TW201545388A - Resistive ram and method of manufacturing the same - Google Patents
Resistive ram and method of manufacturing the same Download PDFInfo
- Publication number
- TW201545388A TW201545388A TW103118781A TW103118781A TW201545388A TW 201545388 A TW201545388 A TW 201545388A TW 103118781 A TW103118781 A TW 103118781A TW 103118781 A TW103118781 A TW 103118781A TW 201545388 A TW201545388 A TW 201545388A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- electrode
- random access
- access memory
- resistive random
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 101
- 239000002184 metal Substances 0.000 claims abstract description 101
- 229910000314 transition metal oxide Inorganic materials 0.000 claims abstract description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 32
- 239000001301 oxygen Substances 0.000 claims abstract description 28
- 239000007789 gas Substances 0.000 claims abstract description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims description 24
- 239000010936 titanium Substances 0.000 claims description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 10
- 230000015654 memory Effects 0.000 description 8
- -1 oxygen ions Chemical class 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 230000002688 persistence Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
本發明是有關於一種電阻式隨機存取記憶體(Resistive RAM,RRAM)技術,且特別是有關於一種電阻式隨機存取記憶體及其製造方法。 The present invention relates to a resistive random access memory (RRAM) technology, and more particularly to a resistive random access memory and a method of fabricating the same.
電阻式隨機存取記憶體一般是由轉變金屬氧化物(TMO)、上電極(top electrode,TE)、下電極(bottom electrode,BE)所構成,並以上導線與下導線連接出去。電阻式隨機存取記憶體可藉由外加的操作電壓/電流而進行電阻態0到1或1到0的切換。由於導電路徑是藉由氧空缺(oxygen vacancy)控制低電阻態(low resistance state,LRS),所以一旦因高溫而使氧離子擴散到轉變金屬氧化物層內,將會導致其內部的氧空缺減少,使記憶體的操作變得不穩定。 The resistive random access memory is generally composed of a transition metal oxide (TMO), a top electrode (TE), and a bottom electrode (BE), and the above wires are connected to the lower wires. The resistive random access memory can perform a resistance state of 0 to 1 or 1 to 0 switching by an applied operating voltage/current. Since the conductive path controls the low resistance state (LRS) by oxygen vacancy, once the oxygen ions are diffused into the transition metal oxide layer due to high temperature, the internal oxygen vacancy will be reduced. To make the operation of the memory unstable.
因此,目前已有數種針對降低氧離子擴散入轉變金屬氧化物的技術,譬如將設置(Set)功率增加,但是將影響重置(Reset)的良率。另外也有利用氧化物層作為阻擋氧離子擴散的技術,但 是這樣一來將對記憶體整體的導電性造成衝擊。 Therefore, there are currently several techniques for reducing the diffusion of oxygen ions into the transition metal oxide, such as increasing the set power, but will affect the yield of the reset. In addition, there is also an oxide layer as a technique for blocking diffusion of oxygen ions, but This will cause an impact on the overall conductivity of the memory.
在各類電阻式隨機存取記憶體中,轉變金屬氧化物(TMO)層為氧化鉿型電阻式隨機存取記憶體因耐久性優、切換速度快而備受矚目。可是,目前所使用的鈦/氧化鉿(Ti/HfO2)型電阻式隨機存取記憶體在高溫時往往難以保持在低電阻狀態,造成所謂「高溫數據保持能力」的劣化。對此,有進行研究並加以改善的必要。 Among various types of resistive random access memories, the transition metal oxide (TMO) layer is a yttria-type resistive random access memory, which is attracting attention due to its excellent durability and fast switching speed. However, the titanium/yttria (Ti/HfO 2 ) type resistive random access memory used at present is often difficult to maintain in a low resistance state at a high temperature, causing deterioration of so-called "high temperature data retention capability". In this regard, there is a need to conduct research and improve it.
本發明提供一種電阻式隨機存取記憶體,能改善資料持久性並提高導電率。 The invention provides a resistive random access memory, which can improve data persistence and improve electrical conductivity.
本發明另提供一種電阻式隨機存取記憶體的製造方法,能製作出資料保持良率佳且操作電壓低的記憶體。 The present invention further provides a method of manufacturing a resistive random access memory, which is capable of producing a memory having a good data retention rate and a low operating voltage.
本發明的電阻式隨機存取記憶體,包括第一電極、第二電極以及介於第一與第二電極之間的轉變金屬氧化物層。上述電阻式隨機存取記憶體還包括介於第一電極與轉變金屬氧化物層之間的活性化金屬層以及一層金屬氮氧化層,這層金屬氮氧化層是在含氧元素與氮元素的氣體環境下形成於活性化金屬層的表面。 The resistive random access memory of the present invention includes a first electrode, a second electrode, and a transition metal oxide layer interposed between the first and second electrodes. The resistive random access memory further includes an activated metal layer between the first electrode and the transition metal oxide layer and a metal oxynitride layer. The metal oxynitride layer is composed of an oxygen element and a nitrogen element. It is formed on the surface of the activated metal layer in a gaseous environment.
在本發明的一實施例中,上述金屬氮氧化層的厚度約為1nm~20nm之間。 In an embodiment of the invention, the metal oxynitride layer has a thickness of between about 1 nm and 20 nm.
在本發明的一實施例中,上述活性化金屬層的材料包括鈦、鉭、鎢、鉿、鎳、鋁、釩、鈷、鋯或矽。 In an embodiment of the invention, the material of the activated metal layer comprises titanium, tantalum, tungsten, niobium, nickel, aluminum, vanadium, cobalt, zirconium or hafnium.
在本發明的一實施例中,上述金屬氮氧化層更包括介於 第二電極與轉變金屬氧化物層之間。 In an embodiment of the invention, the metal oxynitride layer further includes Between the second electrode and the transition metal oxide layer.
在本發明的一實施例中,上述第一電極為上電極且第二電極為下電極。 In an embodiment of the invention, the first electrode is an upper electrode and the second electrode is a lower electrode.
在本發明的一實施例中,上述第一電極為下電極且第二電極為上電極。 In an embodiment of the invention, the first electrode is a lower electrode and the second electrode is an upper electrode.
在本發明的一實施例中,上述第一電極的材料與活性化金屬層的材料可相同。 In an embodiment of the invention, the material of the first electrode and the material of the active metal layer may be the same.
在本發明的一實施例中,上述電阻式隨機存取記憶體還可包括一第一緩衝層,位於轉變金屬氧化物層與金屬氮氧化層之間。所述第一緩衝層的材料與第一電極的材料可相同。 In an embodiment of the invention, the resistive random access memory further includes a first buffer layer between the transition metal oxide layer and the metal oxynitride layer. The material of the first buffer layer may be the same as the material of the first electrode.
在本發明的一實施例中,上述活性化金屬層還包括一第二緩衝層,位於上述表面處與金屬氮氧化層直接接觸。 In an embodiment of the invention, the activated metal layer further includes a second buffer layer located in direct contact with the metal oxynitride layer at the surface.
本發明的電阻式隨機存取記憶體的製造方法,包括依序形成第一電極、轉變金屬氧化物層與第二電極,且此製造方法還包括在形成第一電極或轉變金屬氧化物層的步驟後,形成活性化金屬層,並在含氧元素與氮元素的氣體環境下,於上述活性化金屬層表面形成金屬氮氧化層。 The method for fabricating a resistive random access memory of the present invention comprises sequentially forming a first electrode, a transition metal oxide layer and a second electrode, and the manufacturing method further comprises forming a first electrode or a transition metal oxide layer. After the step, an activated metal layer is formed, and a metal oxynitride layer is formed on the surface of the activated metal layer in a gas atmosphere containing an oxygen element and a nitrogen element.
在本發明的另一實施例中,上述氣體是由N2O、NO2、NO、N2O2、N2/O2、N2/O3、N2、NH3、O2、H2O、H2O2以及O3所組成之氣體群中所選擇的至少一種。 In another embodiment of the present invention, the gas is N 2 O, NO 2 , NO, N 2 O 2 , N 2 /O 2 , N 2 /O 3 , N 2 , NH 3 , O 2 , H 2 O, the gas group consisting of H 2 O 2 and O 3 in the selected at least one.
在本發明的另一實施例中,上述形成金屬氮氧化層的方法還可搭配使用電漿。 In another embodiment of the present invention, the above method of forming a metal oxynitride layer may also be used in combination with a plasma.
在本發明的另一實施例中,在形成上述金屬氮氧化層之後還可於金屬氮氧化層上形成一第一緩衝層。 In another embodiment of the present invention, a first buffer layer may be formed on the metal oxynitride layer after forming the metal oxynitride layer.
在本發明的另一實施例中,形成上述活性化金屬層之步驟還包括在上述表面處形成一第二緩衝層。 In another embodiment of the invention, the step of forming the activated metal layer further includes forming a second buffer layer at the surface.
基於上述,本發明藉由在含氧元素與氮元素的氣體環境下形成的金屬氮氧化層抑制氧離子擴散,進而提升低電阻態(LRS)的高溫資料持久性(HTDR)。而且,因為本發明的金屬氮氧化層的厚度可控制得極薄,所以在提升資料持久性的同時也不影響記憶體本身的導電率。 Based on the above, the present invention suppresses oxygen ion diffusion by a metal oxynitride layer formed in a gas atmosphere containing oxygen and nitrogen, thereby improving high temperature data persistence (HTDR) of low resistance state (LRS). Moreover, since the thickness of the metal oxynitride layer of the present invention can be controlled to be extremely thin, the durability of the data can be improved without affecting the conductivity of the memory itself.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100、110、120、130、140‧‧‧電阻式隨機存取記憶體 100, 110, 120, 130, 140‧‧‧ resistive random access memory
102‧‧‧下電極 102‧‧‧ lower electrode
102a、107a、126a、146a、204a‧‧‧表面 102a, 107a, 126a, 146a, 204a‧‧‧ surface
104‧‧‧上電極 104‧‧‧Upper electrode
106、202‧‧‧轉變金屬氧化物層 106, 202‧‧‧Transition of metal oxide layers
107、126、146、204‧‧‧活性化金屬層 107, 126, 146, 204‧‧‧ Activated metal layers
108、122、124、132、142、144、208、302‧‧‧金屬氮氧化層 108, 122, 124, 132, 142, 144, 208, 302‧‧‧ metal oxynitride
134‧‧‧第一緩衝層 134‧‧‧First buffer layer
200‧‧‧第一電極 200‧‧‧first electrode
206‧‧‧氣體 206‧‧‧ gas
210‧‧‧第二電極 210‧‧‧second electrode
300‧‧‧第二緩衝層 300‧‧‧Second buffer layer
t‧‧‧厚度 T‧‧‧thickness
圖1A至圖1E是依照本發明的一實施例的五種電阻式隨機存取記憶體之剖面示意圖。 1A-1E are schematic cross-sectional views of five resistive random access memories in accordance with an embodiment of the present invention.
圖2A至圖2C是依照本發明的另一實施例的一種電阻式隨機存取記憶體之製造流程剖面圖。 2A through 2C are cross-sectional views showing a manufacturing process of a resistive random access memory in accordance with another embodiment of the present invention.
圖3是依照本發明的再一實施例的一種電阻式隨機存取記憶體之製造流程剖面圖。 3 is a cross-sectional view showing a manufacturing process of a resistive random access memory in accordance with still another embodiment of the present invention.
圖4是實驗例1與比較例1在資料持久性良率的比較曲線圖。 4 is a graph comparing the data persistence yields of Experimental Example 1 and Comparative Example 1.
圖5是實驗例1與比較例2在資料持久性良率的比較曲線 圖。 Figure 5 is a comparison of the data persistence yields of Experimental Example 1 and Comparative Example 2. Figure.
圖6是實驗例1、比較例1與比較例2在高電阻態電流標準差百分比的比較曲線圖。 Fig. 6 is a graph showing the comparison of the standard deviation percentage of the high resistance state of the experimental example 1, the comparative example 1 and the comparative example 2.
本文中請參照圖式,以便更加充分地體會本發明的概念,隨附圖式中顯示本發明的實施例。但是,本發明還可採用許多不同形式來實踐,且不應將其解釋為限於底下所述之實施例。實際上,提供實施例僅為使本發明更將詳盡且完整,並將本發明之範疇完全傳達至所屬技術領域中具有通常知識者。 The embodiments of the present invention are shown in the accompanying drawings. However, the invention may be practiced in many different forms and should not be construed as being limited to the embodiments described. Rather, the embodiments are provided so that this disclosure will be thorough and complete, and the scope of the invention will be fully conveyed to those of ordinary skill in the art.
在圖式中,為明確起見可能將各層以及區域的尺寸以及相對尺寸作誇張的描繪。 In the drawings, the dimensions and relative dimensions of the various layers and regions may be exaggerated for clarity.
圖1A、圖1B、圖1C、圖1D與圖1E分別是依照本發明的一實施例的五種電阻式隨機存取記憶體之剖面示意圖。 1A, 1B, 1C, 1D, and 1E are schematic cross-sectional views of five resistive random access memories, respectively, in accordance with an embodiment of the present invention.
請先參照圖1A,電阻式隨機存取記憶體100包括作為下電極102的第二電極、作為上電極104的第一電極以及介於第一與第二電極104和102之間的轉變金屬氧化物(TMO)層106。上電極104(第一電極)和下電極102(第二電極)各自可為鈦、鉭、氮化鈦或氮化鉭之類的材料層,而轉變金屬氧化物(TMO)層106的材料則如HfOx或其他適當的金屬氧化物。上述上、下電極104和102之厚度分別可舉例但非限定為10nm~100nm之間。至於轉變金屬氧化物(TMO)層106之厚度可舉例但非限定為3nm~11nm之間。 Referring first to FIG. 1A, the resistive random access memory 100 includes a second electrode as the lower electrode 102, a first electrode as the upper electrode 104, and a transition metal oxidation between the first and second electrodes 104 and 102. (TMO) layer 106. The upper electrode 104 (first electrode) and the lower electrode 102 (second electrode) may each be a material layer such as titanium, tantalum, titanium nitride or tantalum nitride, and the material of the transition metal oxide (TMO) layer 106 is Such as HfO x or other suitable metal oxides. The thicknesses of the upper and lower electrodes 104 and 102 are respectively exemplified, but not limited to, between 10 nm and 100 nm. The thickness of the transition metal oxide (TMO) layer 106 can be exemplified, but not limited to, between 3 nm and 11 nm.
在圖1A中,電阻式隨機存取記憶體100還具有活性化金屬層(activated metal layer)107以及金屬氮氧化層108,其中活性化金屬層107介於上電極104(第一電極)與轉變金屬氧化物層106之間,而金屬氮氧化層108則是在含氧元素與氮元素的氣體環境下形成於活性化金屬層107的表面107a,用以阻擋活性化金屬層107中的氧離子擴散至上電極104(第一電極)。在本實施例中,活性化金屬層107的材料例如鈦(Ti)、鉭(Ta)、鎢(W)、鉿(Hf)、鎳(Ni)、鋁(Al)、釩(V)、鈷(Co)、鋯(Zr)或矽(Si);活性化金屬層107的厚度約為5nm~45nm之間;較佳是鈦(Ti)或鉭(Ta)。由於這層金屬氮氧化層108是形成的,所以比傳統使用濺鍍之類的沉積製程,能得到更薄的膜層;舉例來說,金屬氮氧化層108的厚度t約為1nm~20nm之間。金屬氮氧化層108的氧所佔原子比例約10%~60%之間,而氮所佔的原子比例約15%~60%之間。 In FIG. 1A, the resistive random access memory 100 further has an activated metal layer 107 and a metal oxynitride layer 108, wherein the activated metal layer 107 is interposed between the upper electrode 104 (first electrode) and the transition. The metal oxide layer 106 is formed on the surface 107a of the activated metal layer 107 in a gas atmosphere containing oxygen and nitrogen to block oxygen ions in the activated metal layer 107. It is diffused to the upper electrode 104 (first electrode). In the present embodiment, the material of the activated metal layer 107 is, for example, titanium (Ti), tantalum (Ta), tungsten (W), hafnium (Hf), nickel (Ni), aluminum (Al), vanadium (V), cobalt. (Co), zirconium (Zr) or bismuth (Si); the thickness of the activated metal layer 107 is between about 5 nm and 45 nm; preferably titanium (Ti) or tantalum (Ta). Since the metal oxynitride layer 108 is formed, a thinner film layer can be obtained than a conventional deposition process using sputtering; for example, the metal oxynitride layer 108 has a thickness t of about 1 nm to 20 nm. between. The atomic ratio of oxygen in the metal oxynitride layer 108 is between about 10% and 60%, and the atomic proportion of nitrogen is between about 15% and 60%.
接著請參照圖1B,本圖所示的電阻式隨機存取記憶體110是將以下電極102作為第一電極、上電極104作為第二電極。而且,當下電極102(第一電極)的材料與活性化金屬層的材料相同的情況下,金屬氮氧化層108可形成於下電極102的表面102a,亦即,圖1B的下電極102可同時視為第一電極與活性化金屬層,所以圖中並未標示活性化金屬層。此時,金屬氮氧化層108可用來阻擋轉變金屬氧化物層106中的氧離子擴散至下電極102(第一電極)。至於其他膜層的材料與厚度等參數可參照圖1A。 Next, referring to FIG. 1B, the resistive random access memory 110 shown in the figure has the following electrodes 102 as a first electrode and an upper electrode 104 as a second electrode. Moreover, when the material of the lower electrode 102 (first electrode) is the same as the material of the active metal layer, the metal oxynitride layer 108 may be formed on the surface 102a of the lower electrode 102, that is, the lower electrode 102 of FIG. 1B may simultaneously The first electrode and the activated metal layer are regarded as the active metal layer. At this time, the metal oxynitride layer 108 can be used to block diffusion of oxygen ions in the transition metal oxide layer 106 to the lower electrode 102 (first electrode). For parameters such as material and thickness of other film layers, reference may be made to FIG. 1A.
在圖1C的電阻式隨機存取記憶體120中,結合圖1A與 圖1B的特色。即,在上電極104與轉變金屬氧化物層106之間有金屬氮氧化層122,且在下電極102與轉變金屬氧化物層106之間也有金屬氮氧化層124。其中,金屬氮氧化層122是在含氧元素與氮元素的氣體環境下形成於活性化金屬層126的表面126a,金屬氮氧化層124也是在含氧元素與氮元素的氣體環境下形成於與活性化金屬層同樣材料之下電極102的表面102a。因此,電阻式隨機存取記憶體120的轉變金屬氧化物層106受到上下兩層的金屬氮氧化層122和124的保護,在低電阻態(LRS)的高溫資料持久性(HTDR)方面應有優於圖1A和圖1B的效果。 In the resistive random access memory 120 of FIG. 1C, in combination with FIG. 1A and Figure 1B features. That is, there is a metal oxynitride layer 122 between the upper electrode 104 and the transition metal oxide layer 106, and a metal oxynitride layer 124 between the lower electrode 102 and the transition metal oxide layer 106. The metal oxynitride layer 122 is formed on the surface 126a of the active metal layer 126 in a gas atmosphere containing oxygen and nitrogen. The metal oxynitride layer 124 is also formed in a gas atmosphere containing oxygen and nitrogen. The activated metal layer is the same material as the surface 102a of the electrode 102. Therefore, the transition metal oxide layer 106 of the resistive random access memory 120 is protected by the upper and lower layers of the metal oxynitride layers 122 and 124, and should have a high resistance data durability (HTDR) in the low resistance state (LRS). The effect is better than that of FIGS. 1A and 1B.
至於圖1D的電阻式隨機存取記憶體130,接近圖1B的結構,所以具有在含氧元素與氮元素的氣體環境下形成於下電極102的表面102a的金屬氮氧化層132,但是不同處在於在轉變金屬氧化物層106與金屬氮氧化層132之間設有第一緩衝層134。所述第一緩衝層134的材料可與下電極102的材料相同,可以使轉變金屬氧化物層106在沉積時得到較佳的導電導熱特性。 As for the resistive random access memory 130 of FIG. 1D, which is close to the structure of FIG. 1B, it has a metal oxynitride layer 132 formed on the surface 102a of the lower electrode 102 in a gas atmosphere containing oxygen and nitrogen, but the difference is The first buffer layer 134 is disposed between the transition metal oxide layer 106 and the metal oxynitride layer 132. The material of the first buffer layer 134 may be the same as the material of the lower electrode 102, so that the transition metal oxide layer 106 can obtain better electrical and thermal conductivity during deposition.
在圖1E的電阻式隨機存取記憶體140中,結合圖1A與圖1D的特色。即,在上電極104與轉變金屬氧化物層106之間有金屬氮氧化層142,且在下電極102與轉變金屬氧化物層106之間也有金屬氮氧化層144。另外,在轉變金屬氧化物層106與金屬氮氧化層144之間設有第一緩衝層148。由於金屬氮氧化層142是在含氧元素與氮元素的氣體環境下形成於活性化金屬層146的表面146a,金屬氮氧化層144也是在含氧元素與氮元素的氣體環境下 形成於下電極102的表面102a,所以電阻式隨機存取記憶體140的資料持久性優良。 In the resistive random access memory 140 of FIG. 1E, the features of FIGS. 1A and 1D are combined. That is, there is a metal oxynitride layer 142 between the upper electrode 104 and the transition metal oxide layer 106, and a metal oxynitride layer 144 between the lower electrode 102 and the transition metal oxide layer 106. In addition, a first buffer layer 148 is provided between the transition metal oxide layer 106 and the metal oxynitride layer 144. Since the metal oxynitride layer 142 is formed on the surface 146a of the active metal layer 146 in a gas atmosphere containing oxygen and nitrogen, the metal oxynitride layer 144 is also in a gas atmosphere containing oxygen and nitrogen. Since it is formed on the surface 102a of the lower electrode 102, the resistive random access memory 140 has excellent data durability.
以上圖式中的金屬氮氧化層均是在含氧元素與氮元素的氣體環境下形成,因此為了簡潔地闡述金屬氮氧化層的製程,以下實施例僅以圖1A的結構為例,且可應用於圖1B至圖1E的結構製作中。 The metal oxynitride layer in the above formula is formed in a gas atmosphere containing an oxygen element and a nitrogen element. Therefore, in order to succinctly describe the process of the metal oxynitride layer, the following embodiment only takes the structure of FIG. 1A as an example, and It is applied to the fabrication of the structure of Figures 1B to 1E.
圖2A至圖2C是依照本發明的另一實施例的一種電阻式隨機存取記憶體之製造流程剖面圖。 2A through 2C are cross-sectional views showing a manufacturing process of a resistive random access memory in accordance with another embodiment of the present invention.
請先參照圖2A,在依序形成第一電極200與轉變金屬氧化物層202之後,形成一層活性化金屬層204。第一電極200例如鈦、鉭、氮化鈦或氮化鉭之類的材料層,而轉變金屬氧化物層202的材料例如HfOx或其他適當的金屬氧化物。至於活性化金屬層204的材料例如鈦(Ti)、鉭(Ta)、鎢(W)、鉿(Hf)、鎳(Ni)、鋁(Al)、釩(V)、鈷(Co)、鋯(Zr)或矽(Si);較佳是鈦(Ti)或鉭(Ta)。 Referring first to FIG. 2A, after the first electrode 200 and the transition metal oxide layer 202 are sequentially formed, a layer of the activated metal layer 204 is formed. The first electrode 200 is a material layer such as titanium, tantalum, titanium nitride or tantalum nitride, and the material of the metal oxide layer 202 is transformed, such as HfO x or other suitable metal oxide. As the material of the activated metal layer 204, for example, titanium (Ti), tantalum (Ta), tungsten (W), hafnium (Hf), nickel (Ni), aluminum (Al), vanadium (V), cobalt (Co), zirconium (Zr) or bismuth (Si); preferably titanium (Ti) or tantalum (Ta).
然後,請參照圖2B,在含氧元素與氮元素的氣體206環境下,於活性化金屬層204表面204a形成金屬氮氧化層208。在本實施例中,氣體206例如是由N2O、NO2、NO、N2O2、N2/O2、N2/O3、N2、NH3、O2、H2O、H2O2以及O3所組成之氣體群中所選擇的至少一種,前述斜線「/」代表同時含有的意思。舉例來說,可單獨使用一種含氧元素與氮元素的氣體206來形成金屬氮氧化層208,或者同時通入不同的氣體206,如氧氣(O2)與氮氣(N2),但本發明並不侷限於此,也可以按順序通入不同的氣體206。前述 通入氣體206的過程中還可搭配使用電漿或不用電漿。電漿可以縮短反應的時間或形成較厚的金屬氮氧化層。 Then, referring to FIG. 2B, a metal oxynitride layer 208 is formed on the surface 204a of the activated metal layer 204 in the atmosphere 206 of the oxygen-containing element and the nitrogen element. In the present embodiment, the gas 206 is, for example, N 2 O, NO 2 , NO, N 2 O 2 , N 2 /O 2 , N 2 /O 3 , N 2 , NH 3 , O 2 , H 2 O, At least one selected from the group consisting of H 2 O 2 and O 3 , the oblique line "/" represents the meaning of simultaneous inclusion. For example, a gas 206 containing an oxygen element and a nitrogen element may be used alone to form the metal oxynitride layer 208, or a different gas 206 such as oxygen (O 2 ) and nitrogen (N 2 ) may be simultaneously introduced, but the present invention It is not limited thereto, and different gases 206 may be introduced in order. The foregoing process of introducing the gas 206 may also be combined with or without plasma. The plasma can shorten the reaction time or form a thicker metal oxynitride layer.
接著,請參照圖2C,在金屬氮氧化層208上形成第二電極210,即可得到如圖1A的電阻式隨機存取記憶體。 Next, referring to FIG. 2C, a second electrode 210 is formed on the metal oxynitride layer 208 to obtain a resistive random access memory as shown in FIG. 1A.
如果是要製作圖1B的電阻式隨機存取記憶體,就需要在形成第一電極(200)的步驟後形成活性化金屬層,且當第一電極與活性化金屬層屬於相同材料時,這兩層可視為同一材料層,然後進行如上圖2B的步驟,形成金屬氮氧化層,其後續步驟可參照已知技術,故不再贅述。 If the resistive random access memory of FIG. 1B is to be formed, it is necessary to form an active metal layer after the step of forming the first electrode (200), and when the first electrode and the active metal layer belong to the same material, this The two layers can be regarded as the same material layer, and then the steps of FIG. 2B are performed to form a metal oxynitride layer. The subsequent steps can be referred to known techniques, and thus will not be described again.
如果是要製作圖1D的電阻式隨機存取記憶體,則是在形成金屬氮氧化層之後,於金屬氮氧化層上形成第一緩衝層即可。其餘步驟可參照上述技術,故不再贅述。 If the resistive random access memory of FIG. 1D is to be formed, the first buffer layer may be formed on the metal oxynitride layer after the metal oxynitride layer is formed. The rest of the steps can be referred to the above technology, and therefore will not be described again.
然而,本發明的製造方法不只有侷限於以上步驟,當形成金屬氮氧化層之前,還可在活性化金屬層204表面204a處形成一第二緩衝層300,如圖3所示。之後,在含氧元素與氮元素的氣體206環境下,形成金屬氮氧化層302。因此,第二緩衝層300是位於表面204a處並與金屬氮氧化層302直接接觸。所述第二緩衝層300例如是以濺鍍沉積的極薄的TiN層、TiOx層(x<2)、TiNxOy層(x與不為0且x+y<2)等,第二緩衝層300可以減緩金屬氮氧化層302的反應速率。 However, the manufacturing method of the present invention is not limited to the above steps, and a second buffer layer 300 may be formed on the surface 204a of the activated metal layer 204 before forming the metal oxynitride layer, as shown in FIG. Thereafter, a metal oxynitride layer 302 is formed in the atmosphere of a gas 206 containing an oxygen element and a nitrogen element. Therefore, the second buffer layer 300 is located at the surface 204a and is in direct contact with the metal oxynitride 302. The second buffer layer 300 is, for example, an extremely thin TiN layer deposited by sputtering, a TiO x layer (x<2), a TiN x O y layer (x is not 0 and x+y<2), etc. The second buffer layer 300 can slow down the reaction rate of the metal oxynitride 302.
以下列舉數個實驗來驗證本發明的效果,但並不以此限定本發明的範圍。 Several experiments are listed below to verify the effects of the present invention, but do not limit the scope of the present invention.
實驗例1 Experimental example 1
製作一個如圖1A的電阻式隨機存取記憶體,其中金屬氮氧化層為鈦氮氧化物,鈦氮氧化物層是在含氧氣與氮氣環境下,在活性化金屬鈦經過300℃/5分鐘形成約5nm的厚度。 A resistive random access memory as shown in FIG. 1A is fabricated, wherein the metal oxynitride layer is titanium oxynitride, and the titanium oxynitride layer is in an oxygen-containing and nitrogen-containing atmosphere at 300 ° C for 5 minutes in the activated metal titanium. A thickness of about 5 nm is formed.
比較例1 Comparative example 1
製作一個如實驗例1的電阻式隨機存取記憶體,但其中無金屬氮氧化層。 A resistive random access memory as in Experimental Example 1 was fabricated, but without a metal oxynitride layer.
比較例2 Comparative example 2
製作一個如實驗例1的電阻式隨機存取記憶體,但其中的金屬氮氧化層改為氧化鋁層,氧化鋁的厚度約1.5nm。 A resistive random access memory as in Experimental Example 1 was fabricated, but the metal oxynitride layer was changed to an aluminum oxide layer, and the thickness of the alumina was about 1.5 nm.
結果一:資料持久性 Result 1: Data persistence
經高溫熱處理(烘烤)後,進行資料持久性良率的量測,結果顯示於圖4和圖5。 After high-temperature heat treatment (baking), the measurement of the data durability yield was carried out, and the results are shown in Figs. 4 and 5.
由圖4可知,本發明的實驗例1之資料持久性良率明顯比比較例1高。 As apparent from Fig. 4, the data durability yield of Experimental Example 1 of the present invention was significantly higher than that of Comparative Example 1.
由圖5可知,本發明的實驗例1之原始資料持久性良率明顯比比較例2高。 As apparent from Fig. 5, the raw material durability yield of Experimental Example 1 of the present invention was significantly higher than that of Comparative Example 2.
結果二:高電阻態電流標準差百分比;標準差百分比愈低表示在高溫讀取時比較不受干擾。 Result 2: Percentage of standard deviation of high resistance current; the lower the standard deviation percentage, the more undisturbed when reading at high temperature.
經高溫熱處理(烘烤)後,進行21次高電阻態的電流量測,將其結果以標準差百分比顯示於圖6。 After high-temperature heat treatment (baking), 21 high-resistance current measurements were performed, and the results are shown in Fig. 6 as a percentage of standard deviation.
由圖6可知,本發明的實驗例1之高電阻態的電流標準 差百分比明顯比比較例1及比較例2低。 6 shows the current standard of the high resistance state of Experimental Example 1 of the present invention. The percentage difference was significantly lower than that of Comparative Example 1 and Comparative Example 2.
綜上所述,本發明藉由形成於活性化金屬層表面的金屬氮氧化層,不但可阻擋活性化金屬層中的氧離子擴散至電極,進一步提升資料持久性,還可藉由厚度極薄的金屬氮氧化層,降低對記憶體導電率的衝擊。 In summary, the present invention forms a metal oxynitride layer formed on the surface of the activated metal layer, which not only blocks the diffusion of oxygen ions in the active metal layer to the electrode, but also enhances data persistence, and is also extremely thin. The metal oxynitride layer reduces the impact on the conductivity of the memory.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧電阻式隨機存取記憶體 100‧‧‧Resistive random access memory
102‧‧‧下電極 102‧‧‧ lower electrode
104‧‧‧上電極 104‧‧‧Upper electrode
106‧‧‧轉變金屬氧化物層 106‧‧‧Transition of metal oxide layers
107‧‧‧活性化金屬層 107‧‧‧Activating metal layer
107a‧‧‧表面 107a‧‧‧ surface
108‧‧‧金屬氮氧化層 108‧‧‧metal oxynitride
t‧‧‧厚度 T‧‧‧thickness
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103118781A TWI549326B (en) | 2014-05-29 | 2014-05-29 | Resistive ram and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103118781A TWI549326B (en) | 2014-05-29 | 2014-05-29 | Resistive ram and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201545388A true TW201545388A (en) | 2015-12-01 |
TWI549326B TWI549326B (en) | 2016-09-11 |
Family
ID=55407209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103118781A TWI549326B (en) | 2014-05-29 | 2014-05-29 | Resistive ram and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI549326B (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3889023B2 (en) * | 2005-08-05 | 2007-03-07 | シャープ株式会社 | Variable resistance element, method for manufacturing the same, and memory device including the same |
US8846443B2 (en) * | 2011-08-05 | 2014-09-30 | Intermolecular, Inc. | Atomic layer deposition of metal oxides for memory applications |
-
2014
- 2014-05-29 TW TW103118781A patent/TWI549326B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI549326B (en) | 2016-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI469338B (en) | Resistive random access memory and method for fabricating the same | |
US8692223B2 (en) | Resistance variable memory device including nano particles and method for fabricating the same | |
KR101127236B1 (en) | Method for fabricating resistance memory device | |
US9224947B1 (en) | Resistive RAM and method of manufacturing the same | |
KR101570742B1 (en) | Resistive random access memory and method of fabricating the same | |
CN103311433B (en) | Manufacturing method of resistive random access memory | |
JP2011165883A (en) | Semiconductor memory device, and method of manufacturing the same | |
US8791445B2 (en) | Interfacial oxide used as switching layer in a nonvolatile resistive memory element | |
KR101133707B1 (en) | Resistive memory device and method for manufacturing the same | |
US9543516B2 (en) | Method for forming a doped metal oxide for use in resistive switching memory elements | |
TWI569416B (en) | Resistive random access memory and method of fabricating the same | |
CN105280810B (en) | Resistive random access memory and manufacturing method thereof | |
TW201638946A (en) | Resistive random access memory | |
US8921214B2 (en) | Variable resistance memory device and method for fabricating the same | |
CN105024011B (en) | Resistive random access memory and manufacturing method thereof | |
CN112909159B (en) | resistive random access memory | |
TWI549326B (en) | Resistive ram and method of manufacturing the same | |
TWI520394B (en) | Resistive memory device and fabrication thereof | |
US9530823B2 (en) | Memory device and method for manufacturing the same | |
CN106299107A (en) | Resistance-variable storing device of low formation voltage and preparation method thereof | |
TWI500193B (en) | Memory device and manufacturing method thereof | |
US20210175418A1 (en) | Resistive random access memory | |
TW201327794A (en) | A resistive random access memory and its fabrication method | |
JP6825085B2 (en) | Manufacturing method of resistance changing element and resistance changing element | |
Napolean et al. | Temperature effects on an HfO 2-TiO 2-HfO 2 stack layer resistive random access memory cell for low power applications |