TW201405298A - Memory device and control method therefore - Google Patents
Memory device and control method therefore Download PDFInfo
- Publication number
- TW201405298A TW201405298A TW101125557A TW101125557A TW201405298A TW 201405298 A TW201405298 A TW 201405298A TW 101125557 A TW101125557 A TW 101125557A TW 101125557 A TW101125557 A TW 101125557A TW 201405298 A TW201405298 A TW 201405298A
- Authority
- TW
- Taiwan
- Prior art keywords
- power
- signal
- saving mode
- volatile memory
- computer system
- Prior art date
Links
Landscapes
- Power Sources (AREA)
Abstract
Description
本發明是有關於一種記憶體裝置的控制技術,且特別是有關於一種記憶體裝置以及記憶體裝置的控制方法。 The present invention relates to a control technique for a memory device, and more particularly to a memory device and a method of controlling the memory device.
近年來,消費性電子產品(例如,智慧型手機、平板電腦、數位相機...等)的研發技術與需求十分迅速,使得廠商對於儲存媒體的需求也急速增加。由於快閃記憶體(Flash Memory)具有資料非揮發性、省電、體積小與無機械結構等特性,適合可攜式裝置的諸多應用,因此最適合使用於由電池供電的手持產品上。固態硬碟就是一種以NAND快閃記憶體作為儲存媒體的新興裝置。 In recent years, the research and development technology and demand of consumer electronic products (such as smart phones, tablets, digital cameras, etc.) have been very rapid, which has led to a rapid increase in demand for storage media. Because Flash memory has the characteristics of non-volatile data, power saving, small size and no mechanical structure, it is suitable for many applications of portable devices, so it is most suitable for battery-powered handheld products. Solid-state hard drives are an emerging device that uses NAND flash memory as a storage medium.
目前而言,平板電腦或筆記型電腦通常採用電腦系統常用的電腦匯流排介面(例如,序列先進技術連接(serial advanced technology attachment;SATA)介面)來與固態硬碟進行數據傳輸,因此目前並沒有專門針對固態硬碟的獨特結構提供最佳化的電源管理,而是與以往舊有的機械式硬碟採用相同的省電模式。由於機械式硬碟具備讀寫頭及機械臂等結構,與固態硬碟中快閃記憶體等結構的讀寫方式完全不同,因此有必要針對固態硬碟的讀寫方式來研發相應的電源管理技術,讓電腦系統可在省電與資料存取效能之間取得平衡。 At present, a tablet or a notebook computer usually uses a computer bus interface (for example, a serial advanced technology attachment (SATA) interface) that is commonly used in a computer system to transmit data to a solid state hard disk, so there is currently no data transfer. Optimized for the unique structure of solid state drives, it uses the same power-saving mode as the old mechanical hard drives. Since the mechanical hard disk has a structure such as a head and a robot arm, and the structure of the flash memory in the solid state hard disk is completely different from reading and writing, it is necessary to develop a corresponding power management for the read and write mode of the solid state hard disk. Technology allows the computer system to strike a balance between power savings and data access performance.
本發明提供一種記憶體裝置以及記憶體裝置的控制方法,其在記憶體裝置(如,固態硬碟)中額外增加電源控制模組,藉以提升記憶體裝置從省電模式回到正常模式的速度。 The invention provides a memory device and a control method of the memory device, which additionally adds a power control module to the memory device (for example, a solid state hard disk), thereby improving the speed of the memory device from the power saving mode to the normal mode. .
本發明提出一種記憶體裝置,此記憶體裝置包括處理單元、非揮發性記憶體模組、揮發性記憶體模組以及電源控制模組。處理單元,透過電腦匯流排與電腦系統相連。非揮發性記憶體模組耦接並受控於所述處理單元,其接收第一電源以存取資料。揮發性記憶體模組耦接並受控於所述處理單元,其接收第二電源以存取資料。電源控制模組耦接至所述處理單元、所述非揮發性記憶體模組以及所述揮發性記憶體模組。電源控制模組分別提供所述第一電源及所述第二電源至所述非揮發性記憶體模組以及所述揮發性記憶體模組。其中,當所述電腦系統透過電腦匯流排傳送裝置睡眠信號至所述處理單元時,處理單元判斷所述電腦系統的供電情形以決定是否將該非揮發性記憶體模組的資料備份到該揮發性記憶體模組,並產生一省電模式信號,且所述電源控制模組依據所述裝置睡眠信號及所述省電模式信號分別判斷是否繼續提供所述第一電源或所述第二電源。 The invention provides a memory device, which comprises a processing unit, a non-volatile memory module, a volatile memory module and a power control module. The processing unit is connected to the computer system through a computer bus. The non-volatile memory module is coupled to and controlled by the processing unit, and receives the first power source to access the data. The volatile memory module is coupled to and controlled by the processing unit, and receives a second power source to access data. The power control module is coupled to the processing unit, the non-volatile memory module, and the volatile memory module. The power control module provides the first power source and the second power source to the non-volatile memory module and the volatile memory module, respectively. When the computer system passes the sleep signal of the computer bus to the processing unit, the processing unit determines the power supply condition of the computer system to determine whether to back up the data of the non-volatile memory module to the volatile The memory module generates a power saving mode signal, and the power control module determines whether to continue to provide the first power source or the second power source according to the device sleep signal and the power saving mode signal.
在本發明之一實施例中,當所述電腦系統傳送所述裝置睡眠信號至所述處理單元,且處理單元判斷電腦系統位於交流供電情形時,處理單元設定所述省電模式信號為第 一省電模式。當所述電腦系統傳送所述裝置睡眠信號至所述處理單元,且所述處理單元判斷所述電腦系統位於直流供電情形時,處理單元設定所述省電模式信號為所述第一省電模式,且在預定時間內所述電腦系統並未喚醒所述記憶體裝置之後,所述電腦系統透過所述處理單元以設定所述省電模式信號為所述第二省電模式。 In an embodiment of the present invention, when the computer system transmits the device sleep signal to the processing unit, and the processing unit determines that the computer system is in an AC power supply situation, the processing unit sets the power saving mode signal to be the first A power saving mode. When the computer system transmits the device sleep signal to the processing unit, and the processing unit determines that the computer system is in a DC power supply situation, the processing unit sets the power saving mode signal to the first power saving mode After the computer system does not wake up the memory device within a predetermined time, the computer system transmits the power saving mode signal to the second power saving mode through the processing unit.
在本發明之一實施例中,上述之省電模式信號包括第一輸入輸出信號以及第二輸入輸出信號。並且,當所述省電模式信號為所述第一省電模式時,處理單元將所述非揮發性記憶體模組中的資料備份至所述揮發性記憶體模組,禁能所述第一輸入輸出信號並致能所述第二輸入輸出信號。 In an embodiment of the invention, the power saving mode signal includes a first input output signal and a second input output signal. And, when the power saving mode signal is the first power saving mode, the processing unit backs up the data in the non-volatile memory module to the volatile memory module, and disables the An input and output signal and the second input and output signals are enabled.
從另一角度來看,本發明提出一種記憶體裝置的控制方法,所述記憶體裝置包括接收第一電源的非揮發性記憶體模組以及接收第二電源的揮發性記憶體模組。所述控制方法包括下列步驟。透過電腦匯流排與電腦系統相連。當所述電腦系統透過所述電腦匯流排傳送裝置睡眠信號時,判斷所述電腦系統的供電情形以決定是否將該非揮發性記憶體模組的資料備份到該揮發性記憶體模組,並產生一省電模式信號。以及,依據所述裝置睡眠信號及所述省電模式信號分別判斷是否繼續提供第一電源或第二電源。 From another point of view, the present invention provides a method of controlling a memory device, the memory device comprising a non-volatile memory module receiving a first power source and a volatile memory module receiving a second power source. The control method includes the following steps. Connected to a computer system through a computer bus. Determining, by the computer system, the power supply condition of the computer system to determine whether to back up the data of the non-volatile memory module to the volatile memory module, and generating the sleep signal of the computer system A power saving mode signal. And determining, according to the device sleep signal and the power saving mode signal, whether to continue to provide the first power source or the second power source.
本記憶體裝置的控制方法之其餘實施細節請參照上述說明,在此不加贅述。 For the remaining implementation details of the control method of the memory device, please refer to the above description, and no further details are provided herein.
基於上述,本發明實施例在記憶體裝置(如,固態硬碟)中額外增加電源控制模組,使得記憶體裝置在進入省電模式時,處理單元會依照電腦系統的供電情況讓記憶體裝置內的揮發性記憶體模組(如,隨機存取記憶體)保持或是短暫維持電源開啟的狀態,並在關閉處理單元與主要的非揮發性記憶體模組之前,先將非揮發性記憶體模組中內部資料部份備份到揮發性記憶體模組中。當電腦系統要讀取記憶體裝置中的資料時,並未停止供電的揮發性記憶體模組可先以備份資料供電腦系統讀取,記憶體裝置於此時重新供電給處理單元及揮發性記憶體模組以使其重新運作,因而可提升記憶體裝置從省電模式回到正常模式的速度,達到電腦系統效能與省電的雙贏。 Based on the above, the power control module is additionally added to the memory device (for example, a solid state drive), so that when the memory device enters the power saving mode, the processing unit causes the memory device according to the power supply of the computer system. The internal volatile memory module (eg, random access memory) maintains or temporarily maintains the power-on state, and non-volatile memory before shutting down the processing unit and the main non-volatile memory module The internal data part of the body module is backed up to the volatile memory module. When the computer system needs to read the data in the memory device, the volatile memory module that has not been powered off can be read by the computer system with the backup data, and the memory device is re-powered to the processing unit and the volatile at this time. The memory module is re-operated, so that the speed of the memory device from the power saving mode to the normal mode can be improved, and the computer system performance and power saving are achieved.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
現將詳細參考本發明之示範性實施例,在附圖中說明所述示範性實施例之實例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/符號代表相同或類似部分。 DETAILED DESCRIPTION OF THE INVENTION Reference will now be made in detail to the exemplary embodiments embodiments In addition, wherever possible, the elements and/
請參照圖1,圖1是根據本發明一實施例所述之記憶體裝置100及電腦系統110的方塊功能圖。如圖1所示,電腦系統110具備電腦匯流排介面(於本實施例中,電腦匯流排介面例如是SATA介面120),並透過此SATA介面120 與記憶體裝置100相連接以進行數據傳輸。電腦系統110例如是平板電腦、筆記型電腦、桌上型電腦...等。 Please refer to FIG. 1. FIG. 1 is a block diagram of a memory device 100 and a computer system 110 according to an embodiment of the invention. As shown in FIG. 1, the computer system 110 is provided with a computer bus interface (in the embodiment, the computer bus interface is, for example, a SATA interface 120), and through the SATA interface 120. It is connected to the memory device 100 for data transmission. The computer system 110 is, for example, a tablet computer, a notebook computer, a desktop computer, or the like.
記憶體裝置100為電腦系統110主要的資料儲存記憶體,例如是固態硬碟。記憶體裝置100包括處理單元130、非揮發性記憶體模組140、揮發性記憶體模組150以及電源控制模組160。透過圖1中記憶體裝置100繪示的方塊結構可知,記憶體裝置100並不是舊有的機械式硬碟,其並不具備磁碟陣列、讀寫頭以及機械臂等結構,因此本實施例以固態硬碟作為舉例。 The memory device 100 is a main data storage memory of the computer system 110, such as a solid state hard disk. The memory device 100 includes a processing unit 130, a non-volatile memory module 140, a volatile memory module 150, and a power control module 160. It can be seen from the block structure shown in the memory device 100 of FIG. 1 that the memory device 100 is not an old mechanical hard disk, and does not have a structure such as a disk array, a head, and a robot arm. Therefore, this embodiment Take the solid state drive as an example.
於圖1中,處理單元130透過電腦匯流排132、SATA介面120以及136以與電腦系統110相連。詳細來說,處理單元130為記憶體裝置100中用來存取非揮發性記憶模組140以及揮發性記憶模組150的控制模組,其可利用嵌入式系統晶片(SOC)來實現。處理單元130包括微處理器134、SATA介面136以及通用目的輸出/輸入(General Purpose Input/Output;GPIO)介面138,且微處理器134分別耦接SATA介面136以及GPIO介面138。特別說明的是,本實施例中的處理單元130接收第一電源VP1以維持運作,且當第一電源VP1關閉時,處理單元130將關閉而停止運作。 In FIG. 1, processing unit 130 is coupled to computer system 110 via computer bus 132, SATA interfaces 120, and 136. In detail, the processing unit 130 is a control module for accessing the non-volatile memory module 140 and the volatile memory module 150 in the memory device 100, which can be implemented by using an embedded system chip (SOC). The processing unit 130 includes a microprocessor 134, a SATA interface 136, and a general purpose input/output (GPIO) interface 138, and the microprocessor 134 is coupled to the SATA interface 136 and the GPIO interface 138, respectively. Specifically, the processing unit 130 in this embodiment receives the first power source VP1 to maintain operation, and when the first power source VP1 is turned off, the processing unit 130 will be turned off to stop operating.
非揮發性記憶體模組140及揮發性記憶體模組150分別透過不同的資料匯流排耦接至處理單元130,讓電腦系統110可透過處理單元130從非揮發性記憶體模組140或是揮發性記憶體模組150存取資料。換句話說,非揮發性 記憶體模組140及揮發性記憶體模組150分別耦接並受控於處理單元130,藉以使電腦系統110存取其中的資料。 The non-volatile memory module 140 and the volatile memory module 150 are respectively coupled to the processing unit 130 through different data busses, so that the computer system 110 can pass through the processing unit 130 from the non-volatile memory module 140 or The volatile memory module 150 accesses the data. In other words, non-volatile The memory module 140 and the volatile memory module 150 are respectively coupled and controlled by the processing unit 130, so that the computer system 110 accesses the data therein.
非揮發性記憶體模組140接收第一電源VP1以維持運作。當非揮發性記憶體模組140沒有接收到第一電源VP1時,雖然非揮發性記憶體模組140中的資料不會消失,但是仍需一段時間的啟動才能存取其中的資料。於本實施例中,非揮發性記憶體模組140例如是以NAND閘組建成的快閃(FLASH)記憶體模組。 The non-volatile memory module 140 receives the first power source VP1 to maintain operation. When the non-volatile memory module 140 does not receive the first power source VP1, although the data in the non-volatile memory module 140 does not disappear, it still takes a period of time to access the data therein. In this embodiment, the non-volatile memory module 140 is, for example, a flash memory (FLASH) memory module built with a NAND gate group.
揮發性記憶體模組150則是接收第二電源VP2以維持運作。當非揮發性記憶體模組150沒有接收到第二電源VP2時,基於揮發性記憶體模組150的特性,揮發性記憶體模組150中的資料將會消失,因此若要保存揮發性記憶體模組150的資料,則需持續提供第二電源VP2以使其持續刷新資料。於本實施例中,揮發性記憶體模組150例如是以動態隨機存取記憶體(DRAM)所組成,藉以作為記憶體裝置100的快取記憶區塊。 The volatile memory module 150 receives the second power source VP2 to maintain operation. When the non-volatile memory module 150 does not receive the second power source VP2, based on the characteristics of the volatile memory module 150, the data in the volatile memory module 150 will disappear, so to save the volatile memory For the data of the body module 150, the second power source VP2 needs to be continuously provided to continuously refresh the data. In the present embodiment, the volatile memory module 150 is composed, for example, of a dynamic random access memory (DRAM), and is used as a cache memory block of the memory device 100.
於本實施例中,記憶體裝置100更包括電源轉換器170,其耦接電腦匯流排132以從其供電腳位中接收供電電壓VDD,並將供電電壓VDD轉換為其他裝置所需的電壓。因此,若記憶體裝置100中所需的電壓皆為相同時,則可不需要電源轉換器170。 In this embodiment, the memory device 100 further includes a power converter 170 coupled to the computer bus bar 132 to receive the power supply voltage VDD from its power supply pin and convert the power supply voltage VDD into a voltage required by other devices. Therefore, if the voltages required in the memory device 100 are all the same, the power converter 170 may not be needed.
由上述可知,處理單元130、非揮發性記憶體模組140以及揮發性記憶體模組150皆為記憶體裝置100(固態硬碟)的主要功能結構,為使電腦系統110在記憶體裝置100已 進入省電模式後,仍然能夠迅速從記憶體裝置100讀寫資料,本實施例除了修改處理單元130中的部分省電處理判斷機制以外,亦增加電源控制模組160以控制非揮發性記憶體模組140以及揮發性記憶體模組150的電源供應。 As can be seen from the above, the processing unit 130, the non-volatile memory module 140, and the volatile memory module 150 are the main functional structures of the memory device 100 (solid state hard disk), so that the computer system 110 is in the memory device 100. Has After entering the power saving mode, the data can still be read and written quickly from the memory device 100. In addition to modifying part of the power saving processing judgment mechanism in the processing unit 130, the power control module 160 is also added to control the non-volatile memory. The power supply of the module 140 and the volatile memory module 150.
電源控制模組160耦接至處理單元130、非揮發性記憶體模組140以及揮發性記憶體模組150。電源控制模組160從電腦匯流排132的供電腳位中獲得供電電壓VDD,將此供電電壓VDD轉換為第一電源VP1以及第二電源VP2,以分別提供第一電源VP1及第二電源VP2至非揮發性記憶體模組140以及揮發性記憶體模組150。此外,電源控制模組160接收電腦匯流排132中由電腦系統110所傳送的裝置睡眠信號DEVSLP以及處理單元130經由GPIO介面138所傳送的省電模式信號139來分別判斷是否繼續提供第一電源VP1或第二電源VP2。 The power control module 160 is coupled to the processing unit 130, the non-volatile memory module 140, and the volatile memory module 150. The power control module 160 obtains the power supply voltage VDD from the power supply pin of the computer bus bar 132, and converts the power supply voltage VDD into the first power source VP1 and the second power source VP2 to provide the first power source VP1 and the second power source VP2, respectively. The non-volatile memory module 140 and the volatile memory module 150. In addition, the power control module 160 receives the device sleep signal DEVSLP transmitted by the computer system 110 in the computer bus bar 132 and the power saving mode signal 139 transmitted by the processing unit 130 via the GPIO interface 138 to determine whether to continue to provide the first power source VP1. Or the second power source VP2.
有鑑於此,當電腦系統110判斷將有一段時間並不會需要存取記憶體裝置100,或是記憶體裝置100位於輕負載狀態時,電腦系統110會跟據SATA的電源管理協定以透過電腦匯流排132傳送/致能裝置睡眠信號DEVSLP至處理單元130,讓記憶體裝置100自行進入省電模式。 In view of this, when the computer system 110 determines that there will be a period of time that does not require access to the memory device 100, or the memory device 100 is in a light load state, the computer system 110 will follow the SATA power management protocol to pass through the computer. The bus bar 132 transmits/enables the device sleep signal DEVSLP to the processing unit 130, causing the memory device 100 to enter the power saving mode by itself.
當裝置睡眠信號DEVSLP傳送至處理單元130時,處理單元130可透過電腦匯流排132以判斷電腦系統110的供電情形,從而決定是否將非揮發性記憶體模組140的資料備份到揮發性記憶體模組150,並且產生省電模式信號139。電源控制模組160依據裝置睡眠信號DEVSLP及省 電模式信號139以判斷是否繼續提供第一電源VP1以及第二電源VP2,藉以停止處理單元130及非揮發性記憶模組140的運作,還是更加地將揮發性記憶模組140亦停止運作。 When the device sleep signal DEVSLP is transmitted to the processing unit 130, the processing unit 130 can determine the power supply condition of the computer system 110 through the computer bus 132 to determine whether to back up the data of the non-volatile memory module 140 to the volatile memory. Module 150, and generates a power save mode signal 139. The power control module 160 is based on the device sleep signal DEVSLP and the province. The electrical mode signal 139 determines whether to continue to provide the first power source VP1 and the second power source VP2, thereby stopping the operation of the processing unit 130 and the non-volatile memory module 140, and further stopping the operation of the volatile memory module 140.
詳言之,於本實施例中,當處理單元130接收到裝置睡眠信號DEVSLP時,會先判斷電腦系統110的供電情形為何。若是電腦系統110位於交流供電情形時,也就是當電腦系統110連接至例如市電等穩定電源時,處理單元130設定省電模式信號139為第一省電模式,或者稱為微睡(slumber)模式。也就是說,當省電模式信號139被設定為第一省電模式時,考量到電腦系統110以及記憶體裝置100的效能,處理單元130會將非揮發性記憶體模組140中的資料備份至揮發性記憶體模組150,然後電源控制模組160才會停止供應第一電源VP1以關閉處理單元130以及非揮發性記憶體模組140,以達到省電的目的。另一方面,電源控制模組160則會保留並繼續提供第二電源VP2,以使揮發性記憶體模組150持續刷新其內部資料。 In detail, in the embodiment, when the processing unit 130 receives the device sleep signal DEVSLP, it first determines the power supply situation of the computer system 110. If the computer system 110 is in an AC power supply situation, that is, when the computer system 110 is connected to a stable power source such as a commercial power supply, the processing unit 130 sets the power saving mode signal 139 to the first power saving mode, or is referred to as a slumber mode. . That is, when the power saving mode signal 139 is set to the first power saving mode, considering the performance of the computer system 110 and the memory device 100, the processing unit 130 will back up the data in the non-volatile memory module 140. To the volatile memory module 150, the power control module 160 then stops supplying the first power source VP1 to turn off the processing unit 130 and the non-volatile memory module 140 to save power. On the other hand, the power control module 160 reserves and continues to provide the second power source VP2 to cause the volatile memory module 150 to continuously refresh its internal data.
如此一來,當電腦系統110希望對記憶體裝置100進行資料存取時,電腦系統110可以透過揮發性記憶體模組150中備份資料的快速存取,因而提升電腦系統110在記憶體裝置100從省電模式轉換為正常模式時的資料存取速度。 In this way, when the computer system 110 wishes to access the data of the memory device 100, the computer system 110 can quickly access the backup data in the volatile memory module 150, thereby improving the computer system 110 in the memory device 100. Data access speed when switching from power saving mode to normal mode.
另一方面,當處理單元130接收到裝置睡眠信號DEVSLP,且電腦系統110位於直流供電情形時,也就是 當電腦系統110是利用內建的電池來供應電源時,由於電源供應吃緊,且減少電源功率的消耗將比運作效能來的重要,因此處理單元130會先設定省電模式信號139為上述的第一省電模式,藉以避免電腦系統110在傳送/致能裝置睡眠信號DEVSLP後又即刻需要存取記憶體裝置100。之後,若電腦系統100在一預定時間(例如,10秒)內並未喚醒記憶體裝置100(也就是,並未將記憶體裝置100從第一省電模式轉換回正常運作模式)之後,電腦系統110透過處理單元130中的GPIO介面138來調整省電模式信號139為第二省電模式。電源控制模組160在省電模式信號139為第二省電模式時,便會將第一電源VP1以及第二電源VP2皆停止供應,以關閉處理單元130、非揮發性記憶模組140以及揮發性記憶模組150,達到省電功效。 On the other hand, when the processing unit 130 receives the device sleep signal DEVSLP and the computer system 110 is in the DC power supply situation, that is, When the computer system 110 is powered by the built-in battery, since the power supply is tight and the power consumption of the power supply is reduced, it is more important than the operating efficiency. Therefore, the processing unit 130 first sets the power saving mode signal 139 to the above. A power saving mode prevents the computer system 110 from accessing the memory device 100 immediately after transmitting/enabling the device sleep signal DEVSLP. Thereafter, if the computer system 100 does not wake up the memory device 100 for a predetermined time (eg, 10 seconds) (ie, the memory device 100 is not switched from the first power saving mode to the normal operating mode), the computer System 110 adjusts power save mode signal 139 to a second power save mode via GPIO interface 138 in processing unit 130. When the power saving mode signal 139 is in the second power saving mode, the power control module 160 stops supplying the first power source VP1 and the second power source VP2 to turn off the processing unit 130, the non-volatile memory module 140, and volatilize. The memory module 150 achieves power saving effect.
圖2是根據本發明一實施例所述之記憶體裝置100的詳細方塊圖,也就是說,圖2詳細繪示電源控制模組160的電路結構。圖2的其他部件與圖1相同,在此不予贅述。電源控制模組160包括邏輯單元210、第一電源控制器220以及第二電源控制器230。省電模式信號139包括第一輸入輸出信號GPIO1以及第二輸入輸出信號GPIO2。 FIG. 2 is a detailed block diagram of a memory device 100 according to an embodiment of the invention. That is, FIG. 2 illustrates the circuit structure of the power control module 160 in detail. The other components of FIG. 2 are the same as those of FIG. 1, and are not described herein. The power control module 160 includes a logic unit 210, a first power controller 220, and a second power controller 230. The power saving mode signal 139 includes a first input and output signal GPIO1 and a second input and output signal GPIO2.
邏輯單元210接收裝置睡眠信號DEVSLP及省電模式信號139以產生第一致能信號EN1及第二致能信號EN2。詳言之,邏輯單元210包括第一反及閘212以及第二反及閘214。第一反及閘212的第一輸入端接收第一輸入輸出信號GPIO1,第一反及閘212的第二輸入端接收裝置睡眠 信號DEVSLP,且第一反及閘212的輸出端產生第一致能信號EN1。第二反及閘214的第一輸入端接收第二輸入輸出信號GPIO2,第一反及閘214的第二輸入端接收裝置睡眠信號DEVSLP,且第一反及閘214的輸出端產生第二致能信號EN2。電源轉換器170接收並轉換供電電壓VPP為邏輯電壓以供電給邏輯單元210中的第一反及閘212與第二反及閘214。於本實施例中,邏輯單元210更包括耦接於電源轉換器170的輸出端與承載裝置睡眠信號DEVSLP的腳位之間的電阻R1,以及耦接於電源轉換器170的輸出端與承載第一輸入輸出信號GPIO1的腳位之間的電阻R2。 The logic unit 210 receives the device sleep signal DEVSLP and the power saving mode signal 139 to generate a first enable signal EN1 and a second enable signal EN2. In detail, the logic unit 210 includes a first reverse gate 212 and a second reverse gate 214. The first input end of the first anti-gate 212 receives the first input/output signal GPIO1, and the second input end of the first anti-gate 212 receives the device to sleep. The signal DEVSLP, and the output of the first AND gate 212 generates a first enable signal EN1. The first input end of the second anti-gate 214 receives the second input/output signal GPIO2, the second input of the first anti-gate 214 receives the device sleep signal DEVSLP, and the output of the first anti-gate 214 produces the second Can signal EN2. The power converter 170 receives and converts the supply voltage VPP to a logic voltage to supply power to the first AND gate 212 and the second AND gate 214 in the logic unit 210. In this embodiment, the logic unit 210 further includes a resistor R1 coupled between the output end of the power converter 170 and the pin of the carrier sleep signal DEVSLP, and an output coupled to the power converter 170. A resistor R2 between the pins of the input and output signals GPIO1.
第一電源控制器220耦接邏輯單元210以接收第一致能訊號EN1以及供電電壓VDD。第一電源控制器220透過供電電壓VDD以轉換為第一電源VP1。當第一致能信號EN1由致能轉為禁能時,第一電源控制器220停止提供該第一電源VP1。第二電源控制器230耦接邏輯單元220以接收第二致能訊號EN2以及供電電壓VDD。第二電源控制器230透過供電電壓VDD以轉換為第二電源VP2。且當第二致能信號EN2由致能轉為禁能時,第二電源控制器230停止提供第二電源VP2。 The first power controller 220 is coupled to the logic unit 210 to receive the first enable signal EN1 and the supply voltage VDD. The first power controller 220 is converted into the first power source VP1 through the power supply voltage VDD. When the first enable signal EN1 is turned from disabled to disabled, the first power controller 220 stops providing the first power source VP1. The second power controller 230 is coupled to the logic unit 220 to receive the second enable signal EN2 and the supply voltage VDD. The second power controller 230 is converted into the second power source VP2 through the power supply voltage VDD. And when the second enable signal EN2 is turned from disabled to disabled, the second power controller 230 stops providing the second power source VP2.
因此,本實施例結合電腦系統110的供電情況、計算機裝置100的運作模式(例,正常運作模式、第一省電模式或第二省電模式)、裝置睡眠信號DEVSLP、第一輸入輸出信號GPIO1、第一致能訊號EN1以及第二致能訊號EN2, 以形成表(一),除了便於說明以外,且讓應用本實施例者能夠更為了解本發明實施例的精神。 Therefore, the present embodiment combines the power supply of the computer system 110, the operation mode of the computer device 100 (for example, the normal operation mode, the first power saving mode or the second power saving mode), the device sleep signal DEVSLP, and the first input/output signal GPIO1. , the first enable signal EN1 and the second enable signal EN2, In order to form the table (a), the spirit of the embodiment of the present invention can be more fully understood by those skilled in the art.
於表(一)中,第一欄位的『供電情況』表示電腦系統100的供電為直流供電或是交流供電。『模式』則表示記憶體裝置100中省電模式信號139的信號狀態,並且由第一輸入輸出信號GPIO1以及第二輸入輸出信號GPIO2呈現。 In Table (1), the "power supply situation" of the first field indicates that the power supply of the computer system 100 is DC power or AC power. The "mode" indicates the signal state of the power saving mode signal 139 in the memory device 100, and is represented by the first input/output signal GPIO1 and the second input/output signal GPIO2.
藉此,請同時參考圖2及表(一),當記憶體裝置100位於正常模式時(無論電腦系統位於交流供電情形還是直流供電情形),裝置睡眠信號DEVSLP、第一輸入輸出信號GPIO1以及第二輸入輸出信號GPIO2皆為禁能(邏 輯”0”),使得第一致能信號EN1及第二致能信號EN2皆為致能(邏輯”1”),因此第一電源控制器220及第二電源控制器230持續供應第一電源VP1及第二電源VP2。 Therefore, please refer to FIG. 2 and Table (1) at the same time, when the memory device 100 is in the normal mode (whether the computer system is in the AC power supply situation or the DC power supply situation), the device sleep signal DEVSLP, the first input and output signal GPIO1 and the first The two input and output signals GPIO2 are disabled (logical "0", so that the first enable signal EN1 and the second enable signal EN2 are both enabled (logic "1"), so the first power controller 220 and the second power controller 230 continue to supply the first power VP1 and second power supply VP2.
當電腦系統位於交流供電情形且記憶體裝置100位於第一省電模式時,裝置睡眠信號DEVSLP以及第一輸入輸出信號GPIO1為致能(邏輯”1”),而第二輸入輸出信號GPIO2為禁能(邏輯”0”),因此第一電源控制器220停止提供第一電源VP1而關閉處理單元130以及非揮發性記憶模組140。另外,第二電源控制器230仍持續供應第二電源VP2,以使揮發性記憶模組150自動刷新資料。若記憶體裝置100從第一省電模式轉換為正常模式時,裝置睡眠信號DEVSLP以及第一輸入輸出信號GPIO1皆會轉為禁能(邏輯”0”),使得第一致能信號EN1轉為致能(邏輯”1”)而讓第一電源控制器220提供第一電源VP1,以啟動處理單元130以及非揮發性記憶模組140。 When the computer system is in the AC power supply situation and the memory device 100 is in the first power saving mode, the device sleep signal DEVSLP and the first input and output signal GPIO1 are enabled (logic "1"), and the second input and output signal GPIO2 is disabled. The logic controller can stop (providing the first power source VP1 to turn off the processing unit 130 and the non-volatile memory module 140. In addition, the second power controller 230 continues to supply the second power source VP2 to enable the volatile memory module 150 to automatically refresh the data. If the memory device 100 is switched from the first power saving mode to the normal mode, the device sleep signal DEVSLP and the first input/output signal GPIO1 are all disabled (logic "0"), so that the first enable signal EN1 is converted to The first power supply controller 220 is enabled to provide the first power supply VP1 to enable the processing unit 130 and the non-volatile memory module 140.
當電腦系統位於直流供電情形且記憶體裝置100位於第一省電模式時,類似於上述說明,裝置睡眠信號DEVSLP以及第一輸入輸出信號GPIO1為致能(邏輯”1”),而第二輸入輸出信號GPIO2為禁能(邏輯”0”),使得第一致能信號EN1為禁能(邏輯”0”)而第二致能信號EN2仍維持致能(邏輯”1”)。然而,由於電源功率的消耗比起資料存取效能來的更為重要,因此電腦系統將會確認記憶體裝置100進入第一省電模式的時間(也就是上述的預定時間)來確定是否要關閉揮發性記憶模組150的電源。上述預定時間可依照 應用本實施例者的需求而任意調整時間長度,並不受限於上述舉例。 When the computer system is in the DC power supply situation and the memory device 100 is in the first power saving mode, similar to the above description, the device sleep signal DEVSLP and the first input and output signal GPIO1 are enabled (logic "1"), and the second input The output signal GPIO2 is disabled (logic "0") such that the first enable signal EN1 is disabled (logic "0") and the second enable signal EN2 remains enabled (logic "1"). However, since the power consumption of the power supply is more important than the data access performance, the computer system will confirm the time when the memory device 100 enters the first power saving mode (that is, the predetermined time mentioned above) to determine whether to turn off. The power of the volatile memory module 150. The above predetermined time can be The length of time is arbitrarily adjusted by applying the needs of the embodiment, and is not limited to the above examples.
藉此,於本實施例中,電腦系統110位於直流供電情形且記憶體裝置100位於第一省電模式已超過預定時間(10秒)之後,電腦系統透過處理單元130的GPIO介面138調整省電模式信號139,讓裝置睡眠信號DEVSLP、第一輸入輸出信號GPIO1以及第二輸入輸出信號GPIO2皆為致能(邏輯”1”),使得第一致能信號E1及第二致能信號EN2皆為禁能(邏輯”0”)。因此,第一電源控制器220及第二電源控制器230停止供應第一電源VP1及第二電源VP2以關閉處理單元130、非揮發性記憶體模組140與揮發性記憶體模組150。 Therefore, in the embodiment, after the computer system 110 is in the DC power supply situation and the memory device 100 is in the first power saving mode for more than a predetermined time (10 seconds), the computer system adjusts the power saving through the GPIO interface 138 of the processing unit 130. The mode signal 139 causes the device sleep signal DEVSLP, the first input/output signal GPIO1, and the second input/output signal GPIO2 to be enabled (logic "1"), so that the first enable signal E1 and the second enable signal EN2 are both Disable (logic "0"). Therefore, the first power controller 220 and the second power controller 230 stop supplying the first power source VP1 and the second power source VP2 to turn off the processing unit 130, the non-volatile memory module 140, and the volatile memory module 150.
相對地,當電腦系統需要使計憶體裝置100從第二省電模式回到正常模式時,便將裝置睡眠信號DEVSLP以及第一輸入輸出信號GPIO1為禁能(邏輯”0”),便可使第一智能信號EN1及第二致能信號EN2轉為致能(邏輯”1”),使電源控制模組160提供第一電源VP1以及第二電源VP2。 In contrast, when the computer system needs to return the memory device 100 from the second power saving mode to the normal mode, the device sleep signal DEVSLP and the first input/output signal GPIO1 are disabled (logic "0"). The first smart signal EN1 and the second enable signal EN2 are turned into enable (logic "1"), so that the power control module 160 provides the first power source VP1 and the second power source VP2.
應用本實施例者也可從另一角度來描述本案實施例。例如,請參考圖1,本發明實施例提出一種記憶體裝置100的控制方法。記憶體裝置100包括接收第一電源VP1的非揮發性記憶體模組140以及接收第二電源VP2的揮發性記憶體模組150。記憶體裝置100的控制方法則包括下列步驟。首先,記憶體裝置100透過電腦匯流排132與電腦系統110相連。當電腦系統110透過電腦匯流排132以傳送 裝置睡眠信號DEVSLP時,處理單元130判斷電腦系統110的供電情形以產生省電模式信號139。以及,電源控制模組160依據裝置睡眠信號DEVSLP及省電模式信號139分別判斷是否繼續提供第一電源VP1或第二電源VP2。 The embodiment of the present invention can also be described from another perspective by the embodiment. For example, referring to FIG. 1 , an embodiment of the present invention provides a method for controlling a memory device 100 . The memory device 100 includes a non-volatile memory module 140 that receives the first power source VP1 and a volatile memory module 150 that receives the second power source VP2. The control method of the memory device 100 includes the following steps. First, the memory device 100 is connected to the computer system 110 through the computer bus 132. When the computer system 110 transmits through the computer bus 132 When the sleep signal DEVSLP is set, the processing unit 130 determines the power supply condition of the computer system 110 to generate the power save mode signal 139. And, the power control module 160 determines whether to continue to provide the first power source VP1 or the second power source VP2 according to the device sleep signal DEVSLP and the power saving mode signal 139.
綜上所述,本發明實施例在記憶體裝置(如,固態硬碟)中額外增加電源控制模組,使得處理單元會依照電腦系統的供電情況讓記憶體裝置內的揮發性記憶體模組(如,隨機存取記憶體)保持或是短暫維持電源開啟的狀態,使記憶體裝置進入第一省電模式,並在關閉處理單元與主要的非揮發性記憶體模組之前,先將非揮發性記憶體模組中內部資料部份備份到揮發性記憶體模組中。 In summary, the embodiment of the present invention additionally adds a power control module to a memory device (eg, a solid state drive), so that the processing unit causes the volatile memory module in the memory device according to the power supply of the computer system. (eg, random access memory) maintains or temporarily maintains the power-on state, causing the memory device to enter the first power-saving mode, and before shutting down the processing unit and the main non-volatile memory module, The internal data portion of the volatile memory module is backed up to the volatile memory module.
若是記憶體裝置在第一省電模式且當電腦系統要讀取記憶體裝置中的資料時,並未停止供電的揮發性記憶體模組可先以備份資料供電腦系統讀取,記憶體裝置於此時重新供電給處理單元及揮發性記憶體模組以使其重新運作,因而可提升記憶體裝置從省電模式回到正常模式的速度,達到電腦系統效能與省電的雙贏。 If the memory device is in the first power saving mode and the computer system is to read the data in the memory device, the volatile memory module that has not stopped supplying power may be first read by the computer system with the backup data, and the memory device is At this time, the power supply unit and the volatile memory module are re-powered to re-operate, thereby improving the speed of the memory device from the power saving mode to the normal mode, and achieving a win-win situation between the computer system performance and the power saving.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧記憶體裝置 100‧‧‧ memory device
110‧‧‧電腦系統 110‧‧‧ computer system
120、136‧‧‧序列先進技術連接(SATA)介面 120, 136‧‧‧Sequence Advanced Technology Connection (SATA) interface
130‧‧‧處理單元 130‧‧‧Processing unit
132‧‧‧電腦匯流排 132‧‧‧Computer Bus
134‧‧‧微處理器 134‧‧‧Microprocessor
138‧‧‧通用目的輸出/輸入(GPIO)介面 138‧‧‧General purpose output/input (GPIO) interface
139‧‧‧省電模式信號 139‧‧‧Power saving mode signal
140‧‧‧非揮發性記憶模組 140‧‧‧Non-volatile memory module
150‧‧‧揮發性記憶模組 150‧‧‧Volatile Memory Module
160‧‧‧電源控制模組 160‧‧‧Power Control Module
170‧‧‧電源轉換器 170‧‧‧Power Converter
210‧‧‧邏輯單元 210‧‧‧Logical unit
212、214‧‧‧反及閘 212, 214‧‧‧ anti-gate
220‧‧‧第一電源控制器 220‧‧‧First power controller
230‧‧‧第二電源控制器 230‧‧‧Second power controller
DEVSLP‧‧‧裝置睡眠信號 DEVSLP‧‧‧ device sleep signal
VDD‧‧‧供電電壓 VDD‧‧‧ supply voltage
VP1、VP2‧‧‧第一電源、第二電源 VP1, VP2‧‧‧ first power supply, second power supply
GPIO1、GPIO2‧‧‧輸入輸出訊號 GPIO1, GPIO2‧‧‧ input and output signals
EN1、EN2‧‧‧致能信號 EN1, EN2‧‧‧ enable signal
R1、R2‧‧‧電阻 R1, R2‧‧‧ resistance
圖1是根據本發明一實施例所述之記憶體裝置及電腦系統的方塊功能圖。 1 is a block functional diagram of a memory device and a computer system according to an embodiment of the invention.
圖2是根據本發明一實施例所述之記憶體裝置的詳細方塊圖。 2 is a detailed block diagram of a memory device in accordance with an embodiment of the invention.
100‧‧‧記憶體裝置 100‧‧‧ memory device
110‧‧‧電腦系統 110‧‧‧ computer system
120、136‧‧‧序列先進技術連接(SATA)介面 120, 136‧‧‧Sequence Advanced Technology Connection (SATA) interface
130‧‧‧處理單元 130‧‧‧Processing unit
132‧‧‧電腦匯流排 132‧‧‧Computer Bus
134‧‧‧微處理器 134‧‧‧Microprocessor
138‧‧‧通用目的輸出/輸入(GPIO)介面 138‧‧‧General purpose output/input (GPIO) interface
139‧‧‧省電模式信號 139‧‧‧Power saving mode signal
140‧‧‧非揮發性記憶模組 140‧‧‧Non-volatile memory module
150‧‧‧揮發性記憶模組 150‧‧‧Volatile Memory Module
160‧‧‧電源控制模組 160‧‧‧Power Control Module
170‧‧‧電源轉換器 170‧‧‧Power Converter
DEVSLP‧‧‧裝置睡眠信號 DEVSLP‧‧‧ device sleep signal
VDD‧‧‧供電電壓 VDD‧‧‧ supply voltage
VP1、VP2‧‧‧第一電源、第二電源 VP1, VP2‧‧‧ first power supply, second power supply
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101125557A TW201405298A (en) | 2012-07-16 | 2012-07-16 | Memory device and control method therefore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101125557A TW201405298A (en) | 2012-07-16 | 2012-07-16 | Memory device and control method therefore |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201405298A true TW201405298A (en) | 2014-02-01 |
Family
ID=50550007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101125557A TW201405298A (en) | 2012-07-16 | 2012-07-16 | Memory device and control method therefore |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201405298A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10831393B2 (en) | 2018-02-08 | 2020-11-10 | Micron Technology, Inc. | Partial save of memory |
US11307636B2 (en) | 2020-05-26 | 2022-04-19 | Winbond Electronics Corp. | Semiconductor storing apparatus and flash memory operation method |
US11487343B2 (en) | 2020-05-26 | 2022-11-01 | Winbond Electronics Corp. | Semiconductor storing apparatus and flash memory operation method |
-
2012
- 2012-07-16 TW TW101125557A patent/TW201405298A/en unknown
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10831393B2 (en) | 2018-02-08 | 2020-11-10 | Micron Technology, Inc. | Partial save of memory |
TWI731302B (en) * | 2018-02-08 | 2021-06-21 | 美商美光科技公司 | Partial save of memory |
US11579791B2 (en) | 2018-02-08 | 2023-02-14 | Micron Technology, Inc. | Partial save of memory |
US11307636B2 (en) | 2020-05-26 | 2022-04-19 | Winbond Electronics Corp. | Semiconductor storing apparatus and flash memory operation method |
US11487343B2 (en) | 2020-05-26 | 2022-11-01 | Winbond Electronics Corp. | Semiconductor storing apparatus and flash memory operation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11221774B2 (en) | Power down mode for universal flash storage (UFS) | |
US9483108B2 (en) | Ultra-deep power-down mode for memory devices | |
US9684361B2 (en) | Devices routing wakeup signals using physical layer directly to power management circuit without waking up link layer | |
US10891062B2 (en) | Managing host communication with a regulator in a low power mode | |
US20090019301A1 (en) | Storage apparatus | |
US8868950B2 (en) | Reliability-aware disk power management | |
TWI450096B (en) | An expandable hybrid storage device and computer system and control method | |
US11537193B2 (en) | Shaped and optimized power cycles | |
US11543996B2 (en) | Systems and methods for power management in a data storage device | |
US11204632B2 (en) | Electronic device and method for controlling the same | |
TW201405298A (en) | Memory device and control method therefore | |
CN112578895A (en) | Reducing power consumption due to standby leakage current in non-volatile memory | |
TWI736834B (en) | Transmission interface circuit | |
US20130036263A1 (en) | Solid state storage device using volatile memory | |
CN111406254A (en) | Configurable data refresh from volatile memory to non-volatile memory | |
US11137823B1 (en) | Systems and methods for power management in a data storage device | |
TW201329691A (en) | Electronic system with power saving function | |
CN106155565A (en) | A kind of high speed hard-disk based on Dram | |
TW201624298A (en) | Storage apparatus and computer system | |
CN102467225A (en) | Memory power supply device and memory power supply method for computer system | |
TW201351123A (en) | Save energy circuit | |
US20230409099A1 (en) | Managing sink side and source side display power delivery in response to intermittent power failures | |
US20130016559A1 (en) | Nand flash memory system and method providing reduced power consumption | |
TWI615844B (en) | Memory control circuit unit, memory storage device and signal receiving method | |
KR20220091358A (en) | Power control of a memory device in connected standby state |