TW201527961A - System and method of detecting heat sink status of central processor - Google Patents
System and method of detecting heat sink status of central processor Download PDFInfo
- Publication number
- TW201527961A TW201527961A TW103100169A TW103100169A TW201527961A TW 201527961 A TW201527961 A TW 201527961A TW 103100169 A TW103100169 A TW 103100169A TW 103100169 A TW103100169 A TW 103100169A TW 201527961 A TW201527961 A TW 201527961A
- Authority
- TW
- Taiwan
- Prior art keywords
- temperature
- central processor
- signal
- heat sink
- fans
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 238000012806 monitoring device Methods 0.000 claims abstract description 15
- 238000012544 monitoring process Methods 0.000 claims abstract description 3
- 238000012545 processing Methods 0.000 claims description 39
- 238000012795 verification Methods 0.000 claims description 18
- 238000012549 training Methods 0.000 claims description 16
- 238000004140 cleaning Methods 0.000 claims description 15
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Debugging And Monitoring (AREA)
Abstract
Description
本發明有關於一種電腦之技術領域,特別有關於一種偵測中央處理器散熱器狀態之系統及方法。 The invention relates to the technical field of a computer, and in particular to a system and method for detecting the state of a central processor heat sink.
散熱器是電腦的重要組件之一,其能夠吸收電腦運行過程中產生的熱量,然後發散到機箱內或者機箱外,以保證電腦及其組件的溫度正常,例如,中央處理器在運行過程中會產生高溫,透過中央處理器散熱器以降低中央處理器的溫度而使中央處理器運行正常。 The heat sink is one of the important components of the computer. It can absorb the heat generated during the operation of the computer and then diverge into the chassis or outside the chassis to ensure the temperature of the computer and its components are normal. For example, the central processor will run during the process. The high temperature is generated and the central processor is operating normally through the central processor heat sink to lower the temperature of the central processor.
對於電腦上中央處理器散熱器的狀態,目前市面上的軟硬體都只針對中央處理器散熱器上的風扇提供偵測的機制,對於中央處理器散熱器在使用一段時間後,因為灰塵佈滿中央處理器散熱器上而造成其散熱效能大幅降低,跟正常乾淨的中央處理器散熱器相比,兩者的溫度相差可達30度之多,還可能造成散熱風扇的燒毀。 For the state of the central processor heatsink on the computer, the current software and hardware on the market only provide a detection mechanism for the fan on the central processor heatsink. For the central processor heatsink after a period of use, because of the dust cloth The heat dissipation performance of the central processor heatsink is greatly reduced. Compared with the normal clean central processor heatsink, the temperature difference between the two can reach 30 degrees, which may cause the cooling fan to burn out.
目前市面上的電腦系統大都只針對中央處理器或系統溫度過高偵測、風扇轉速過低或故障偵測等功能,針對中央處理器散熱器之狀態偵測的偵測之機制卻付之闕如。因此,在電腦系統長久使用之後,使用者只能打開機殼並拆開散熱器才能確認是否需要清理中央處理器散熱器。打開機殼並拆開散熱器對個人電腦而言不是困難的 事,但如果是在有數百台或數千台伺服器的機房,這將是一個需要花費龐大人力與時間的檢查。 At present, most of the computer systems on the market are only for the central processor or system temperature detection, fan speed is too low or fault detection, etc., the mechanism for detecting the state of the central processor heatsink is not enough. . Therefore, after the computer system has been used for a long time, the user can only open the case and disassemble the heat sink to confirm whether the central processor heat sink needs to be cleaned. Opening the case and disassembling the heat sink is not difficult for a personal computer. Things, but if it's in a computer room with hundreds or thousands of servers, it will be a check that takes a lot of manpower and time.
有鑒於上述問題,本發明之目的係提供一種偵測中央處理器散熱器狀態之系統及方法,其利用計算型智慧建模工具來偵測中央處理器散熱器之狀態,讓使用者可以在不用打開機殼並拆開散熱器的情況下,可以在一台或數台電腦系統上正確偵測中央處理器散熱器的狀態,另外,再提供一種自動異常排除機制,以在中央處理器散熱器的狀態異常時,主動警示並排除異常狀況。 In view of the above problems, the object of the present invention is to provide a system and method for detecting the state of a central processor heat sink, which uses a computational intelligent modeling tool to detect the state of the central processor heat sink so that the user can When the case is opened and the heat sink is removed, the state of the central processor heatsink can be correctly detected on one or several computer systems. In addition, an automatic abnormality elimination mechanism is provided to the central processor heatsink. When the status is abnormal, it actively alerts and eliminates abnormal conditions.
本發明之第一態樣係提供一種偵測中央處理器散熱器狀態之系統,其包含:一硬體監控裝置,監控一電腦之所有的溫度偵測器與風扇,以獲得所有的溫度偵測器之溫度信號與所有風扇之脈衝寬度調變信號;以及一散熱器狀態偵測模組,其包含:一資料庫,由該散熱器狀態偵測模組擷取該硬體監控裝置所獲得之所有的溫度偵測器之溫度信號與所有風扇之脈衝寬度調變信號、該中央處理器之操作頻率與使用率及該電腦之硬體裝置之溫度信號係存放於該資料庫中;以及一溫度預測模型,將該資料庫中所有的溫度偵測器之溫度信號與所有風扇之脈衝寬度調變信號、該中央處理器之操作頻率與使用率及該電腦之硬體裝置之溫度信號輸入至該溫度預測模型,根據所有的 溫度偵測器之溫度信號與所有風扇之脈衝寬度調變信號、該中央處理器之操作頻率與使用率及該電腦之硬體裝置之溫度信號進行預測,以產生對應該中央處理器散熱器之一中央處理器溫度預測值;其中,該散熱器狀態偵測模組將該中央處理器溫度預測值與所擷取之溫度信號中之該中央處理器散熱器之一中央處理器溫度實際值進行比較,以產生一中央處理器溫度誤差值。 The first aspect of the present invention provides a system for detecting the state of a central processor heatsink, comprising: a hardware monitoring device that monitors all temperature detectors and fans of a computer to obtain all temperature detections. The temperature signal of the device and the pulse width modulation signal of all the fans; and a heat sink state detection module, comprising: a database obtained by the heat sink state detecting module capturing the hardware monitoring device The temperature signal of all the temperature detectors and the pulse width modulation signal of all the fans, the operating frequency and usage rate of the central processing unit, and the temperature signal of the hardware device of the computer are stored in the database; and a temperature Predicting the model, inputting the temperature signal of all the temperature detectors in the database and the pulse width modulation signal of all the fans, the operating frequency and usage rate of the central processing unit, and the temperature signals of the hardware device of the computer to the Temperature prediction model, according to all The temperature signal of the temperature detector is predicted by the pulse width modulation signal of all the fans, the operating frequency and usage rate of the central processing unit, and the temperature signal of the hardware device of the computer to generate a heat sink corresponding to the central processor. a central processor temperature prediction value; wherein the heat sink state detection module performs the central processor temperature prediction value and a central processor temperature actual value of the central processor heat sink in the captured temperature signal Compare to produce a central processor temperature error value.
本發明之第二態樣係提供一種偵測中央處理器散熱器狀態之方法,其包含下列步驟:監控一電腦之所有的溫度偵測器與風扇,以獲得所有的溫度偵測器之溫度信號與所有風扇之脈衝寬度調變信號;擷取所有的溫度偵測器之溫度信號與所有風扇之脈衝寬度調變信號、該中央處理器之操作頻率與使用率及該電腦之硬體裝置之溫度信號;以及根據所有的溫度偵測器之溫度信號與所有風扇之脈衝寬度調變信號、該中央處理器之操作頻率與使用率及該電腦之硬體裝置之溫度信號進行預測,以輸出對應該中央處理器散熱器之一中央處理器溫度預測值,並將該中央處理器溫度預測值與所擷取之溫度信號中之該中央處理器散熱器之一中央處理器溫度實際值進行比較,以獲得一中央處理器溫度誤差值。 A second aspect of the present invention provides a method for detecting a state of a central processor heatsink, comprising the steps of: monitoring all temperature detectors and fans of a computer to obtain temperature signals of all temperature detectors Pulse width modulation signal with all fans; captures the temperature signal of all temperature detectors and the pulse width modulation signal of all fans, the operating frequency and usage rate of the central processing unit, and the temperature of the hardware device of the computer Signal; and according to the temperature signal of all the temperature detectors and the pulse width modulation signal of all the fans, the operating frequency and usage rate of the central processing unit and the temperature signal of the hardware device of the computer, the output is corresponding to the output a central processor temperature predictor value of the central processor heat sink, and comparing the central processor temperature predicted value to a central processor temperature actual value of the central processor heat sink in the captured temperature signal to A central processor temperature error value is obtained.
12‧‧‧散熱器狀態偵測模組 12‧‧‧Radiator Status Detection Module
14‧‧‧硬體監控裝置 14‧‧‧ hardware monitoring device
16‧‧‧警示裝置/散熱器清理裝置 16‧‧‧Warning device / radiator cleaning device
18‧‧‧資料庫 18‧‧‧Database
20‧‧‧溫度預測模型 20‧‧‧ Temperature prediction model
22‧‧‧風扇 22‧‧‧Fan
24‧‧‧中央處理器 24‧‧‧Central Processing Unit
26‧‧‧硬體裝置 26‧‧‧ hardware devices
圖1為本發明之偵測中央處理器散熱器狀態之系統之方塊圖, 圖2為本發明之訓練溫度預測模型之流程圖;以及圖3為本發明之偵測中央處理器散熱器狀態之方法之流程圖。 1 is a block diagram of a system for detecting a state of a central processor heat sink according to the present invention; 2 is a flow chart of a training temperature prediction model of the present invention; and FIG. 3 is a flow chart of a method for detecting a state of a central processor heat sink according to the present invention.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .
圖1為本發明之偵測中央處理器散熱器狀態之系統之方塊圖。在圖1中,偵測中央處理器散熱器狀態之系統包含一散熱器狀態偵測模組12、一硬體監控裝置14及一警示裝置/散熱器清理裝置16。散熱器狀態偵測模組12包含一資料庫18及一溫度預測模型20。 1 is a block diagram of a system for detecting a state of a central processor heat sink of the present invention. In FIG. 1, the system for detecting the state of the central processor heat sink includes a heat sink state detecting module 12, a hardware monitoring device 14, and a warning device/heatsink cleaning device 16. The radiator state detection module 12 includes a database 18 and a temperature prediction model 20.
其中,散熱器狀態偵測模組12可以軟體或硬體來實現,警示裝置/散熱器清理裝置16可以使用一使用者介面、一警示燈或一蜂鳴器以及一步進馬達與一刷子之組合。 The heatsink state detecting module 12 can be implemented by software or hardware. The warning device/heatsink cleaning device 16 can use a user interface, a warning light or a buzzer, and a combination of a stepping motor and a brush. .
硬體監控裝置14監控電腦之所有的溫度偵測器(未圖示)與風扇22,以獲得所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號。其中,所有的溫度偵測器包含偵測中央處理器散熱器(未圖示)之溫度之一中央處理器溫度偵測器(未圖示)及偵測電腦之內部環境溫度之一環境溫度偵測器(未圖示),所有風扇22包含對中央處理器散熱器散熱之一中央處理器風扇(未圖示)及對電腦之內部環境散熱之一系統風扇(未圖示)。 The hardware monitoring device 14 monitors all of the computer's temperature detectors (not shown) and the fan 22 to obtain the temperature signals of all the temperature detectors and the pulse width modulation signals of all the fans 22. Among them, all temperature detectors include a central processor temperature detector (not shown) that detects the temperature of the central processor heat sink (not shown) and detects the internal temperature of the computer. A detector (not shown), all of which include a central processing unit fan (not shown) that dissipates heat from the central processor heat sink and a system fan (not shown) that dissipates heat to the internal environment of the computer.
散熱器狀態偵測模組12經由匯流排I/O Access擷取硬體監控裝置14所獲得之所有的溫度偵測器之溫度信號與所有風扇之脈衝 寬度調變信號、電腦之硬體26之溫度信號以及經由匯流排MSR(Model Specific Register)Access擷取來自中央處理器24之操作頻率與使用率(即使用負載)以存放於資料庫18中。硬體裝置26之溫度信號係由偵測硬體裝置26之溫度偵測器(未圖示)所偵測得到。其中,硬體裝置26係為硬碟、VGA卡等。 The heat sink state detecting module 12 captures the temperature signals of all the temperature detectors and the pulses of all the fans obtained by the hardware monitoring device 14 via the busbar I/O Access. The width modulation signal, the temperature signal of the hardware 26 of the computer, and the operating frequency and usage rate (ie, the usage load) from the central processing unit 24 are retrieved in the database 18 via the MSR (Model Specific Register) Access. The temperature signal of the hardware device 26 is detected by a temperature detector (not shown) that detects the hardware device 26. The hardware device 26 is a hard disk, a VGA card, or the like.
由散熱器狀態偵測模組12擷取硬體監控裝置14所獲得之所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號係存放於資料庫18中。 The temperature detection signal of all the temperature detectors obtained by the hardware monitoring device 14 and the pulse width modulation signals of all the fans 22, the operating frequency and usage rate of the central processing unit 24, and The temperature signal of the hardware device 26 is stored in the database 18.
將資料庫18中所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號輸入至溫度預測模型20,溫度預測模型20根據所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號進行預測,以產生對應中央處理器散熱器之一中央處理器溫度預測值。 The temperature signals of all the temperature detectors in the database 18 and the pulse width modulation signals of all the fans 22, the operating frequency and usage rate of the central processing unit 24, and the temperature signals of the hardware device 26 are input to the temperature prediction model 20, The temperature prediction model 20 predicts based on the temperature signals of all the temperature detectors and the pulse width modulation signals of all the fans 22, the operating frequency and usage rate of the central processing unit 24, and the temperature signals of the hardware device 26 to generate a corresponding center. One of the processor heat sinks is the central processor temperature prediction.
其中,散熱器狀態偵測模組12將中央處理器溫度預測值與其所擷取之溫度信號中之中央處理器散熱器之一中央處理器溫度實際值進行比較,以產生一中央處理器溫度誤差值。 The heatsink state detection module 12 compares the CPU processor temperature prediction value with a central processor temperature actual value of one of the central processor heatsinks in the temperature signal captured to generate a central processor temperature error. value.
圖2為本發明之訓練溫度預測模型之流程圖。說明圖2之操作步驟之同時請參考圖1之系統組件以輔助說明。 2 is a flow chart of a training temperature prediction model of the present invention. Please refer to the system components of Figure 1 for assistance in explaining the operation steps of Figure 2.
在圖2中,散熱器狀態偵測模組12需要擷取多筆(例如1500筆或者更多)所有的溫度偵測器之溫度信號與所有風扇22之脈衝 寬度調變信號、中央處理器24之操作頻率與使用率及電腦之硬體裝置26之溫度信號以作為訓練資料。散熱器狀態偵測模組12將所擷取之多筆資料存放於資料庫18中或者成為一資料檔之形式(步驟S30),該多筆資料的一部分資料(例如1000筆資料)係作為訓練溫度預測模型20用之訓練資料,其餘的資料(例如500筆資料)係作為驗證溫度預測模型20預測中央處理器散熱器的溫度用之驗證資料。其中,散熱器狀態偵測模組12經由匯流排I/O Access擷取來自硬體監控裝置14之所有的溫度偵測器之溫度信號及來自硬體裝置26之溫度信號、以及經由匯流排MSR Access擷取來自中央處理器24之操作頻率與使用率。 In FIG. 2, the heatsink state detecting module 12 needs to capture multiple temperature signals of all temperature detectors (for example, 1500 pens or more) and pulses of all the fans 22. The width modulation signal, the operating frequency and usage rate of the central processing unit 24, and the temperature signal of the hardware device 26 of the computer are used as training materials. The heat sink state detecting module 12 stores the plurality of captured data in the database 18 or forms a data file (step S30), and a part of the plurality of data (for example, 1000 data) is used as training. The temperature prediction model 20 uses the training data, and the remaining data (for example, 500 data) is used as verification data for verifying the temperature of the central processor heat sink by the temperature prediction model 20. The heat sink state detecting module 12 captures temperature signals from all the temperature detectors of the hardware monitoring device 14 and the temperature signals from the hardware device 26 via the busbar I/O Access, and via the bus bar MSR. Access captures the operating frequency and usage from the central processor 24.
其中,一筆所有的溫度偵測器之溫度信號包含偵測中央處理器散熱器之溫度之中央處理器溫度偵測器(設置於中央處理器散熱器處)所產生之溫度信號、偵測電腦之內部環境溫度之環境溫度偵測器(設置於硬體監控裝置14之內部)所產生之溫度信號;一筆所有風扇22之脈衝寬度調變信號包含對中央處理器散熱器散熱之中央處理器風扇之脈衝寬度調變信號及對電腦之內部環境散熱之系統風扇之脈衝寬度調變信號;一筆硬體裝置26之溫度信號包含偵測硬碟之溫度偵測器(設置於硬碟處)所產生之溫度信號、偵測VGA卡之溫度偵測器(設置於VGA卡處)所產生之溫度信號。 The temperature signal of all the temperature detectors includes a temperature signal generated by a central processing unit temperature detector (located at the central processor heat sink) for detecting the temperature of the central processor heatsink, and detecting the computer. A temperature signal generated by an ambient temperature detector of the internal ambient temperature (provided inside the hardware monitoring device 14); a pulse width modulation signal of all the fans 22 includes a central processing unit fan that dissipates heat from the central processor heat sink The pulse width modulation signal and the pulse width modulation signal of the system fan for dissipating heat to the internal environment of the computer; the temperature signal of the hardware device 26 includes a temperature detector for detecting the hard disk (set at the hard disk) The temperature signal and the temperature signal generated by the temperature detector (set at the VGA card) of the VGA card.
接著,由散熱器狀態偵測模組12判斷所擷取之所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號的數量是否達到一預設數量(例如1500筆資料)(步驟S32)。 Then, the heat sink state detecting module 12 determines the temperature signals of all the temperature detectors captured and the pulse width modulation signals of all the fans 22, the operating frequency and usage rate of the central processing unit 24, and the hardware device. Whether the number of temperature signals of 26 reaches a predetermined number (for example, 1500 pieces of data) (step S32).
若散熱器狀態偵測模組12判斷所擷取之資料未達到預設數量,則回到步驟S30,散熱器狀態偵測模組12繼續擷取所需的資料;若散熱器狀態偵測模組12判斷所擷取之資料已達到預設數量,則將資料庫18中或資料檔作為訓練資料之多筆所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號之每一筆輸入至溫度預測模型20,根據所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號來訓練溫度預測模型20之各項參數(步驟S34)。其中,訓練溫度預測模型20係以類神經網路、模糊理論或迴歸模型等來建立模型。 If the heat sink state detecting module 12 determines that the captured data has not reached the preset number, the process returns to step S30, and the heatsink state detecting module 12 continues to retrieve the required data; The group 12 judges that the captured data has reached the preset number, and uses the database 18 or the data file as the temperature data of all the temperature detectors of the training data and the pulse width modulation signal of all the fans 22, and the central Each of the operating frequency and usage rate of the processor 24 and the temperature signal of the hardware device 26 is input to the temperature prediction model 20, and the pulse width modulation signal and central processing are performed according to the temperature signals of all the temperature detectors and all the fans 22. The operating frequency and usage rate of the device 24 and the temperature signal of the hardware device 26 are used to train the parameters of the temperature prediction model 20 (step S34). Among them, the training temperature prediction model 20 establishes a model by using a neural network, a fuzzy theory or a regression model.
接著,將於資料庫18中或資料檔之作為訓練資料及驗證資料之多筆所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號之每一筆輸入至溫度預測模型20,經由溫度預測模型20之溫度預測運算以輸出對應中央處理器散熱器之多個中央處理器溫度驗證值(中央處理器溫度驗證值的數量相同於訓練資料及驗證資料加總的數量)。由散熱器狀態偵測模組12將多個中央處理器溫度驗證值與其所擷取之多個中央處理器散熱器之中央處理器溫度實際值(中央處理器溫度實際值的數量相同於中央處理器溫度驗證值的數量)進行比較,以獲得多個中央處理器溫度驗證誤差值(中央處理器溫度驗證誤差值的數量相同於中央處理器溫度實際值的數量),並將多個中央處理器溫度驗證誤差值進行平均值運算以獲得一平均誤差值(步驟S36)。 Then, the temperature signals of all the temperature detectors in the database 18 or the data file as the training data and the verification data and the pulse width modulation signal of all the fans 22, the operating frequency of the central processing unit 24, and the use thereof. Each of the rate and temperature signals of the hardware device 26 is input to the temperature prediction model 20, and the temperature prediction operation of the temperature prediction model 20 is performed to output a plurality of central processor temperature verification values corresponding to the central processor heat sink (central processing unit temperature) The number of verification values is the same as the sum of the training data and the verification data. The heat sink state detection module 12 compares the plurality of central processor temperature verification values with the actual value of the central processor temperature of the plurality of central processor heat sinks (the actual value of the central processor temperature is the same as the central processing) Comparing the number of temperature verification values to obtain multiple CPU temperature verification error values (the number of CPU temperature verification error values is the same as the actual value of the CPU temperature) and multiple CPUs The temperature verification error value is averaged to obtain an average error value (step S36).
由散熱器狀態偵測模組12判斷平均誤差值是否大於或等於一訓練驗證值(由使用者設定),以得知溫度預測模型20是否訓練完成(步驟S38)。 The radiator state detecting module 12 determines whether the average error value is greater than or equal to a training verification value (set by the user) to know whether the temperature prediction model 20 is completed (step S38).
若散熱器狀態偵測模組12判斷平均誤差值小於訓練驗證值,表示溫度預測模型20預測對應中央處理器散熱器之中央處理器溫度預測值的準確性不符合要求,則回到步驟S34,以執行步驟S34之操作再次訓練溫度預測模型20。 If the heatsink state detection module 12 determines that the average error value is less than the training verification value, indicating that the temperature prediction model 20 predicts that the accuracy of the central processor temperature prediction value corresponding to the central processor heatsink does not meet the requirements, then returning to step S34, The temperature prediction model 20 is trained again by performing the operation of step S34.
若散熱器狀態偵測模組12判斷平均誤差值大於或等於訓練驗證值,表示溫度預測模型20預測對應中央處理器散熱器之中央處理器溫度預測值的準確性符合要求,則結束溫度預測模型20之訓練(步驟S40)。 If the radiator state detecting module 12 determines that the average error value is greater than or equal to the training verification value, indicating that the temperature prediction model 20 predicts that the accuracy of the central processor temperature prediction value corresponding to the central processor heatsink meets the requirements, the temperature prediction model ends. Training of 20 (step S40).
圖3為本發明之偵測中央處理器散熱器狀態之方法之流程圖。說明圖3之操作步驟之同時請參考圖1之系統組件以輔助說明。 3 is a flow chart of a method for detecting a state of a central processor heat sink according to the present invention. Please refer to the system components of Figure 1 for assistance in explaining the operation steps of Figure 3.
使用者可定時或不定時地偵測中央處理器散熱器之狀 態,並無需隨時進行偵測。在圖3中,由硬體監控裝置14監控電腦之所有的溫度偵測器與風扇22,以獲得如上述之所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號(步驟S50)。 The user can detect the shape of the central processor heat sink periodically or irregularly. State, and no need to detect at any time. In FIG. 3, all the temperature detectors and fans 22 of the computer are monitored by the hardware monitoring device 14 to obtain the temperature signals of all the temperature detectors and the pulse width modulation signals of all the fans 22 as described above (steps) S50).
由散熱器狀態偵測模組12擷取上述之所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號,並將該等資料存放於資料庫18中(步驟S52)。 The heat sink state detecting module 12 captures the temperature signals of all the temperature detectors and the pulse width modulation signals of all the fans 22, the operating frequency and usage rate of the central processing unit 24, and the temperature of the hardware device 26. The signals are stored in the database 18 (step S52).
將於資料庫18中之所有的溫度偵測器之溫度信號與所 有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號輸入至溫度預測模型20,溫度預測模型20根據所有的溫度偵測器之溫度信號與所有風扇22之脈衝寬度調變信號、中央處理器24之操作頻率與使用率及硬體裝置26之溫度信號進行溫度預測運算,以輸出對應中央處理器散熱器之中央處理器溫度預測值,由散熱器狀態偵測模組12將中央處理器溫度預測值與其所擷取之溫度信號中之中央處理器散熱器之一中央處理器溫度實際值進行比較,以獲得中央處理器溫度誤差值(步驟S54)。 The temperature signals of all the temperature detectors in the database 18 will be The pulse width modulation signal of the fan 22, the operating frequency and usage rate of the central processing unit 24, and the temperature signal of the hardware device 26 are input to the temperature prediction model 20, and the temperature prediction model 20 is based on the temperature signals of all the temperature detectors. The pulse width modulation signal of all the fans 22, the operating frequency and usage rate of the central processing unit 24, and the temperature signal of the hardware device 26 are subjected to temperature prediction operations to output a CPU processor temperature prediction value corresponding to the central processor heatsink. The heatsink state detection module 12 compares the CPU processor temperature prediction value with a central processor temperature actual value of one of the central processor heatsinks in the temperature signal captured to obtain a central processor temperature error value (step S54).
接著,由散熱器狀態偵測模組12判斷中央處理器溫度誤差值是否大於或等於一警示值(步驟S56),若散熱器狀態偵測模組12判斷中央處理器溫度誤差值小於警示值,則結束此次中央處理器散熱器之狀態的偵測;若散熱器狀態偵測模組12判斷中央處理器溫度誤差值大於或等於警示值,則由散熱器狀態偵測模組12經由匯流排I/O Access輸出一警示信號及一清理信號至警示裝置/散熱器清理裝置16。 Then, the heat sink state detecting module 12 determines whether the temperature error value of the central processing unit is greater than or equal to a warning value (step S56), and if the heat sink state detecting module 12 determines that the temperature error value of the central processing unit is less than the warning value, Ending the detection of the state of the central processor heatsink; if the heatsink state detection module 12 determines that the temperature error value of the central processor is greater than or equal to the warning value, the heatsink state detection module 12 is connected via the busbar The I/O Access outputs a warning signal and a cleaning signal to the warning device/heatsink cleaning device 16.
當警示裝置/散熱器清理裝置16接收到警示信號及清理信號時,例如使用者介面、警示燈或蜂鳴器之警示裝置/散熱器清理裝置16產生警示訊息、燈光或聲音等動作(步驟S58),而且例如步進馬達及刷子之組合之警示裝置/散熱器清理裝置16清理中央處理器散熱器上之灰塵,以使中央處理器散熱器對中央處理器24具有良好的散熱效果(步驟S60)。 When the warning device/radiator cleaning device 16 receives the warning signal and the cleaning signal, for example, the user interface, the warning light or the buzzer warning device/radiator cleaning device 16 generates an action such as a warning message, a light or a sound (step S58). And the warning device/heatsink cleaning device 16 such as a combination of a stepping motor and a brush cleans the dust on the central processor heat sink so that the central processor heat sink has a good heat dissipation effect on the central processing unit 24 (step S60) ).
本發明提供一種偵測中央處理器散熱器狀態之系統及方法,其優點在於利用計算型智慧建模工具來偵測中央處理器散熱器 之狀態,讓使用者可以在不用打開機殼並拆開散熱器的情況下,可以在一台或數台電腦系統上正確偵測中央處理器散熱器的狀態,另外,再提供一種自動異常排除機制,以在中央處理器散熱器的狀態異常時,主動警示並排除異常狀況。 The present invention provides a system and method for detecting the state of a central processor heat sink, which has the advantage of using a computational intelligent modeling tool to detect a central processor heat sink. The state allows the user to correctly detect the state of the central processor heatsink on one or several computer systems without opening the case and disassembling the heatsink. In addition, an automatic abnormality exclusion is provided. Mechanism to proactively alert and eliminate abnormal conditions when the state of the central processor's heat sink is abnormal.
雖然本發明已參照較佳具體例及舉例性附圖敘述如上,惟其應不被視為係限制性者。熟悉本技藝者對其形態及具體例之內容做各種修改、省略及變化,均不離開本發明之申請專利範圍之所主張範圍。 The present invention has been described above with reference to the preferred embodiments and the accompanying drawings, and should not be considered as limiting. Various modifications, omissions and changes may be made without departing from the scope of the invention.
12‧‧‧散熱器狀態偵測模組 12‧‧‧Radiator Status Detection Module
14‧‧‧硬體監控裝置 14‧‧‧ hardware monitoring device
16‧‧‧警示裝置/散熱器清理裝置 16‧‧‧Warning device / radiator cleaning device
18‧‧‧資料庫 18‧‧‧Database
20‧‧‧溫度預測模型 20‧‧‧ Temperature prediction model
22‧‧‧風扇 22‧‧‧Fan
24‧‧‧中央處理器 24‧‧‧Central Processing Unit
26‧‧‧硬體裝置 26‧‧‧ hardware devices
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103100169A TWI525429B (en) | 2014-01-03 | 2014-01-03 | A system and method for detecting the state of a central processor radiator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103100169A TWI525429B (en) | 2014-01-03 | 2014-01-03 | A system and method for detecting the state of a central processor radiator |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201527961A true TW201527961A (en) | 2015-07-16 |
TWI525429B TWI525429B (en) | 2016-03-11 |
Family
ID=54198246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103100169A TWI525429B (en) | 2014-01-03 | 2014-01-03 | A system and method for detecting the state of a central processor radiator |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI525429B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106647995A (en) * | 2016-12-14 | 2017-05-10 | 英业达科技有限公司 | Fan monitoring system |
TWI756933B (en) * | 2020-11-23 | 2022-03-01 | 英業達股份有限公司 | Device and method for prediction of server pcie chip temperature |
US11971698B2 (en) | 2020-02-03 | 2024-04-30 | Samsung Electronics Co., Ltd. | Methods and systems for ascertaining factors contributing to the temperature of a device |
TWI849336B (en) * | 2020-09-18 | 2024-07-21 | 博詳科技股份有限公司 | Ai motorcycle |
-
2014
- 2014-01-03 TW TW103100169A patent/TWI525429B/en active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106647995A (en) * | 2016-12-14 | 2017-05-10 | 英业达科技有限公司 | Fan monitoring system |
US11971698B2 (en) | 2020-02-03 | 2024-04-30 | Samsung Electronics Co., Ltd. | Methods and systems for ascertaining factors contributing to the temperature of a device |
TWI849336B (en) * | 2020-09-18 | 2024-07-21 | 博詳科技股份有限公司 | Ai motorcycle |
TWI756933B (en) * | 2020-11-23 | 2022-03-01 | 英業達股份有限公司 | Device and method for prediction of server pcie chip temperature |
Also Published As
Publication number | Publication date |
---|---|
TWI525429B (en) | 2016-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105637432A (en) | Identifying anomalous behavior of a monitored entity | |
EP2313831B1 (en) | Data center thermal monitoring | |
CN105787248B (en) | The abnormal sensing and forecasting system and method for analysis based on time series data | |
US8457928B2 (en) | Automatic determination of dynamic threshold for accurate detection of abnormalities | |
US20130138419A1 (en) | Method and system for the assessment of computer system reliability using quantitative cumulative stress metrics | |
EP3745272B1 (en) | An application performance analyzer and corresponding method | |
US10725509B2 (en) | Processor monitoring of thermal degradation | |
US7870440B2 (en) | Method and apparatus for detecting multiple anomalies in a cluster of components | |
US7696890B2 (en) | Capacitive detection of dust accumulation using microcontroller component leads | |
TWI525429B (en) | A system and method for detecting the state of a central processor radiator | |
US8290746B2 (en) | Embedded microcontrollers classifying signatures of components for predictive maintenance in computer servers | |
CN110825578A (en) | Method for automatically managing hardware error events that occur in data center systems | |
CN111858230A (en) | Method and system for monitoring the health of server infrastructure | |
US10467087B2 (en) | Plato anomaly detection | |
CN102257520A (en) | Performance analysis of applications | |
US20190349247A1 (en) | Scalable and real-time anomaly detection | |
CH717594A2 (en) | Systems and methods for the detection of behavioral anomalies in applications. | |
US20180321719A1 (en) | Thermal excursion detection in datacenter components | |
CN107632907B (en) | BMC chip hosting system and control method thereof | |
US20230344851A1 (en) | Classification based anomaly detection | |
CN108197717A (en) | Equipment maintenance system and method based on signal | |
JP7211084B2 (en) | Information processing device, information processing method and information processing program | |
JP6627258B2 (en) | System model generation support device, system model generation support method, and program | |
TWI688328B (en) | Dust removal method for fan and electronic device using the same | |
Chen et al. | Detecting data center cooling problems using a data-driven approach |