TW201427491A - Lighting system for plant cultivation - Google Patents
Lighting system for plant cultivation Download PDFInfo
- Publication number
- TW201427491A TW201427491A TW102148535A TW102148535A TW201427491A TW 201427491 A TW201427491 A TW 201427491A TW 102148535 A TW102148535 A TW 102148535A TW 102148535 A TW102148535 A TW 102148535A TW 201427491 A TW201427491 A TW 201427491A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- environment
- light source
- source module
- planting
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/14—Measures for saving energy, e.g. in green houses
Landscapes
- Cultivation Of Plants (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
Description
本揭露是有關於一種室內植栽所使用的光照系統及其控制方法。 The disclosure relates to an illumination system used in indoor planting and a control method thereof.
光為植物生長過程中重要的影響因子,因此可透過人工光照技術提高植物對光能的利用效率。對於光敏感的植物其成長形態、開花產果期、果實品質亦可經由光質、光量以及光週期的調控,達到改質的目的。 Light is an important factor in the growth of plants, so artificial light can be used to improve the efficiency of plant energy use. For light-sensitive plants, the growth pattern, flowering fruit production period and fruit quality can also be upgraded through the regulation of light quality, light quantity and photoperiod.
光不但是高等植物光合作用的能量,同時也是調節光型態建成、光週期反應等植物重要活動的信號。其中,光型態建成指的是光強、光質、光照時間和光的空間分佈影響植物型態發生的現象或過程。植物在它的生命週期中,主要通過光敏色素、隱花色素和向光色素感受光強、光質和光向等光信號,優化其生長與發育以適應多變的光環境。 Light is not only the energy of photosynthesis in higher plants, but also a signal for regulating important activities of plants such as light-type formation and photoperiod response. Among them, the light type construction refers to the phenomenon or process of light intensity, light quality, illumination time and spatial distribution of light affecting plant type occurrence. In its life cycle, plants optimize their growth and development to adapt to the changing light environment mainly through sensitizing pigments, cryptochromes and photoluminescence, such as light intensity, light quality and light direction.
在葉綠體的發育過程中,光敏色素、隱花色素、原葉綠素酸酯及葉綠素均參與葉綠體發育的調控。光敏色素主要感受紅 光與紅外光,也感受藍光與紫外光。隱花色素感受藍光與紫外光,其中紫外光亦可做為殺抑菌光源,例如對空氣病菌或是植物病菌與害蟲達到殺抑效果。許多研究表示,光合器官的發育長期受光調控,紅光對光合器官的正常發育至關重要,它可透過抑制光合產物從葉中輸出來增加葉片的澱粉累積。另一方面,藍光則調控著葉綠素形成、葉綠體發育與氣孔開啟以及光合節律等生理過程。 During the development of chloroplasts, phytochrome, cryptochrome, protophyll chlorophyllin and chlorophyll are involved in the regulation of chloroplast development. Photosensitive pigments mainly feel red Light and infrared light also experience blue light and ultraviolet light. The cryptochrome dyes blue light and ultraviolet light, and ultraviolet light can also be used as a light source for killing bacteria, for example, to kill airborne bacteria or plant pathogens and pests. Many studies have shown that the development of photosynthetic organs is regulated by light for a long time. Red light is essential for the normal development of photosynthetic organs. It can increase the starch accumulation of leaves by inhibiting the output of photosynthetic products from leaves. On the other hand, blue light regulates physiological processes such as chlorophyll formation, chloroplast development and stomatal opening, and photosynthetic rhythm.
因此,研發一種適合輔助植物生長,且使得農產品的產量與品質符合預期的光照系統,便成為當前重要的課題。 Therefore, it is an important issue to develop an illumination system that is suitable for assisting plant growth and making the output and quality of agricultural products conform to expectations.
本揭露之一實施例提出一種植物種植環境所使用的光照系統,包括一光照系統裝置。光照系統裝置包括至少一光源模組及一電控系統。光源模組包括多個發光元件,且這些發光元件所發出的光的波長範圍至少部分不相同。電控系統控制這些發光元件的發光。電控系統電控系統以多種光環境情境模式分別控制光源模組的發光元件的發光光量,且調整光源模組所發出的光的光學參數以調控植物的成長形態、產期、產量與品質及制抑病蟲害的至少其中之一,其中至少部分發光元件的發光光量在光環境情境模式的至少兩者中不相同。 One embodiment of the present disclosure provides an illumination system for use in a plant growing environment, including an illumination system device. The illumination system device includes at least one light source module and an electronic control system. The light source module includes a plurality of light emitting elements, and the wavelengths of light emitted by the light emitting elements are at least partially different. An electronic control system controls the illumination of these illuminating elements. The electronic control system electronic control system controls the amount of light emitted by the light source module of the light source module in a plurality of light environment context modes, and adjusts the optical parameters of the light emitted by the light source module to regulate the growth form, production period, yield and quality of the plant and At least one of the pests and diseases is suppressed, wherein the amount of illuminating light of at least a portion of the illuminating elements is different in at least two of the light environmental context modes.
為讓本揭露之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳 細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description. In order to make the above features and advantages of the present disclosure more comprehensible, the following embodiments are described in detail with reference to the drawings The details are as follows.
50、50a、50b、50c‧‧‧植物 50, 50a, 50b, 50c‧ ‧ plants
60‧‧‧溫室 60‧‧ ‧ greenhouse
100‧‧‧光照系統 100‧‧‧Lighting system
200、200a、200b、200c‧‧‧光源模組 200, 200a, 200b, 200c‧‧‧ light source module
201‧‧‧紫外光發光元件 201‧‧‧UV light-emitting elements
202‧‧‧紅光發光元件 202‧‧‧Red light-emitting elements
203‧‧‧綠光發光元件 203‧‧‧Green light-emitting elements
204‧‧‧藍光發光元件 204‧‧‧Blue light-emitting components
205‧‧‧紅外光發光元件 205‧‧‧Infrared light-emitting elements
209‧‧‧發光元件 209‧‧‧Lighting elements
210、210a、210b、210c、211、212b‧‧‧基板 210, 210a, 210b, 210c, 211, 212b‧‧‧ substrates
221‧‧‧紫外光驅動器 221‧‧‧UV driver
222‧‧‧紅光驅動器 222‧‧‧Red light driver
223‧‧‧綠光驅動器 223‧‧‧Green light driver
224‧‧‧藍光驅動器 224‧‧‧Blue Driver
225‧‧‧紅外光驅動器 225‧‧‧Infrared light driver
230、230c‧‧‧光源次模組 230, 230c‧‧‧ light source sub-module
300‧‧‧電控系統 300‧‧‧Electronic control system
310‧‧‧光源模組控制單元 310‧‧‧Light source module control unit
311‧‧‧紅光脈寬調變 311‧‧‧Red light pulse width modulation
312‧‧‧綠光脈寬調變 312‧‧‧Green pulse width modulation
313‧‧‧藍光脈寬調變 313‧‧‧Blue pulse width modulation
314‧‧‧紫外光脈寬調變 314‧‧‧ ultraviolet pulse width modulation
315‧‧‧紅外光脈寬調變 315‧‧‧Infrared light pulse width modulation
316‧‧‧通用非同步收發傳輸器 316‧‧‧Universal asynchronous transceiver
317‧‧‧DIP開關介面 317‧‧‧DIP switch interface
320‧‧‧時域控制單元 320‧‧‧Time Domain Control Unit
330‧‧‧種植環境感測單元 330‧‧‧ planting environment sensing unit
332‧‧‧二氧化碳偵測裝置 332‧‧‧Carbon dioxide detection device
334‧‧‧溫度偵測裝置 334‧‧‧Temperature detection device
336‧‧‧濕度偵測裝置 336‧‧‧Humidity detecting device
338‧‧‧光偵測裝置 338‧‧‧Light detection device
339、339a、339b、339c‧‧‧土壤偵測裝置 339, 339a, 339b, 339c‧‧‧ soil detection devices
340‧‧‧植物感測分析單元 340‧‧‧Plant sensing analysis unit
350‧‧‧光環境控制單元 350‧‧‧Light Environmental Control Unit
352‧‧‧顯示器輸入輸出埠 352‧‧‧Monitor input and output埠
354‧‧‧即時時鐘輸入輸出埠 354‧‧‧Instant clock input and output埠
356‧‧‧按鍵輸入埠 356‧‧‧Key input 埠
358‧‧‧通用非同步收發傳輸器 358‧‧‧Universal asynchronous transceiver
360‧‧‧記憶資料庫單元 360‧‧‧Memory database unit
410‧‧‧交流/直流電源供應器 410‧‧‧AC/DC power supply
420‧‧‧顯示器 420‧‧‧ display
430‧‧‧即時時鐘 430‧‧‧ Instant Clock
440‧‧‧電池 440‧‧‧Battery
450‧‧‧按鍵 450‧‧‧ button
460‧‧‧RS485晶片 460‧‧‧RS485 wafer
470‧‧‧DIP開關 470‧‧‧DIP switch
510‧‧‧TCP/IP網路 510‧‧‧TCP/IP network
520‧‧‧閘道器 520‧‧‧ gateway
L、L1、L2、L3‧‧‧光 L, L1, L2, L3‧‧‧ light
P‧‧‧交流電源匯流排 P‧‧‧AC power bus
R‧‧‧閘道器數量編號 R‧‧‧ gateway number
M、N‧‧‧光源模組數量編號 M, N‧‧‧ light source module number
G1、G2、G3、G6‧‧‧訊號 G1, G2, G3, G6‧‧‧ signals
S1‧‧‧第一訊號 S1‧‧‧ first signal
S2‧‧‧第二訊號 S2‧‧‧ second signal
S3‧‧‧第三訊號 S3‧‧‧ third signal
S4‧‧‧第四訊號 S4‧‧‧fourth signal
S5‧‧‧第五訊號 S5‧‧‧ fifth signal
D1‧‧‧第一資料 D1‧‧‧First Information
圖1為本揭露之一實施例之光照系統的方塊圖。 1 is a block diagram of an illumination system in accordance with an embodiment of the present disclosure.
圖2為本揭露之一實施例之光源模組的正視示意圖。 2 is a front elevational view of a light source module according to an embodiment of the present disclosure.
圖3為本揭露之另一實施例之光源模組的正視示意圖。 3 is a front elevational view of a light source module according to another embodiment of the present disclosure.
圖4為本揭露之又一實施例之光源模組的正視示意圖。 4 is a front elevational view of a light source module according to still another embodiment of the present disclosure.
圖5為本揭露之另一實施例之光照系統的方塊圖。 FIG. 5 is a block diagram of an illumination system according to another embodiment of the present disclosure.
圖6為本揭露之又一實施例之光照系統的方塊圖。 FIG. 6 is a block diagram of an illumination system according to still another embodiment of the present disclosure.
圖7為本揭露之再一實施例之光照系統的方塊圖。 FIG. 7 is a block diagram of a lighting system according to still another embodiment of the present disclosure.
圖8為本揭露之再一實施例之光照系統的方塊圖。 FIG. 8 is a block diagram of a lighting system according to still another embodiment of the present disclosure.
圖9為本揭露之一實施例之光源模組的正視示意圖。 FIG. 9 is a front elevational view of a light source module according to an embodiment of the present disclosure.
圖10為本揭露之另一實施例之光源模組的正視示意圖。 FIG. 10 is a front elevational view of a light source module according to another embodiment of the present disclosure.
圖11A繪示光照系統的一種實施情境。 Figure 11A illustrates an implementation scenario of an illumination system.
圖11B為使用表1的多個光環境情境模式來操作圖2的光源模組時,不同光環境條件對第一期草莓植株生長形態的部分調查項目結果。 FIG. 11B is a partial investigation result of different light environment conditions for the growth pattern of the first strawberry plant when the light source module of FIG. 2 is operated using the plurality of light environment context modes of Table 1.
圖11C為使用表1的多個光環境情境模式操作圖2的光源模組時,不同光環境條件對第一期草莓植株生長形態的部分調查項目結果。 FIG. 11C is a partial investigation result of different light environment conditions for the growth pattern of the first strawberry plant when the light source module of FIG. 2 is operated using the plurality of light environment context modes of Table 1.
圖11D為使用表1的多個光環境情境模式操作圖2的光源模 組時,不同光環境條件對第二期草莓植株生長形態的部分調查項目結果。 Figure 11D is a diagram of the light source mode of Figure 2 using a plurality of light environment context modes of Table 1. In the group, the results of some survey items on the growth pattern of the second strawberry plants under different light environmental conditions.
圖12為圖11A之光照系統的控制示意圖。 Figure 12 is a control diagram of the illumination system of Figure 11A.
圖13為圖11A之光照系統的光環境控制單元的訊號傳送示意圖。 FIG. 13 is a schematic diagram of signal transmission of the light environment control unit of the illumination system of FIG. 11A.
圖14為圖11A之光照系統的光源模組的調控示意圖。 FIG. 14 is a schematic diagram of the regulation of the light source module of the illumination system of FIG. 11A.
圖15為光照系統的另一種控制示意圖。 Figure 15 is a schematic illustration of another control of the illumination system.
圖16繪示光照系統的另一種實施情境。 Figure 16 illustrates another implementation scenario of an illumination system.
本揭露是關於一種具有多光域的光照系統及其控制方法,其具有多光域光源、光質與光量可調變、光調變控制時域化、可同時結合偵測種植環境光度、濕度與溫度情況、土壤狀況(例如土壤酸鹼值、土壤含水量及土壤溫度)以及可即時偵測植物或果實之外觀或生理反應與成長變化狀況,進一步調整為植物種植之最佳光照環境等技術特色與主要特徵。以下僅為本揭露申請案之實施例,並非用以侷限本揭露申請案之範圍。 The disclosure relates to an illumination system with multiple optical regions and a control method thereof, which have multiple light source light sources, adjustable light quality and light quantity, time modulation of light modulation control, and simultaneous detection of planting environment luminosity and humidity. And temperature, soil conditions (such as soil pH, soil water content and soil temperature) and the ability to instantly detect the appearance or physiological response and growth of plants or fruits, further adjusted to the best lighting environment for planting and other technologies Features and main features. The following is only an example of the application of the present disclosure, and is not intended to limit the scope of the disclosed application.
請參照圖1,其繪示本實施例之具有多光域的光照系統100之方塊圖。本實施例之具有多光域的光照系統100基本組成包含一個或一個以上光源模組200及一電控系統300。 Referring to FIG. 1, a block diagram of an illumination system 100 having multiple optical regions of the present embodiment is illustrated. The illumination system 100 having multiple optical regions of the present embodiment basically comprises one or more light source modules 200 and an electronic control system 300.
請參照圖2,本實施例之光源模組200由多個發光元件209整合在一基板210而構成,這些發光元件209包括紫外光發光 元件201、紅光發光元件202、綠光發光元件203、藍光發光元件204及紅外光發光元件205的至少其中二者。這些發光元件209例如為發光二極體(light-emitting diode,LED)、有機發光二極體(organic light-emitting diode,OLED)、其他光源或其他適當的發光元件。這些發光元件209所發出的光的波長範圍至少部分不相同,另外,依據情境需求,此些發光元件209亦可具有不同色溫範圍。此外,紫外光發光元件201所發出的紫外光可包括長波紫外光(ultraviolet A,UVA)、中波紫外光(ultraviolet B,UVB)及短波紫外光(ultraviolet C,UVC)的至少其中之一。 Referring to FIG. 2, the light source module 200 of the present embodiment is configured by integrating a plurality of light emitting elements 209 on a substrate 210, and the light emitting elements 209 include ultraviolet light emitting. At least two of the element 201, the red light emitting element 202, the green light emitting element 203, the blue light emitting element 204, and the infrared light emitting element 205. These light-emitting elements 209 are, for example, light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), other light sources, or other suitable light-emitting elements. The wavelength range of the light emitted by the light-emitting elements 209 is at least partially different. In addition, the light-emitting elements 209 may have different color temperature ranges depending on the context. In addition, the ultraviolet light emitted by the ultraviolet light emitting element 201 may include at least one of ultraviolet A (UVA), ultraviolet B (UVB), and ultraviolet C (UVC).
光源模組200可以例如是(但不侷限)積體電路製程或覆晶接合技術(flip chip)或其他等連接方式,將發光元件209與基板210進行整合製作。 The light source module 200 can be formed by integrating the light-emitting element 209 and the substrate 210, for example, but not limited to, an integrated circuit process or a flip chip or other connection.
基板210之材質可為金屬導體、半導體、陶瓷材料、高分子材料或複合材料等材料,基板210表面或內部可具有導電結構或非導電結構。基板210之表面或內部可具有導電電路(導電結構)作為電源與電控訊號線路,或傳輸光訊號的光連接(optical interconnect)光路(例如光導結構)。此些電路用以作為電源供應及電控訊號,光路用以進行光訊號的傳輸與回饋,電路可以電導線(Electrical wire)、導電電路(Electrical circuit)或以模組化接合(Module connection)電路進行電導通連接,光路可以光纖(Fiber)、光波導(optical waveguide)或以模組化接合光路進行光訊號傳輸連接,其中光波導可包含光波導高分子光波導、化合物光波導、 半導體光波導;若光源模組具有光訊號傳輸設計,則可在基板210整合光傳輸元件(Optical transmitter)、光接收元件(Optical receiver)及光電訊號轉換元件,進行光電訊號轉換。光源模組200則由電控系統310進行電訊號處理與控制。 The material of the substrate 210 may be a metal conductor, a semiconductor, a ceramic material, a polymer material or a composite material, and the surface or the interior of the substrate 210 may have a conductive structure or a non-conductive structure. The surface or the inside of the substrate 210 may have a conductive circuit (conductive structure) as a power source and an electronic control signal line, or an optical interconnect optical path (for example, a light guide structure) for transmitting optical signals. The circuits are used for power supply and electronic control signals, and the optical paths are used for transmitting and feeding optical signals. The circuit can be an electrical wire, an electrical circuit or a module connection circuit. Conducting an electrical connection, the optical path may be a fiber, an optical waveguide, or a modular optical path for optical signal transmission, wherein the optical waveguide may include an optical waveguide optical waveguide, a compound optical waveguide, The semiconductor optical waveguide; if the light source module has an optical signal transmission design, an optical transmitter, an optical receiver, and an optoelectronic signal conversion component can be integrated on the substrate 210 to perform photoelectric signal conversion. The light source module 200 is subjected to electrical signal processing and control by the electronic control system 310.
圖3與圖4分別為本揭露之一實施例之光源模組的正視示意圖。圖3實施例之光源模組200f與圖4之光源模組200a類似,而兩者的差異如下所述。在圖3之光源模組200f中,基板210為矩形基板,且紫外光發光元件201、紅光發光元件202、綠光發光元件203、藍光發光元件204及紅外光發光元件205是以交錯的方式排呈陣列。然而,在光源模組200a中,基板210a例如為圓形基板,且紫外光發光元件201、紅光發光元件202、綠光發光元件203、藍光發光元件204及紅外光發光元件205則是以交錯的方式呈放射狀排列。 3 and FIG. 4 are respectively front elevational views of a light source module according to an embodiment of the present disclosure. The light source module 200f of the embodiment of FIG. 3 is similar to the light source module 200a of FIG. 4, and the difference between the two is as follows. In the light source module 200f of FIG. 3, the substrate 210 is a rectangular substrate, and the ultraviolet light emitting element 201, the red light emitting element 202, the green light emitting element 203, the blue light emitting element 204, and the infrared light emitting element 205 are in an interlaced manner. Arranged in an array. However, in the light source module 200a, the substrate 210a is, for example, a circular substrate, and the ultraviolet light emitting element 201, the red light emitting element 202, the green light emitting element 203, the blue light emitting element 204, and the infrared light emitting element 205 are interlaced. The way is arranged radially.
本揭露不限定基板的形狀與發光元件的排列方式,在其他實施例中,基板亦可呈其他形狀,且發光元件可以其他方式排列。 The disclosure does not limit the shape of the substrate and the arrangement of the light-emitting elements. In other embodiments, the substrate may have other shapes, and the light-emitting elements may be arranged in other manners.
請參考圖1所繪示,電控系統300可包含光源模組控制單元310、時域控制單元320、光環境控制單元350及記憶資料庫單元360。 Referring to FIG. 1 , the electronic control system 300 can include a light source module control unit 310 , a time domain control unit 320 , a light environment control unit 350 , and a memory database unit 360 .
以下分別敘述電控系統300之各項單元的功能。其中光源模組200與電控系統300各單元間或電控系統300各單元間之控制與回饋資料訊號可以有線或無線方式進行接收、傳送與控 制。上述控制與回饋資料可以電訊號或光通訊方式進行傳遞。 The functions of the various units of the electronic control system 300 are described below. The control and feedback data signals between the light source module 200 and the units of the electronic control system 300 or between the units of the electronic control system 300 can be received, transmitted and controlled in a wired or wireless manner. system. The above control and feedback data can be transmitted by means of telecommunication or optical communication.
電控系統300控制這些發光元件209的發光,且用以調整光源模組200所發出的光的光學參數。具體而言,在本實施例中,電控系統300的光源模組控制單元310可以用以調整至少一光源模組200所發出的光的光學參數。上述之光學參數包括光質與光量的至少其中之一,其中光質例如為光的頻譜,而光量例如為光強度或所累積的光照能量。光源模組控制單元310可以對每一或部分(包含所有)發光元件209同時進行光量之調變控制,以產生適合在不同情境使用的光環境。也就是說,光照系統100之控制方法包括對光源模組200進行光質之調變控制之步驟及對光源模組200進行光量之調變控制之步驟。 The electronic control system 300 controls the illumination of the light-emitting elements 209 and is used to adjust the optical parameters of the light emitted by the light source module 200. Specifically, in this embodiment, the light source module control unit 310 of the electronic control system 300 can be used to adjust the optical parameters of the light emitted by the at least one light source module 200. The above optical parameters include at least one of light quality and light quantity, wherein the light quality is, for example, a spectrum of light, and the amount of light is, for example, light intensity or accumulated light energy. The light source module control unit 310 can simultaneously perform modulation control of the amount of light for each or part (including all) of the light-emitting elements 209 to generate a light environment suitable for use in different contexts. That is to say, the control method of the illumination system 100 includes the steps of performing the light quality modulation control on the light source module 200 and the step of controlling the light quantity of the light source module 200.
時域控制單元320其依據一可調整的時間參數調控至少一發光時段,以產生一第一訊號S1,其可使光照系統100產生之光反應能隨時間進行改變,例如光源模組200之每一或部分(包含全部)發光元件209之光量強度可調整增減,達到光質可隨時域變化。 The time domain control unit 320 adjusts at least one lighting period according to an adjustable time parameter to generate a first signal S1, which can change the light reaction energy generated by the illumination system 100 over time, for example, each of the light source modules 200 The intensity of the light quantity of one or a part (including all) of the light-emitting elements 209 can be adjusted to increase or decrease, and the light quality can be changed over time.
記憶資料庫單元360,可儲存植物在不同種植環境、不同成長階段及不同成長型態所需的光照條件至少其中之一的第一資料D1,光源模組控制單元310可依據第一資料D1,調整光源模組200的光學參數,以達所需光照條件。 The memory database unit 360 can store the first data D1 of at least one of the illumination conditions required by the plant in different planting environments, different growth stages, and different growth modes, and the light source module control unit 310 can be based on the first data D1. The optical parameters of the light source module 200 are adjusted to achieve the desired lighting conditions.
光環境控制單元350根據時域控制單元320所產生的第一訊號S1和記憶資料庫單元360所儲存的第一資料D1進行整合 並判斷,以產生一第二訊號S2,第二訊號S2輸出至光源模組控制單元310,光源模組控制單元310根據光環境控制單元350所輸出的第二訊號S2來產生一第三訊號S3,以調控光源模組200所提供的光L的光學參數。舉例而言,光源模組控制單元310可於發光時段產生第二訊號S2以分別控制光源模組200的至少部分這些發光元件209的發光光量。其中,光環境控制單元350之輸入與輸出訊號可以有線或無線裝置進行接收、傳送與控制。光環境控制單元350的控制方式亦可由載具進行遠端操控。在一實施例中,如圖5所示,光源模組控制單元310也可用以控制多組光源模組。一實施例中,電控系統300亦可僅包括光源模組控制單元310和時域控制單元320,光源模組控制單元310接收時域控制單元320所產生的訊號,以調控光源模組200所發出的光線。 The light environment control unit 350 integrates according to the first signal S1 generated by the time domain control unit 320 and the first data D1 stored by the memory database unit 360. And determining that the second signal S2 is generated, and the second signal S2 is output to the light source module control unit 310. The light source module control unit 310 generates a third signal S3 according to the second signal S2 output by the light environment control unit 350. To adjust the optical parameters of the light L provided by the light source module 200. For example, the light source module control unit 310 can generate the second signal S2 during the light emitting period to respectively control the amount of light emitted by at least a portion of the light emitting elements 209 of the light source module 200. The input and output signals of the optical environment control unit 350 can be received, transmitted, and controlled by a wired or wireless device. The control mode of the light environment control unit 350 can also be remotely controlled by the carrier. In an embodiment, as shown in FIG. 5, the light source module control unit 310 can also be used to control multiple sets of light source modules. In an embodiment, the electronic control system 300 can also include only the light source module control unit 310 and the time domain control unit 320. The light source module control unit 310 receives the signals generated by the time domain control unit 320 to regulate the light source module 200. The light emitted.
另一實施例中,請參閱圖6繪示,電控系統300可更包括一種植環境感測單元330,用以感測一種植環境中的溫度、濕度、二氧化碳含量、土壤酸鹼值、土壤含水量、土壤溫度、光譜分光照度值及總光照度的至少其中之一,種植環境感測單元330根據感測資料產生一第四訊號S4,第四訊號S4輸出至光環境控制單元350,光環境控制單元可依據所接收到的訊號再配合記憶資料庫單元360儲存之不同植物在不同種植環境、不同成長階段或不同成長型態所需第一資料D1,產生第二訊號S2至光源模組控制單元310以調控光源模組200之最佳化光源光參數輸出,藉以調控植物成長形態、產期、產量與品質以及制抑病蟲害,其中 品質例如包含外觀、色澤、香味、口感、軟硬以及機能性成分含量等。在本實施例中,種植環境感測單元330可包括二氧化碳偵測裝置332、溫度偵測裝置334、濕度偵測裝置336、光環境偵測裝置338以及土壤偵測裝置339。光環境偵測裝置338可量測種植環境的光譜分光照度值及總光照度。土壤偵測裝置339可量測土壤酸鹼值、土壤含水量、土壤溫度等。在本實施例中,第四訊號S4亦可傳輸並儲存至記憶資料庫單元360。 In another embodiment, referring to FIG. 6 , the electronic control system 300 can further include a planting environment sensing unit 330 for sensing temperature, humidity, carbon dioxide content, soil pH value, soil in a planting environment. The planting environment sensing unit 330 generates a fourth signal S4 according to the sensing data, and the fourth signal S4 is output to the light environment control unit 350, the light environment, at least one of water content, soil temperature, spectral illuminance value and total illuminance. The control unit can generate the second signal S2 to the light source module control according to the received signal and the first data D1 required by different plants stored in different planting environments, different growth stages or different growth patterns stored in the memory database unit 360. The unit 310 regulates the optimal light source light parameter output of the light source module 200, thereby regulating plant growth morphology, production period, yield and quality, and suppressing pests and diseases, wherein The quality includes, for example, appearance, color, aroma, mouthfeel, soft and hard, and functional ingredient content. In this embodiment, the planting environment sensing unit 330 can include a carbon dioxide detecting device 332, a temperature detecting device 334, a humidity detecting device 336, a light environment detecting device 338, and a soil detecting device 339. The light environment detecting device 338 can measure the spectral illuminance value and the total illuminance of the planting environment. The soil detecting device 339 can measure soil pH, soil water content, soil temperature, and the like. In this embodiment, the fourth signal S4 can also be transmitted and stored to the memory database unit 360.
又另一實施例中,請參閱圖6繪示,電控系統300可進一步包括一植物感測分析單元340,用以偵測植物50的特性(如外觀、分佈和成份的至少其一),植物感測分析單元340根據所偵測及分析結果,產生一第五訊號S5,第五訊號S5輸出至光環境控制單元350,光環境控制單元350根據所接收到的訊號和記憶資料庫單元360所儲存的第一資料D1,產生第二訊號S2至光源模組控制單元310以調控光源模組200所發出的光的光學參數。在本實施例中,植物感測分析單元340可定時偵測植物或果實成長狀況及即時量測有機成分。舉例而言,植物感測分析單元340可包括影像感測元件(例如電荷耦合元件或互補式金氧半導體影像感測元件),以定時偵測單棵植物或果實外觀,或偵測植物分佈。此外,植物感測分析單元340可更包括影像分析處理單元,以判斷單位面積或空間之植物佔有之差異化,即可作為分析單棵或單位面積植物之成長狀態。或者,植物感測分析單元340可包括偵測光源,其以特定波長之高光輝度光源照射植物葉面、莖節或根 部表面,再以影像感測元件偵測植物或果實特定吸收或反射的光譜分佈,即可作為分析植物光合作用或有機成分的定質定量狀態。另外,電控系統300可視植物植株本體或果實感測分析結果之不同需求,調整光L的光質或光量。植物感測分析單元340之影像分析處理之軟體可整合於光環境控制單元350或記憶資料庫單元360之電腦系統或微處理器內,或影像分析軟體與影像感測元件亦可是單獨以一模組或裝置方的形式存在。在本實施例中,光環境控制單元350可依據記憶資料庫單元360所儲存的第一資料D1,和時域控制單元320、種植環境感測單元330、植物感測分析單元340所輸出的訊號(如第一訊號S1、第四訊號S4及第五訊號S5),進行整合和判斷以產生訊號至光源模組控制單元進行動態自動調整控制,以使光照系統100達到最佳光環境輸出及節能效果。在本實施例中,第五訊號S5亦可傳輸並儲存至記憶資料庫單元360。 In another embodiment, referring to FIG. 6 , the electronic control system 300 can further include a plant sensing analysis unit 340 for detecting characteristics of the plant 50 (eg, at least one of appearance, distribution, and composition). The plant sensing analysis unit 340 generates a fifth signal S5 according to the detected and analyzed result, and the fifth signal S5 is output to the light environment control unit 350. The light environment control unit 350 is configured according to the received signal and the memory database unit 360. The stored first data D1 generates a second signal S2 to the light source module control unit 310 to regulate the optical parameters of the light emitted by the light source module 200. In the present embodiment, the plant sensing analysis unit 340 can periodically detect the growth state of the plant or the fruit and instantly measure the organic component. For example, the plant sensing analysis unit 340 can include an image sensing element (eg, a charge coupled device or a complementary MOS image sensing element) to periodically detect the appearance of a single plant or fruit, or to detect plant distribution. In addition, the plant sensing analysis unit 340 may further include an image analysis processing unit to determine the difference in plant occupancy per unit area or space, that is, to analyze the growth state of a single or unit area plant. Alternatively, the plant sensing analysis unit 340 can include a detection light source that illuminates the foliage, stem, or root of the plant with a high-intensity light source of a particular wavelength. The surface of the surface, and then the image sensing element detects the spectral distribution of specific absorption or reflection of the plant or fruit, and can be used as a qualitative and quantitative state for analyzing photosynthesis or organic components of the plant. In addition, the electronic control system 300 adjusts the light quality or the amount of light of the light L according to the different needs of the plant plant body or the fruit sensing analysis result. The software of the image analysis processing of the plant sensing analysis unit 340 may be integrated into the computer system or the microprocessor of the light environment control unit 350 or the memory database unit 360, or the image analysis software and the image sensing component may be separately molded. The form of the group or device side exists. In this embodiment, the light environment control unit 350 can output the signal according to the first data D1 stored by the memory database unit 360, and the time domain control unit 320, the planting environment sensing unit 330, and the plant sensing analysis unit 340. (such as the first signal S1, the fourth signal S4, and the fifth signal S5), performing integration and judgment to generate a signal to the light source module control unit for dynamic automatic adjustment control, so that the illumination system 100 achieves optimal light environment output and energy saving effect. In this embodiment, the fifth signal S5 can also be transmitted and stored to the memory database unit 360.
蔬果表面或植物葉面照射到特定光譜的光線,例如紫外光與特定光譜可見光時,蔬果內各種有機化合成分之官能基如C-H、O-H、N-H會吸收特定波長能量,使得表面反射及內部擴散之特定波長光譜吸收率,會隨著不同營養素成分之官能基種類及濃度,而呈現明顯的不同吸收與反射光量與光譜影像。經由影像感測元件的感測及紅綠藍色彩影像經程式運算色比後,便可以定性或定量的方式來分析樣品之特定有機成分含量。 When the surface of a fruit or vegetable or a plant leaf is irradiated to a specific spectrum of light, such as ultraviolet light and a specific spectrum of visible light, functional groups such as CH, OH, and NH of various organic synthesis components in the fruit and fruit absorb specific wavelength energy, causing surface reflection and internal diffusion. The specific wavelength absorption rate of the specific wavelength will show different absorption and reflected light quantity and spectral image with the functional group type and concentration of different nutrient components. After the color ratio of the image sensing component and the red, green and blue color image are programmed, the specific organic component content of the sample can be analyzed qualitatively or quantitatively.
另一實施例,請參閱圖7繪示,記憶資料庫單元360內 之資料,可隨種植環境感測單元330偵測資料,以及植物感測分析單元340最新分析資料建立儲存,使光照系統100可隨環境與植物變化,調控達到最佳光環境輸出及節能效果。 Another embodiment, please refer to FIG. 7 , in the memory database unit 360 The data can be detected by the planting environment sensing unit 330, and the latest analysis data of the plant sensing analysis unit 340 can be stored, so that the illumination system 100 can be adjusted to achieve optimal light environment output and energy saving effect according to environment and plant changes.
圖8為本揭露之另一實施例之光照系統的方塊圖。圖9為本揭露之另一實施例之光源模組的正視圖。其中光源模組200c例如是(但不侷限)積體電路製程或覆晶接合技術(flip chip)或其他等連接方式,由一個以上光源次模組230c整合在一基板210c而構成。 FIG. 8 is a block diagram of an illumination system according to another embodiment of the present disclosure. FIG. 9 is a front elevational view of a light source module according to another embodiment of the present disclosure. The light source module 200c is, for example, but not limited to, an integrated circuit process or a flip chip or other connection method, and is configured by integrating one or more light source sub-modules 230c on a substrate 210c.
光源次模組230c例如是由一個以上不同波長或色溫之發光元件,整合在基板211而組成。本實施例每一組紫外光發光元件201、紅光發光元件202、綠光發光元件203、藍光發光元件204及紅外光發光元件205形成一個光源次模組230c,且這些光源次模組230c可配置於基板210c上以形成光源模組200c,或以分開配置的方式形成光源模組。 The light source sub-module 230c is composed of, for example, one or more light-emitting elements of different wavelengths or color temperatures integrated in the substrate 211. Each of the ultraviolet light-emitting elements 201, the red light-emitting elements 202, the green light-emitting elements 203, the blue light-emitting elements 204, and the infrared light-emitting elements 205 of the present embodiment form a light source sub-module 230c, and the light source sub-modules 230c can The light source module 200c is formed on the substrate 210c to form the light source module 200c, or the light source module is formed in a separately arranged manner.
光源次模組230c可以例如是(但不侷限)積體電路製程或覆晶接合技術(flip chip)或其他等連接方式,將發光元件209與基板210c進行一體化整合製作。基板210c及基板211可為金屬導體、半導體、陶瓷材料、高分子材料或複合材料,其表面或內部可具有導電結構或非導電結構,基板210c及基板211之表面或內部可具有導電電路(導電結構)作為電源與電控訊號線路,或傳輸光訊號的光連接(optical interconnect)光路(例如光導結構)。在本實施例中,每一光源次模組230c所包括的這些發光元件209所 發出的光的波長範圍至少部分不相同。 The light source sub-module 230c can be integrated with the substrate 210c by, for example, but not limited to, an integrated circuit process or a flip chip or other connection. The substrate 210c and the substrate 211 may be a metal conductor, a semiconductor, a ceramic material, a polymer material or a composite material, and the surface or the inside thereof may have a conductive structure or a non-conductive structure, and the surface or the inside of the substrate 210c and the substrate 211 may have a conductive circuit (conductive) Structure) as a power supply and an electronic control signal line, or an optical interconnect optical path (eg, a light guide structure) that transmits optical signals. In this embodiment, the light-emitting elements 209 included in each light source sub-module 230c are The range of wavelengths of light emitted is at least partially different.
光源次模組230c與光源次模組230c、光源次模組230c與光源模組200c彼此之間具有電路(或稱導電結構)或可具有光路(或稱光導結構)來連結,此些電路用以作為電源供應及電控訊號,光路用以進行控制光訊號的傳輸與回饋,電路可以電導線(Electrical wire)、導電電路(Electrical circuit)或以模組化接合(Module connection)電路進行電導通連接,光路可以光纖(Fiber)、光波導(optical waveguide)或以模組化接合光路進行光訊號傳輸連接,其中光波導可包含光波導高分子光波導、化合物光波導、半導體光波導;若光源模組具有光訊號傳輸設計,則可在光源次模組230c或光源模組端200c整合光傳輸元件(Optical transmitter)、光接收元件(Optical receiver)及光電訊號轉換元件,進行光電訊號轉換;若是以基板整合製程進行全光源模組一體化製作,則可以積體電路製程方式將光傳輸元件、光接收元件以及光電訊號轉換元件整合為一全積體電路製程化光源模組。其中光環境控制單元350b可產生不同的發光情境參數,以供光源模組控制單元310b分別調控這些光源次模組230c。另外,此光源模組200c可具有不同色溫之發光二極體LED晶片、發光二極體LED封裝體。光源模組200c可同時發射一種以上的波長或色溫的光線。 The light source sub-module 230c and the light source sub-module 230c, the light source sub-module 230c and the light source module 200c have a circuit (or a conductive structure) or may have an optical path (or a light guide structure) for connecting with each other. As a power supply and electronic control signal, the optical path is used to control the transmission and feedback of the optical signal, and the circuit can be electrically connected by an electrical wire, an electrical circuit or a modular connection circuit. Connecting, the optical path may be a fiber, an optical waveguide, or a modular optical path for optical signal transmission, wherein the optical waveguide may include an optical waveguide, a compound optical waveguide, and a semiconductor optical waveguide; The module has an optical signal transmission design, and an optical transmitter, an optical receiver, and an optoelectronic signal conversion component can be integrated in the light source sub-module 230c or the light source module end 200c to perform photoelectric signal conversion; The integrated light source module is integrated by the substrate integration process, and the optical transmission component and the light receiving element can be integrated in the circuit manufacturing process. Signal and a photoelectric conversion element integrated into a whole integrated circuit manufacturing process of the light source module. The light environment control unit 350b can generate different lighting context parameters for the light source module control unit 310b to separately adjust the light source secondary modules 230c. In addition, the light source module 200c can have a light-emitting diode LED chip and a light-emitting diode LED package with different color temperatures. The light source module 200c can simultaneously emit light of more than one wavelength or color temperature.
圖10為本揭露之又一實施例之光源模組的正視圖。本實施例之光源模組200b類似於圖9之光源模組200c,而兩者的差異如下所述。圖9之實施例之光源模組200c,基板210c為矩形基板, 且每一光源次模組230c中的發光元件209是呈陣列排列。圖10之光源模組200b中,基板210b呈圓形,且每一光源次模組230中的發光元件209是呈環狀排列,且每一光源次模組230的基板212b亦可以是呈圓形。然而,在其他實施例中,光源次模組中的發光元件290的排列方式以可以是採用其他的排列方式。 FIG. 10 is a front elevational view of a light source module according to still another embodiment of the present disclosure. The light source module 200b of the present embodiment is similar to the light source module 200c of FIG. 9, and the difference between the two is as follows. In the light source module 200c of the embodiment of FIG. 9, the substrate 210c is a rectangular substrate. And the light-emitting elements 209 in each of the light source sub-modules 230c are arranged in an array. In the light source module 200b of FIG. 10, the substrate 210b is circular, and the light-emitting elements 209 in each light source sub-module 230 are arranged in a ring shape, and the substrate 212b of each light source sub-module 230 may also be in a circle. shape. However, in other embodiments, the arrangement of the light-emitting elements 290 in the light source sub-module may be in other arrangements.
本申請案揭露之應用可視不同情境之光環境狀況與需求進行不同的調控。 The application disclosed in the present application can be adjusted differently according to the light environment conditions and needs of different situations.
請參閱圖11A,繪示以太陽光利用型溫室應用情境之實施例。在本實施例中,植物50可種植於溫室60中,其中溫室60例如為塑膜溫室或玻璃溫室。在此,溫室60可以視為可以用來定義出一定的空間以讓植物50在室內種植的植物種植環境(plant cultivation)。同時,安裝於光源模組200所提供的光L用以照射植物50,且光源模組20可以採用前述實施例所記載的電控系統300來控制。電控系統300藉由調控光源模組200所發出的光L的光學參數及發光時段,以調控植物的成長形態、產量與品質的至少其中之一。也就是說,在本實施例中是將光源模組200與電控系統300所構成的光照系統安裝於溫室60以提供植物50栽種所需的光環境。 Referring to Figure 11A, an embodiment of a solar-powered greenhouse application scenario is illustrated. In this embodiment, the plant 50 can be planted in a greenhouse 60, wherein the greenhouse 60 is, for example, a plastic film greenhouse or a glasshouse. Here, the greenhouse 60 can be considered as a plant cultivation that can be used to define a certain space for planting the plants 50 indoors. At the same time, the light L provided by the light source module 200 is used to illuminate the plant 50, and the light source module 20 can be controlled by the electronic control system 300 described in the foregoing embodiment. The electronic control system 300 regulates at least one of the growth form, the yield and the quality of the plant by regulating the optical parameters and the illumination period of the light L emitted by the light source module 200. That is to say, in the present embodiment, the illumination system formed by the light source module 200 and the electronic control system 300 is installed in the greenhouse 60 to provide the light environment required for the plant 50 to be planted.
以本實施例而言,溫室60中所使用的光照調控方法包括利用電控系統300以多種光環境情境模式分別控制光源模組200的發光元件的發光光量,且調整光源模組200所發出的光L的光學參數以調控植物50的成長形態、產量與品質的至少其中之一。 植物50在不同種植成長階段,會隨著植物全株變化或種植環境改變,光照需求也會隨之調整,以利植物達到整體最佳的生理發育。所以,光源模組200中至少部分發光元件的發光光量在這些光環境情境模式的至少兩者中並不相同,以發出不同光學參數的光L來照射植物50以調控植物50的生長。此外,光照時間也是影響植物50的生長的重要因素之一。因此,本實施例中所述的各種光環境情境模式包括了光源模組200每天的發光時段,以及在發光時段中光源模組200的發光元件的發光光量等參數。 In this embodiment, the illumination control method used in the greenhouse 60 includes separately controlling the amount of light emitted by the light-emitting elements of the light source module 200 by using the electronic control system 300 in various light environment context modes, and adjusting the emitted light source module 200. The optical parameters of the light L are at least one of the growth morphology, yield, and quality of the plant 50. Plant 50 will change with the whole plant growth or planting environment during different growth stages, and the light demand will be adjusted accordingly to facilitate the optimal physiological development of the plant. Therefore, the amount of illuminating light of at least some of the light-emitting elements in the light source module 200 is different in at least two of the light environment context modes, and the light 50 emitting different optical parameters is used to illuminate the plant 50 to regulate the growth of the plant 50. In addition, the illumination time is also one of the important factors affecting the growth of the plant 50. Therefore, the various light environment context modes described in this embodiment include the lighting period of the light source module 200 every day, and the amount of light emitted by the light emitting elements of the light source module 200 during the lighting period.
由前述實施例可知,電控系統300包括了用以控制發光元件的發光光量的光源模組控制單元310以及用以調整發光時段的一時域控制單元320。如此一來,藉由光源模組控制單元310與時域控制單元320的調整控制,光源模組200依照不同光環境情境模式提供的光L可以調控植物50的全株與果實成長形態、產量與品質以及制抑病蟲害的至少其中之一,其中品質例如包含植物全株之外觀、色澤、香味、口感、軟硬度以及機能性成分含量至少一者。 It can be seen from the foregoing embodiment that the electronic control system 300 includes a light source module control unit 310 for controlling the amount of light emitted by the light emitting elements, and a time domain control unit 320 for adjusting the light emitting period. In this way, by the adjustment control of the light source module control unit 310 and the time domain control unit 320, the light source L provided by the light source module 200 according to different light environment context modes can regulate the growth pattern and yield of the whole plant and the fruit of the plant 50. At least one of quality and suppression of pests and diseases, wherein the quality includes, for example, at least one of the appearance, color, aroma, mouthfeel, softness, and functional component content of the whole plant.
在此,光環境情境模式的具體參數條件可以採用多種方式來決定。在一實施例中,多組光環境情境模式可以預先建立於電控系統300中。當電控系統300具有圖1、5、6、7與8任何一者的架構時,記憶資料庫單元360會儲存一資料D1,且此資料D1包括植物在多個成長階段所需的光學參數與對應的發光時段等相關資訊。當電控系統300中儲存有多組既定的光環境情境模式 時,光照系統可以依據記憶資料庫單元360所儲存的資料D1來決定應採用哪一組光環境情境模式進行發光。不過,電控系統300也可以不依照既定的多組光環境情境模式來控制光源模組200。也就是說,電控系統300可以視植物50的實際成長階段或因種植環境改變造成的實際成長狀況來控制與調整光源模組200的發光條件。 Here, the specific parameter conditions of the light environment context mode can be determined in various ways. In an embodiment, multiple sets of light environment context patterns may be pre-established in the electronic control system 300. When the electronic control system 300 has the architecture of any of Figures 1, 5, 6, 7, and 8, the memory database unit 360 stores a data D1, which includes the optical parameters required by the plant at various stages of growth. Relevant information such as the corresponding lighting period. When the electronic control system 300 stores multiple sets of established light environment situation patterns When the illumination system can determine the set of light environment context patterns to be illuminated according to the data D1 stored in the memory database unit 360. However, the electronic control system 300 may also control the light source module 200 not according to a predetermined plurality of sets of light environment context modes. That is to say, the electronic control system 300 can control and adjust the lighting conditions of the light source module 200 depending on the actual growth stage of the plant 50 or the actual growth condition caused by the change of the planting environment.
在此,所謂的成長階段可以依據植物50的實際生長過程劃分,其舉例而言包括有萌芽階段、植株生長階段、開花階段、結果階段、果實熟成階段等。另外,成長階段也可以根據一般的栽種經驗來定義。此時,成長階段可以依據農民的栽種經驗而至少劃分出播種階段、施肥階段、除草階段、除病蟲害階段、多個採集階段等。以採集階段而言,採集階段可以是依照月份或是季節變化來劃分,因此不同採集階段不一定與植物50的實際生長階段有直接的關連。舉例而言,植物50一年有三次採集階段時,第二次採集階段所採到的果實不一定為植株第二次結果的果實,而第三次採集階段所採到的果實不一定為植株第三次結果的果實。也就是說,成長階段的劃分可以是人為的,而非依據實際生長情形而劃分的。 Here, the so-called growth stage can be divided according to the actual growth process of the plant 50, and includes, for example, a budding stage, a plant growth stage, a flowering stage, a fruiting stage, a fruit ripening stage, and the like. In addition, the growth stage can also be defined based on general planting experience. At this time, the growth stage can be based on at least the planting stage, the fertilization stage, the weeding stage, the pest and disease stage, and the multiple collection stages. In the acquisition phase, the acquisition phase can be divided according to monthly or seasonal variations, so different acquisition phases are not necessarily directly related to the actual growth phase of plant 50. For example, when plant 50 has three collection stages per year, the fruit collected in the second collection stage is not necessarily the fruit of the second result of the plant, and the fruit collected in the third collection stage is not necessarily the plant. The fruit of the third result. That is to say, the division of the growth stage can be artificial, rather than divided according to the actual growth situation.
進一步而言,種植環境改變往往會造成實際成長過程的生理型態變化。舉例來說,種植期間中的若干時間裡,因溫室種植環境之空間或土壤中溫度、濕度或是土壤酸鹼度發生改變,亦或是因病蟲害發生等因素,都會進一步造成的植物整體的生理型 態產生差異改變。如此一來,種植環境因人為或非人為的非預期變數將造成原來的種植管理方式不適用,或是無法達到最佳效率。因此,本發明實施例可以在各成長階段中,根據植物實際成長生理狀況及配合種植環境溫濕度的參數,調整種植環境的光照參數,以利植物能達到最佳的成長條件。 Further, changes in the planting environment often result in physiological changes in the actual growth process. For example, during certain periods of the planting period, the overall physiological type of the plant will be further caused by changes in the temperature of the greenhouse planting environment or the temperature, humidity or soil pH in the soil, or due to factors such as pests and diseases. The state changes in difference. As a result, the unintended variables of the planting environment due to human or non-human factors will cause the original planting management method not to be applicable or to achieve the best efficiency. Therefore, in the embodiments of the present invention, the illumination parameters of the planting environment can be adjusted according to the actual growth physiological condition of the plant and the parameters of the temperature and humidity of the planting environment in each growth stage, so that the plant can reach the optimal growth condition.
在圖1、5與8的架構下,電控系統300的光環境控制單元350可以根據記憶資料庫單元360中的資料D1以及時域控制單元320的訊號S1進而決定出所要的光環境情境模式,其中光環境情境模式可以包括有光源模組200的發光時段以及發光時段中光源模組200發光的光L的光學參數。有關於光環境情境模式的訊號S2可以輸入給光源控制模組單元310,再由光源控制模組單元310輸出對應的訊號S3來實際調控光源模組200中各個發光元件(201~205)的點亮方式。如此一來,光源模組200可以依照既有的資料數據來發光。在電控系統300已經建立有多組既定的光環境情境模式時,電控系統300可以由多組光環境情境模式中選取合適的一組來調控光源模組200。 In the architecture of FIG. 1, 5 and 8, the optical environment control unit 350 of the electronic control system 300 can determine the desired optical environment context mode according to the data D1 in the memory database unit 360 and the signal S1 of the time domain control unit 320. The light environment context mode may include an illumination period of the light source module 200 and an optical parameter of the light L emitted by the light source module 200 during the illumination period. The signal S2 related to the light environment context mode can be input to the light source control module unit 310, and then the light source control module unit 310 outputs the corresponding signal S3 to actually adjust the points of the respective light-emitting elements (201-205) in the light source module 200. Bright way. In this way, the light source module 200 can emit light according to the existing data. When the electronic control system 300 has established a plurality of sets of predetermined light environment context modes, the electronic control system 300 may select a suitable one of the plurality of sets of light environment context modes to control the light source module 200.
不過,在其他的實施例中,如圖6與圖7的架構,電控系統300中可以更設置有種植環境感測單元330與植物感測分析單元340。電控系統300可以藉由此兩單元實際量測的數據搭配既有的資料D1來決定或是選取出所需要的光環境情境模式。也就是說,資料D1的實際內容會隨著訊號S4與訊號S5的資訊而有所改變。也就是說,植物感測分析單元340測得植物50的實際生長情 形後,光環境控制單元350可以由植物50的實際生長情形判定當下所需要的光L的光學參數與發光時段,藉以決定光環境情境模式的具體參數。在圖6與圖7的架構下,光照系統不只依據儲存的資料D1來操作光源模組200,更根據實際的植物50生長情形以及實際的環境條件來調整光源模組200的發光情形。 However, in other embodiments, as shown in FIG. 6 and FIG. 7 , the planting environment sensing unit 330 and the plant sensing analysis unit 340 may be further disposed in the electronic control system 300 . The electronic control system 300 can determine or select the desired light environment context mode by using the data actually measured by the two units together with the existing data D1. That is to say, the actual content of the data D1 will change with the information of the signal S4 and the signal S5. That is, the plant sensing analysis unit 340 measures the actual growth of the plant 50. After the shape, the light environment control unit 350 can determine the optical parameters and the lighting period of the light L required by the current growth situation of the plant 50, thereby determining the specific parameters of the light environment context mode. In the architecture of FIG. 6 and FIG. 7, the illumination system not only operates the light source module 200 according to the stored data D1, but also adjusts the illumination of the light source module 200 according to the actual plant 50 growth situation and actual environmental conditions.
具體的光環境情境模式可以依據植物50的類型來決定。舉例而言,如圖1與圖11A所繪示,在本實施例中,植物50以草莓植株為例。電控系統300可於每天傍晚17點時自動開啟紫外光發光元件201、紅光發光元件202、綠光發光元件203、藍光發光元件204及紅外光發光元件205,其中在這些發光元件209所提供的五種顏色的光輸出能量中,例如光輸出能量是讓紫外光、藍光及綠光以小比例光質配比(例如在這五種光輸出能量中的光強度比例相對較小)輸出,其比例例如分別為1.6%、1.9%、1.3%;且紅光與紅外光例如是以高比例光質配比(例如在這五種光輸出能量中的光強度比例相對較強)輸出,其比例例如分別為27.4%、67.8%。到了晚上21點時,電控系統300則自動關閉紫外光發光元件201、紅光發光元件202、綠光發光元件203、藍光發光元件204及紅外光發光元件205。此外,電控系統300可根據種植環境感測單元330所偵測的白天時的日光照射參數及其他環境參數來決定這五種光源之光質與光量。上述之光質配比可達到草莓果實產量增加、果實尺寸增大及提高果實著色的效果。此外,為了達到這樣的效果,電控系統300可以由既定的多個光環境情境模式 中選擇合適的光環境情境模式以提供接近或是相同的光質與光量配比的光來照射植物50。 The specific light environment context mode can be determined based on the type of plant 50. For example, as illustrated in FIG. 1 and FIG. 11A, in the present embodiment, the plant 50 is exemplified by a strawberry plant. The electronic control system 300 can automatically turn on the ultraviolet light emitting element 201, the red light emitting element 202, the green light emitting element 203, the blue light emitting element 204, and the infrared light emitting element 205 at 17 o'clock every day, wherein the light emitting element 209 provides Among the five colors of light output energy, for example, the light output energy is such that ultraviolet light, blue light, and green light are output in a small proportion of light quality (for example, a relatively small proportion of light intensity in the five light output energies). The ratios are, for example, 1.6%, 1.9%, and 1.3%, respectively; and the red light and the infrared light are output, for example, at a high ratio of light quality (for example, a relatively strong ratio of light in the five light output energies), The ratios are, for example, 27.4% and 67.8%, respectively. At 21 o'clock in the evening, the electronic control system 300 automatically turns off the ultraviolet light emitting element 201, the red light emitting element 202, the green light emitting element 203, the blue light emitting element 204, and the infrared light emitting element 205. In addition, the electronic control system 300 can determine the light quality and the amount of light of the five light sources according to the daylight illumination parameters and other environmental parameters detected by the planting environment sensing unit 330. The above-mentioned light quality ratio can achieve the effect of increasing strawberry fruit yield, increasing fruit size and increasing fruit coloration. In addition, in order to achieve such an effect, the electronic control system 300 can be configured by a plurality of predetermined light environment context modes. A suitable light environment context mode is selected to provide light that is close to or of the same quality of light and light to illuminate the plant 50.
在果實成熟期時,本實施例之電控系統300可調控光源模組200所發出的光L的輸出能量為具有較高比例的紅外光、藍光及紅光,其比例例如分別為61.3%、19.0%、12.8%,且具有較小比例的紫外光與綠光,其比例例如分別為3.5%、3.4%。如此,可提昇草莓的果糖、葡萄糖、蔗糖及總糖含量,以增加甜度口感。當然,為了達到這樣的效果,電控系統300可以由既定的多個光環境情境模式中選擇合適的光環境情境模式以提供接近或是相同的光質與光量配比的光來照射植物50。 During the fruit ripening period, the electronic control system 300 of the embodiment can regulate the output energy of the light L emitted by the light source module 200 to have a higher proportion of infrared light, blue light and red light, the proportion of which is, for example, 61.3%, respectively. 19.0%, 12.8%, and a small proportion of ultraviolet light and green light, the ratio is, for example, 3.5%, 3.4%. In this way, the fructose, glucose, sucrose and total sugar content of the strawberry can be increased to increase the sweet taste. Of course, in order to achieve such an effect, the electronic control system 300 can illuminate the plant 50 by selecting a suitable light environment context mode from a plurality of established light environment context modes to provide light of a near or the same quality of light and light.
此外,本實施例之電控系統300亦可調控光源模組200所發出的光L使得輸出能量為具有較高比例近紅外光、藍光及紅光,其比例例如分別為61.3%、19.0%、12.8%,且具有較小比例的紫外光與綠光,其比例例如分別為3.5%、3.4%。如此,可提昇草莓的果實總酸及檸檬酸含量,以增加酸度口感。若欲增加蘋果酸和草酸含量則以光輸出比例3.3%紫外光、11.1%藍光、21.4%綠光、9.6%紅光以及54.6%紅外光之光質搭配。同樣地,為了達到所要的結果,電控系統300可以由多組既定的光環境情境模式中選擇合適的光環境情境模式以提供接近或是相同的光質與光量配比的光來照射植物50。 In addition, the electronic control system 300 of the embodiment can also regulate the light L emitted by the light source module 200 such that the output energy has a relatively high proportion of near-infrared light, blue light, and red light, and the ratios thereof are, for example, 61.3%, 19.0%, respectively. 12.8%, and a small proportion of ultraviolet light and green light, the ratio is, for example, 3.5%, 3.4%. In this way, the total acid and citric acid content of the strawberry fruit can be increased to increase the acidity taste. If you want to increase the content of malic acid and oxalic acid, the light output ratio is 3.3% ultraviolet light, 11.1% blue light, 21.4% green light, 9.6% red light and 54.6% infrared light. Similarly, in order to achieve the desired result, the electronic control system 300 can select a suitable light environment context mode from a plurality of sets of predetermined light environment context modes to provide near or the same light quality and light quantity to illuminate the plant 50. .
另外,本實施例之電控系統300亦可調控光源模組200所發出的光L的輸出能量為具有較高比例紅外光、紅光及綠光, 其比例例如分別為46.8%、21.2%、20.6%,具有中比例的藍光,例如8.5%,且具有小比例的紫外光,例如2.9%。如此可增加草莓的花青素含量。為了達到這樣的效果,電控系統300可以由既定的多組光環境情境模式中選擇合適的光環境情境模式以提供接近或是相同的光質與光量配比的光來照射植物50。 In addition, the electronic control system 300 of the embodiment can also regulate the output energy of the light L emitted by the light source module 200 to have a relatively high proportion of infrared light, red light, and green light. The ratios are, for example, 46.8%, 21.2%, 20.6%, respectively, having a medium proportion of blue light, for example 8.5%, and having a small proportion of ultraviolet light, for example 2.9%. This increases the anthocyanin content of the strawberry. In order to achieve such an effect, the electronic control system 300 can illuminate the plant 50 by selecting a suitable light environment context mode from a predetermined plurality of sets of light environment context modes to provide near or the same light quality and quantity of light.
再者,於果實成熟期或全紅期,本實施例之電控系統300亦可調控光源模組200所發出的光L的輸出能量為具有較高比例的紅外光、藍光及紅光,其比例例如分別為61.3%、19.0%、12.8%,且具有較小比例的紫外光及綠光,其比例例如分別為3.5%、3.4%,如此可增加草莓的酚類物質以及類黃酮物質含量。為了達到這樣的效果,電控系統300可以由既定的多個光環境情境模式中選擇合適的光環境情境模式以提供接近或是相同的光質與光量配比。以上任一個光環境情境模式的光照時段可以依據植物50的生長需求而決定。因此,不同光環境情境模式的光照時段可以相同於或是不同,並不需限定光照時段落在傍晚17點至晚上21點的區間。 Furthermore, in the fruit ripening period or the full red period, the electronic control system 300 of the embodiment can also regulate the output energy of the light L emitted by the light source module 200 to have a higher proportion of infrared light, blue light and red light. The ratios are, for example, 61.3%, 19.0%, 12.8%, respectively, and have a small proportion of ultraviolet light and green light, the ratios of which are, for example, 3.5% and 3.4%, respectively, which can increase the phenolic substance and flavonoid content of the strawberry. In order to achieve such an effect, the electronic control system 300 can select a suitable light environment context mode from a plurality of predetermined light environment context modes to provide near or the same light quality and light quantity ratio. The illumination period of any of the above light environment context modes can be determined based on the growth requirements of the plant 50. Therefore, the lighting periods of different light environment situation modes can be the same or different, and there is no need to limit the interval of the passage from 17 o'clock to 21 o'clock in the evening.
不同的光環境情境模式可以改變植物50的生長情形使植物50具有不同的特性。因此,使用者可以依據所預期的效果來進行光照模式的調整,甚至根據植物生長或是依據栽種經驗來改變光環境情境模式的具體條件。一般來說,植物50的成長需要數天、數周至數個月的時間,因此每一個光環境情境模式可分別持續進行數天至數月的長度。也就是說,數天或是數月當中的每一天都 依據選定的光環境情境模式來啟動光源模組200。但,不以此為限。在其他的實施例中,可選擇地在數天或是數月當中有多數天讓光源模組200以同一種光環境情境模式運作,而不需每天都以相同的光環境情境模式運作。 Different light environment context patterns can alter the growth of plant 50 to give plant 50 different characteristics. Therefore, the user can adjust the illumination mode according to the expected effect, and even change the specific conditions of the light environment context mode according to plant growth or according to planting experience. In general, the growth of plant 50 takes several days, weeks to months, so each light environment context pattern can last for several days to several months. In other words, every day in a few days or months The light source module 200 is activated in accordance with the selected light environment context mode. However, it is not limited to this. In other embodiments, the light source module 200 can be operated in the same light environment context mode for many days, optionally in days or months, without having to operate in the same light environment context mode every day.
具體來說,依據不同種植條件與情境需求,種植光環境所需條件也會不同,因此光照系統建置可採取不同光輸出設計,以達到最佳的節能效果與較低的成本支出,故光源模組200實際所需的各發光元件數量,可視所需光質與光量進行增減,且各發光元件配置位置亦隨全部發光元件數量進行最佳混光的條件來配置。雖然各發光元件數量會依照實際不同光條件需求產生差異,但光源模組200在光強度輸出比例的配比設計,可以考量所種植物之種類、所種植物之最佳光環境特性(例如光補償點及光飽和點、二氧化碳與光照交換影響參數、溫濕度與光照作用交互參數、土壤養分與光照交互影響參數、光照度需求高低等)、實際種植環境狀況(例如種植於室內外、有無日照、日照量、種植環境之光質與光量、種植環境之空間與土壤溫濕度、土壤酸鹼度、土壤養分、種植地點之氣候溫濕度、病蟲害危害度等)、植物實際生長狀況(譬如新葉數、小葉長、小葉寬、葉柄長、葉面積、葉綠素、莖冠粗、花梗長、花莖粗、花朵數、果轉紅、果總、硬度、糖度、果長、果寬、果數、病蟲害、色澤、各種機能成分含量等)、光源開啟時刻點(例如傍晚日落或夜半暗期)、燈具系統設計方式(例如發光元件可配置面積大小、發光元件電路串併、系統電控調控方式、二次光學混光 設計或是紫外光元件封裝態樣等)以及種植情境需求(例如植物的成長形態、產期、產量與品質及制抑病蟲害)等因素進行光質配比設計。舉例而言,應用場域為簡易溫室(例如塑膜或玻璃溫室)時,光源模組200在紅外光、紅光、藍光、綠光及紫外光或可採30%:40%:20%:4%:6%或40%:30%:20%:4%:6%的參考比例光輸出強度進行搭配設計(但不侷限於此)。電控系統300可選擇地依據這些發光元件的數量與配置預先儲存多組既定的光環境情境模式。此時,使用者(例如農民)可以依據其所培植栽種的植物的特性來選擇合適的光環境情境模式以提供接近理論所需要的光質與光量配比,進而獲得所預設的成果。 Specifically, depending on the planting conditions and situational requirements, the conditions required to grow the light environment will be different. Therefore, the lighting system can be designed with different light output to achieve the best energy saving effect and lower cost, so the light source The number of light-emitting elements actually required by the module 200 can be increased or decreased depending on the required light quality and amount of light, and the position of each light-emitting element is also configured to optimally mix light with the total number of light-emitting elements. Although the number of each light-emitting component may vary according to actual light conditions, the ratio of the light intensity output ratio of the light source module 200 may be considered to consider the type of the plant and the optimal light environment characteristics of the plant (for example, light). Compensation point and light saturation point, carbon dioxide and light exchange influence parameters, temperature and humidity and light interaction parameters, soil nutrient and light interaction parameters, illuminance demand, etc.), actual planting environment conditions (such as planting indoors and outdoors, with or without sunshine, The amount of sunshine, the light quality and light quantity of the planting environment, the space of the planting environment and the temperature and humidity of the soil, the pH of the soil, the soil nutrient, the climate temperature and humidity of the planting site, the pest and disease hazard, etc.), the actual growth of the plant (such as the number of new leaves, leaflets) Length, leaflet width, petiole length, leaf area, chlorophyll, stem crown thick, peduncle length, flower stem diameter, number of flowers, fruit turn red, total fruit, hardness, sugar content, fruit length, fruit width, fruit number, pests, color , the content of various functional components, etc.), the time when the light source is turned on (such as evening sunset or night half dark period), the design method of the lighting system (example The light emitting element may be configured size, and a light emitting element circuit array, electrical control system regulated manner, the second optical light mixing Light quality ratio design is carried out by factors such as design or packaging of ultraviolet light components, as well as planting situational requirements (such as plant growth morphology, production period, yield and quality, and suppression of pests and diseases). For example, when the application field is a simple greenhouse (for example, a plastic film or a glass greenhouse), the light source module 200 may be in infrared, red, blue, green, and ultraviolet light or may be 30%: 40%: 20%: 4%: 6% or 40%: 30%: 20%: 4%: 6% of the reference ratio light output intensity is matched (but not limited to this). The electronic control system 300 optionally stores a plurality of sets of predetermined light environment context patterns in advance based on the number and configuration of the light emitting elements. At this time, the user (for example, a farmer) can select a suitable light environment context mode according to the characteristics of the plant to which the plant is cultivated to provide a light quality and light quantity ratio required to be close to the theory, thereby obtaining the preset result.
以下將以一實例來進行說明。在本實例中採用圖2所表示的的光源模組200。光源模組200可以包括有12個紫外光發光元件201、20個紅光發光元件202、4個綠光發光元件203、16個藍光發光元件204、以及48個紅外光發光元件205。光源模組200的結構,以及上述發光元件201~205的配置在安裝當下就已經固定了,其中光源模組各發光元件的最大輸出比例大致為4.7%(紫外光):23.4%(藍光):4.2%(綠光):40.8%(紅光):31.8%(紅外光)。也就是說,在這樣的硬體設備下,光源模組200可提供的各分光強度由大至小依序為紅光、紅外光、藍光、紫外光、以及綠光。 An example will be described below. In the present example, the light source module 200 shown in Fig. 2 is employed. The light source module 200 may include 12 ultraviolet light emitting elements 201, 20 red light emitting elements 202, 4 green light emitting elements 203, 16 blue light emitting elements 204, and 48 infrared light emitting elements 205. The structure of the light source module 200 and the arrangement of the light-emitting elements 201-205 are fixed at the time of installation, wherein the maximum output ratio of each light-emitting element of the light source module is approximately 4.7% (ultraviolet light): 23.4% (blue light): 4.2% (green light): 40.8% (red light): 31.8% (infrared light). That is to say, under such a hardware device, the light intensity of the light source module 200 can be red, infrared, blue, ultraviolet, and green in order from large to small.
在本實例中,上述光源模組200經由系統調控產生出18組特定光輸出情境模式,經由此些特定光輸出情境模式可以獲得
不同時期光源開啟時間及不同光環境條件對植物全株(包含果實)的生長形態、產量與品質、機能性成分與制抑病蟲害的種植光環境情境參數。之後,光照系統的光輸出值可調控到所要的種植光環境情境參數,以進一步達到調控植物全株成長形態、增加產量、提升品質、制抑病蟲害、增加有益健康或口感的機能性成分。也就是說,光照系統可依據一種植條件與一情境需求調整光源模組的數量,且經由一種植過程獲得反映出上述種植條件與上述情境需求之種植光環境參數。如表一所示:
本實例以應用在草莓為例,利用本光照系統調控草莓植株成長、果實產量、果實品質、機能性成分與制抑病蟲害,其中草莓栽種過程劃分為兩個時期,以10月中旬1月中旬為兩時期的區隔界線。也就是說第一時期為10月中旬至1月中旬,而第二時期為1月中旬以後。圖11B為使用表1的多個光環境情境模式來操作圖2的光源模組時,不同光環境條件對第一期草莓植株生長形態的部分調查項目結果;圖11C為使用表1的多個光環境情境模式操作圖2的光源模組時,不同光環境條件對第一期草莓植株生長形態的部分調查項目結果;,而圖11D為使用表1的多個光環境情境模式操作圖2的光源模組時,不同光環境條件對第二期草莓植株生長形態的部分調查項目結果。 This example is applied to strawberry as an example. The illumination system is used to regulate strawberry plant growth, fruit yield, fruit quality, functional components and pest control. The strawberry planting process is divided into two periods, from mid-January to mid-January. The boundary between the two periods. That is to say, the first period is from mid-October to mid-January, and the second period is after mid-January. FIG. 11B is a partial survey item result of different light environment conditions for the growth pattern of the first strawberry plant when the light source module of FIG. 1 is operated using the plurality of light environment context modes of Table 1; FIG. 11C is a plurality of using Table 1; FIG. In the light environment scenario mode, when the light source module of FIG. 2 is operated, the results of the partial investigation of the growth pattern of the first strawberry plant are determined by different light environment conditions; and FIG. 11D is the operation of the plurality of light environment context modes of Table 1. In the light source module, the results of some survey items on the growth pattern of the second strawberry plant under different light environmental conditions.
由圖11B可知,在第8組光環境情境模式下草莓植栽的葉面積最大。由圖11C可知,若以第4組光環境情境模式來進行光照,可以在第一時期獲得最大的總果重,而以第15組光環境情境模式來進行光照,可以在第二時期獲得最大總果重。因此,為了提升果實重量,則第一時期可以採用第4組光環境情境模式, 而在第二時期採用第15組光環境情境模式。 As can be seen from Fig. 11B, the leaf area of strawberry plants was the largest in the eighth group of light environment context mode. It can be seen from Fig. 11C that if the illumination is performed in the fourth group of light environment context mode, the maximum total fruit weight can be obtained in the first period, and the illumination is performed in the 15th group light environment context mode, and the maximum total can be obtained in the second period. The weight is heavy. Therefore, in order to increase the weight of the fruit, the fourth group of light environment situation patterns can be used in the first period. In the second period, the 15th group of light environment situation patterns was adopted.
另外,由圖11C與圖11D顯示,為了提升總果數量,在第一時期,可以讓光源模組200以第4組光環境情境模式來發光,而在第二時期改以以第5組光環境情境模式來進行光照。另外,為了提升果實的花青素含量,則第一時期可以採用第1組光環境情境模式,而在第二時期改採用第7組光環境情境模式。除此之外,整個培植栽種過程也可以採用相同的光環境情境模式來控制植栽的生長形態。舉例來說,同樣地以種草莓為例,可以採用第8組光環境情境模式來促使植株葉面積的增加、促進果實轉紅以及提升果實的硬度。另外,如果要讓植株的花梗增長,可以採用第10組光環境情境模式來進行調控。 In addition, as shown in FIG. 11C and FIG. 11D, in order to increase the total number of fruits, in the first period, the light source module 200 can be illuminated in the fourth group of light environment context modes, and in the second period, the fifth group of light environments can be changed. Situation mode to illuminate. In addition, in order to increase the anthocyanin content of the fruit, the first group of light environment situation mode can be used in the first period, and the seventh group light environment situation mode is adopted in the second period. In addition, the same cultivation environment can be used to control the growth pattern of the whole planting process. For example, taking the strawberry as an example, the eighth group of light environment context patterns can be used to promote the increase of the leaf area of the plant, promote the red turn of the fruit, and increase the hardness of the fruit. In addition, if the peduncle of the plant is to grow, the 10th group of light environmental situation patterns can be used for regulation.
另外,經由以實例驗證發現草莓植株在生長過程中,會有一些重要影響因子在不同時期影響植株形態與果實,舉例部分重要影響因子與項目如表二所示:表二 草莓植株在不同時期植株形態與果實項目的重要影響因子
例如根據表二的結果,使用者(農民)可以依據所要達到的結果來選擇合適的光環境情境模式,例如選擇某些特定發光元件的光質/光量比例,與發光時段,也就是說可以根據重要影響因子的重要性排序出想要的種植光環境情境參數組合。簡單來說,電控系統控制光源模組的發光元件的發光光量,且調整光源模組所發出的光的光學參數的方法包括:在多個實驗組中分別以設定的多個實驗光環境情境模式來種植植物;量測植物在實驗組中的多個狀態參數(例如莖冠粗、花梗長、花朵數、果實硬度、果實糖度、果重、果長、果寬、總果重、總果數、白粉病、花青素等)。接著,以例如田口法或其他分析統計方法分析這些實驗組中,影響狀態參數的多個影響因子的重要性。根據所得到的影響因子的重要性 決定出要進行的至少一種光環境情境模式。 For example, according to the results of Table 2, the user (farmer) can select a suitable light environment context mode according to the desired result, for example, selecting the light quality/light quantity ratio of some specific light-emitting elements, and the light-emitting period, that is, according to The importance of important influence factors ranks the desired combination of planting light environment context parameters. Briefly, the electronic control system controls the amount of light emitted by the light-emitting elements of the light source module, and the method of adjusting the optical parameters of the light emitted by the light source module includes: setting a plurality of experimental light environment scenarios in a plurality of experimental groups Patterns to grow plants; measure multiple state parameters of plants in the experimental group (eg stem crown, stalk length, number of flowers, fruit firmness, fruit sugar, fruit weight, fruit length, fruit width, total fruit weight, total fruit) Number, powdery mildew, anthocyanins, etc.). Next, the importance of multiple impact factors affecting the state parameters in these experimental groups is analyzed, for example, by the Taguchi method or other analytical statistical methods. According to the importance of the impact factor obtained Decide on at least one light environment situation pattern to be performed.
當然,上述的光環境情境模式選擇以及各光環境情境模式的具體條件都僅是舉例說明之用,並非用以限定本揭露的範圍。當內建有這18組光環境情境模式的光照系統應用於種植培養其他植物時,光環境情境模式的選擇可以視情況而調整。在其他的實施例中,光環境情境模式也不需限定於上述18種,甚至可以隨著實際種植環境的條件與植物的生長情形,來改變光源模組中各發光元件的開啟與關閉情形。舉例來說,實際光環境情境模式可經由光照系統進行任意調控改變與建立,在此所指的建立可為人為或經由系統自動感測實際種植環境中的參數(例如空間或土壤中之光質、光量、溫度、濕度、酸鹼、或病蟲害、植物成長狀況等)後,將光照系統的光輸出值調整到最佳種植光環境情境參數,以進一步達到調控草莓植株成長形態、增加果實產量、提升果實品質、制抑病蟲害、增加有益健康或口感的機能性成分。即光照系統可依據光環境狀況與選定種植光環境情境參數兩者之間的差異以調整光源模組所發出的光的光學參數。 Of course, the above-mentioned light environment situation mode selection and the specific conditions of each light environment situation mode are only for illustrative purposes, and are not intended to limit the scope of the disclosure. When the lighting system with these 18 sets of light environment situation modes is built for planting and cultivating other plants, the choice of the light environment situation mode can be adjusted according to the situation. In other embodiments, the light environment context mode is not limited to the above 18 types, and the opening and closing conditions of the light-emitting elements in the light source module may be changed according to the conditions of the actual planting environment and the growth of the plants. For example, the actual light environment context mode can be arbitrarily adjusted and established via the illumination system, which can be used to automatically or automatically sense parameters in the actual planting environment (eg, light in space or soil). After the quality, quantity, temperature, humidity, acid and alkali, or pests and diseases, plant growth status, etc., adjust the light output value of the illumination system to the optimal planting environment parameters to further control the growth pattern of strawberry plants and increase fruit yield. Improve the quality of the fruit, suppress pests and diseases, and increase the functional ingredients of health or taste. That is, the illumination system can adjust the optical parameters of the light emitted by the light source module according to the difference between the light environment condition and the selected planting environment environment parameter.
此外,在本實施例中,植物50種植於溫室60中,其中溫室60例如為塑膜溫室或玻璃溫室。雖然塑膜溫室可採用具有不同顏色的披覆色膜,用以調控照射於植物50上的日光的光質,但披覆膜易隨著使用時間變長而沾染灰塵與材料老化,進而改變塑膜溫室的日光光質,並造成光強度衰減問題的產生。此外,塑膜溫室難以做到隨著白天日照環境的變化而作不同的調控,因為要 產生不同光質須更換成不同成份的披覆色膜,時常更換披覆色膜不但費時,且容易增加成本支出。相較之下,本實施例採用電控系統300來調控光源模組200所發出的光L的光質與光量的方式則易於調整,且可隨著植物的不同而作不同的調整,並可以不用採用不同披覆色膜這種費時又費成本的方式。 Further, in the present embodiment, the plant 50 is planted in a greenhouse 60, wherein the greenhouse 60 is, for example, a plastic film greenhouse or a glass greenhouse. Although the plastic film greenhouse can adopt a coated color film with different colors to regulate the light quality of sunlight irradiated on the plant 50, the drape film is easy to be contaminated with dust and material aging as the use time is long, thereby changing the plastic. The sunlight quality of the membrane greenhouse and the generation of light intensity attenuation problems. In addition, it is difficult for plastic film greenhouses to make different adjustments during the daytime sunshine environment, because It is necessary to replace the coated film with different light quality and replace it with a different color. It is not only time-consuming to replace the coated film, but also easy to increase the cost. In contrast, the manner in which the electronic control system 300 is used to adjust the light quality and the amount of light L emitted by the light source module 200 is easy to adjust, and can be adjusted differently depending on the plant, and can be adjusted. There is no need to use different drape films in a time consuming and costly manner.
圖12為圖11A實施例之光照系統的控制示意圖,圖13為光照系統的光環境控制單元的訊號傳送示意圖,且圖14為光照系統的光源模組的調控示意圖。請參照圖13至圖14,時域控制單元320、種植環境感測單元330以及記憶資料庫單元360偵測或指示的結果可透過訊號G1傳送至光環境控制單元350,其中訊號G1例如為有線的電訊號、無線訊號或光訊號。此外,光環境控制單元350則將所決定的發光情境以訊號G2的方式傳遞給光源模組200(例如是傳遞給光源模組1~N,圖11A實施例N為3)。此外,在本實施例中,光環境控制單元350與光源模組200可透過交流電源匯流排P(例如交流110伏特之電源匯流排)來提供所需的電力。 12 is a schematic diagram of control of the illumination system of the embodiment of FIG. 11A, FIG. 13 is a schematic diagram of signal transmission of the light environment control unit of the illumination system, and FIG. 14 is a schematic diagram of regulation of the light source module of the illumination system. Referring to FIG. 13 to FIG. 14 , the results detected or indicated by the time domain control unit 320 , the planting environment sensing unit 330 and the memory database unit 360 can be transmitted to the optical environment control unit 350 via the signal G1 , wherein the signal G1 is, for example, wired. Telecommunications, wireless or optical signals. In addition, the light environment control unit 350 transmits the determined lighting situation to the light source module 200 in the manner of the signal G2 (for example, to the light source modules 1 to N, and the embodiment N of FIG. 11A is 3). In addition, in the embodiment, the light environment control unit 350 and the light source module 200 can provide the required power through the AC power bus P (for example, a power supply bus of 110 volts AC).
光環境控制單元350可電性連接至一交流/直流電源供應器410、一顯示器420、一即時時鐘(real time clock,RTC)430、一電池440及一按鍵450。交流/直流電源供應器410將來自交流電源匯流排P的電力轉換成直流電或交流電,而提供電力至光環境控制單元350、顯示器420、電池440及即時時鐘430。使用者可透過按鍵450輸入訊號至光環境控制單元350,以設定光環境控 制單元350的發光情境或即使改變光環境控制單元350的發光情境。在本實施例中,按鍵450所輸入的訊號可被光環境控制單元350的按鍵輸入埠356所接收。 The optical environment control unit 350 can be electrically connected to an AC/DC power supply 410, a display 420, a real time clock (RTC) 430, a battery 440, and a button 450. The AC/DC power supply 410 converts power from the AC power source bus P into DC power or AC power, and supplies power to the light environment control unit 350, the display 420, the battery 440, and the instant clock 430. The user can input a signal to the light environment control unit 350 through the button 450 to set the light environment control. The lighting context of unit 350 or even the lighting context of light environment control unit 350 is changed. In this embodiment, the signal input by the button 450 can be received by the button input 埠 356 of the light environment control unit 350.
電池440例如是充電電池,其可被交流/直流電源供應器410充電,且可提供電力給即時時鐘430。即時時鐘430使時鐘訊號經由即時時鐘輸入輸出埠354輸入至光環境控制單元350。光環境控制單元350可藉由顯示器輸入輸出埠352輸出顯示訊號至顯示器420,以讓使用者介面可透過顯示器420來顯示。光環境控制單元350所決定的發光情境可藉由通用非同步收發傳輸器358及RS485晶片460以轉換成訊號G2,訊號G2則傳送至光源模組200。在本實施例中,訊號G2為RS485訊號。然而,在其他實施例中,訊號G2亦可以是其他類型的訊號。此外,交流/直流電源供應器410可提供電力至RS485晶片460。 Battery 440 is, for example, a rechargeable battery that can be charged by AC/DC power supply 410 and can provide power to instant clock 430. The instant clock 430 causes the clock signal to be input to the optical environment control unit 350 via the instant clock input/output 354. The light environment control unit 350 can output a display signal to the display 420 through the display input/output port 352 to allow the user interface to be displayed through the display 420. The illumination environment determined by the optical environment control unit 350 can be converted into the signal G2 by the universal asynchronous transceiver transmitter 358 and the RS485 chip 460, and the signal G2 is transmitted to the light source module 200. In this embodiment, the signal G2 is an RS485 signal. However, in other embodiments, the signal G2 may also be other types of signals. Additionally, AC/DC power supply 410 can provide power to RS485 wafer 460.
在本實施例中,光環境控制單元350與光源模組控制單元310之間以有線傳輸或無線傳輸的方式來傳遞訊號,其中傳輸的方式包括電訊號傳輸或光通訊傳輸。本實施例是以有線的電訊號傳輸為例。 In this embodiment, the optical environment control unit 350 and the light source module control unit 310 transmit signals by means of wired transmission or wireless transmission, wherein the transmission manner includes electrical signal transmission or optical communication transmission. This embodiment takes a wired electrical signal transmission as an example.
此外,在本實施例中,光源模組控制單元310電性連接至交流/直流電源供應器410、紫外光驅動器221、紅光驅動器222、綠光驅動器223、藍光驅動器224及紅外光驅動器225。來自光環境控制單元350的訊號G2經由RS485晶片460及通用非同步收發傳輸器316後傳遞至光源模組控制單元310。光源模組控制單元 310可藉由紅光脈寬調變311、綠光脈寬調變312、藍光脈寬調變313、紫外光脈寬調變314及紅外光脈寬調變315來分別調變紫外光驅動器221、紅光驅動器222、綠光驅動器223、藍光驅動器224及紅外光驅動器225之調變紫外光發光元件201、紅光發光元件202、綠光發光元件203、藍光發光元件204及紅外光發光元件205的方式。此外,在本實施例中,交流/直流電源供應器410可供應電力至RS485晶片460、紫外光驅動器221、紅光驅動器222、綠光驅動器223、藍光驅動器224及紅外光驅動器225。另外,光源模組控制單元310的DIP開關介面317可接收來自DIP開關470的訊號,而使用者可透過手動切換DIP開關470來控制光源模組控制單元310。 In addition, in this embodiment, the light source module control unit 310 is electrically connected to the AC/DC power supply 410, the ultraviolet light driver 221, the red light driver 222, the green light driver 223, the blue light driver 224, and the infrared light driver 225. The signal G2 from the optical environment control unit 350 is transmitted to the light source module control unit 310 via the RS485 chip 460 and the universal asynchronous transceiver transmitter 316. Light source module control unit The 310 can be modulated by the red pulse width modulation 311, the green pulse width modulation 312, the blue pulse width modulation 313, the ultraviolet pulse width modulation 314, and the infrared light pulse width modulation 315, respectively. The red light driver 222, the green light driver 223, the blue light driver 224, and the modulated ultraviolet light emitting element 201 of the infrared light driver 225, the red light emitting element 202, the green light emitting element 203, the blue light emitting element 204, and the infrared light emitting element 205 The way. Further, in the present embodiment, the AC/DC power supply 410 can supply power to the RS485 wafer 460, the ultraviolet light driver 221, the red light driver 222, the green light driver 223, the blue light driver 224, and the infrared light driver 225. In addition, the DIP switch interface 317 of the light source module control unit 310 can receive the signal from the DIP switch 470, and the user can control the light source module control unit 310 by manually switching the DIP switch 470.
圖15為光照系統的另一種光照系統控制實施例。在本實施例中,光環境控制單元350d例如為一遠端光環境控制單元,其所發出的訊號G6可經由TCP/IP網路510傳送至閘道器(gateway)520(例如閘道器1與閘道器2),其中訊號G6例如為RJ45訊號。接著,閘道器520將訊號G6(即RS485訊號)傳送給光環境控制單元350,光環境控制單元350再將訊號G3傳送給光源模組200方式則與圖12傳送方式給光源模組200的方式類似,在此不再重述。 Figure 15 is another embodiment of an illumination system control of an illumination system. In this embodiment, the optical environment control unit 350d is, for example, a remote optical environment control unit, and the signal G6 sent by the optical environment control unit 350d can be transmitted to the gateway 520 via the TCP/IP network 510 (for example, the gateway 1) And the gateway 2), wherein the signal G6 is, for example, an RJ45 signal. Next, the gateway 520 transmits the signal G6 (ie, the RS485 signal) to the light environment control unit 350, and the light environment control unit 350 transmits the signal G3 to the light source module 200 and the transmission mode to the light source module 200. The method is similar and will not be repeated here.
在本實施例中,訊號G2為RS485訊號。然而,在其他實施例中,訊號G2亦可以是其他類型的訊號。 In this embodiment, the signal G2 is an RS485 signal. However, in other embodiments, the signal G2 may also be other types of signals.
在本實施例中,光環境控制單元350d與光源模組控制單 元310或與其他單元模組之間可以有線傳輸或無線傳輸的方式來傳遞訊號,其中傳輸的方式包括電訊號傳輸或光通訊傳輸。本實施例是以有線的電訊號傳輸為例。 In this embodiment, the light environment control unit 350d and the light source module control list The signal can be transmitted by means of wired transmission or wireless transmission between the unit 310 or other unit modules, wherein the transmission method includes an electrical signal transmission or an optical communication transmission. This embodiment takes a wired electrical signal transmission as an example.
使用本實施例之架構時,使用者可於遠端(如辦公室)操控光源模組200,而可以不用於溫室60內操控光源模組200。 When the architecture of the embodiment is used, the user can manipulate the light source module 200 at a remote end (such as an office), and can not be used to control the light source module 200 in the greenhouse 60.
圖16為另一應用情境之實施例。本實施例之應用情境例如可為室內光源全密閉隔離空間或溫室環境。在本實施例中,這些光源次模組230分別用以照射多個植物50a、50b及50c,且光環境控制單元350b使這些光源次模組230分別以多個不同的模式來照射這些植物50a、50b及50c。這些光源次模組230在這些模式下所發出的光L1、L2及L3的光學參數與發光時段至少部分不相同。另外,植物50a、50b及50c所種植的土壤可以分別採用土壤偵測裝置339a、339b以及339c來偵測。 Figure 16 is an embodiment of another application scenario. The application scenario of this embodiment may be, for example, an indoor light source fully enclosed isolation space or a greenhouse environment. In this embodiment, the light source sub-modules 230 are respectively used to illuminate the plurality of plants 50a, 50b, and 50c, and the light environment control unit 350b causes the light source sub-modules 230 to respectively illuminate the plants 50a in a plurality of different modes. , 50b and 50c. The optical parameters of the light L1, L2, and L3 emitted by the light source sub-modules 230 in these modes are at least partially different from the light-emitting periods. In addition, the soils planted by plants 50a, 50b, and 50c can be detected using soil detecting devices 339a, 339b, and 339c, respectively.
舉例而言,若欲使植物50a的果實(如草莓)具有高含量的花青素,光環境控制單元350b可使圖16左邊的光源次模組230所發出的光L1的輸出能量具有較高比例的紅外光、紅光及綠光,其比例例如分別為46.6%、21.3%、20.5%,具有中比例的藍光,例如8.6%,且具有小比例的紫外光,例如3.0%。若欲使植物50b的果實(如草莓)具有蘋果酸和草酸含量,則光環境控制單元350b可使圖16中間的光源次模組230所發出的光L1具有較高比例之紅外光,例如54.6%,中比例紫外光、綠光、藍光,其比例例如分別為23.3%、21.4%、11.1%,以及小比例紅光,例如:9.6%, 之光質搭配。若欲使植物50c的果實(如草莓)具有甜度口感,則光環境控制單元350b可使圖16右邊的光源次模組230所發出的光L3具有較高比例的紅外光、藍光及紅光,其比例例如分別為61.3%、19.0%、12.8%,且具有小比例的紫外光,例如3.5%,及綠光,例如3.4%。 For example, if the fruit of the plant 50a (such as strawberry) is to have a high content of anthocyanins, the light environment control unit 350b can make the output energy of the light L1 emitted by the light source sub-module 230 on the left side of FIG. 16 higher. The proportions of infrared light, red light, and green light are, for example, 46.6%, 21.3%, 20.5%, respectively, having a medium proportion of blue light, for example 8.6%, and having a small proportion of ultraviolet light, for example, 3.0%. If the fruit of the plant 50b (such as strawberry) is to have a malic acid and oxalic acid content, the light environment control unit 350b can make the light L1 emitted by the light source sub-module 230 in the middle of FIG. 16 have a higher proportion of infrared light, for example, 54.6. %, medium proportion of ultraviolet light, green light, blue light, the ratios are, for example, 23.3%, 21.4%, 11.1%, and a small proportion of red light, for example: 9.6%, Light quality match. If the fruit of the plant 50c (such as strawberry) is to have a sweet mouthfeel, the light environment control unit 350b can make the light L3 emitted by the light source sub-module 230 on the right side of FIG. 16 have a higher proportion of infrared light, blue light and red light. The ratios are, for example, 61.3%, 19.0%, 12.8%, respectively, and have a small proportion of ultraviolet light, such as 3.5%, and green light, for example, 3.4%.
綜上所述,在本揭露之實施例之光照系統中,電控系統藉由調控光源模組所發出的光的光學參數及發光時段,而可調控植物的成長型態、產量與品質的至少其中之一。此外,相較於披覆色膜的方式,本揭露之實施例採用電控系統來調控光源模組所發出的光的光質與光量的方式則易於調整,且可隨著植物的不同而作不同的調整,並可以不用採用披覆色膜這種費時又費成本的方式。 In summary, in the illumination system of the embodiment of the present disclosure, the electronic control system can regulate at least the growth type, yield and quality of the plant by controlling the optical parameters and the illumination period of the light emitted by the light source module. one of them. In addition, compared with the manner of coating the color film, the embodiment of the present disclosure adopts an electronic control system to adjust the light quality and light quantity of the light emitted by the light source module, and is easy to adjust, and can be made with different plants. Different adjustments can be made without the time-consuming and costly way of using a coated film.
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作些許之更動與潤飾,故本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of this disclosure is subject to the definition of the scope of the patent application.
100‧‧‧光照系統 100‧‧‧Lighting system
200‧‧‧光源模組 200‧‧‧Light source module
201‧‧‧紫外光發光元件 201‧‧‧UV light-emitting elements
202‧‧‧紅光發光元件 202‧‧‧Red light-emitting elements
203‧‧‧綠光發光元件 203‧‧‧Green light-emitting elements
204‧‧‧藍光發光元件 204‧‧‧Blue light-emitting components
205‧‧‧紅外光發光元件 205‧‧‧Infrared light-emitting elements
209‧‧‧發光元件 209‧‧‧Lighting elements
300‧‧‧電控系統 300‧‧‧Electronic control system
310‧‧‧光源模組控制單元 310‧‧‧Light source module control unit
320‧‧‧時域控制單元 320‧‧‧Time Domain Control Unit
350‧‧‧光環境控制單元 350‧‧‧Light Environmental Control Unit
360‧‧‧記憶資料庫單元 360‧‧‧Memory database unit
S1‧‧‧第一訊號 S1‧‧‧ first signal
S2‧‧‧第二訊號 S2‧‧‧ second signal
S3‧‧‧第三訊號 S3‧‧‧ third signal
D1‧‧‧第一資料 D1‧‧‧First Information
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102148535A TW201427491A (en) | 2012-12-28 | 2013-12-26 | Lighting system for plant cultivation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101151087 | 2012-12-28 | ||
TW102148535A TW201427491A (en) | 2012-12-28 | 2013-12-26 | Lighting system for plant cultivation |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201427491A true TW201427491A (en) | 2014-07-01 |
Family
ID=51725833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102148535A TW201427491A (en) | 2012-12-28 | 2013-12-26 | Lighting system for plant cultivation |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201427491A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105698019A (en) * | 2016-04-15 | 2016-06-22 | 福建洛普生物科技有限公司 | Eight-color LED lamp panel used for plant growth |
US9741956B2 (en) | 2014-11-25 | 2017-08-22 | Industrial Technology Research Institute | Organic light-emitting diode apparatus |
TWI601444B (en) * | 2016-10-19 | 2017-10-01 | A plant-based upright LED light source drive system | |
TWI685644B (en) * | 2016-10-21 | 2020-02-21 | 長庚大學 | Light quantity monitoring method and light quantity monitoring system |
CN111436312A (en) * | 2020-03-23 | 2020-07-24 | 彭洲龙 | An intelligent and efficient plant growth lamp and its use method |
CN112753406A (en) * | 2019-11-05 | 2021-05-07 | 杨智杰 | Control system for automatically supplementing carbon dioxide and light by matching with plant photosynthesis |
CN114945271A (en) * | 2020-01-03 | 2022-08-26 | 忠北国立大学产学合作基金会 | Light source for plant cultivation |
-
2013
- 2013-12-26 TW TW102148535A patent/TW201427491A/en unknown
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9741956B2 (en) | 2014-11-25 | 2017-08-22 | Industrial Technology Research Institute | Organic light-emitting diode apparatus |
CN105698019A (en) * | 2016-04-15 | 2016-06-22 | 福建洛普生物科技有限公司 | Eight-color LED lamp panel used for plant growth |
TWI601444B (en) * | 2016-10-19 | 2017-10-01 | A plant-based upright LED light source drive system | |
TWI685644B (en) * | 2016-10-21 | 2020-02-21 | 長庚大學 | Light quantity monitoring method and light quantity monitoring system |
CN112753406A (en) * | 2019-11-05 | 2021-05-07 | 杨智杰 | Control system for automatically supplementing carbon dioxide and light by matching with plant photosynthesis |
CN114945271A (en) * | 2020-01-03 | 2022-08-26 | 忠北国立大学产学合作基金会 | Light source for plant cultivation |
CN111436312A (en) * | 2020-03-23 | 2020-07-24 | 彭洲龙 | An intelligent and efficient plant growth lamp and its use method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7152038B2 (en) | Photon modulation management system | |
TW201427491A (en) | Lighting system for plant cultivation | |
CN104869806B (en) | For docking the Horticultural light interface of at least one lighting system | |
RU2654259C2 (en) | Dynamic light recipe for horticulture | |
KR102107067B1 (en) | Photon modulation management system | |
RU2448455C2 (en) | Regulating device for greenhouse | |
RU2696965C2 (en) | Horticultural lighting device | |
JP2020528757A (en) | Dimming method for constant light intensity | |
WO2013027198A1 (en) | Light signaling system for plant behavior manipulation | |
KR102285707B1 (en) | Plant cultivation apparatus and plant cultivation method using light source for plant cultivation | |
JP2007222039A (en) | Plant raising method and raising house | |
US20230276750A1 (en) | Tomato plant, tomato fruit, and method of cultivating tomato plant | |
EP3968755B1 (en) | Plant illumination method and system | |
CN113287371B (en) | Dynamic User Interface | |
Chang et al. | Design and implementation of a cloud-based LED lighting control system for protected horticulture | |
WO2021170783A1 (en) | Red and far-red light ratio during growth of basil | |
Balmadrid et al. | IoT-based LED lighting system with variable pulsing frequency and dark periods for sunflower microgreens | |
Pagarigan et al. | Development of LED light compensation system for agricultural application | |
TWM551817U (en) | Plant cultivating device with adjustable illumination lumens | |
NL2021121B1 (en) | Lamp for the indoor growing of vegetables | |
EP4521910A1 (en) | Regulation of fruit set in peppers by dynamically adapting the led lighting spectrum | |
CN116981126A (en) | LED plant illumination-based dragon fruit planting light source control method and system | |
TR2022001143A2 (en) | Greenhouse lighting system. |