行檢偏元件的安裝及卸除,則在測定偏光光的偏光方向時,有産生由安裝誤差所導致的測定誤差的擔憂。Here, in the case of using the photo-alignment method, it is preferable to measure the amount of light of the polarized light that is irradiated onto the object to be irradiated. When the amount of the polarized light is measured, if the analyzer is mounted, the amount of the polarized light cannot be accurately measured. Therefore, when measuring the polarization direction of the polarized light, the operator attaches the analyzer to the detecting unit, and when measuring the amount of the polarized light, the operator removes the analyzer from the detecting unit. However, if the operator attaches and removes the analyzer, the measurement error caused by the mounting error may occur when the polarization direction of the polarized light is measured.
另外,爲了測定偏光方向,提出有使用線狀體延伸的方向(透過軸的角度)不同的多種檢偏元件的技術。 然而,如果使用多種檢偏元件,則會導致偏光光測定裝置的大型化或高成本化。 另外,因爲偏光方向的測定精度取决於檢偏元件的種類的數量,所以有無法進行精度高的測定的擔憂。 因此,期望開發可精度佳地測定偏光光的偏光方向及偏光光的光量的技術。 [現有技術文獻]Further, in order to measure the polarization direction, a technique of using a plurality of types of analyzers in which the direction in which the linear bodies extend (the angle of the transmission axis) is different has been proposed. However, if a plurality of types of analyzers are used, the size and cost of the polarized light measuring device can be increased. Further, since the measurement accuracy of the polarization direction depends on the number of types of the analyzer, there is a concern that measurement with high accuracy cannot be performed. Therefore, it is desired to develop a technique capable of accurately measuring the polarization direction of polarized light and the amount of polarized light. [Prior Art Literature]
[專利文獻] [專利文獻1]日本專利特開2014-10388號公報 [專利文獻2]日本專利特開2007-127567號公報[Patent Document 1] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei.
[發明所欲解決之課題][Problems to be solved by the invention]
本發明所要解决的課題在於提供一種可精度佳地測定偏光光的偏光方向及偏光光的光量的偏光光測定裝置、及偏光光照射裝置。 [解決課題之手段]An object of the present invention is to provide a polarized light measuring device and a polarized light irradiating device which can accurately measure the polarizing direction of polarized light and the amount of polarized light. [Means for solving the problem]
本發明的偏光光測定裝置具備:第一偏光元件,供偏光光入射;旋轉部,使所述第一偏光元件沿旋轉方向移動;光電轉換部,輸出與所接收到的光的光量對應的電信號;及移動部,使所述第一偏光元件在第一位置與第二位置之間移動,所述第一位置是使所述偏光光經由所述第一偏光元件入射至所述光電轉換部,所述第二位置是使所述偏光光直接入射至所述光電轉換部。 [發明的效果]The polarized light measuring apparatus according to the present invention includes: a first polarizing element that supplies incident polarized light; a rotating unit that moves the first polarizing element in a rotational direction; and a photoelectric conversion unit that outputs electric power corresponding to the amount of received light. And a moving portion that moves the first polarizing element between a first position and a second position, the first position being such that the polarized light is incident on the photoelectric conversion unit via the first polarizing element The second position is such that the polarized light is directly incident on the photoelectric conversion portion. [Effects of the Invention]
根據本發明的實施方式,可提供一種可精度佳地測定偏光光的偏光方向及偏光光的光量的偏光光測定裝置、及偏光光照射裝置。According to the embodiment of the present invention, it is possible to provide a polarized light measuring device and a polarized light irradiating device which can accurately measure the polarizing direction of the polarized light and the amount of the polarized light.
實施方式的發明是一種偏光光測定裝置,該偏光光測定裝置具備:第一偏光元件,供偏光光入射;旋轉部,使所述第一偏光元件沿旋轉方向移動;光電轉換部,輸出與所接收到的光的光量對應的電信號;及移動部,使所述第一偏光元件在第一位置與第二位置之間移動,所述第一位置是使所述偏光光經由所述第一偏光元件入射至所述光電轉換部,所述第二位置是使所述偏光光直接入射至所述光電轉換部。 根據該偏光光測定裝置,能夠精度佳地測定偏光光的偏光方向及偏光光的光量。The invention of the embodiment is a polarized light measuring device including: a first polarizing element for incident polarized light; a rotating portion for moving the first polarizing element in a rotational direction; and a photoelectric conversion unit for outputting An electric signal corresponding to the amount of received light; and a moving portion moving the first polarizing element between the first position and the second position, wherein the first position is to cause the polarized light to pass through the first The polarizing element is incident on the photoelectric conversion portion, and the second position is such that the polarized light is directly incident on the photoelectric conversion portion. According to the polarized light measuring device, the polarization direction of the polarized light and the amount of the polarized light can be accurately measured.
所述移動部在測定所述偏光光的偏光方向時,可使所述第一偏光元件移動至所述第一位置。 所述移動部在測定所述偏光光的光量時,可使所述第一偏光元件移動至所述第二位置。 如此一來,與作業人員進行第一偏光元件的安裝及卸除的情况相比,可顯著地提高再現性。The moving portion may move the first polarizing element to the first position when measuring a polarization direction of the polarized light. The moving portion may move the first polarizing element to the second position when measuring the amount of the polarized light. As a result, the reproducibility can be remarkably improved as compared with the case where the operator attaches and detaches the first polarizing element.
另外,設置於所述第一偏光元件的多個線狀體可設爲含有矽(silicon)。 如此一來,可提高消光比(extinction ratio),因此,可精度更佳地測定偏光光的偏光方向。Further, the plurality of linear bodies provided in the first polarizing element may be made to contain silicon. In this way, the extinction ratio can be increased, and therefore, the polarization direction of the polarized light can be measured with higher accuracy.
實施方式的發明是一種偏光光照射裝置,該偏光光照射裝置具備:光源,具有沿規定方向延伸的形態;多個第二偏光元件,沿所述光源延伸的方向排列設置,且使從所述光源出射的光爲偏光光;及所述偏光光測定裝置,設置於與所述多個第二偏光元件的所述光源側相反的一側。 根據該偏光光照射裝置,可精度佳地測定偏光光的偏光方向及偏光光的光量。 因此,可提高生産性。The invention of the embodiment is a polarized light irradiation device including: a light source having a shape extending in a predetermined direction; and a plurality of second polarizing elements arranged in a direction in which the light source extends, and from the The light emitted from the light source is polarized light; and the polarized light measuring device is disposed on a side opposite to the light source side of the plurality of second polarizing elements. According to the polarized light irradiation device, the polarization direction of the polarized light and the amount of the polarized light can be accurately measured. Therefore, productivity can be improved.
另外,設置於所述第二偏光元件的多個線狀體可設爲含有矽。 如此一來,可提高消光比,因此,可精度更佳地測定偏光光的偏光方向。Further, the plurality of linear bodies provided in the second polarizing element may be made to contain germanium. In this way, the extinction ratio can be increased, and therefore, the polarization direction of the polarized light can be measured with higher accuracy.
以下,一邊參照附圖,一邊對實施方式進行例示。此外,在各附圖中,對相同的構成要素標注相同的符號,並適當省略詳細的說明。 此外,各圖中的箭頭X、箭頭Y表示相互正交的兩個方向,例如,箭頭X設爲被照射體200的搬送方向。 另外,被照射體200例如可設爲具有液晶顯示元件或視角補償膜等的配向膜。 但是,被照射體200並非限定於所例示者,只要爲使用光配向法進行配向處理的被照射體即可。Hereinafter, embodiments will be exemplified with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and the detailed description is omitted as appropriate. In addition, the arrow X and the arrow Y in each figure show the two directions orthogonal to each other, for example, the arrow X is the conveyance direction of the to-be-illuminated body 200. Further, the object to be irradiated 200 can be, for example, an alignment film having a liquid crystal display element or a viewing angle compensation film. However, the object to be irradiated 200 is not limited to those exemplified, and may be an object to be irradiated which is subjected to alignment treatment using a photo-alignment method.
圖1是用以例示本實施方式的偏光光測定裝置1、及偏光光照射裝置100的示意立體圖。 圖2是用以例示本實施方式的偏光光測定裝置1的示意剖視圖。 此外,圖2是圖1的A-A線剖視圖。 圖3是用以例示偏光部102的示意俯視圖。FIG. 1 is a schematic perspective view illustrating a polarization light measuring device 1 and a polarized light irradiation device 100 according to the present embodiment. FIG. 2 is a schematic cross-sectional view illustrating the polarized light measuring apparatus 1 of the present embodiment. 2 is a cross-sectional view taken along line A-A of FIG. 1. FIG. 3 is a schematic plan view illustrating the polarizing section 102.
如圖1所示般,在本實施方式的偏光光照射裝置100中,設置有照射部101、偏光部102、搬送部103、偏光光測定裝置1、及控制部104。As shown in FIG. 1, the polarized light irradiation device 100 of the present embodiment is provided with an illuminating unit 101, a polarizing unit 102, a transport unit 103, a polarized light measuring device 1, and a control unit 104.
首先,對本實施方式的偏光光測定裝置1進行例示。 如圖1、圖2所示般,在偏光光測定裝置1中設置有偏光部2、檢測部3、移動部4、及控制部5。First, the polarized light measuring device 1 of the present embodiment will be exemplified. As shown in FIGS. 1 and 2, the polarized light measuring device 1 is provided with a polarizing unit 2, a detecting unit 3, a moving unit 4, and a control unit 5.
偏光部2具有偏光元件20(相當於第一偏光元件的一例)、保持部21、及移動部22。 在下文中叙述的偏光光Lp入射至偏光元件20。 偏光元件20是在測定偏光光Lp的偏光方向時被使用。偏光元件20有時也被稱爲檢偏元件。 偏光元件20僅使偏光光Lp的向規定方向振動的成分透過而成爲偏光光Lpp。 偏光元件20可設爲線栅(wire grid)型偏光元件。 偏光元件20例如可設爲具有:基板,由石英所構成等;及多個直線狀線狀體,以相互平行的方式設置於基板上。 在此情况下,多個線狀體等間隔地設置。線狀體的間距(pitch)尺寸可設爲入射的光的波長以下。線狀體的間距尺寸優選設爲入射的光的波長的1/3以下。The polarizing unit 2 includes a polarizing element 20 (corresponding to an example of the first polarizing element), a holding unit 21, and a moving unit 22. The polarized light Lp described hereinafter is incident on the polarizing element 20. The polarizing element 20 is used when measuring the polarization direction of the polarized light Lp. The polarizing element 20 is sometimes also referred to as a detecting element. The polarizing element 20 transmits only the component vibrating in the predetermined direction of the polarized light Lp to become the polarized light Lpp. The polarizing element 20 can be set as a wire grid type polarizing element. The polarizing element 20 can be, for example, a substrate made of quartz or the like, and a plurality of linear linear bodies placed on the substrate in parallel with each other. In this case, a plurality of linear bodies are provided at equal intervals. The pitch size of the linear body can be set to be equal to or less than the wavelength of incident light. The pitch size of the linear body is preferably set to be 1/3 or less of the wavelength of the incident light.
線狀體的材料例如可設爲鉻(chrome)或鋁合金(aluminum alloy)等金屬。 此外,一般來說,線狀體由導電性材料形成,但線狀體也可由絕緣性材料或半導體材料形成。 例如,線狀體可由氧化鈦等含有鈦(titanium)的材料、或含有矽的材料等形成。 如在下文中叙述般,從光源101a照射波長處在紫外線的波長區域(例如爲200 nm以上且400 nm以下的波長區域)的光。因此,如果由含有矽的材料形成線狀體,則可提高消光比。即,如果由含有矽的材料形成線狀體,則可提高檢測精度。The material of the linear body can be, for example, a metal such as chrome or aluminum alloy. Further, in general, the linear body is formed of a conductive material, but the linear body may also be formed of an insulating material or a semiconductor material. For example, the linear body may be formed of a material containing titanium such as titanium oxide or a material containing ruthenium or the like. As will be described later, light having a wavelength in a wavelength region of ultraviolet rays (for example, a wavelength region of 200 nm or more and 400 nm or less) is irradiated from the light source 101a. Therefore, if a linear body is formed from a material containing ruthenium, the extinction ratio can be improved. That is, if the linear body is formed of a material containing ruthenium, the detection accuracy can be improved.
保持部21具有主體部21a及保持爪21b。 主體部21a呈板狀。在主體部21a設置有貫通厚度方向的孔21a1。 保持爪21b設置於孔21a的周緣。保持爪21b保持偏光元件20的周緣。 偏光元件20以堵住孔21a的方式設置於主體部21a上,且由保持爪21b保持。 因此,透過偏光元件20的光可通過孔21a1而入射至檢測部3。The holding portion 21 has a main body portion 21a and a holding claw 21b. The main body portion 21a has a plate shape. A hole 21a1 penetrating in the thickness direction is provided in the main body portion 21a. The holding claw 21b is provided on the circumference of the hole 21a. The holding claw 21b holds the periphery of the polarizing element 20. The polarizing element 20 is provided on the main body portion 21a so as to block the hole 21a, and is held by the holding claw 21b. Therefore, light transmitted through the polarizing element 20 can be incident on the detecting portion 3 through the hole 21a1.
移動部22對保持部21予以保持,並使該保持部21向規定方向移動。由於在保持部21設置有偏光元件20,因此可藉由使保持部21移動來使偏光元件20移動。 移動部22例如可設爲具備用以使保持部21向規定方向移動的導引體(guide)、伺服電動機(servo motor)或氣缸(air cylinder)等驅動設備、及檢測保持部21的位置的位置檢測器等。The moving unit 22 holds the holding unit 21 and moves the holding unit 21 in a predetermined direction. Since the polarizing element 20 is provided in the holding portion 21, the polarizing element 20 can be moved by moving the holding portion 21. The moving unit 22 can be, for example, a driving device such as a guide, a servo motor or an air cylinder for moving the holding portion 21 in a predetermined direction, and a position of the detecting and holding unit 21 . Position detector, etc.
移動部22在測定偏光光的光量時,以在光電轉換部30上無妨礙光的入射的物體的方式使保持部21(偏光元件20)移動。 另外,移動部22在測定偏光光的偏光方向時,以使偏光元件20位於光電轉換部30上的方式使保持部21(偏光元件20)移動。 此時,使偏光元件20的中心與從光源101a朝向光電轉換部30的軸R的位置重叠。 即,移動部22使偏光元件20在偏光光Lp經由偏光元件20入射至光電轉換部30的偏光元件20的第一位置、與偏光光Lp直接入射至光電轉換部30的偏光元件20的第二位置之間移動。 在此情况下,移動部22在測定偏光光Lp的偏光方向時使偏光元件20移動至第一位置。移動部22在測定偏光光Lp的光量時使偏光元件20移動至第二位置。When the amount of the polarized light is measured, the moving unit 22 moves the holding unit 21 (the polarizing element 20) so that the photoelectric conversion unit 30 does not interfere with the incident of the light. When the moving unit 22 measures the polarization direction of the polarized light, the moving unit 22 moves the holding unit 21 (the polarizing element 20) so that the polarizing element 20 is positioned on the photoelectric conversion unit 30. At this time, the center of the polarizing element 20 is overlapped with the position from the light source 101a toward the axis R of the photoelectric conversion unit 30. In other words, the moving unit 22 causes the polarizing element 20 to enter the polarized light Lp at the first position of the polarizing element 20 of the photoelectric conversion unit 30 via the polarizing element 20, and the second position of the polarizing element 20 directly incident on the photoelectric conversion unit 30 with the polarized light Lp. Move between positions. In this case, the moving unit 22 moves the polarizing element 20 to the first position when measuring the polarization direction of the polarized light Lp. The moving unit 22 moves the polarizing element 20 to the second position when measuring the amount of light of the polarized light Lp.
檢測部3具有光電轉換部30及旋轉部31。 光電轉換部30設置於保持部21(偏光元件20)的下方(與光源101a側爲相反側)。 光電轉換部30輸出與所接收到的光的光量對應的電信號。光電轉換部30例如可設爲具備光二極管(photodiode)等光電轉換元件。The detecting unit 3 includes a photoelectric conversion unit 30 and a rotating unit 31. The photoelectric conversion unit 30 is provided below the holding portion 21 (polarizing element 20) (opposite to the light source 101a side). The photoelectric conversion unit 30 outputs an electric signal corresponding to the amount of light of the received light. The photoelectric conversion unit 30 can be, for example, a photoelectric conversion element such as a photodiode.
旋轉部31使偏光元件20以從光源101a朝向光電轉換部30的軸R爲中心沿旋轉方向移動。在測定偏光光Lp的偏光方向時,偏光元件20的中心與軸R的位置重叠,因此,旋轉部31可使偏光元件20繞偏光元件20的中心軸旋轉移動。因此,可改變設置於偏光元件20的線狀體延伸的方向。The rotating unit 31 moves the polarizing element 20 in the rotational direction about the axis R from the light source 101a toward the photoelectric conversion unit 30. When the polarization direction of the polarized light Lp is measured, the center of the polarizing element 20 overlaps with the position of the axis R. Therefore, the rotating portion 31 can rotationally move the polarizing element 20 around the central axis of the polarizing element 20. Therefore, the direction in which the linear body provided on the polarizing element 20 extends can be changed.
旋轉部31具有安裝部31a及基部31b。 在安裝部31a的內部設置有光電轉換部30。光電轉換部30的受光面在安裝部31a的一端面露出。 另外,在安裝部31a設置有偏光部2。例如,可在安裝部31a的中心部設置光電轉換部30,且在安裝部31a的周緣部設置移動部22。The rotating portion 31 has a mounting portion 31a and a base portion 31b. A photoelectric conversion unit 30 is provided inside the mounting portion 31a. The light receiving surface of the photoelectric conversion unit 30 is exposed at one end surface of the mounting portion 31a. Further, the polarizing unit 2 is provided in the mounting portion 31a. For example, the photoelectric conversion unit 30 may be provided at the center of the mounting portion 31a, and the moving portion 22 may be provided at the peripheral portion of the mounting portion 31a.
在基部31b的一端部設置有安裝部31a。 基部31b的另一端部安裝於移動部40。 基部31b使安裝部31a以軸R爲中心沿旋轉方向移動。 基部31b例如可設爲具備旋轉台(table)、伺服電動機等驅動設備、及編碼器(encoder)等位置檢測器等。A mounting portion 31a is provided at one end of the base portion 31b. The other end of the base portion 31b is attached to the moving portion 40. The base portion 31b moves the mounting portion 31a in the rotational direction about the axis R. The base portion 31b can be, for example, a drive device such as a table or a servo motor, or a position detector such as an encoder.
移動部4使偏光部2及檢測部3移動。 移動部4具有第一移動部40及第二移動部41。 在第一移動部40安裝有安裝部31a。因此,第一移動部40可使偏光部2及檢測部3向Y方向移動。 在第二移動部41安裝有第一移動部40。因此,第二移動部41可使偏光部2及檢測部3向X方向移動。 第一移動部40及第二移動部41例如可設爲具備位置檢測器的單軸機器人(robot)等。 但是,移動部4的構成並非限定於所例示者。移動部4只要可使偏光部2及檢測部3在規定的平面內(例如水平面內)移動,且可求出已移動的偏光部2及檢測部3的位置即可。The moving unit 4 moves the polarizing unit 2 and the detecting unit 3. The moving unit 4 has a first moving unit 40 and a second moving unit 41. The mounting portion 31a is attached to the first moving portion 40. Therefore, the first moving unit 40 can move the polarizing unit 2 and the detecting unit 3 in the Y direction. The first moving portion 40 is attached to the second moving portion 41. Therefore, the second moving unit 41 can move the polarizing unit 2 and the detecting unit 3 in the X direction. The first moving unit 40 and the second moving unit 41 can be, for example, a single-axis robot or the like including a position detector. However, the configuration of the moving unit 4 is not limited to the illustrated ones. The moving unit 4 may move the polarizing unit 2 and the detecting unit 3 in a predetermined plane (for example, in a horizontal plane), and may obtain the positions of the moved polarizing unit 2 and the detecting unit 3.
控制部5控制設置於偏光光測定裝置1的各要素的動作。 例如,控制部5控制移動部4(第一移動部40及第二移動部41),而使偏光部2及檢測部3移動至所希望的位置。 控制部5控制基部31b,而使偏光元件20繞偏光元件20的中心軸僅旋轉移動規定的角度。 控制部5控制移動部22而使保持部21(偏光元件20)移動。 另外,控制部5基於來自控制部104的指令而進行偏光光Lp的測定。 例如,控制部5基於來自光電轉換部30的輸出、及來自基部31b的旋轉位置信息,而運算偏光光Lp的偏光方向。 另外,控制部5基於來自光電轉換部30的輸出而運算偏光光Lp的光量。 所運算出的偏光光Lp的偏光方向及偏光光Lp的光量既可輸出至未圖示的顯示裝置等,也可向控制部104輸出。 此外,關於偏光光Lp的測定的詳細內容將在下文中進行叙述。 另外,控制部5也可與在下文中叙述的控制部104設置爲一體,控制部104也可兼具控制部5的功能。The control unit 5 controls the operation of each element provided in the polarized light measuring device 1. For example, the control unit 5 controls the moving unit 4 (the first moving unit 40 and the second moving unit 41), and moves the polarizing unit 2 and the detecting unit 3 to a desired position. The control unit 5 controls the base portion 31b to rotate the polarizing element 20 by only a predetermined angle around the central axis of the polarizing element 20. The control unit 5 controls the moving unit 22 to move the holding unit 21 (polarizing element 20). Moreover, the control unit 5 performs measurement of the polarized light Lp based on an instruction from the control unit 104. For example, the control unit 5 calculates the polarization direction of the polarized light Lp based on the output from the photoelectric conversion unit 30 and the rotational position information from the base portion 31b. Moreover, the control unit 5 calculates the amount of light of the polarized light Lp based on the output from the photoelectric conversion unit 30. The polarization direction of the calculated polarization light Lp and the amount of polarization light Lp may be output to a display device (not shown) or the like, or may be output to the control unit 104. Further, details of the measurement of the polarized light Lp will be described below. Further, the control unit 5 may be provided integrally with the control unit 104 described below, and the control unit 104 may also function as the control unit 5.
接下來,返回至圖1對本實施方式的偏光光照射裝置100進行例示。 照射部101具有光源101a及反射器(reflector)101b。 光源101a照射波長處在紫外線的波長區域的光。 從光源101a照射的光是具有各種振動方向成分的所謂的非偏光的光。 光源101a例如可設爲長弧(long arc)型高壓水銀燈(high pressure mercury lamp),該長弧型高壓水銀燈照射256 nm左右的波長的紫外線。 光源101a例如也可設爲長弧型金屬鹵化物燈(metal halide lamp)或熒光燈(fluorescent lamp)等線狀光源。 光源101a例如也可設爲呈直線狀配置有多個如出射紫外線的發光元件(例如發光二極管(light emitting diode)、雷射二極管(laser diode)、有機發光二極管等)、或短弧(short arc)水銀燈般的點狀光源。 光源101a可設爲具有沿規定方向呈直線狀延伸的形態。 光源101a可設置爲沿與搬送被照射體200的方向(X方向)正交的方向(Y方向)延伸。Next, returning to FIG. 1 , the polarized light irradiation device 100 of the present embodiment will be exemplified. The illuminating unit 101 has a light source 101a and a reflector 101b. The light source 101a illuminates light having a wavelength in a wavelength region of ultraviolet rays. The light irradiated from the light source 101a is so-called non-polarized light having various vibration direction components. The light source 101a can be, for example, a long arc type high pressure mercury lamp that irradiates ultraviolet rays having a wavelength of about 256 nm. The light source 101a may be, for example, a linear light source such as a long-circular metal halide lamp or a fluorescent lamp. For example, the light source 101a may have a plurality of light-emitting elements (for example, a light emitting diode, a laser diode, an organic light emitting diode, or the like) that emit ultraviolet rays in a straight line, or a short arc (short arc) ) A point light source like a mercury lamp. The light source 101a can be configured to have a linear shape extending in a predetermined direction. The light source 101a may be provided to extend in a direction (Y direction) orthogonal to a direction (X direction) in which the object 200 to be irradiated is transported.
反射器101b具有一側開口的流槽形狀。 反射器101b的截面形狀可設爲橢圓形的一部分。 反射器101b的內表面爲反射鏡。 於反射器101b的內部設置有光源101a。 光源101a以沿著反射器101b的長度方向的方式配置。 反射器101b使從光源101a射向反射器101b的內表面的光反射並入射至偏光部102。The reflector 101b has a flow channel shape that is open on one side. The cross-sectional shape of the reflector 101b can be set as a part of an ellipse. The inner surface of the reflector 101b is a mirror. A light source 101a is provided inside the reflector 101b. The light source 101a is disposed along the longitudinal direction of the reflector 101b. The reflector 101b reflects the light that is emitted from the light source 101a toward the inner surface of the reflector 101b and enters the polarizing portion 102.
如圖3所示般,偏光部102具有偏光元件102a(相當於第二偏光元件的一例)、保持部件102b、及保持部件102c。 偏光元件102a使從光源101a照射的光爲具有特定偏光方向的偏光光Lp。As shown in FIG. 3, the polarizing unit 102 has a polarizing element 102a (corresponding to an example of a second polarizing element), a holding member 102b, and a holding member 102c. The polarizing element 102a causes the light irradiated from the light source 101a to be the polarized light Lp having a specific polarization direction.
偏光元件102a例如可設爲具有與所述偏光元件20相同的構成。The polarizing element 102a can have, for example, the same configuration as the polarizing element 20.
保持部件102b呈框狀,且保持偏光元件102a的周緣。 偏光元件102a的基板由石英等形成,因此,偏光元件102a的端部等易缺損。因此,保持部件102b是用以保護偏光元件102a而設置。 此外,在難以産生偏光元件102a的缺損等的情况下,無需設置保持部件102b。The holding member 102b has a frame shape and holds the periphery of the polarizing element 102a. Since the substrate of the polarizing element 102a is formed of quartz or the like, the end portion of the polarizing element 102a or the like is easily broken. Therefore, the holding member 102b is provided to protect the polarizing element 102a. Further, in the case where it is difficult to cause a defect or the like of the polarizing element 102a, it is not necessary to provide the holding member 102b.
在保持部件102b的一端面的中央部分設置有半圓狀的凹部102b1。 在保持部件102b的與設置有凹部102b1的端面相對的端面設置有矩形狀的凹部102b2。凹部102b2設置於偏離中央部分的位置(例如保持部件102b的角部附近)。 難以製造長度長的偏光元件102a。因此,偏光元件102a及保持部件102b沿光源101a延伸的方向(Y方向)排列設置有多組。 此外,在多個保持部件102b彼此之間設置有規定的間隙,從而可進行下文中叙述的斜度調整(偏光方向的不均調整)。A semicircular recess 102b1 is provided at a central portion of one end surface of the holding member 102b. A rectangular recessed portion 102b2 is provided on an end surface of the holding member 102b that faces the end surface on which the recessed portion 102b1 is provided. The recess 102b2 is provided at a position deviated from the central portion (for example, in the vicinity of the corner of the holding member 102b). It is difficult to manufacture the polarizing element 102a having a long length. Therefore, the polarizing element 102a and the holding member 102b are arranged in a plurality of groups in the direction in which the light source 101a extends (Y direction). Further, a predetermined gap is provided between the plurality of holding members 102b, so that the slope adjustment (the unevenness of the polarization direction) described later can be performed.
保持部件102c在框部102c1的內部保持多個保持部件102b。 保持部件102c具有框部102c1、支撑部102c2、彈性部102c3、及調整部102c4。 支撑部102c2、彈性部102c3、及調整部102c4是相對於多個保持部件102b的各者而分別設置有一組。 框部102c1呈框狀。框部102c1沿光源101a延伸的方向(Y方向)延伸。The holding member 102c holds a plurality of holding members 102b inside the frame portion 102c1. The holding member 102c has a frame portion 102c1, a support portion 102c2, an elastic portion 102c3, and an adjustment portion 102c4. The support portion 102c2, the elastic portion 102c3, and the adjustment portion 102c4 are provided in a group with respect to each of the plurality of holding members 102b. The frame portion 102c1 has a frame shape. The frame portion 102c1 extends in a direction (Y direction) in which the light source 101a extends.
支撑部102c2呈圓柱狀,且接觸於凹部102b1。 彈性部102c3藉由彈性力而將保持部件102b按壓於支撑部102c2。彈性部102c3具有基部102c3a及盤簧(coil spring)102c3b。 基部102c3a設置於保持部件102c。基部102c3a設置於與凹部102b2相對的位置。 盤簧102c3b設置於基部102c3a與凹部102b1之間。The support portion 102c2 has a cylindrical shape and is in contact with the concave portion 102b1. The elastic portion 102c3 presses the holding member 102b against the support portion 102c2 by an elastic force. The elastic portion 102c3 has a base portion 102c3a and a coil spring 102c3b. The base portion 102c3a is provided to the holding member 102c. The base portion 102c3a is provided at a position opposed to the recess portion 102b2. The coil spring 102c3b is provided between the base portion 102c3a and the recess portion 102b1.
調整部102c4是與彈性部102c3隔離而設置。 調整部102c4例如可設置在相對於保持部件102b的中心線102b3而與彈性部102c3成爲線對稱的位置。 調整部102c4具有基部102c4a及突出部102c4b。 基部102c4a設置於保持部件102c。The adjustment portion 102c4 is provided separately from the elastic portion 102c3. The adjustment portion 102c4 can be provided, for example, at a position that is line symmetrical with the elastic portion 102c3 with respect to the center line 102b3 of the holding member 102b. The adjustment unit 102c4 has a base portion 102c4a and a protruding portion 102c4b. The base portion 102c4a is provided to the holding member 102c.
突出部102c4b設置於基部102c4a。突出部102c4b從基部102c4a突出。突出部102c4b的前端與保持部件102b接觸。突出部102c4b可改變從基部102c4a的突出長度D。 突出部102c4b例如可設爲具有階段性地突出的機構或螺紋機構,且基於偏光光測定裝置1的測定結果而使突出長度D變化。 在此情况下,如果設爲具有螺紋機構的突出部102c4b,則能夠進行連續性的調整,因此,與階段性地突出的突出部相比容易進行微調。 此外,可由作業人員操作突出部102c4b而使突出長度D變化,或者也可藉由設置於突出部102c4b的驅動機構而驅動突出部102c4b來使突出長度D變化。The protruding portion 102c4b is provided at the base portion 102c4a. The protruding portion 102c4b protrudes from the base portion 102c4a. The front end of the protruding portion 102c4b is in contact with the holding member 102b. The protruding portion 102c4b can change the protruding length D from the base portion 102c4a. The protruding portion 102 c 4 b can be, for example, a mechanism or a screw mechanism that protrudes stepwise, and changes the protruding length D based on the measurement result of the polarized light measuring device 1 . In this case, if the protruding portion 102c4b having the screw mechanism is used, the continuity can be adjusted. Therefore, it is easier to finely adjust than the protruding portion that protrudes stepwise. Further, the protrusion length 102 may be changed by the operator operating the protrusion portion 102c4b, or the protrusion portion 102c4b may be driven by the drive mechanism provided in the protrusion portion 102c4b to change the protrusion length D.
藉由一組支撑部102c2、彈性部102c3、及調整部102c4而三點支撑一個保持部件102b。 如圖3所示般,如果使突出部102c4b的突出長度D變化,則能以支撑部102c2爲支點使保持部件102b、進而使偏光元件102a沿旋轉方向移動。如果使偏光元件102a沿旋轉方向移動,則可使設置於偏光元件102a的線狀體延伸的方向變化。 因此,藉由基於偏光光測定裝置1的測定結果來使突出長度D變化,而可針對多個偏光元件102a的每一個來進行偏光方向的不均調整。One holding member 102b is supported at three points by a set of the support portion 102c2, the elastic portion 102c3, and the adjustment portion 102c4. As shown in FIG. 3, when the protruding length D of the protruding portion 102c4b is changed, the holding member 102b and the polarizing element 102a can be moved in the rotational direction with the support portion 102c2 as a fulcrum. When the polarizing element 102a is moved in the rotational direction, the direction in which the linear body provided on the polarizing element 102a extends can be changed. Therefore, by changing the projection length D based on the measurement result of the polarized light measuring device 1, the unevenness in the polarization direction can be adjusted for each of the plurality of polarizing elements 102a.
搬送部103向與光源101a延伸的方向正交的方向(X方向)搬送被照射體200。 搬送部103以使被照射體200通過光源101a的設置有偏光部102的側的下方的方式搬送被照射體200。 搬送部103例如可設爲具備保持被照射體200的保持裝置、及單軸機器人等搬送裝置等。The conveyance unit 103 conveys the object to be irradiated 200 in a direction (X direction) orthogonal to the direction in which the light source 101a extends. The conveyance unit 103 conveys the object to be irradiated 200 so that the object to be irradiated 200 passes below the side of the light source 101a on which the polarizing unit 102 is provided. The transport unit 103 can be, for example, a holding device that holds the object to be irradiated 200, a transport device such as a single-axis robot, or the like.
控制部104控制照射部101及搬送部103的動作。 例如,控制部104控制光源101a而從光源101a出射波長處在紫外線的波長區域的光L。 控制部104控制搬送部103,而使搬送部103以被照射體200通過光源101a的設置有偏光部102的側的下方的方式搬送被照射體200。 另外,控制部104也可基於偏光光測定裝置1的測定結果來控制設置於突出部102c4b的驅動機構,而針對多個偏光元件102a的每一個來進行偏光方向的不均調整。The control unit 104 controls the operations of the irradiation unit 101 and the transport unit 103. For example, the control unit 104 controls the light source 101a to emit light L having a wavelength in the ultraviolet light wavelength region from the light source 101a. The control unit 104 controls the transport unit 103 to transport the object to be irradiated 200 so that the object to be irradiated 200 passes under the side of the light source 101a on which the polarizing unit 102 is provided. Moreover, the control unit 104 can control the driving mechanism provided in the protruding portion 102c4b based on the measurement result of the polarized light measuring device 1, and can adjust the unevenness in the polarization direction for each of the plurality of polarizing elements 102a.
接下來,對偏光光測定裝置1的作用、及偏光光照射裝置100的作用進行例示。 圖4是用以例示利用偏光光照射裝置100産生偏光光Lp、及利用偏光光測定裝置1測定偏光光Lp的偏光方向的示意立體圖。 控制部104控制光源101a,而從光源101a出射波長處在紫外線的波長區域的光L。從光源101a出射的光L直接從反射器101b的開口出射,或者在反射器101b的內表面反射並從反射器101b的開口出射。從反射器101b的開口出射的光L包含向各種方向,例如向B方向或C方向振動的成分。Next, the action of the polarized light measuring device 1 and the action of the polarized light irradiation device 100 will be exemplified. FIG. 4 is a schematic perspective view illustrating that the polarized light Lp is generated by the polarized light irradiation device 100 and the polarized light Lp is measured by the polarized light measuring device 1 . The control unit 104 controls the light source 101a to emit light L having a wavelength in the wavelength region of the ultraviolet light from the light source 101a. The light L emitted from the light source 101a is directly emitted from the opening of the reflector 101b, or is reflected on the inner surface of the reflector 101b and is emitted from the opening of the reflector 101b. The light L emitted from the opening of the reflector 101b includes a component that vibrates in various directions, for example, in the B direction or the C direction.
光L藉由入射至偏光元件102a並透過偏光元件102a而成爲偏光光Lp。 如上所述,在偏光元件102a設置有沿規定方向延伸的多個線狀體。因此,偏光元件102a僅使光L的成分中向與線狀體延伸的方向正交的方向振動的成分透過。因此,光L當透過偏光元件102a時成爲僅具有向規定方向(例如C方向)振動的成分的偏光光Lp。 偏光光照射裝置100以如上方式産生偏光光Lp。 在進行被照射體200的配向處理的情况下,偏光光Lp照射至被照射體200。然而,當配置有被照射體200時無法測定偏光光Lp的偏光方向,因此,在測定偏光光Lp的偏光方向的情况下,未配置被照射體200,而使偏光光Lp入射至設置於偏光光測定裝置1的偏光元件20。The light L becomes the polarized light Lp by being incident on the polarizing element 102a and transmitted through the polarizing element 102a. As described above, the polarizing element 102a is provided with a plurality of linear bodies extending in a predetermined direction. Therefore, the polarizing element 102a transmits only the component vibrating in the direction orthogonal to the direction in which the linear body extends in the component of the light L. Therefore, when the light L passes through the polarizing element 102a, the light L becomes the polarized light Lp having only a component vibrating in a predetermined direction (for example, the C direction). The polarized light irradiation device 100 generates the polarized light Lp in the above manner. When the alignment process of the object to be irradiated 200 is performed, the polarized light Lp is irradiated onto the object 200 to be irradiated. However, when the object to be irradiated 200 is disposed, the polarization direction of the polarized light Lp cannot be measured. Therefore, when the polarization direction of the polarized light Lp is measured, the object to be irradiated 200 is not disposed, and the polarized light Lp is incident on the polarized light. The polarizing element 20 of the light measuring device 1.
控制部5控制移動部22,而以使偏光元件20位於光電轉換部30上的方式使保持部21(偏光元件20)移動。 偏光光Lp藉由透過偏光元件20而成爲偏光光Lpp。 偏光光Lpp入射至光電轉換部30,從而光電轉換部30輸出與所接收到的光的光量對應的電信號。 另外,控制部5控制旋轉部31(基部31b)來使偏光元件20沿旋轉方向移動,而使設置於偏光元件20的線狀體延伸的方向變化。The control unit 5 controls the moving unit 22 to move the holding unit 21 (polarizing element 20) such that the polarizing element 20 is positioned on the photoelectric conversion unit 30. The polarized light Lp becomes the polarized light Lpp by passing through the polarizing element 20. The polarized light Lpp is incident on the photoelectric conversion portion 30, so that the photoelectric conversion portion 30 outputs an electric signal corresponding to the amount of light of the received light. Moreover, the control unit 5 controls the rotating unit 31 (base portion 31b) to move the polarizing element 20 in the rotational direction, and changes the direction in which the linear body provided on the polarizing element 20 extends.
如果線狀體延伸的方向變化,則偏光光Lpp的照度根據偏光光Lp的偏光方向而變化。例如,在旋轉角度θ爲0°、-20°、90°時,偏光光Lpp的照度相异,從而自光電轉換部30輸出的電信號的值成爲不同的值。 因此,如果知道從光電轉換部30輸出的電信號的值成爲最大或最小時的旋轉角度θ,則可根據預先求出的旋轉角度θ與偏光光Lp的偏光方向的關係而求出偏光光Lp的偏光方向。When the direction in which the linear body extends changes, the illuminance of the polarized light Lpp changes according to the polarization direction of the polarized light Lp. For example, when the rotation angle θ is 0°, -20°, or 90°, the illuminance of the polarized light Lpp is different, and the values of the electric signals output from the photoelectric conversion unit 30 are different values. Therefore, when the rotation angle θ when the value of the electric signal output from the photoelectric conversion unit 30 becomes maximum or minimum is known, the polarization light Lp can be obtained from the relationship between the rotation angle θ obtained in advance and the polarization direction of the polarization light Lp. The direction of polarization.
例如,將旋轉角度θ爲90°的情况設爲X方向,且將旋轉角度θ爲0°的情况設爲Y方向,在當旋轉角度θ爲0°時從光電轉換部30輸出的電信號的值成爲最大的情况下,偏光光Lp的偏光方向成爲Y方向。 此外,在當旋轉角度θ爲0°時從光電轉換部30輸出的電信號的值成爲最小的情况下,偏光光Lp的偏光方向成爲X方向。For example, the case where the rotation angle θ is 90° is the X direction, the case where the rotation angle θ is 0° is the Y direction, and the electric signal output from the photoelectric conversion unit 30 when the rotation angle θ is 0°. When the value is the largest, the polarization direction of the polarized light Lp is in the Y direction. In addition, when the value of the electric signal output from the photoelectric conversion unit 30 is the minimum when the rotation angle θ is 0°, the polarization direction of the polarized light Lp is the X direction.
在偏光光Lp的偏光方向的測定中,僅在從光電轉換部30輸出的電信號的最大值或最小值的前後進行測定便足夠。 以如上方式,控制部5基於來自光電轉換部30的輸出、及來自旋轉部31(基部31b)的旋轉位置信息而運算偏光光Lp的偏光方向。In the measurement of the polarization direction of the polarized light Lp, it is sufficient to perform measurement only before and after the maximum value or the minimum value of the electric signal output from the photoelectric conversion unit 30. In the above manner, the control unit 5 calculates the polarization direction of the polarized light Lp based on the output from the photoelectric conversion unit 30 and the rotational position information from the rotating unit 31 (base portion 31b).
偏光光Lp的偏光方向的測定是沿多個偏光元件102a排列的方向(Y方向),在任意的多個位置進行。 控制部5控制移動部4來使偏光部2及檢測部3移動至多個偏光元件102a排列的方向上的任意位置,而進行所述偏光光Lp的偏光方向的測定。 此外,移動範圍優選至少設爲照射部101的有效照射範圍。 如果在多個位置測定偏光光Lp的偏光方向,則可求出多個位置上的偏光光Lp的偏光方向、即偏光光Lp的偏光方向的不均。The measurement of the polarization direction of the polarized light Lp is performed at any of a plurality of positions along the direction (Y direction) in which the plurality of polarizing elements 102a are arranged. The control unit 5 controls the moving unit 4 to move the polarizing unit 2 and the detecting unit 3 to an arbitrary position in the direction in which the plurality of polarizing elements 102a are arranged, and to measure the polarization direction of the polarized light Lp. Further, it is preferable that the movement range is at least the effective irradiation range of the irradiation unit 101. When the polarization direction of the polarized light Lp is measured at a plurality of positions, the polarization direction of the polarized light Lp at a plurality of positions, that is, the unevenness of the polarization direction of the polarized light Lp can be obtained.
在測定藉由偏光光照射裝置100産生的偏光光Lp的光量的情况下,控制部5控制移動部22而使保持部21(偏光元件20)移動來使偏光光Lp直接入射至光電轉換部30。 光電轉換部30輸出與所接收到的光的光量對應的電信號,因此,可基於輸出的電信號的值而求出偏光光Lp的光量。 即,控制部5基於來自光電轉換部30的輸出而運算偏光光的光量。When the amount of light of the polarized light Lp generated by the polarized light irradiation device 100 is measured, the control unit 5 controls the moving unit 22 to move the holding unit 21 (polarizing element 20) to directly inject the polarized light Lp to the photoelectric conversion unit 30. . The photoelectric conversion unit 30 outputs an electric signal corresponding to the amount of light of the received light, and therefore, the amount of the polarized light Lp can be obtained based on the value of the output electric signal. In other words, the control unit 5 calculates the amount of light of the polarized light based on the output from the photoelectric conversion unit 30.
所求出的偏光光Lp的偏光方向的不均、或偏光光Lp的光量作爲偏光光Lp的測定結果而從控制部5傳送至控制部104。The unevenness of the polarization direction of the polarized light Lp obtained or the amount of the polarized light Lp is transmitted from the control unit 5 to the control unit 104 as a result of measurement of the polarized light Lp.
在偏光光Lp的偏光方向的不均超過規定範圍的情况下,調整位於偏光方向的不均爲大的位置的正上方或其附近的偏光元件102a的斜度。 在此情况下,可由作業人員基於從控制部5或控制部104輸出至顯示裝置等的信息,而操作突出部102c4b來調整偏光元件102a的斜度。 另外,也可藉由控制部104控制驅動突出部102c4b的驅動機構而調整偏光元件102a的斜度。When the unevenness of the polarization direction of the polarized light Lp exceeds a predetermined range, the inclination of the polarizing element 102a located immediately above or in the vicinity of the position where the polarization direction is not large is adjusted. In this case, the operator can operate the protruding portion 102c4b to adjust the inclination of the polarizing element 102a based on the information output from the control unit 5 or the control unit 104 to the display device or the like. Further, the inclination of the polarizing element 102a may be adjusted by the control unit 104 controlling the driving mechanism that drives the protruding portion 102c4b.
在偏光元件102a的斜度調整之後,在多個位置再次測定偏光光Lpp的偏光方向。 而且,在偏光光Lp的偏光方向的不均成爲規定範圍內之前反復進行所述程序。After the slope adjustment of the polarizing element 102a, the polarization direction of the polarized light Lpp is measured again at a plurality of positions. Further, the above procedure is repeated until the unevenness of the polarization direction of the polarized light Lp is within a predetermined range.
在偏光光Lp的偏光方向的不均成爲規定範圍內的情况下,進行被照射體200的配向處理。 在進行被照射體200的配向處理的情况下,控制部5控制移動部4而使偏光部2及檢測部3退避至被照射體200的搬送區域外。 如此一來,可避免被照射體200與偏光部2及檢測部3的干涉。When the unevenness of the polarization direction of the polarized light Lp is within a predetermined range, the alignment process of the irradiated body 200 is performed. When the alignment process of the object to be irradiated 200 is performed, the control unit 5 controls the moving unit 4 to evacuate the polarizing unit 2 and the detecting unit 3 to the outside of the transport area of the object 200 to be irradiated. In this way, interference between the irradiated body 200 and the polarizing unit 2 and the detecting unit 3 can be avoided.
接下來,控制部104控制光源101a,而從光源101a出射波長處在紫外線的波長區域的光L。 另外,控制部104控制搬送部103,而使被照射體200通過光源101a的設置有偏光部102的側的下方。 從光源101a出射的光L藉由入射至偏光元件102a並透過偏光元件102a而成爲偏光光Lp。 偏光光Lp入射至被照射體200,藉由偏光光Lp而實施配向處理。 另外,藉由使被照射體200通過光源101a的設置有偏光部102的側的下方,而對被照射體200全域實施配向處理。Next, the control unit 104 controls the light source 101a to emit light L having a wavelength in the ultraviolet light wavelength region from the light source 101a. Moreover, the control unit 104 controls the conveyance unit 103 to pass the object to be irradiated 200 below the side of the light source 101a on which the polarizing unit 102 is provided. The light L emitted from the light source 101a is incident on the polarizing element 102a and transmitted through the polarizing element 102a to become the polarized light Lp. The polarized light Lp is incident on the object to be irradiated 200, and the alignment treatment is performed by the polarized light Lp. Further, by arranging the object to be irradiated 200 below the side of the light source 101a on which the polarizing unit 102 is provided, the object to be irradiated 200 is subjected to alignment processing.
根據本實施方式,在切換偏光光Lp的偏光方向的測定、與偏光光Lp的光量的測定時,使用移動部22使偏光元件20移動,因此,與作業人員進行偏光元件20的安裝及卸除的情况相比可顯著地提高再現性。 因此,可精度佳地測定偏光光Lp的偏光方向及偏光光Lp的光量。 另外,也能夠將偏光光測定裝置1內置於偏光光照射裝置100,因此,也可將偏光光測定裝置1安裝於既有的偏光光照射裝置。According to the present embodiment, when the measurement of the polarization direction of the polarization light Lp and the measurement of the amount of the polarization light Lp are performed, the moving unit 22 is used to move the polarizing element 20, so that the operator can attach and detach the polarizing element 20. The reproducibility can be significantly improved compared to the case. Therefore, the polarization direction of the polarized light Lp and the amount of the polarized light Lp can be accurately measured. Further, since the polarized light measuring device 1 can be incorporated in the polarized light irradiation device 100, the polarized light measuring device 1 can be attached to the existing polarized light detecting device.
以上,例示了本發明的若干個實施方式,但這些實施方式是作爲例而提出的,並非意圖限定發明的範圍。這些新穎的實施方式能夠以其他各種形態實施,且可在不脫離發明主旨的範圍內進行各種省略、替換、變更等。這些實施方式或其變形例包含在發明的範圍或主旨中,並且包含在權利要求書所記載的發明及其均等的範圍。另外,所述各實施方式可相互組合而實施。The embodiments of the present invention are exemplified above, but are not intended to limit the scope of the invention. The present invention can be implemented in various other forms, and various omissions, substitutions, changes and the like can be made without departing from the spirit of the invention. The invention and its modifications are intended to be included within the scope of the invention and the scope of the invention. Further, each of the above embodiments may be implemented in combination with each other.
1‧‧‧偏光光測定裝置
2、102‧‧‧偏光部
3‧‧‧檢測部
4、22‧‧‧移動部
5、104‧‧‧控制部
20、102a‧‧‧偏光元件
21‧‧‧保持部
21a‧‧‧主體部
21a1‧‧‧孔
21b‧‧‧保持爪
30‧‧‧光電轉換部
31‧‧‧旋轉部
31a‧‧‧安裝部
31b、102c3a、102c4a‧‧‧基部
40‧‧‧第一移動部
41‧‧‧第二移動部
100‧‧‧偏光光照射裝置
101‧‧‧照射部
101a‧‧‧光源
101b‧‧‧反射器
102b、102c‧‧‧保持部件
102b1、102b2‧‧‧凹部
102b3‧‧‧中心線
102c1‧‧‧框部
102c2‧‧‧支撑部
102c3‧‧‧彈性部
102c3b‧‧‧盤簧
102c4‧‧‧調整部
102c4b‧‧‧突出部
103‧‧‧搬送部
200‧‧‧被照射體
B、C‧‧‧方向
D‧‧‧突出長度
L‧‧‧光
Lp、Lpp‧‧‧偏光光
R‧‧‧軸1‧‧‧Polarized light measuring device
2, 102‧‧‧ polarizing department
3‧‧‧Detection Department
4. 22‧‧‧moving department
5, 104‧‧‧Control Department
20, 102a‧‧‧ polarizing elements
21‧‧‧ Keeping Department
21a‧‧‧ Main body
21a1‧‧ hole
21b‧‧‧Keep the claw
30‧‧‧Photoelectric Conversion Department
31‧‧‧Rotating Department
31a‧‧‧Installation Department
31b, 102c3a, 102c4a‧‧‧ base
40‧‧‧First Moving Department
41‧‧‧Second Moving Department
100‧‧‧Polarized light irradiation device
101‧‧‧ Department of Irradiation
101a‧‧‧Light source
101b‧‧‧ reflector
102b, 102c‧‧‧ Keeping parts
102b1, 102b2‧‧‧ recess
102b3‧‧‧ center line
102c1‧‧‧ Frame Department
102c2‧‧‧Support
102c3‧‧‧Flexible Department
102c3b‧‧‧ coil spring
102c4‧‧‧Adjustment Department
102c4b‧‧‧Protruding
103‧‧‧Transportation Department
200‧‧‧ irradiated body
B, C‧‧‧ directions
D‧‧‧Outstanding length
L‧‧‧Light
Lp, Lpp‧‧‧ polarized light
R‧‧‧ axis
圖1是用以例示本實施方式的偏光光測定裝置1、及偏光光照射裝置100的示意立體圖。 圖2是用以例示本實施方式的偏光光測定裝置1的示意剖視圖。 圖3是用以例示偏光部102的示意俯視圖。 圖4是用以例示利用偏光光照射裝置100産生偏光光Lp、及利用偏光光測定裝置1測定偏光光Lp的偏光方向的示意立體圖。FIG. 1 is a schematic perspective view illustrating a polarization light measuring device 1 and a polarized light irradiation device 100 according to the present embodiment. FIG. 2 is a schematic cross-sectional view illustrating the polarized light measuring apparatus 1 of the present embodiment. FIG. 3 is a schematic plan view illustrating the polarizing section 102. FIG. 4 is a schematic perspective view illustrating that the polarized light Lp is generated by the polarized light irradiation device 100 and the polarized light Lp is measured by the polarized light measuring device 1 .
無no
1‧‧‧偏光光測定裝置 1‧‧‧Polarized light measuring device
2‧‧‧偏光部 2‧‧‧Polarized section
3‧‧‧檢測部 3‧‧‧Detection Department
4、22‧‧‧移動部 4. 22‧‧‧moving department
20‧‧‧偏光元件 20‧‧‧Polarized elements
21‧‧‧保持部 21‧‧‧ Keeping Department
21a‧‧‧主體部 21a‧‧‧ Main body
21a1‧‧‧孔 21a1‧‧ hole
21b‧‧‧保持爪 21b‧‧‧Keep the claw
30‧‧‧光電轉換部 30‧‧‧Photoelectric Conversion Department
31‧‧‧旋轉部 31‧‧‧Rotating Department
31a‧‧‧安裝部 31a‧‧‧Installation Department
31b‧‧‧基部 31b‧‧‧ base
40‧‧‧第一移動部 40‧‧‧First Moving Department
41‧‧‧第二移動部 41‧‧‧Second Moving Department
R‧‧‧軸 R‧‧‧ axis
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015060151A JP2016180627A (en) | 2015-03-23 | 2015-03-23 | Polarized light measuring device and polarized light irradiation device |
JP2015-060151 | 2015-03-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201634908A true TW201634908A (en) | 2016-10-01 |
TWI666428B TWI666428B (en) | 2019-07-21 |
Family
ID=55123045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104130245A TWI666428B (en) | 2015-03-23 | 2015-09-14 | Polarized light measuring device and polarized light irradiation device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016180627A (en) |
CN (1) | CN204988687U (en) |
TW (1) | TWI666428B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018185210A (en) * | 2017-04-25 | 2018-11-22 | セイコーエプソン株式会社 | Encoder, printer, and robot |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4928897B2 (en) * | 2005-12-01 | 2012-05-09 | 株式会社東芝 | Polarization evaluation mask, polarization evaluation method, and polarization measurement device |
JP2011127993A (en) * | 2009-12-17 | 2011-06-30 | Tamron Co Ltd | Apparatus and method for lens inspection |
JP2012211771A (en) * | 2011-03-30 | 2012-11-01 | Shimadzu Corp | Electron beam analyzer |
CN103765303B (en) * | 2012-04-19 | 2016-06-29 | 信越工程株式会社 | Light directional illumination device |
JP5935546B2 (en) * | 2012-07-02 | 2016-06-15 | 東芝ライテック株式会社 | Polarized light irradiation device |
JP6206945B2 (en) * | 2013-03-07 | 2017-10-04 | 株式会社ブイ・テクノロジー | Scanning exposure apparatus and scanning exposure method |
JP6136675B2 (en) * | 2013-07-10 | 2017-05-31 | 大日本印刷株式会社 | Polarizer |
-
2015
- 2015-03-23 JP JP2015060151A patent/JP2016180627A/en active Pending
- 2015-09-14 TW TW104130245A patent/TWI666428B/en not_active IP Right Cessation
- 2015-09-14 CN CN201520709097.3U patent/CN204988687U/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016180627A (en) | 2016-10-13 |
TWI666428B (en) | 2019-07-21 |
CN204988687U (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103765303B (en) | Light directional illumination device | |
CN108474651A (en) | Shape measurement system | |
JP2014048182A (en) | Film thickness measuring device | |
KR101917131B1 (en) | Optical inspecting apparatus | |
JP6201310B2 (en) | Polarized light irradiation device | |
CN107561784B (en) | Optical alignment control method and optical alignment equipment | |
JP5935546B2 (en) | Polarized light irradiation device | |
TW201539035A (en) | Polarized light irradiation apparatus | |
JP2017146288A (en) | Film thickness distribution measuring method | |
KR101928610B1 (en) | Apparatus and method for measuring polarization, and apparatus for irradiating polarized light | |
JP2015055647A (en) | Polarized light irradiation device | |
TWI666428B (en) | Polarized light measuring device and polarized light irradiation device | |
CN105865631A (en) | Light irradiation device | |
CN205507314U (en) | Polarized light irradiation device for light aligning | |
JP2012123207A (en) | Exposure apparatus and exposure method | |
KR102416569B1 (en) | Laser crystalling apparatus | |
TWI678584B (en) | Polarized light irradiation device | |
JP6917751B2 (en) | Drawing device | |
KR20160087057A (en) | Laser annealing apparatus | |
JP6381210B2 (en) | Optical element unit, method for adjusting relative position in rotation direction, exposure apparatus, and method for manufacturing article | |
WO2014038403A1 (en) | Film thickness measuring device | |
JP6748428B2 (en) | Lithographic apparatus, article manufacturing method, stage apparatus, and measuring apparatus | |
CN107102480A (en) | Light irradiation device | |
WO2014038406A1 (en) | Film thickness measuring apparatus | |
JP7193196B2 (en) | Measuring Mechanism for Alignment Film Exposure Apparatus and Adjustment Method for Alignment Film Exposure Apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |