TW201525498A - Method and apparatus for predicting discharging output of battery - Google Patents
Method and apparatus for predicting discharging output of battery Download PDFInfo
- Publication number
- TW201525498A TW201525498A TW102148794A TW102148794A TW201525498A TW 201525498 A TW201525498 A TW 201525498A TW 102148794 A TW102148794 A TW 102148794A TW 102148794 A TW102148794 A TW 102148794A TW 201525498 A TW201525498 A TW 201525498A
- Authority
- TW
- Taiwan
- Prior art keywords
- battery
- discharge
- current
- temperature
- estimated
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000007599 discharging Methods 0.000 title claims abstract description 28
- 230000005611 electricity Effects 0.000 claims description 72
- 230000006870 function Effects 0.000 claims description 45
- 238000005259 measurement Methods 0.000 claims description 13
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000005856 abnormality Effects 0.000 claims description 7
- 238000009825 accumulation Methods 0.000 claims description 2
- 238000009529 body temperature measurement Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 14
- 230000006866 deterioration Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 239000003086 colorant Substances 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本揭露是有關於一種電池放電輸出的預測方法與預測裝置。 The present disclosure relates to a method and a prediction apparatus for predicting a battery discharge output.
現今的電動車性能已經不遜色於使用汽油內燃機的傳統汽車。顧名思義,電動車是靠電池提供的電力驅動。傳統汽車的儀表板會顯示剩餘可用的油量,做為駕駛者的參考。所以一般駕駛者也會預期電動車的儀表板顯示電池的剩餘可用電量。電池的實際可用電量會受溫度、放電功率、以及電池老化等因素影響,所以電池剩餘可用的電量的估測常有誤差。 Today's electric vehicles are no less inferior to conventional cars that use gasoline internal combustion engines. As the name suggests, electric vehicles are powered by batteries. The dashboard of a traditional car will show the amount of oil remaining available as a reference for the driver. Therefore, the average driver will also expect the electric vehicle's dashboard to display the remaining available power of the battery. The actual available power of the battery is affected by factors such as temperature, discharge power, and battery aging, so there is often an error in estimating the amount of battery available.
電池的放電輸出能力和可用電量會影響電動載具的速度、扭力、續航力等各項性能。若能預估電池最大輸出功率,並根據電池輸出功率之預估值儘量有效利用所有電池電量,將有助於提昇電動載具的整體性能表現與可靠度。但如何以最少變數與最有效的方法讓電池電量的估測誤差在控制範圍內,是一大挑戰。 The battery's discharge output capability and available power will affect the performance of the electric vehicle's speed, torque, and endurance. If you can estimate the maximum output power of the battery and use all the battery power as effectively as possible based on the estimated output power of the battery, it will help improve the overall performance and reliability of the electric vehicle. However, how to estimate the error of battery power with the least amount of variables and the most effective method is a big challenge.
本揭露提供一種電池放電輸出的預測方法與預測裝置,可有效減少電池的電量與輸出功率的估測誤差。 The present disclosure provides a method and a prediction device for predicting a battery discharge output, which can effectively reduce the estimation error of the battery power and output power.
本揭露的電池放電輸出預測方法包括以下步驟:在電池完全充電後,在電池的多個放電強度與多個溫度的每一組合中量測電池的放電電量,以產生一電量表;以及根據電量表計算電池的預估放電電量或預估最大放電強度。此電量表包括上述電池的溫度、放電強度與放電電量之間的對應關係。上述放電強度為電池的放電功率或放電電流。 The battery discharge output prediction method of the present disclosure includes the following steps: after the battery is fully charged, measuring the discharged power of the battery in each combination of the plurality of discharge intensities and the plurality of temperatures of the battery to generate a electricity meter; The table calculates the estimated discharge capacity or estimated maximum discharge strength of the battery. The electricity meter includes a correspondence relationship between the temperature, the discharge intensity, and the discharged power of the above battery. The above discharge intensity is the discharge power or discharge current of the battery.
本揭露的電池放電輸出預測裝置包括記憶單元、電池量測單元與運算單元。記憶單元儲存上述電量表。電池量測單元耦接電池,量測電池的目前放電電量、目前放電強度與目前溫度。運算單元耦接記憶單元與電池量測單元,根據上述的目前放電電量、目前放電強度與目前溫度其中至少一者並根據電量表計算電池的預估放電電量或預估最大放電強度。 The battery discharge output predicting device of the present disclosure includes a memory unit, a battery measuring unit and an arithmetic unit. The memory unit stores the above power meter. The battery measuring unit is coupled to the battery to measure the current discharge capacity of the battery, the current discharge intensity and the current temperature. The computing unit is coupled to the memory unit and the battery measuring unit, and calculates an estimated discharging power or an estimated maximum discharging intensity of the battery according to at least one of the current discharging power, the current discharging intensity and the current temperature, and according to the electricity meter.
本揭露的另一種電池放電輸出預測方法包括以下步驟:在電池完全充電後,在電池的多個放電強度與多個溫度的每一組合中量測電池的放電電量,其中上述放電強度為電池的放電功率或放電電流;使用函式表示上述量測所得的溫度、放電強度與放電電量之間的對應關係,上述函式包括一溫度係數,此溫度係數為電池的上述溫度的函式;根據此函式計算電池的預估放電電量或預估最大放電強度;若電池的一預估值與對應該預估值的實際 值之間的誤差大於設定值,則根據實際值修正上述溫度係數,上述預估值為上述的預估放電電量或預估最大放電強度。 Another battery discharge output prediction method disclosed in the present disclosure includes the following steps: measuring the discharged power of the battery in each combination of a plurality of discharge intensities and a plurality of temperatures of the battery after the battery is fully charged, wherein the discharge intensity is a battery Discharge power or discharge current; use the function to indicate the relationship between the temperature, discharge intensity and discharge capacity of the above measurement, the function includes a temperature coefficient, the temperature coefficient is a function of the above temperature of the battery; The function calculates the estimated discharge capacity of the battery or the estimated maximum discharge intensity; if the estimated value of the battery is the actual value corresponding to the estimated value If the error between the values is greater than the set value, the temperature coefficient is corrected according to the actual value, and the estimated value is the estimated discharge power or the estimated maximum discharge intensity.
本揭露的另一種電池放電輸出預測方法包括以下步驟:在電池完全充電後,依上述方式產生上述電量表;根據電量表計算電池的預估放電電量或預估最大放電強度;若電池的一預估值與對應預估值的實際值之間的誤差大於設定值,則根據預估值與實際值計算一增益值,上述預估值為上述的預估放電電量或電池的全充容量;以及根據增益值修正電量表。 Another battery discharge output prediction method disclosed in the present disclosure includes the following steps: after the battery is fully charged, generating the above-mentioned electricity meter according to the above manner; calculating the estimated discharge power of the battery or estimating the maximum discharge intensity according to the electricity meter; If the error between the estimated value and the actual value of the corresponding estimated value is greater than the set value, a gain value is calculated according to the estimated value and the actual value, and the estimated value is the estimated discharge power or the full charge capacity of the battery; Correct the fuel gauge according to the gain value.
本揭露的另一種電池放電輸出預測裝置除上述記憶單元、電池量測單元與運算單元之外,更包括一顯示單元。顯示單元耦接運算單元,顯示上述的目前放電強度與預估最大放電強度。 Another battery discharge output predicting device of the present disclosure further includes a display unit in addition to the memory unit, the battery measuring unit and the arithmetic unit. The display unit is coupled to the arithmetic unit to display the current discharge intensity and the estimated maximum discharge intensity.
基於上述,本揭露的電池放電輸出的預測方法與預測裝置可預估最大功率輸出與目前功率下可用電量,可提昇使用者對於電池資訊的信任感,提昇使用者體驗,進而提升電動載具的行駛安全性與可靠度。 Based on the above, the prediction method and the prediction device of the battery discharge output of the present invention can estimate the maximum power output and the available power at the current power, thereby improving the user's trust in the battery information, improving the user experience, and thereby improving the electric vehicle. Driving safety and reliability.
為讓本揭露的上述特徵能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features of the present disclosure more apparent, the following embodiments are described in detail with reference to the accompanying drawings.
100‧‧‧電池放電輸出預測裝置 100‧‧‧Battery discharge output prediction device
110‧‧‧電池 110‧‧‧Battery
120‧‧‧電池量測單元 120‧‧‧Battery measurement unit
130‧‧‧運算單元 130‧‧‧ arithmetic unit
140‧‧‧記憶單元 140‧‧‧ memory unit
150‧‧‧顯示單元 150‧‧‧ display unit
160‧‧‧電池控制單元 160‧‧‧Battery Control Unit
210~240‧‧‧方法步驟 210~240‧‧‧ method steps
410‧‧‧電流感測器 410‧‧‧ Current Sensor
420‧‧‧電量估測單元 420‧‧‧Power Estimation Unit
430‧‧‧溫度量測單元 430‧‧‧Temperature measuring unit
540‧‧‧電壓量測單元 540‧‧‧Voltage measuring unit
550‧‧‧功率計算單元 550‧‧‧Power calculation unit
610~680、710~780‧‧‧方法步驟 610~680, 710~780‧‧‧ method steps
900、1100‧‧‧放電強度表 900, 1100‧‧‧discharge intensity table
910、920、1110、1120‧‧‧放電強度表的部分 Part of the discharge intensity table for 910, 920, 1110, 1120‧‧
930、1130‧‧‧指針 930, 1130‧‧ pointer
1140‧‧‧預估最大放電功率 1140‧‧‧ Estimated maximum discharge power
1150‧‧‧電池異常警示 1150‧‧‧Battery abnormal warning
1160‧‧‧倒數計時 1160‧‧‧ Countdown
圖1是依照本揭露的一實施例的一種電池放電輸出預測裝置的示意圖。 FIG. 1 is a schematic diagram of a battery discharge output prediction apparatus according to an embodiment of the present disclosure.
圖2是依照本揭露的一實施例的一種電池放電輸出預測方法的流程圖。 2 is a flow chart of a battery discharge output prediction method in accordance with an embodiment of the present disclosure.
圖3是依照本揭露的一實施例的電池放電量測所得數據的示意圖。 3 is a schematic diagram of data obtained from battery discharge measurements in accordance with an embodiment of the present disclosure.
圖4是依照本揭露的一實施例的一種電池量測單元的示意圖。 4 is a schematic diagram of a battery measuring unit in accordance with an embodiment of the present disclosure.
圖5是依照本揭露的另一實施例的一種電池量測單元的示意圖。 FIG. 5 is a schematic diagram of a battery measuring unit according to another embodiment of the disclosure.
圖6與圖7是依照本揭露的一實施例的一種電池放電輸出預測方法的流程圖。 6 and 7 are flowcharts of a battery discharge output prediction method according to an embodiment of the present disclosure.
圖8A至圖8D是依照本揭露的一實施例的一種電池放電輸出預測裝置的顯示畫面的示意圖。 8A-8D are schematic diagrams of display screens of a battery discharge output prediction apparatus according to an embodiment of the present disclosure.
圖9A與圖9B是依照本揭露的另一實施例的一種電池放電輸出預測裝置的顯示畫面的示意圖。 9A and 9B are schematic diagrams showing a display screen of a battery discharge output prediction apparatus according to another embodiment of the present disclosure.
圖10是依照本揭露的一實施例的一種電池放電輸出預測裝置的示意圖。 FIG. 10 is a schematic diagram of a battery discharge output prediction apparatus according to an embodiment of the present disclosure.
圖11A至圖11D是依照本揭露的一實施例的一種電池放電輸出預測裝置的顯示畫面的示意圖。 11A-11D are schematic diagrams of display screens of a battery discharge output prediction apparatus according to an embodiment of the present disclosure.
圖1是依照本揭露的一實施例的一種電池放電輸出預測裝置100的示意圖。電池放電輸出預測裝置100可應用在電動載 具、儲能系統、或不斷電系統。電池放電輸出預測裝置100包括電池量測單元120、運算單元130、記憶單元140、以及顯示單元150。電池量測單元120耦接電池110。運算單元130耦接電池量測單元120、記憶單元140、以及顯示單元150。 FIG. 1 is a schematic diagram of a battery discharge output prediction apparatus 100 in accordance with an embodiment of the present disclosure. The battery discharge output prediction device 100 can be applied to an electric load Equipment, energy storage systems, or uninterruptible power systems. The battery discharge output predicting device 100 includes a battery measuring unit 120, an arithmetic unit 130, a memory unit 140, and a display unit 150. The battery measuring unit 120 is coupled to the battery 110. The computing unit 130 is coupled to the battery measuring unit 120, the memory unit 140, and the display unit 150.
記憶單元140可儲存以下說明中的電量表、查找表或函式等各種數據。電池量測單元120可量測電池110的目前放電電量、目前放電強度與目前溫度。目前放電電量是指電池110自開始供電到目前為止所累積輸出的電量。放電強度可以是電池110的放電功率或放電電流,以下的說明中大多以放電功率為例。運算單元130可根據電池110的目前放電電量、目前放電強度與目前溫度其中至少一者,並根據記憶單元140儲存的電量表,計算電池110的預估放電電量或預估最大放電強度。預估放電電量是指運算單元130所預估的在目前環境下電池110總共可輸出的放電電量,而預估最大放電強度是指電池110可耐受的最大放電強度。顯示單元140可顯示上述的與電池110相關的各種數據。 The memory unit 140 can store various data such as a power meter, a lookup table, or a function in the following description. The battery measuring unit 120 can measure the current discharge capacity of the battery 110, the current discharge intensity, and the current temperature. The current discharged power refers to the amount of power that the battery 110 has accumulated since the start of power supply. The discharge intensity may be the discharge power or the discharge current of the battery 110. In the following description, the discharge power is often exemplified. The computing unit 130 may calculate the estimated discharge capacity or the estimated maximum discharge intensity of the battery 110 according to at least one of the current discharge capacity of the battery 110, the current discharge intensity, and the current temperature, and according to the power consumption table stored by the memory unit 140. The estimated discharge power refers to the discharge power that the operation unit 130 estimates in total in the current environment, and the estimated maximum discharge intensity refers to the maximum discharge strength that the battery 110 can withstand. The display unit 140 can display various data related to the battery 110 described above.
圖2是依照本揭露的一實施例的一種電池放電輸出預測方法的流程圖。步驟210可由人工執行或由一個自動控制裝置執行,步驟220~240可由運算單元130執行。 2 is a flow chart of a battery discharge output prediction method in accordance with an embodiment of the present disclosure. Step 210 may be performed manually or by an automatic control device, and steps 220-240 may be performed by arithmetic unit 130.
首先,在步驟210產生上述的電量表。這個電量表是在電池110完全充電後,在電池110的多個放電強度與多個溫度的每一組合中量測電池110的放電電量而產生。例如下列的表1就是電量表的一個範例。 First, the power meter described above is generated at step 210. This electricity meter is generated by measuring the discharged electric quantity of the battery 110 in each of a plurality of discharge intensities of the battery 110 and a plurality of temperatures after the battery 110 is fully charged. For example, Table 1 below is an example of a power meter.
表1最左邊列出五種不同溫度,最上面一行列出五種不同的放電強度,在此範例是放電功率,單位是瓦特(W)。其餘25個方格表示五種溫度與五種放電強度的25種組合,每個方格中的數字是在一個組合中量測所得的電池110的放電電量,也就是電池110在該組合的特定溫度下以該組合的特定功率放電,直到電池110的放電電壓抵達截止電壓而出現放電電壓急遽下降為止,所能輸出的總累積電量。在每一個組合的放電量測中,若電池110的目前溫度與該組合的特定溫度的溫差上升至大於設定值(例如2℃),則暫停電池110的放電並等待電池110降溫;在上述溫差下降至小於另一設定值(例如0.5℃)時,則恢復電池110的放電並持續累積統計放電電量。因放電強度設定為放電功率,因此放電電量的單位是瓦特小時(Wh)。因此,以上述方式產生的電量表包括電池110的溫度、放電強度與放電電量之間的對應關係。 Five different temperatures are listed on the far left of Table 1. The top row lists five different discharge intensities, in this case the discharge power in watts (W). The remaining 25 squares represent 25 combinations of five temperatures and five discharge intensities, and the number in each square is the amount of discharged electricity of the battery 110 measured in one combination, that is, the specificity of the battery 110 in the combination. At the temperature, the specific power is discharged at a specific power of the combination until the discharge voltage of the battery 110 reaches the cutoff voltage and the discharge voltage drops sharply. In each combined discharge measurement, if the temperature difference between the current temperature of the battery 110 and the specific temperature of the combination rises above a set value (eg, 2 ° C), the discharge of the battery 110 is suspended and the battery 110 is cooled; When it falls below another set value (for example, 0.5 ° C), the discharge of the battery 110 is resumed and the statistical discharge power is continuously accumulated. Since the discharge intensity is set to the discharge power, the unit of the discharge amount is watt hour (Wh). Therefore, the electricity meter generated in the above manner includes the correspondence between the temperature of the battery 110, the discharge intensity, and the discharged electric quantity.
在步驟210產生電量表之後有兩種選擇,第一種是在步驟220使用一個函式表示上述量測所得的電池110的溫度、放電強度與放電電量。如果放電強度是放電功率,上述函式可以是Q=f(P,T)或P=f(T,Q)的形式,其中P、T與Q分別是電池110的放電功率、溫度與放電電量。 There are two options after the meter is generated in step 210. The first is to use a function at step 220 to indicate the temperature, discharge intensity, and discharge level of the battery 110 as measured above. If the discharge intensity is the discharge power, the above function may be in the form of Q = f ( P , T ) or P = f ( T , Q ), where P , T and Q are the discharge power, temperature and discharge capacity of the battery 110, respectively. .
為了簡化上述函式,可藉由固定其中一個變數後,將函式降階處理。例如固定在特定的溫度T之後,可將函式簡化為放電功率P的函式,如下所示。 In order to simplify the above function, the function can be reduced in order by fixing one of the variables. For example, after being fixed at a specific temperature T , the function can be simplified to the function of the discharge power P as shown below.
預估放電電量Q=F*w(T,P) Estimated discharge capacity Q = F * w ( T , P )
當T=1,w(1,P)=ρ1 (P-1) When T =1, w (1, P )=ρ 1 ( P -1)
當T=2,w(2,P)=ρ2 (P-1) When T = 2, w (2, P ) = ρ 2 ( P -1)
當T=3,w(3,P)=ρ3 (P-1),依此類推 When T = 3, w (3, P ) = ρ 3 ( P -1) , and so on
也就是說,上述函式Q=F*w(T,P)可以簡化為Q=F*ρ(T) P-1。Q為電池110的預估放電電量。F為電池110的全充容量(fully-charge capacity),在一個實施例中F=7.92Wh。w(T,P)可稱為權重,權重的最小值為0,最大值為1。ρ(T)或ρ稱為溫度係數,溫度係數為電池110的溫度T的函式,溫度係數的數值應當使函式與電量表中的放電電量之間的誤差達到最小。T可以是正整數而且與電池110的溫度成正比,例如T=1,2,3,4,5可分別對應表1中的5℃、15℃、25℃、35℃、45℃這五種不同溫度。同理,P可以是正整數而且與電池110的放電功率成正比,例如P=1,2,3,4,5可分別對應表1中的0W、8W、16W、24W、32W這 五種不同放電功率。圖3即繪示這樣的權重w(T,P)。 That is to say, the above function Q = F * w ( T , P ) can be simplified as Q = F * ρ( T ) P -1 . Q is the estimated discharge capacity of the battery 110. F is the fully-charge capacity of the battery 110, in one embodiment F = 7.92 Wh. w ( T , P ) can be called a weight, the minimum value of the weight is 0, and the maximum value is 1. ρ( T ) or ρ is called the temperature coefficient, and the temperature coefficient is the function of the temperature T of the battery 110. The value of the temperature coefficient should minimize the error between the function and the discharge amount in the electricity meter. T can be a positive integer and is proportional to the temperature of the battery 110. For example, T = 1, 2, 3, 4, 5 can correspond to five different degrees of 5 ° C, 15 ° C, 25 ° C, 35 ° C, and 45 ° C in Table 1, respectively. temperature. Similarly, P can be a positive integer and is proportional to the discharge power of the battery 110. For example, P = 1, 2, 3, 4, 5 can correspond to the five different discharges of 0W, 8W, 16W, 24W, and 32W in Table 1, respectively. power. Figure 3 shows such weights w ( T , P ).
接下來,可以在步驟230使用上述函式計算電池110的預估值,此預估值可以是電池110的預估放電電量或預估最大放電功率。如果函式是Q=f(P,T)的形式,則運算單元130可將電池110的目前放電功率與目前溫度代入函式以計算預估放電電量。如果函式是P=f(T,Q)的形式則運算單元130可以將電池110的目前放電電量與目前溫度代入函式以計算預估最大放電功率。 Next, an estimate of the battery 110 can be calculated at step 230 using the above function, which can be the estimated discharge capacity of the battery 110 or the estimated maximum discharge power. If the function is in the form of Q=f(P, T), the operation unit 130 may substitute the current discharge power of the battery 110 with the current temperature to calculate the estimated discharge amount. If the function is in the form of P=f(T, Q), the operation unit 130 may substitute the current discharge power of the battery 110 with the current temperature to calculate the estimated maximum discharge power.
在步驟210產生電量表之後的另一個選擇是在步驟240直接使用電量表計算上述的預估值。步驟230和240在下面會有詳細說明。 Another option after generating the fuel gauge at step 210 is to directly calculate the above estimate using the fuel gauge at step 240. Steps 230 and 240 are described in detail below.
上述的計算需要電池110的目前放電功率、目前溫度與目前放電電量,這些數據來自電池量測單元120。圖4是依照本揭露的一實施例的電池量測單元120的示意圖。在此實施例中,目前放電強度是指電池110的目前放電電流。電池量測單元120包括電流感測器410、電量估測單元420、以及溫度量測單元430。電流感測器410耦接電池110,電量估測單元420耦接於電流感測器410與運算單元130之間,溫度量測單元430耦接於電池110與運算單元130之間。 The above calculations require the current discharge power, current temperature, and current discharge capacity of the battery 110 from the battery measurement unit 120. FIG. 4 is a schematic diagram of a battery measuring unit 120 in accordance with an embodiment of the present disclosure. In this embodiment, the current discharge intensity refers to the current discharge current of the battery 110. The battery measuring unit 120 includes a current sensor 410, a power estimating unit 420, and a temperature measuring unit 430. The current sensor 410 is coupled between the battery 110 and the computing unit 130. The current measuring unit 420 is coupled between the current sensor 410 and the computing unit 130.
電流感測器410量測電池110的目前放電電流。電量估測單元420根據電池110的目前放電電流累積計算電池110的目前放電電量。溫度量測單元430量測電池110的目前溫度。在本實施例中,目前溫度是對電池110的殼體量測。 Current sensor 410 measures the current discharge current of battery 110. The power estimation unit 420 calculates the current discharged power of the battery 110 based on the current discharge current accumulation of the battery 110. The temperature measuring unit 430 measures the current temperature of the battery 110. In the present embodiment, the current temperature is measured on the housing of the battery 110.
圖5是依照本揭露的另一實施例的電池量測單元120的示意圖。在此實施例中,目前放電強度是指電池110的目前放電功率。此實施例的電池量測單元120除了圖4中的電流感測器410、電量估測單元420、以及溫度量測單元430以外,更包括電壓量測單元540與功率計算單元550。電壓量測單元540耦接電池110。功率計算單元550耦接於電流感測器410、電壓量測單元540、以及運算單元130之間。電壓量測單元540量測電池110的目前放電電壓。功率計算單元550根據電池110的目前放電電壓和目前放電電流計算電池110的目前放電功率。 FIG. 5 is a schematic diagram of a battery measuring unit 120 in accordance with another embodiment of the present disclosure. In this embodiment, the current discharge intensity refers to the current discharge power of the battery 110. The battery measuring unit 120 of this embodiment further includes a voltage measuring unit 540 and a power calculating unit 550 in addition to the current sensor 410, the power estimating unit 420, and the temperature measuring unit 430 in FIG. The voltage measuring unit 540 is coupled to the battery 110. The power calculation unit 550 is coupled between the current sensor 410 , the voltage measurement unit 540 , and the operation unit 130 . The voltage measurement unit 540 measures the current discharge voltage of the battery 110. The power calculation unit 550 calculates the current discharge power of the battery 110 based on the current discharge voltage of the battery 110 and the current discharge current.
圖6是依照本揭露的一實施例的步驟230的詳細流程圖,圖6的流程可由運算單元130執行。本實施例是將上述的函式Q=F*w(T,P)=F*ρ(T) P-1預先建立成查找表來處理,此查找表可預先儲存在記憶單元140。下面的表2是本實施例使用的查找表的一個範例。 FIG. 6 is a detailed flowchart of step 230 according to an embodiment of the disclosure, and the flow of FIG. 6 may be performed by the operation unit 130. In this embodiment, the above function Q = F * w ( T , P ) = F * ρ ( T ) P -1 is pre-established as a lookup table, and the lookup table can be stored in the memory unit 140 in advance. Table 2 below is an example of a lookup table used in this embodiment.
表2包括對應多個不同溫度的多個溫度係數ρ(T)。表2也包括對應多個不同溫度與多個不同放電功率的多個權重w(T,P)。查找表中的權重都是溫度係數的次方值,所以在另一實施例中,查找表可以僅包括對應多個不同溫度的多個溫度係數。若需要時,運算單元130可以根據溫度係數即時計算產生權重。 Table 2 includes a plurality of temperature coefficients ρ( T ) corresponding to a plurality of different temperatures. Table 2 also includes a plurality of weights w ( T , P ) corresponding to a plurality of different temperatures and a plurality of different discharge powers. The weights in the lookup table are all power values of the temperature coefficient, so in another embodiment, the lookup table may include only a plurality of temperature coefficients corresponding to a plurality of different temperatures. If necessary, the arithmetic unit 130 can calculate the generated weights on the basis of the temperature coefficient.
在下面的圖6與圖7的說明中,電池110的放電強度都是放電功率。 In the following description of Figs. 6 and 7, the discharge intensity of the battery 110 is the discharge power.
電池量測單元120可定時量測電池110的目前溫度、目前放電功率與目前放電電量,而運算單元130可定時執行步驟610至640所構成的迴圈,以不斷更新電池110的預估值。如上所述,預估值是指電池110的預估放電電量或預估最大放電功率。 The battery measuring unit 120 can periodically measure the current temperature, the current discharging power and the current discharging power of the battery 110, and the operation unit 130 can periodically perform the loops formed by the steps 610 to 640 to continuously update the estimated value of the battery 110. As mentioned above, the estimated value refers to the estimated discharge capacity or estimated maximum discharge power of the battery 110.
以下說明圖6流程。在步驟610,根據電池110的目前溫度與查找表以內插法(interpolation)計算對應目前溫度的溫度係數ρ(T)。在步驟620,根據對應目前溫度的溫度係數ρ(T),計算對應目前溫度的權重陣列,也就是[ρ(T)0,ρ(T)1,ρ(T)2,ρ(T)3,ρ(T)4]。在步驟630,根據權重陣列計算預估值。 The flow of Fig. 6 will be described below. At step 610, a temperature coefficient ρ( T ) corresponding to the current temperature is calculated by interpolation based on the current temperature of the battery 110 and the lookup table. At step 620, a weighting array corresponding to the current temperature is calculated according to the temperature coefficient ρ( T ) corresponding to the current temperature, that is, [ρ( T ) 0 , ρ( T ) 1 , ρ( T ) 2 , ρ( T ) 3 , ρ( T ) 4 ]. At step 630, an estimate is calculated from the weight array.
在步驟640,檢查電池110是否已到達放電極限。此放電極限是指電池110的放電功率已降至預設的下限值,或是電池110的阻抗突然急遽增加而導致放電電壓急遽下降。若電池110尚未到達放電極限,流程返回步驟610。若電池110已到達放電極限,則流程進入步驟650。 At step 640, it is checked if the battery 110 has reached the discharge limit. This discharge limit means that the discharge power of the battery 110 has dropped to a preset lower limit value, or the impedance of the battery 110 suddenly increases sharply and the discharge voltage drops sharply. If the battery 110 has not reached the discharge limit, the flow returns to step 610. If the battery 110 has reached the discharge limit, the flow proceeds to step 650.
在步驟650,取得對應預估值的實際值。如果預估值是在 步驟630計算的預估放電電量,則實際值是電池110已到達放電極限時的實際放電電量。如果預估值是在步驟630計算的預估最大放電功率,則實際值是電池110已到達放電極限時的實際最大放電功率。在步驟660,計算預估值與實際值之間的預測誤差,也就是預估值與實際值兩者的差值的絕對值。在步驟670,檢查預測誤差是否大於一個設定值。如果是,表示預測有誤,執行步驟680的溫度係數修正程序。如果預測誤差未大於設定值,表示預測無誤,流程至此結束。 At step 650, the actual value of the corresponding estimated value is obtained. If the estimate is in The estimated discharge amount calculated in step 630 is the actual discharge amount when the battery 110 has reached the discharge limit. If the estimated value is the estimated maximum discharge power calculated at step 630, the actual value is the actual maximum discharge power at which the battery 110 has reached the discharge limit. At step 660, a prediction error between the predicted value and the actual value is calculated, that is, the absolute value of the difference between the estimated value and the actual value. At step 670, it is checked if the prediction error is greater than a set value. If yes, indicating that the prediction is incorrect, the temperature coefficient correction procedure of step 680 is performed. If the prediction error is not greater than the set value, the prediction is correct and the process ends.
以下用兩個範例根據表2進一步說明圖6的步驟610至630的計算方式,這些範例中的計算可由運算單元130執行。 The calculation of steps 610 to 630 of FIG. 6 is further explained below based on Table 2 using two examples, and the calculations in these examples can be performed by the operation unit 130.
範例一:電池110的目前溫度為20℃,且目前放電電量為3Wh,需要計算預估最大放電功率與在該放電功率下可用的剩餘放電電量。 Example 1: The current temperature of the battery 110 is 20 ° C, and the current discharge power is 3 Wh, and it is necessary to calculate the estimated maximum discharge power and the remaining discharge power available at the discharge power.
解答:可使用對應15℃和25℃的溫度係數做線性內插以取得對應20℃的溫度係數。在內插運算中,20℃對應15℃佔權重0.5,對應25℃佔權重0.5,如此可算出對應20℃的溫度係數ρ=0.86*0.5+0.90*0.5=0.88,如下面的表3所示。 Answer: Linear interpolation can be performed using a temperature coefficient corresponding to 15 ° C and 25 ° C to obtain a temperature coefficient corresponding to 20 ° C. In the interpolation operation, 20 ° C corresponds to 15 ° C to occupy a weight of 0.5, corresponding to 25 ° C to occupy a weight of 0.5, so that the corresponding 20 ° C temperature coefficient ρ = 0.86 * 0.5 + 0.90 * 0.5 = 0.88, as shown in Table 3 below .
表3的中間列是對應20℃的權重陣列,最下面一列是權重乘上電池110的全充容量F的結果,也就是在20℃的溫度以及多種放電功率之下,電池110的預估放電電量Q。 The middle column of Table 3 is a weight array corresponding to 20 ° C, and the lowermost column is the result of multiplying the weight by the full charge capacity F of the battery 110, that is, the estimated discharge of the battery 110 at a temperature of 20 ° C and various discharge powers. Battery Q.
電池110的系統最大放電強度為32W。從表3可看出電池110的目前放電電量(3Wh)小於系統最大放電強度所對應的放電電量(4.76Wh),所以電池110可用最大功率32W輸出,預估最大放電功率就是系統最大放電功率32W。若目前放電功率為32W輸出,則預估放電電量為4.76Wh,所以目前放電功率下對應的可用的剩餘放電電量是4.76Wh-3Wh=1.76Wh。 The system 110 has a maximum discharge intensity of 32 W. It can be seen from Table 3 that the current discharge capacity (3Wh) of the battery 110 is less than the discharge capacity (4.76Wh) corresponding to the maximum discharge intensity of the system, so the battery 110 can be output with a maximum power of 32W, and the estimated maximum discharge power is the maximum discharge power of the system 32W. . If the current discharge power is 32W output, the estimated discharge power is 4.76Wh, so the corresponding remaining discharge power at the current discharge power is 4.76Wh-3Wh=1.76Wh.
範例二:電池110的目前溫度為8℃,目前放電電量為5Wh,需要計算預估最大放電功率。 Example 2: The current temperature of the battery 110 is 8 ° C, and the current discharge power is 5 Wh, and the estimated maximum discharge power needs to be calculated.
解答:可使用對應5℃和15℃的溫度係數做線性內插以取得對應8℃的溫度係數。在內插運算中,權重分別為5℃佔0.7,15℃佔0.3,如此可算出對應8℃的溫度係數ρ=0.832,如下面的表4所示。 Answer: Linear interpolation can be performed using a temperature coefficient corresponding to 5 ° C and 15 ° C to obtain a temperature coefficient corresponding to 8 ° C. In the interpolation operation, the weights are 5 ° C and 0.7, and 15 ° C is 0.3, so that the temperature coefficient ρ = 0.832 corresponding to 8 ° C can be calculated, as shown in Table 4 below.
目前放電電量5Wh位於16W的放電電量5.49Wh與24W的放電電量4.57Wh之間,可用線性內插計算預估最大放電功率。 以目前放電電量5Wh代入內插運算,可得對應16W的權重佔0.47,而對應24W的權重佔0.53,因此預估最大放電功率=16W*0.47+24W*0.53=20.2W。 At present, the discharge power is 5Wh, which is located between the discharge power of 15.48Wh at 16W and the discharge power of 4.57Wh at 24W. The maximum discharge power can be estimated by linear interpolation. Substituting the current discharge power 5Wh into the interpolation operation, the weight corresponding to 16W is 0.47, and the weight corresponding to 24W is 0.53, so the estimated maximum discharge power is 16W*0.47+24W*0.53=20.2W.
範例二(續):如果目前放電功率為16W,在該放電功率下可用之剩餘放電電量為何? Example 2 (continued): If the current discharge power is 16W, what is the remaining discharge capacity available at this discharge power?
解答:16W在表4對應的預估放電電量為5.49Wh,此電量減去目前放電電量就是可用的剩餘放電電量。因此剩餘放電電量=5.49Wh-5Wh=0.49Wh。 Answer: The estimated discharge power of 16W in Table 4 is 5.49Wh. This amount of electricity minus the current discharge capacity is the available remaining discharge capacity. Therefore, the remaining discharge capacity = 5.49Wh-5Wh = 0.49Wh.
圖7是依照本揭露的一實施例的步驟680的溫度係數修正程序的詳細流程圖,圖7的流程可由運算單元130執行。在步驟710,將對應電池110的目前溫度的溫度係數ρ T 減去一個預設值,例如0.01、0.02、0.05或溫度係數ρ T 的初始值的1%、2%、5%,諸如此類。上述初始值就是剛進入圖7流程時的溫度係數ρ T 的數值。在步驟720,使用經過步驟710遞減的溫度係數ρ T 產生對應電池110的目前溫度的權重陣列,也就是[ρ T 0,ρ T 1,ρ T 2,ρ T 3,ρ T 4]。然後在步驟730根據此權重陣列計算新的預估值,在步驟740計算新的預估值與對應的實際值之間的預測誤差。步驟720、730和740類似於圖6的步驟620、630和660。不過步驟620、630和660是根據溫度係數ρ T 的初始值,而步驟720、730和740是根據溫度係數ρ T 遞減後的數值。 FIG. 7 is a detailed flowchart of the temperature coefficient correction procedure of step 680 in accordance with an embodiment of the present disclosure, and the flow of FIG. 7 may be performed by the arithmetic unit 130. At step 710, the temperature coefficient ρ T of the current temperature of the corresponding battery 110 is subtracted by a preset value, such as 0.01, 0.02, 0.05 or 1%, 2%, 5% of the initial value of the temperature coefficient ρ T , and the like. The above initial value is the value of the temperature coefficient ρ T just entering the flow of Fig. 7. At step 720, a weighting array corresponding to the current temperature of the battery 110 is generated using the temperature coefficient ρ T decremented by step 710, that is, [ρ T 0 , ρ T 1 , ρ T 2 , ρ T 3 , ρ T 4 ]. A new estimate is then calculated from the weight array at step 730, and a prediction error between the new estimate and the corresponding actual value is calculated at step 740. Steps 720, 730, and 740 are similar to steps 620, 630, and 660 of FIG. However, steps 620, 630, and 660 are based on the initial value of the temperature coefficient ρ T , and steps 720 , 730 , and 740 are values that are decremented according to the temperature coefficient ρ T .
接下來,在步驟750檢查上述的預測誤差是否有縮小,也就是此次執行步驟740所得的預測誤差是否小於上一次執行步 驟740所得的預測誤差。如果是,則流程返回步驟710,否則流程進入步驟760。步驟710至750構成一個迴圈,其目的是搜尋能使預估值最接近實際值的溫度係數ρ T 的數值。 Next, at step 750, it is checked whether the above-mentioned prediction error is reduced, that is, whether the prediction error obtained in step 740 is less than the prediction error obtained in the previous execution step 740. If so, the flow returns to step 710, otherwise the flow proceeds to step 760. Steps 710 through 750 form a loop for the purpose of searching for a value of the temperature coefficient ρ T that approximates the predicted value to the actual value.
當流程離開上述迴圈,表示已經找到能使預估值最接近實際值的溫度係數ρ T ,而且這個最佳的溫度係數ρ T 並非此次執行該迴圈所得的溫度係數ρ T ,而是上一次執行該迴圈所得的溫度係數ρ T 。所以在步驟760採用上一個溫度係數ρ T ,也就是採用上一次執行該迴圈所得的溫度係數ρ T ,做為修正後的溫度係數ρ T 。然後在步驟770計算一個增益值(gain),此增益值等於修正後的溫度係數ρ T 除以溫度係數ρ T 的初始值。然後在步驟780將此增益值乘上查找表中的每一個溫度係數,以修正查找表中的溫度係數。 When the flow leaves the above loop, it indicates that the temperature coefficient ρ T which can make the estimated value closest to the actual value has been found, and the optimal temperature coefficient ρ T is not the temperature coefficient ρ T obtained by the current loop, but The temperature coefficient ρ T obtained from the last execution of this loop. Therefore, in step 760, the previous temperature coefficient ρ T is used, that is, the temperature coefficient ρ T obtained by performing the loop last time is used as the corrected temperature coefficient ρ T . Then at step 770 a gain value is calculated which is equal to the corrected temperature coefficient ρ T divided by the initial value of the temperature coefficient ρ T . This gain value is then multiplied by each temperature coefficient in the lookup table at step 780 to correct the temperature coefficient in the lookup table.
如果運算單元130不用查找表,而是直接用函式計算預估值,也可以用圖7的流程修正函式中的溫度係數。不過在此情況,運算單元130不需要計算步驟720的權重陣列,可以直接用函式和經過步驟710遞減後的溫度係數計算步驟730的預估值。 If the arithmetic unit 130 does not use a lookup table, but directly calculates the estimated value by a function, the temperature coefficient in the function can also be corrected by the flow of FIG. In this case, however, the arithmetic unit 130 does not need to calculate the weight array of step 720, and the estimated value of step 730 can be calculated directly using the function and the temperature coefficient decremented by step 710.
以下根據表2和兩個範例進一步說明圖7的溫度係數修正程序,這些範例中的計算可由運算單元130執行。 The temperature coefficient correction procedure of FIG. 7 is further explained below based on Table 2 and two examples, and the calculations in these examples can be performed by the operation unit 130.
範例三:目前溫度為32℃,目前放電功率為28W,計算預估放電電量。若實際僅放電5Wh,如何修正溫度係數? Example 3: The current temperature is 32 ° C, the current discharge power is 28 W, and the estimated discharge power is calculated. If the actual discharge is only 5Wh, how to correct the temperature coefficient?
解答:目前溫度32℃介於35℃(內插權重0.3)與45℃(內插權重0.7)之間,以線性內插計算溫度係數ρ值為0.907,權重陣列經展開後如下面的表5所示。 Answer: The current temperature is 32 °C between 35 °C (interpolation weight 0.3) and 45 °C (interpolation weight 0.7). The temperature coefficient ρ is 0.907 by linear interpolation. The weight array is expanded as shown in Table 5 below. Shown.
目前放電功率28W介於24W(內插權重0.5)與32W(內插權重0.5)之間,經過線性內插得到預估放電電量為5.62Wh。 At present, the discharge power of 28W is between 24W (interpolation weight 0.5) and 32W (interpolation weight 0.5). After linear interpolation, the estimated discharge power is 5.62Wh.
至於溫度係數的修正,溫度係數的初始值為ρ=0.907,利用圖7迴圈每次遞減0.01後,再根據24W與32W的權重計算28W的預估放電電量,並選擇預估值與實際值之預測誤差最小的ρ值,其結果為0.877,可將預估放電電量修正到5.01Wh。因此增益值為0.877/0.907=0.967。用此增益值修正表2的每一個溫度係數後,對應的權重隨之改變,如下面的表6所示。 As for the correction of the temperature coefficient, the initial value of the temperature coefficient is ρ=0.907, and after decrementing 0.01 each time using the loop of Fig. 7, the estimated discharge power of 28W is calculated according to the weight of 24W and 32W, and the estimated value and the actual value are selected. The ρ value with the smallest prediction error, the result is 0.877, and the estimated discharge capacity can be corrected to 5.01Wh. Therefore, the gain value is 0.877/0.907=0.967. After correcting each temperature coefficient of Table 2 with this gain value, the corresponding weight changes accordingly, as shown in Table 6 below.
範例四:目前溫度為32℃,目前放電電量為6Wh,計算預估最大放電功率。若實際放電功率為18W,如何修正溫度係數? Example 4: The current temperature is 32 ° C, and the current discharge capacity is 6 Wh, and the estimated maximum discharge power is calculated. If the actual discharge power is 18W, how to correct the temperature coefficient?
解答:目前溫度32℃介於35℃(內插權重0.3)與45℃(內插權重0.7)之間,以線性內插計算溫度係數ρ值為0.907,權重陣列經展開後如下面的表7所示。 Answer: The current temperature is 32 °C between 35 °C (interpolation weight 0.3) and 45 °C (interpolation weight 0.7). The temperature coefficient ρ is 0.907 by linear interpolation. The weight array is expanded as shown in Table 7 below. Shown.
目前放電電量6Wh位於16W與24W對應的放電電量之間,做線性內插可得預估最大放電功率為22.8W,但實際值為18W,表示需要修正溫度係數ρ。 At present, the discharge power 6Wh is located between the discharge power corresponding to 16W and 24W. The linear interpolation can be used to estimate the maximum discharge power of 22.8W, but the actual value is 18W, indicating that the temperature coefficient ρ needs to be corrected.
溫度係數的初始值為ρ=0.907,利用圖7迴圈每次遞減1%,搜尋使預估值與實際值之預測誤差最小的ρ值,其結果為0.887,可將預估值修正為18.63W。因此增益值為0.887/0.907=0.978。用此增益值修正後的表2如下面的表8所示。 The initial value of the temperature coefficient is ρ=0.907, and the loop is decremented by 1% each time using the loop of Fig. 7. The ρ value which minimizes the prediction error between the estimated value and the actual value is searched. The result is 0.887, and the estimated value can be corrected to 18.63. W. Therefore, the gain value is 0.887/0.907=0.978. Table 2 corrected with this gain value is shown in Table 8 below.
在圖2的步驟210產生如表1所示的電量表之後,有一種選擇是在步驟240直接使用電量表來計算預估值。以下用三個範例說明運算單元130如何直接使用表1來計算預估值,這些範例中的計算可由運算單元130執行。 After generating the power meter as shown in Table 1 in step 210 of FIG. 2, one option is to use the electricity meter directly at step 240 to calculate the estimated value. The following three examples are used to illustrate how the arithmetic unit 130 directly uses Table 1 to calculate estimated values, and the calculations in these examples can be performed by the arithmetic unit 130.
範例五:若電池110的目前溫度在45℃,且目前放電電量為3Wh,預估最大放電功率與在該放電功率下可用之剩餘放電電量為何? Example 5: If the current temperature of the battery 110 is 45 ° C, and the current discharge capacity is 3 Wh, what is the estimated maximum discharge power and the remaining discharge power available at the discharge power?
解答:根據表1,查表可知32W可用放電電量為5.61Wh,大於目前放電電量3Wh,因此預估最大放電功率為電池110的系統最大放電功率32W,而且對應32W的剩餘放電電量為5.61Wh-3Wh=2.61Wh。 Answer: According to Table 1, the table can be seen that the available discharge power of 32W is 5.61Wh, which is greater than the current discharge power of 3Wh. Therefore, the maximum discharge power is estimated to be 32W of the system 110, and the remaining discharge capacity corresponding to 32W is 5.61Wh- 3Wh = 2.61Wh.
範例六:若目前溫度在5℃,且目前放電電量為5Wh,則預估最大放電功率為何?若目前放電功率為16W,在該放電功率下可用之剩餘放電電量為何? Example 6: If the current temperature is 5 ° C, and the current discharge capacity is 5 Wh, what is the estimated maximum discharge power? If the current discharge power is 16W, what is the remaining discharge power available at this discharge power?
解答:目前放電電量5Wh位於16W和24W對應的放電電量之間,經過線性內插可得預估最大放電功率為18.93W。16W對應的放電電量為5.45Wh,因此可用之剩餘放電電量為5.45Wh-5Wh=0.45Wh。 Answer: The current discharge power of 5Wh is between 16W and 24W corresponding discharge power. After linear interpolation, the estimated maximum discharge power is 18.93W. The discharge power corresponding to 16W is 5.45Wh, so the remaining discharge power available is 5.45Wh-5Wh=0.45Wh.
範例七:若目前溫度為10℃,目前放電功率為28W,預估放電電量為何? Example 7: If the current temperature is 10 ° C, the current discharge power is 28 W, what is the estimated discharge capacity?
解答:目前溫度10℃位於15℃和25℃之間,目前放電功率28W位於24W和32W之間,可直接用二維內插法根據15℃和25℃以及24W和32W所對應的四個放電電量計算預估放電電量,結果為4.55Wh。 Answer: The current temperature is 10 °C between 15 °C and 25 °C. The current discharge power is 28W between 24W and 32W. It can directly use two-dimensional interpolation according to the four discharges corresponding to 15°C and 25°C and 24W and 32W. The electricity calculation calculates the discharge capacity and the result is 4.55Wh.
電池110的全充容量F可能因為劣化而降低。如果因為劣化,使電池110預估的全充容量與實際值之間的誤差大於設定值,則運算單元130可根據預估值與實際值計算一個增益值,並根據此增益值修正電量表。這種劣化的偵測是已知技術,運算單元130可以定時檢查電池110是否發生劣化。下面使用表1和一個範例進一步說明運算單元130如何因應劣化而修正電量表。 The full charge capacity F of the battery 110 may be lowered due to deterioration. If the error between the predicted full charge capacity and the actual value of the battery 110 is greater than the set value due to the deterioration, the operation unit 130 may calculate a gain value according to the estimated value and the actual value, and modify the power meter according to the gain value. The detection of such deterioration is a known technique, and the arithmetic unit 130 can periodically check whether the battery 110 is degraded. The following uses Table 1 and an example to further explain how the arithmetic unit 130 corrects the electricity meter in response to deterioration.
範例八:若電池110的全充容量F發生劣化,由7.92Wh降至6Wh時,在45℃的溫度下,以32W的系統最大放電功率進行放電,其預估放電電量為何? Example 8: If the full charge capacity F of the battery 110 is degraded from 7.92 Wh to 6 Wh, the discharge is performed at a maximum discharge power of 32 W at a temperature of 45 ° C. What is the estimated discharge capacity?
解答:全充容量F由7.92Wh降至6Wh,增益值為6/7.92=0.76。可將電量表中的每一個放電電量都乘上此增益值,得到修正後的電量表,如下面的表9所示。根據表9可知對應45℃與32W的預估放電電量為4.25Wh。 Answer: The full charge capacity F is reduced from 7.92Wh to 6Wh, and the gain value is 6/7.92=0.76. Each of the discharge quantities in the fuel gauge can be multiplied by this gain value to obtain a corrected fuel gauge, as shown in Table 9 below. According to Table 9, the estimated discharge power corresponding to 45 ° C and 32 W is 4.25 Wh.
前述的修正是將電量表中的每一個放電電量都乘上相同 的增益值,但是實際上的電池劣化可能使電量表中的每一個放電電量出現不同程度的衰減,單一增益值並不適用於此狀況。所以在另一個實施例中,當需要修正電量表,運算單元130可將電量表中的每一個放電電量乘上前面的增益值,再乘上一個增益矩陣之中的對應該放電電量的數值。下面的表10是對應表1的電量表的一個增益矩陣的範例。 The aforementioned correction is to multiply each discharge in the electricity meter by the same amount. The gain value, but the actual battery degradation may cause different degrees of attenuation for each discharge in the electricity meter, and a single gain value is not suitable for this situation. Therefore, in another embodiment, when the power meter needs to be corrected, the operation unit 130 may multiply each of the discharge quantities in the electricity meter by the previous gain value, and multiply the value of the corresponding discharge power in the gain matrix. Table 10 below is an example of a gain matrix corresponding to the electricity meter of Table 1.
增益矩陣中的數值可來自實際統計。例如運算單元130可收集統計對應多個不同溫度與多個不同放電功率的多個增益值,計算這些增益值之間的比值,就能得到增益矩陣中的數值。如果運算單元130可連接至雲端,可以透過雲端和其他的電池放電輸出預測裝置分享彼此統計所得的增益矩陣數值。 The values in the gain matrix can come from actual statistics. For example, the operation unit 130 may collect a plurality of gain values corresponding to a plurality of different temperatures and a plurality of different discharge powers, and calculate a ratio between the gain values to obtain a value in the gain matrix. If the computing unit 130 can be connected to the cloud, the gain matrix values that are statistically derived from each other can be shared through the cloud and other battery discharge output prediction devices.
上述的電量表修正是針對劣化前後的電池全充容量,若有其他的預估值(例如預估放電電量)與對應的實際值之間的誤 差大於設定值,運算單元130也可以將實際值除以預估值以取得增益值,然後使用上述方式藉由增益值以修正電量表。 The above-mentioned electricity meter correction is for the full charge capacity of the battery before and after the deterioration, and if there is another error between the estimated value (for example, the estimated discharge amount) and the corresponding actual value. The difference is greater than the set value, and the arithmetic unit 130 may divide the actual value by the estimated value to obtain the gain value, and then use the gain value to correct the electricity meter using the above method.
圖8A至圖8D是依照本揭露的一實施例的顯示單元150的顯示畫面的示意圖。如前所述,電池量測單元120可量測電池110的目前放電功率,而運算單元130可計算電池110的預估最大放電功率。因此,顯示單元150可顯示電池110的目前放電強度與預估最大放電強度。圖8A之中,每一個圓圈表示電池110的一個充電功率或放電功率,目前放電功率為16W,以一種顏色表示,預估最大放電功率為32W,以另一種顏色表示。 8A-8D are schematic diagrams of display screens of the display unit 150 according to an embodiment of the disclosure. As previously described, the battery measurement unit 120 can measure the current discharge power of the battery 110, and the arithmetic unit 130 can calculate the estimated maximum discharge power of the battery 110. Therefore, the display unit 150 can display the current discharge intensity of the battery 110 and the estimated maximum discharge intensity. In Fig. 8A, each circle represents a charging power or a discharging power of the battery 110, and the current discharging power is 16 W, expressed in one color, and the estimated maximum discharging power is 32 W, which is represented by another color.
另外,電池量測單元120可量測電池110的目前放電電量,而運算單元130可計算電池110的預估放電電量。如果電池110的預估放電電量大於目前放電電量,則運算單元130可將預估放電電量減去目前放電電量,以計算電池110的剩餘放電電量,而顯示單元150可顯示此剩餘放電電量。例如圖8A之中,顯示單元150顯示的剩餘放電電量為6.5Wh。 In addition, the battery measuring unit 120 can measure the current discharged power of the battery 110, and the computing unit 130 can calculate the estimated discharged power of the battery 110. If the estimated discharged power of the battery 110 is greater than the current discharged power, the operation unit 130 may subtract the current discharged power from the estimated discharged power to calculate the remaining discharged power of the battery 110, and the display unit 150 may display the remaining discharged power. For example, in FIG. 8A, the remaining discharge electric quantity displayed by the display unit 150 is 6.5 Wh.
如果電池放電輸出預測裝置100是應用在電動車等電動載具,則運算單元130或電動載具可統計行駛每公里所消耗的電量,運算單元130可根據電池110的剩餘放電電量和電動載具的每公里消耗電量推算電動載具的剩餘行駛里程,而顯示單元150可顯示此剩餘行駛里程。例如圖8A之中,顯示單元150顯示的剩餘行駛里程為28公里。 If the battery discharge output predicting device 100 is applied to an electric vehicle such as an electric vehicle, the arithmetic unit 130 or the electric vehicle can count the amount of electricity consumed per kilometer, and the arithmetic unit 130 can calculate the remaining discharged power of the battery 110 and the electric vehicle. The remaining power consumption per kilometer is used to estimate the remaining mileage of the electric vehicle, and the display unit 150 can display the remaining mileage. For example, in FIG. 8A, the display unit 150 displays the remaining mileage of 28 kilometers.
圖8B之中,顯示單元150顯示的目前放電功率仍然是 16W,預估最大放電功率下降至24W,剩餘放電電量降至2.3Wh,剩餘行駛里程縮減至12公里。 In FIG. 8B, the current discharge power displayed by the display unit 150 is still 16W, the estimated maximum discharge power drops to 24W, the remaining discharge capacity drops to 2.3Wh, and the remaining mileage is reduced to 12km.
圖8C之中,顯示單元150顯示的目前放電功率上升為24W,預估最大放電功率同樣是24W,兩個放電功率重疊時以第三種顏色顯示。顯示單元150顯示的剩餘放電電量降至1.3Wh,剩餘行駛里程縮減至5公里。 In Fig. 8C, the current discharge power displayed by the display unit 150 is increased to 24 W, and the estimated maximum discharge power is also 24 W, and the two discharge powers are displayed in a third color when they overlap. The remaining discharge capacity displayed by the display unit 150 is reduced to 1.3 Wh, and the remaining mileage is reduced to 5 km.
圖8D之中,顯示單元150顯示的目前放電功率下降至16W,預估最大放電功率也下降至16W,兩個放電功率重疊時以第三種顏色顯示。由於剩餘放電電量已接近零,顯示單元150已經不顯示剩餘放電電量和剩餘行駛里程。 In FIG. 8D, the current discharge power displayed by the display unit 150 drops to 16 W, and the estimated maximum discharge power also drops to 16 W, and the two discharge powers are displayed in a third color when they overlap. Since the remaining discharged power is close to zero, the display unit 150 has not displayed the remaining discharged power and the remaining mileage.
圖9A與圖9B是依照本揭露的另一實施例的顯示單元150的顯示畫面的示意圖。圖9A之中,顯示單元150顯示一個放電強度表,也就是放電功率表900。放電功率表900的最小值是0千瓦(kW),最大值是1千瓦。放電功率表900之中包括電池110的目前放電功率(0.57千瓦)、預估最大放電功率(0.78千瓦)、以及系統最大放電功率(1千瓦)。指針930指示電池110的目前放電功率。放電功率表900包括小於預估最大放電功率的部分910和大於預估最大放電功率而且小於系統最大放電功率的部分920。這兩個部分910和920可用兩種不同顏色顯示。部分920表示目前的電池110已經無法提供的放電功率。 9A and 9B are schematic diagrams of display screens of the display unit 150 according to another embodiment of the present disclosure. In FIG. 9A, the display unit 150 displays a discharge intensity table, that is, a discharge power meter 900. The minimum value of the discharge power meter 900 is 0 kilowatts (kW) and the maximum value is 1 kilowatt. The discharge power meter 900 includes the current discharge power (0.57 kW) of the battery 110, the estimated maximum discharge power (0.78 kW), and the maximum discharge power of the system (1 kW). Pointer 930 indicates the current discharge power of battery 110. The discharge power meter 900 includes a portion 910 that is less than the estimated maximum discharge power and a portion 920 that is greater than the estimated maximum discharge power and less than the system maximum discharge power. These two portions 910 and 920 can be displayed in two different colors. Portion 920 represents the discharge power that the current battery 110 has been unable to provide.
圖9B之中,目前放電功率下降至0.45千瓦,預估最大放電功率下降至0.6千瓦,因此圖9B的部分920比圖9A的部分 920更加擴大。 In Fig. 9B, the current discharge power drops to 0.45 kW, and the estimated maximum discharge power drops to 0.6 kW, so that part 920 of Fig. 9B is larger than the portion of Fig. 9A. The 920 is expanding.
圖10是依照本揭露另一實施例的一種電池放電輸出預測裝置100的示意圖。圖10的電池放電輸出預測裝置100比圖1和圖5的電池放電輸出預測裝置100多出一個電池控制單元160。電池控制單元160耦接電流感測器410與運算單元130。電池控制單元160可在一些特殊狀況發生時,例如電池110的溫度過低或過高時,限制電池110的放電電流或放電功率,或切斷電池110的放電輸出。 FIG. 10 is a schematic diagram of a battery discharge output prediction apparatus 100 in accordance with another embodiment of the present disclosure. The battery discharge output predicting device 100 of FIG. 10 has one more battery control unit 160 than the battery discharge output predicting device 100 of FIGS. 1 and 5. The battery control unit 160 is coupled to the current sensor 410 and the arithmetic unit 130. The battery control unit 160 may limit the discharge current or discharge power of the battery 110 or cut off the discharge output of the battery 110 when some special conditions occur, such as when the temperature of the battery 110 is too low or too high.
圖11A至圖11D繪示圖10的電池放電輸出預測裝置100的顯示單元150的顯示畫面。圖11A繪示正常狀況的顯示畫面,圖11B至圖11D則繪示上述的特殊狀況的顯示畫面。 11A to 11D are views showing a display screen of the display unit 150 of the battery discharge output predicting device 100 of Fig. 10. FIG. 11A shows a display screen of a normal situation, and FIGS. 11B to 11D show a display screen of the above special situation.
圖11A的實施例類似圖9A與圖9B的實施例,其中顯示單元150顯示一個放電強度表,也就是放電功率表1100。放電功率表1100的最小值是0千瓦,最大值是1千瓦,此最大值就是電池110的系統最大放電功率。顯示單元150也顯示電池110的預估最大放電功率1140。指針1130指示電池110的目前放電功率(0.5千瓦)。放電功率表1100包括小於預估最大放電功率1140的部分1110和大於預估最大放電功率1140而且小於系統最大放電功率的部分1120。部分1120表示目前的電池110已經無法提供的放電功率。這兩個部分1110和1120可用兩種不同顏色顯示。例如部分1110可顯示為綠色,部分1120可顯示為橘色。 The embodiment of FIG. 11A is similar to the embodiment of FIGS. 9A and 9B in which display unit 150 displays a discharge intensity meter, that is, discharge power meter 1100. The minimum value of the discharge power meter 1100 is 0 kW, and the maximum value is 1 kW. This maximum value is the maximum discharge power of the system of the battery 110. Display unit 150 also displays the estimated maximum discharge power 1140 of battery 110. Pointer 1130 indicates the current discharge power (0.5 kW) of battery 110. The discharge power meter 1100 includes a portion 1110 that is less than the estimated maximum discharge power 1140 and a portion 1120 that is greater than the estimated maximum discharge power 1140 and less than the system maximum discharge power. Portion 1120 represents the discharge power that current battery 110 has been unable to provide. These two parts 1110 and 1120 can be displayed in two different colors. For example, portion 1110 can be displayed in green and portion 1120 can be displayed in orange.
一般來說,電量表(例如表1)中的溫度範圍就是電池的 正常操作範圍。如果溫度低於這個範圍或高於這個範圍,就必須限制電池的放電輸出。 In general, the temperature range in the electricity meter (such as Table 1) is the battery Normal operating range. If the temperature is below this range or above this range, the discharge output of the battery must be limited.
在一實施例中,電池110的目前溫度低於電量表中的最低溫度,圖11B繪示此實施例中,顯示單元150的顯示畫面。若以表1為例,則上述最低溫度是5℃。當電池110的目前溫度低於電量表中的最低溫度時,必須限制電池110的放電電流。所以在此實施例中,電池控制單元160將電池110的放電電流限制為不超出一個設定值(例如10安培)。運算單元130將顯示畫面中的預估最大放電功率1140設定為對應上述設定值的一個上限值,此上限值等於上述設定值乘以電壓量測單元540測得的電池110的目前放電電壓。顯示單元150以不同於圖11A之中的兩種顏色的第三種顏色顯示放電功率表1100的部分1120,例如可用藍色以表示放電功率的限制是由低溫所造成。 In an embodiment, the current temperature of the battery 110 is lower than the lowest temperature in the electricity meter. FIG. 11B illustrates a display screen of the display unit 150 in this embodiment. Taking Table 1 as an example, the above minimum temperature is 5 °C. When the current temperature of the battery 110 is lower than the lowest temperature in the electricity meter, the discharge current of the battery 110 must be limited. Therefore, in this embodiment, the battery control unit 160 limits the discharge current of the battery 110 to not exceed a set value (for example, 10 amps). The arithmetic unit 130 sets the estimated maximum discharge power 1140 in the display screen to an upper limit value corresponding to the set value, the upper limit value being equal to the set value multiplied by the current discharge voltage of the battery 110 measured by the voltage measuring unit 540. . The display unit 150 displays the portion 1120 of the discharge power meter 1100 in a third color different from the two colors in FIG. 11A, for example, blue may be used to indicate that the limitation of the discharge power is caused by the low temperature.
如果在另一實施例中,電池110的放電強度是指電池110的放電電流,則運算單元130可將顯示畫面中的預估最大放電強度1140直接設定為上述的設定值(例如10安培)。 If, in another embodiment, the discharge intensity of the battery 110 refers to the discharge current of the battery 110, the arithmetic unit 130 may directly set the estimated maximum discharge intensity 1140 in the display screen to the above-described set value (for example, 10 amps).
在一實施例中,電池110的目前溫度高於電量表中的最高溫度,圖11C繪示此實施例中,顯示單元150的顯示畫面。若以表1為例,則上述最高溫度是45℃。當電池110的目前溫度高於電量表中的最高溫度時,為了避免電池110持續過熱造成輸出終止,可限制電池110的放電功率以控制溫升速度。所以在此實施例中,運算單元130先使用電量表中的最高溫度計算對應此最 高溫度的預估最大放電功率,然後將對應此最高溫度的預估最大放電功率乘上一個比例值,以作為對應電池110的目前溫度的預估最大放電功率1140。 In an embodiment, the current temperature of the battery 110 is higher than the highest temperature in the electricity meter. FIG. 11C illustrates a display screen of the display unit 150 in this embodiment. Taking Table 1 as an example, the above maximum temperature is 45 °C. When the current temperature of the battery 110 is higher than the highest temperature in the electricity meter, in order to avoid the output termination due to the continuous overheating of the battery 110, the discharge power of the battery 110 may be limited to control the temperature rise rate. Therefore, in this embodiment, the operation unit 130 first uses the highest temperature calculation in the power meter to correspond to the most The maximum discharge power is estimated for the high temperature, and then the estimated maximum discharge power corresponding to the maximum temperature is multiplied by a proportional value as the estimated maximum discharge power 1140 corresponding to the current temperature of the battery 110.
上述比例值為電池110的目前溫度的遞減函數。舉例而言,若電池110的目前溫度介於45℃~50℃,則上述比例值為80%。若目前溫度介於50~55℃,則上述比例值為50%。若目前溫度超過55℃,則上述比例值為20%。 The above ratio is a decreasing function of the current temperature of the battery 110. For example, if the current temperature of the battery 110 is between 45 ° C and 50 ° C, the above ratio is 80%. If the current temperature is between 50 and 55 ° C, the above ratio is 50%. If the current temperature exceeds 55 ° C, the above ratio is 20%.
在此實施例中,電池控制單元160可將電池110的放電功率限制為不超出對應目前溫度的預估最大放電強度1140。顯示單元150可顯示上述的對應目前溫度的預估最大放電強度1140。顯示單元150可用不同於圖11A與圖11B之中的三種顏色的第四種顏色顯示放電功率表1100的部分1120,例如可用紅色以表示放電功率的限制是由高溫所造成。 In this embodiment, battery control unit 160 may limit the discharge power of battery 110 to an estimated maximum discharge intensity 1140 that does not exceed the current temperature. The display unit 150 can display the estimated maximum discharge intensity 1140 corresponding to the current temperature described above. The display unit 150 may display the portion 1120 of the discharge power meter 1100 in a fourth color different from the three colors in FIGS. 11A and 11B, for example, red may be used to indicate that the limitation of the discharge power is caused by the high temperature.
電池110可能因為內部短路而自行升溫,甚至可能發生熱失控(thermal runaway)而在極短時間內急遽升溫。在此實施例中,為了使用者的安全,顯示單元150可在電池110的目前溫度高於一個設定值時顯示電池異常警示與倒數計時,例如圖11D其中的電池異常警示1150與倒數計時1160,倒數計時1160的時間長度為30秒。上述設定值應該高於電量表中的最高溫度,例如,此設定值可以是上述的55℃。電池控制單元160可在電池110的目前溫度高於此設定值而且倒數計時1160結束時切斷電池110的放電輸出。 The battery 110 may self-heat due to an internal short circuit, and may even have a thermal runaway that is suddenly warmed up in a very short time. In this embodiment, for the safety of the user, the display unit 150 may display a battery abnormality warning and a countdown when the current temperature of the battery 110 is higher than a set value, such as the battery abnormality warning 1150 and the countdown timer 1160 in FIG. 11D, The countdown to the 1160 is 30 seconds. The above set value should be higher than the highest temperature in the electricity meter. For example, the set value can be 55 °C as described above. The battery control unit 160 may turn off the discharge output of the battery 110 when the current temperature of the battery 110 is above the set value and the countdown 1160 ends.
電池控制單元160可位於電池110的輸出路徑上的任何一處。例如,電池控制單元160可以改為位於圖10的電池110與電流感測器410之間。 Battery control unit 160 can be located anywhere on the output path of battery 110. For example, battery control unit 160 may instead be located between battery 110 and current sensor 410 of FIG.
在另一實施例中,電池放電輸出預測裝置100可以不包括電池控制單元160,而是由另一裝置,例如電動載具的馬達控制器,來限制電池110的放電電流或放電功率,或切斷電池110的放電輸出。 In another embodiment, the battery discharge output prediction device 100 may not include the battery control unit 160, but may be limited by another device, such as a motor controller of the electric vehicle, to limit the discharge current or discharge power of the battery 110, or to cut The discharge output of the battery 110 is broken.
在另一實施例中,顯示單元150也可以顯示電池110的其他資訊,例如電池110的目前溫度與目前放電電量。 In another embodiment, the display unit 150 can also display other information of the battery 110, such as the current temperature of the battery 110 and the current discharged power.
如前所述,電池110的放電強度可以是放電功率或放電電流。前面的各種實施例中,都是用放電功率做為放電強度。不過在其他實施例中,也可用放電電流做為放電強度,只要將前面各實施例中的放電功率全部置換為放電電流,並將放電電量的單位由瓦特小時(Wh)置換為安培小時(Ah)即可。對於圖10的實施例,如果放電強度是放電電流,則可將圖10的電池量測單元120置換為圖4的電池量測單元120。 As previously mentioned, the discharge intensity of battery 110 can be either a discharge power or a discharge current. In the various previous embodiments, the discharge power was used as the discharge intensity. However, in other embodiments, the discharge current can also be used as the discharge intensity, as long as the discharge powers in the previous embodiments are all replaced by discharge currents, and the unit of discharge power is replaced by watt hours (Wh) to ampere-hours (Ah). ) Just fine. For the embodiment of FIG. 10, if the discharge intensity is a discharge current, the battery measurement unit 120 of FIG. 10 can be replaced with the battery measurement unit 120 of FIG.
綜上所述,本揭露的電池放電輸出預測裝置與預測方法可預估電池的放電電量與最大放電強度,進而預估電動載具的剩餘行駛里程。即使有電池老化、不同季節氣溫、不同操作條件、與不同殘餘電量等狀態,都可以準確預估電池的各種數值。電動載具可根據預估值調整驅動馬達的功率或電流輸出,可在不影響電池壽命的前提下優化電池能量控制。準確的預估數值可提升電 動載具的行駛安全性和可靠度,提昇使用者體驗,也提昇使用者對於電池預估數值的信任感。另外,為了使用者的安全,本揭露的電池放電輸出預測裝置可在電池溫度過高時顯示異常警示,並且在倒數計時結束時切斷電池的放電輸出。 In summary, the battery discharge output prediction device and the prediction method of the present invention can estimate the discharge capacity and the maximum discharge intensity of the battery, thereby estimating the remaining mileage of the electric vehicle. Even with battery aging, different season temperatures, different operating conditions, and different residual power levels, you can accurately estimate the various values of the battery. The electric vehicle can adjust the power or current output of the drive motor according to the estimated value, and optimize the battery energy control without affecting the battery life. Accurate estimates can boost electricity The driving safety and reliability of the moving vehicle enhances the user experience and enhances the user's trust in the estimated value of the battery. In addition, for the safety of the user, the battery discharge output predicting device of the present disclosure can display an abnormal warning when the battery temperature is too high, and cut off the discharge output of the battery when the countdown ends.
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of this disclosure is subject to the definition of the scope of the appended claims.
100‧‧‧電池放電輸出預測裝置 100‧‧‧Battery discharge output prediction device
110‧‧‧電池 110‧‧‧Battery
120‧‧‧電池量測單元 120‧‧‧Battery measurement unit
130‧‧‧運算單元 130‧‧‧ arithmetic unit
140‧‧‧記憶單元 140‧‧‧ memory unit
150‧‧‧顯示單元 150‧‧‧ display unit
Claims (71)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102148794A TWI572878B (en) | 2013-12-27 | 2013-12-27 | Method and apparatus for predicting discharging output of battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102148794A TWI572878B (en) | 2013-12-27 | 2013-12-27 | Method and apparatus for predicting discharging output of battery |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201525498A true TW201525498A (en) | 2015-07-01 |
TWI572878B TWI572878B (en) | 2017-03-01 |
Family
ID=54197578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102148794A TWI572878B (en) | 2013-12-27 | 2013-12-27 | Method and apparatus for predicting discharging output of battery |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI572878B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI758136B (en) * | 2021-03-22 | 2022-03-11 | 新普科技股份有限公司 | State estimation method and battery pack |
TWI859801B (en) * | 2022-04-07 | 2024-10-21 | 日商東芝股份有限公司 | Electric vehicle control device and analysis device |
TWI866392B (en) * | 2023-08-15 | 2024-12-11 | 台達電子工業股份有限公司 | Anomaly detection method for energy storage system, power control system, and temperature prediction device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5631540A (en) * | 1994-11-23 | 1997-05-20 | Lucent Technologies Inc. | Method and apparatus for predicting the remaining capacity and reserve time of a battery on discharge |
KR100849114B1 (en) * | 2000-11-30 | 2008-07-30 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | A method of predicting the state of charge as well as the use time left of a rechargeable battery |
DE10394007T5 (en) * | 2002-12-31 | 2006-02-02 | Midtronics, Inc., Willowbrook | Apparatus and method for predicting the remaining discharge time of a battery |
-
2013
- 2013-12-27 TW TW102148794A patent/TWI572878B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI758136B (en) * | 2021-03-22 | 2022-03-11 | 新普科技股份有限公司 | State estimation method and battery pack |
TWI859801B (en) * | 2022-04-07 | 2024-10-21 | 日商東芝股份有限公司 | Electric vehicle control device and analysis device |
TWI866392B (en) * | 2023-08-15 | 2024-12-11 | 台達電子工業股份有限公司 | Anomaly detection method for energy storage system, power control system, and temperature prediction device |
Also Published As
Publication number | Publication date |
---|---|
TWI572878B (en) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101057542B1 (en) | Battery Management System and Its Driving Method | |
JP6473154B2 (en) | Estimating the deterioration state of electric batteries | |
KR101908412B1 (en) | Battery Management System and method adjusting SOC for Battery Management System | |
KR102080632B1 (en) | Battery management system and its operating method | |
US8965722B2 (en) | Apparatus for calculating residual capacity of secondary battery | |
JP6496810B2 (en) | Battery control device and electric vehicle system | |
US9018907B2 (en) | Method for precise power prediction for battery packs | |
US7982433B2 (en) | Method of adjusting SOC for battery and battery management system using the same | |
EP1777794B1 (en) | Battery management system and method of determining a state of charge of a battery | |
KR101223735B1 (en) | Battery management system and control method thereof | |
JP4560540B2 (en) | Secondary battery charge / discharge quantity estimation method and apparatus, secondary battery polarization voltage estimation method and apparatus, and secondary battery remaining capacity estimation method and apparatus | |
US8060322B2 (en) | Battery management system and driving method thereof | |
CN100541969C (en) | Method for compensating battery state of charge and battery management system using same | |
JP6174963B2 (en) | Battery control system | |
US20150028808A1 (en) | Method to Estimate Battery Open-Circuit Voltage Based on Transient Resistive Effects | |
JP5535968B2 (en) | CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM | |
CN111196180B (en) | Vehicle control unit, vehicle and remaining driving range display method and device thereof | |
CN111624505B (en) | Method for measuring internal resistance of power type lithium battery for composite power supply | |
JP6852469B2 (en) | Battery controller, program | |
KR20160007870A (en) | Method for measuring of SOH and the correcting of SOC in battery using the battery DCIR assay | |
TWI572878B (en) | Method and apparatus for predicting discharging output of battery | |
JP7240893B2 (en) | battery controller | |
JP2015137952A (en) | Device for estimating remaining capacity of power storage device | |
JP2013096785A (en) | Battery deterioration determination device and battery deterioration determination method | |
JP2022179322A (en) | BATTERY SYSTEM AND BATTERY CONTROL METHOD |