[go: up one dir, main page]

TW201400819A - Probe structure and method for fabricating thin film probe - Google Patents

Probe structure and method for fabricating thin film probe Download PDF

Info

Publication number
TW201400819A
TW201400819A TW101122517A TW101122517A TW201400819A TW 201400819 A TW201400819 A TW 201400819A TW 101122517 A TW101122517 A TW 101122517A TW 101122517 A TW101122517 A TW 101122517A TW 201400819 A TW201400819 A TW 201400819A
Authority
TW
Taiwan
Prior art keywords
film
conductive
probe
insulating
insulating film
Prior art date
Application number
TW101122517A
Other languages
Chinese (zh)
Inventor
Ming-Kun Chen
Ming-Hsiang Cheng
Yi-Lung Lin
Original Assignee
Advanced Semiconductor Eng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Semiconductor Eng filed Critical Advanced Semiconductor Eng
Priority to TW101122517A priority Critical patent/TW201400819A/en
Publication of TW201400819A publication Critical patent/TW201400819A/en

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

A probe structure and a method for fabricating a thin film probe are provided. The probe structure comprises a thin film probe. The thin film probe includes an insulating film and conductive bars. The insulating film has a first film surface and a second film surface opposite to the first film surface, and has a first film sidewall and a second film sidewall opposite to the first film sidewall. The insulating film is made of a flexible material. The conductive bars are disposed on the first film surface of the insulating film. Each of the conductive bars has a first conductive end portion and a second conductive end portion opposite to the first conductive end portion. The first conductive end portion of the each of the conductive bars is extended beyond the first film sidewall of the insulating film. The conductive bars separated from each other are arranged in a fan out shape so that a pitch of the first conductive end portions of the conductive bars is smaller than a pitch of the second conductive end portions of the conductive bars.

Description

探針結構與薄膜式探針的製造方法 Probe structure and method for manufacturing thin film probe

本發明係有關於探針結構與薄膜式探針的製造方法,特別係有關於具有薄膜式探針的探針結構。 The present invention relates to a probe structure and a method of manufacturing a membrane probe, and more particularly to a probe structure having a membrane probe.

半導體積體電路晶片的趨勢係往微形化發展,其中元件的單位密度也愈來愈高,因此,半導體積體電路晶片的訊號輸入/輸出端例如凸塊、焊墊的尺寸與間距將愈來愈小,因應晶片微小化趨勢,用以測試晶片的微探針需求也將更高。 The trend of semiconductor integrated circuit wafers is toward miniaturization, in which the unit density of components is becoming higher and higher. Therefore, the size and spacing of signal input/output terminals such as bumps and pads of semiconductor integrated circuit chips will increase. The smaller the size, the higher the demand for micro-probes for testing wafers.

半導體積體電路晶片在出貨前需要經過電性測試機來確認電路特性。為了因應接觸端微小的尺寸與間距,並提高對元件陣列測試的效率,電性測試機必須使用細微的探針陣列作為與待測元件電性接觸的媒介,並搭配空間轉換器來將探針陣列電性連接至接觸端之尺寸、間距更大的電路板。 The semiconductor integrated circuit chip needs to pass an electrical tester to confirm the circuit characteristics before shipment. In order to cope with the small size and spacing of the contact terminals and improve the efficiency of testing the component array, the electrical tester must use a fine probe array as the medium for electrical contact with the device under test, and with a space converter to probe the probe. The array is electrically connected to a circuit board having a larger size and a larger pitch at the contact end.

然而,一般空間轉換器受限材料、製程的影響很難製作出接觸端間距符合目前待測元件或探針陣列規格。因此,克服目前問題的技術是必要的。 However, it is difficult to make the contact end spacing in accordance with the current material to be tested or the probe array specifications due to the limitations of the materials and processes of the general space converter. Therefore, techniques to overcome the current problems are necessary.

本發明係有關於探針結構與薄膜式探針的製造方法。薄膜式探針的製造方法簡單、成本低,且薄膜式探針係適用於測試微型化半導體結構。 The present invention relates to a probe structure and a method of manufacturing a thin film probe. Thin film probes are simple to manufacture and low in cost, and thin film probes are suitable for testing miniaturized semiconductor structures.

根據本發明之一實施例,提供一種探針結構。探針結構包括一薄膜式探針。薄膜式探針包括一絕緣薄膜與多數個導電條。絕緣薄膜具有相對的一第一薄膜表面與一第二薄膜表面,並具有相對的一第一薄膜側邊與一第二薄膜側邊。絕緣薄膜係由可撓材料所構成。導電條設置在絕緣薄膜的第一薄膜表面上。導電條各具有相對的一第一導電末端與一第二導電末端。導電條的第一導電末端係延伸超過絕緣薄膜的第一薄膜側邊。互相分開的導電條係呈扇狀配置,使得導電條的第一導電末端的間距係小於第二導電末端的間距。 According to an embodiment of the invention, a probe structure is provided. The probe structure includes a thin film probe. The thin film probe includes an insulating film and a plurality of conductive strips. The insulating film has a first film surface and a second film surface, and has a first film side and a second film side. The insulating film is made of a flexible material. A conductive strip is disposed on the surface of the first film of the insulating film. The conductive strips each have a first conductive end and a second conductive end. The first conductive end of the conductive strip extends beyond the first film side of the insulating film. The mutually separated conductive strips are arranged in a fan shape such that the pitch of the first conductive ends of the conductive strips is smaller than the pitch of the second conductive ends.

根據本發明之另一實施例,提供一種薄膜式探針的製造方法。製造方法包括以下步驟。於一絕緣材料層上形成一導電層。圖案化導電層以形成多數個導電條。導電條各具有相對的一第一導電末端與一第二導電末端。互相分開的導電條係呈扇狀配置,使得導電條的第一導電末端的間距係小於第二導電末端的間距。移除部分絕緣材料層以形成一絕緣薄膜。絕緣薄膜具有相對的一第一薄膜側邊與一第二薄膜側邊。導電條的各第一導電末端係延伸超過絕緣薄膜的第一薄膜側邊。 According to another embodiment of the present invention, a method of fabricating a thin film probe is provided. The manufacturing method includes the following steps. A conductive layer is formed on a layer of insulating material. The conductive layer is patterned to form a plurality of conductive strips. The conductive strips each have a first conductive end and a second conductive end. The mutually separated conductive strips are arranged in a fan shape such that the pitch of the first conductive ends of the conductive strips is smaller than the pitch of the second conductive ends. A portion of the insulating material layer is removed to form an insulating film. The insulating film has a first film side and a second film side. Each of the first conductive ends of the conductive strip extends beyond the first film side of the insulating film.

下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiment will be described in detail with reference to the accompanying drawings.

第1圖繪示根據一實施例之薄膜式探針102的上視圖。薄膜式探針102包括絕緣薄膜104與多數個導電條106。 1 is a top view of a membrane probe 102 in accordance with an embodiment. The membrane probe 102 includes an insulating film 104 and a plurality of conductive strips 106.

請參考第1圖,絕緣薄膜104係具有相對的第一薄膜側邊108與第二薄膜側邊110,並具有相對的第一薄膜表面112與第二薄膜表面114。絕緣薄膜104係由可撓材料所構成,包括封裝製程中常使用的高分子材料,例如聚醯亞胺(polyimide;PI)、聚二甲基硅氧烷(polydimethylsiloxane;PDMS)、丙烯酸樹脂(Acrylate)或苯醯環丁烯(benzocyclobuten;BCB)。 Referring to FIG. 1, the insulating film 104 has opposing first film side edges 108 and second film side edges 110, and has opposing first film surface 112 and second film surface 114. The insulating film 104 is made of a flexible material, and includes a polymer material commonly used in a packaging process, such as polyimide (PI), polydimethylsiloxane (PDMS), and acrylic resin (Acrylate). Or benzocyclobutene (BCB).

多數個導電條106係設置在絕緣薄膜104的第一薄膜表面112上。導電條106各具有相對的第一導電末端116與第二導電末端118。於實施例中,第一導電末端116係延伸超過絕緣薄膜104的第一薄膜側邊108。互相分開的導電條106係呈扇狀配置,使得在同一個絕緣薄膜104上的導電條106其第一導電末端116的間距D1係小於第二導電末端118的間距D2。於實施例中,導電條106的第一導電末端116可作為與待測元件接觸之針頭,且其間距D1係小於50μm,在一實施例中,間距D1例如係介於20μm~50μm,,非常的微小,能因應朝向微型化發展的電子元件例如半導體積體電路晶片(未顯示),其輸入/輸出端例如焊墊或凸塊之間的間距愈來愈小的趨勢。 A plurality of conductive strips 106 are disposed on the first film surface 112 of the insulating film 104. The conductive strips 106 each have opposing first conductive ends 116 and second conductive ends 118. In an embodiment, the first conductive end 116 extends beyond the first film side 108 of the insulating film 104. The conductive strips 106 which are separated from each other are arranged in a fan shape such that the distance D1 of the first conductive ends 116 of the conductive strips 106 on the same insulating film 104 is smaller than the distance D2 of the second conductive ends 118. In an embodiment, the first conductive end 116 of the conductive strip 106 can serve as a needle in contact with the device to be tested, and the pitch D1 is less than 50 μm. In an embodiment, the pitch D1 is, for example, between 20 μm and 50 μm, which is very The small size can be adapted to the development of miniaturized electronic components such as semiconductor integrated circuit chips (not shown), and the pitch between input/output terminals such as pads or bumps tends to be smaller.

請參考第1圖,,導電條106的第二導電末端118可與電性測試機其他元件接觸端接觸,其間距D2係大於50μm,例如大於100μm,能夠配合目前一般的電性測試機其他元件接觸端的間距範圍。因此實施例之薄膜式探針102得以使一般電性測試機在待測元件例如半導體積體電路晶片(未顯示)微型化的趨勢中繼續使用。雖然第1圖所 示的導電條106其第一導電末端116的寬度W1係小於第二導電末端118的寬度W2,然實施例並不限於此,於其他實施例中,導電條106亦可設計成具有實質上均一的寬度(未顯示)。導電條106的材質可包括金屬例如鎳、金、銅、鎢、鈦、鈀或上述之合金。 Referring to FIG. 1 , the second conductive end 118 of the conductive strip 106 can be in contact with the contact end of other components of the electrical tester, and the pitch D2 is greater than 50 μm, for example, greater than 100 μm, and can be matched with other components of the current general electrical tester. The range of spacing of the contact ends. The thin film probe 102 of the embodiment thus allows the general electrical tester to continue to be used in the trend of miniaturization of components to be tested, such as semiconductor integrated circuit chips (not shown). Although Figure 1 The width of the first conductive end 116 of the conductive strip 106 is smaller than the width W2 of the second conductive end 118. However, the embodiment is not limited thereto. In other embodiments, the conductive strip 106 may also be designed to be substantially uniform. Width (not shown). The material of the conductive strip 106 may include a metal such as nickel, gold, copper, tungsten, titanium, palladium or an alloy thereof.

請參考第1圖,於一實施例中,導電條106的第二導電末端118上係可任選地具有導電凸塊120,且導電凸塊120可位於絕緣薄膜104的第二薄膜側邊110上。導電凸塊120的下表面122並不限於如第1圖所示的實質上對齊於絕緣薄膜104的第二薄膜側邊110,於一些實施例中(未顯示),導電凸塊120的下表面122(亦可視為導電條106與導電凸塊120之間的界面)係低於絕緣薄膜104的第二薄膜側邊110約10μm,而導電凸塊120的上表面124係高於絕緣薄膜104的第二薄膜側邊110約30μm。舉例來說,導電凸塊120的材質包括鎳、錫、或其合金、或其他合適的材料。 Referring to FIG. 1 , in an embodiment, the second conductive end 118 of the conductive strip 106 optionally has conductive bumps 120 , and the conductive bumps 120 may be located on the second film side 110 of the insulating film 104 . on. The lower surface 122 of the conductive bump 120 is not limited to the second film side 110 substantially aligned with the insulating film 104 as shown in FIG. 1, and in some embodiments (not shown), the lower surface of the conductive bump 120 122 (which may also be regarded as the interface between the conductive strips 106 and the conductive bumps 120) is about 10 μm lower than the second film side edges 110 of the insulating film 104, and the upper surface 124 of the conductive bumps 120 is higher than the insulating film 104. The second film side 110 is about 30 μm. For example, the material of the conductive bumps 120 includes nickel, tin, or an alloy thereof, or other suitable materials.

如第1圖所示,絕緣薄膜104可定義穿孔126、128、130、132、134、136。舉例來說,穿孔126、128、130、132的尺寸係大於穿孔134、136的尺寸。於一些實施例中,穿孔126、128、130、132的直徑係大於200μm,包括200μm~300μm,例如115μm。穿孔134、136的直徑係小於20μm,例如1.45μm。實施例並不限於如第1圖所示的圓形穿孔126、128、130、132、134、136與對稱配置設計,而可視實際需求適當地使用其他形狀的穿孔與其他配置設計。 As shown in FIG. 1, the insulating film 104 may define perforations 126, 128, 130, 132, 134, 136. For example, the perforations 126, 128, 130, 132 are sized larger than the perforations 134, 136. In some embodiments, the perforations 126, 128, 130, 132 have a diameter greater than 200 [mu]m, including 200 [mu]m to 300 [mu]m, such as 115 [mu]m. The diameter of the perforations 134, 136 is less than 20 μm, such as 1.45 μm. The embodiment is not limited to the circular perforations 126, 128, 130, 132, 134, 136 as shown in Fig. 1 and the symmetric configuration design, and other shapes of perforations and other configuration designs may be suitably used depending on actual needs.

第2圖繪示根據一實施例之探針結構238的立體示意 圖,而探針結構238係包括多數個薄膜式探針202,其中,第2圖中所示的薄膜式探針202係類似於第1圖所示的薄膜式探針102,差異僅在於第2圖中所示的薄膜式探針202係省略了第1圖中所示的導電凸塊120。於其他實施例中,探針結構238可使用如第1圖所示的薄膜式探針102。 2 is a perspective view of a probe structure 238 according to an embodiment. The probe structure 238 includes a plurality of thin film probes 202, wherein the thin film probe 202 shown in FIG. 2 is similar to the thin film probe 102 shown in FIG. 1, the difference is only in the first The thin film probe 202 shown in Fig. 2 omits the conductive bump 120 shown in Fig. 1. In other embodiments, the probe structure 238 can use the membrane probe 102 as shown in FIG.

如第2圖所示,探針結構238包括多數個定位件240,定位件240係配置穿過絕緣薄膜204定義出的穿孔226、228、230、232、234、236,以定位重疊配置的薄膜式探針202,薄膜式探針202其中之一的第一薄膜表面212係面對薄膜式探針202其中另一的第二薄膜表面214,並且位在不同絕緣薄膜204上並呈扇狀配置的導電條206係互相分開。 As shown in FIG. 2, the probe structure 238 includes a plurality of positioning members 240 configured to pass through the through holes 226, 228, 230, 232, 234, 236 defined by the insulating film 204 to position the overlapping film. The probe film 202, the first film surface 212 of one of the film probes 202 faces the second film surface 214 of the other of the film probes 202, and is disposed on the different insulating film 204 and arranged in a fan shape. The conductive strips 206 are separated from each other.

請參照第2圖,於一些實施例中,絕緣薄膜204的厚度T1係介於1μm~50μm,例如介於1μm~12.5μm或為約25μm,導電條206的厚度T2係小於30μm,例如介於0.1μm~10μm或為約25μm。不同絕緣薄膜204上的導電條206(或其第一導電末端216,繪示於第2圖)的間距D3係小於50μm,再者,同一絕緣薄膜204上的導電條206(或其第一導電末端216)的間距D1係小於50μm,在一實施例中,間距D1例如係為20μm~50μm,換句話說,陣列排列的導電條206其第一導電末端216的間距D1、D3係非常的微小,故實施例之探針結構238可應用於測試具有高密度陣列結構的待測元件,例如半導體封裝中的半導體積體電路晶片,再者,實施例之探針結構238可一次與多個裝置接點接觸進行測試,因此可縮短測試的時間並提高出貨 速度。此外,薄膜式探針202組裝形成探針結構238的方式簡易,因此可根據實際需求任意變換探針結構238的設計,使用上富有變化性,並且能精確控制探針結構238中每個導電條206的第一導電末端216、第二導電末端218的落點高度差小,此接觸點的平整性能提高與其他元件例如待測元件形成電性接觸的效率,也能避免由於接觸點高低不平必須施加大壓力以達到整體接觸所造成的探針斷裂、損壞的問題,而提高探針結構238的使用壽命與可靠度。 Referring to FIG. 2, in some embodiments, the thickness T1 of the insulating film 204 is between 1 μm and 50 μm, for example, between 1 μm and 12.5 μm or about 25 μm, and the thickness T2 of the conductive strip 206 is less than 30 μm, for example, 0.1 μm to 10 μm or about 25 μm. The spacing D3 of the conductive strips 206 on the different insulating films 204 (or their first conductive ends 216, shown in FIG. 2) is less than 50 μm, and further, the conductive strips 206 on the same insulating film 204 (or their first conductive layers) The pitch D1 of the end 216) is less than 50 μm. In one embodiment, the pitch D1 is, for example, 20 μm to 50 μm. In other words, the pitches D1 and D3 of the first conductive terminals 216 of the array of conductive strips 206 are very small. Therefore, the probe structure 238 of the embodiment can be applied to test a device to be tested having a high-density array structure, such as a semiconductor integrated circuit chip in a semiconductor package. Furthermore, the probe structure 238 of the embodiment can be used in one or more devices. Contact contact for testing, thus reducing test time and shipping speed. In addition, the manner in which the thin film probes 202 are assembled to form the probe structure 238 is simple, so that the design of the probe structure 238 can be arbitrarily changed according to actual needs, the use is versatile, and each conductive strip in the probe structure 238 can be accurately controlled. The difference in the height difference between the first conductive end 216 and the second conductive end 218 of the 206 is small, and the flatness of the contact point improves the efficiency of electrical contact with other components such as the device to be tested, and also avoids the unevenness of the contact point. A large pressure is applied to achieve the problem of probe breakage and damage caused by the overall contact, and the service life and reliability of the probe structure 238 are improved.

請參照第3圖,其繪示沿第2圖的AB線的探針結構238的剖面圖。如第3圖所示,定位件240係配置穿過絕緣薄膜204定義出的穿孔226、230,第一薄膜表面212係面對第二薄膜表面214,而位在不同絕緣薄膜204上的導電條206係互相分開。 Referring to FIG. 3, a cross-sectional view of the probe structure 238 along line AB of FIG. 2 is shown. As shown in FIG. 3, the positioning member 240 is disposed through the through holes 226, 230 defined by the insulating film 204, the first film surface 212 facing the second film surface 214, and the conductive strips on the different insulating film 204. The 206 series are separated from each other.

請參照第4圖,其繪示根據一實施例中第2圖與第3圖之探針結構238的導電條206,而未繪示探針結構238的其他元件。 Referring to FIG. 4, a conductive strip 206 of the probe structure 238 of FIGS. 2 and 3 according to an embodiment is illustrated, and other elements of the probe structure 238 are not shown.

第5圖至第9圖繪示根據一實施例之薄膜式探針的製造方法。 5 to 9 illustrate a method of fabricating a thin film probe according to an embodiment.

請參照第5圖,將絕緣材料層342配置在支撐基板344上。於一實施例中,絕緣材料層342係由可撓材料所構成,且支撐基板344係由硬性材料例如玻璃所構成,以支撐絕緣材料層342進行後續的步驟。舉例來說,絕緣材料層342可為移除形成在聚醯亞胺(PI)材料層上的壓延銅箔後所剩餘的聚醯亞胺材料層。於一實施例中,係利用熱移除式 (thermal release)膠帶(未顯示)將絕緣材料層342貼附在支撐基板344上。 Referring to FIG. 5, the insulating material layer 342 is disposed on the support substrate 344. In one embodiment, the insulating material layer 342 is composed of a flexible material, and the supporting substrate 344 is made of a hard material such as glass to support the insulating material layer 342 for subsequent steps. For example, the insulating material layer 342 may be a layer of polyimine material remaining after removing the rolled copper foil formed on the layer of polyimine (PI) material. In one embodiment, the heat removal type is utilized A thermal release tape (not shown) attaches the insulating material layer 342 to the support substrate 344.

請參照第6圖,於絕緣材料層342上形成導電層346。於一實施例中,導電層346係利用熱蒸鍍的方式形成。導電層346的厚度可為0.1μm~0.2μm,例如為0.2μm。 Referring to FIG. 6, a conductive layer 346 is formed on the insulating material layer 342. In one embodiment, the conductive layer 346 is formed by thermal evaporation. The conductive layer 346 may have a thickness of 0.1 μm to 0.2 μm, for example, 0.2 μm.

請參照第7圖,圖案化導電層346形成導電條306。導電條306具有相對的第一導電末端316與第二導電末端318。互相分開的導電條306係呈扇狀配置,使得第一導電末端316的間距D1係小於第二導電末端318的間距D2。於一實施例中,導電條306的形成方法包括塗佈光阻層(未繪示)例如AZ-4620光阻於導電層346(第6圖)上,然後對光阻層進行曝光、顯影步驟以形成圖案化的光阻層(未繪示),接著移除圖案化的光阻層所露出的導電層346(第6圖)以形成導電條306(第7圖),然後移除圖案化的光阻層。在一些實施例中,在進行圖案化步驟之後,亦可進行電鍍製程以使導電條306包括例如10μm~20μm的電鍍層,舉例來說,電鍍後的導電條306其厚度T2為15μm。 Referring to FIG. 7, the patterned conductive layer 346 forms a conductive strip 306. Conductive strip 306 has opposing first conductive ends 316 and second conductive ends 318. The electrically conductive strips 306 that are separated from one another are in a fan configuration such that the spacing D1 of the first electrically conductive ends 316 is less than the spacing D2 of the second electrically conductive ends 318. In one embodiment, the method for forming the conductive strip 306 includes applying a photoresist layer (not shown) such as AZ-4620 photoresist to the conductive layer 346 (FIG. 6), and then exposing and developing the photoresist layer. To form a patterned photoresist layer (not shown), the conductive layer 346 (FIG. 6) exposed by the patterned photoresist layer is removed to form a conductive strip 306 (FIG. 7), and then the pattern is removed. Photoresist layer. In some embodiments, after the patterning step, an electroplating process may also be performed to make the conductive strip 306 include a plating layer of, for example, 10 μm to 20 μm. For example, the electroplated conductive strip 306 has a thickness T2 of 15 μm.

請參照第8圖,然後,舉例來說,移除支撐基板344(第7圖),並移除部分的絕緣材料層342(第7圖)以形成如第8圖所示的絕緣薄膜304。絕緣薄膜304具有相對的第一薄膜側邊308與第二薄膜側邊310。導電條306的第一導電末端316係延伸超過絕緣薄膜304的第一薄膜側邊308。絕緣薄膜304的第二薄膜側邊310係鄰近導電條306的第二導電末端318。 Referring to Fig. 8, then, for example, the support substrate 344 (Fig. 7) is removed, and a portion of the insulating material layer 342 (Fig. 7) is removed to form an insulating film 304 as shown in Fig. 8. The insulating film 304 has opposing first film side edges 308 and second film side edges 310. The first conductive end 316 of the conductive strip 306 extends beyond the first film side 308 of the insulating film 304. The second film side 310 of the insulating film 304 is adjacent to the second conductive end 318 of the conductive strip 306.

請參照第9圖,移除部分絕緣薄膜304以定義多數個 穿孔326、328、330、332、334、336。實施例並不限定於先定義出第一薄膜側邊308(第8圖)、第二薄膜側邊310再定義出穿孔326、328、330、332、334、336(第9圖)的順序,也可以使用先定義出穿孔326、328、330、332、334、336再定義出第一薄膜側邊308(第8圖)、第二薄膜側邊310的順序。於實施例中,可利用雷射方法進行移除步驟,舉例來說,切割出絕緣薄膜304的第一薄膜側邊308、第二薄膜側邊310(第8圖)的雷射功率係小於定義穿孔326、328、330、332、334、336(第9圖)的雷射功率。使用的雷射可為Nd-YAG(波長355奈米)或準分子雷射(波長248奈米),其對於材料的移除效率高且品質好。於其他實施例中,亦可利用其他適合的方法進行移除步驟,例如使用加工機。於一些實施例中,在利用雷射定義出一薄膜側邊308、第二薄膜側邊310(第8圖)與穿孔326、328、330、332、334、336(第9圖)之後,亦可利用蝕刻液,包含例如乙醇銨、氫氧化鉀或其他合適的物質,來對殘存的絕緣薄膜304進行蝕刻,以得到特徵更為精細的薄膜式探針302。於實施例中,係可應用半導體封裝製程製造薄膜式探針,對封裝業者來說,並不需要額外的設計,因此薄膜式探針的製造成本低且方法簡單,非常適合量產。 Referring to Figure 9, a portion of the insulating film 304 is removed to define a plurality of Perforations 326, 328, 330, 332, 334, 336. The embodiment is not limited to the first order in which the first film side 308 (Fig. 8) and the second film side 310 are defined to define the perforations 326, 328, 330, 332, 334, 336 (Fig. 9). It is also possible to define the order of the first film side 308 (Fig. 8) and the second film side 310 by first defining the perforations 326, 328, 330, 332, 334, 336. In an embodiment, the removing step may be performed by a laser method. For example, the laser power system of the first film side 308 and the second film side 310 (Fig. 8) of the insulating film 304 is cut less than the definition. The laser power of the perforations 326, 328, 330, 332, 334, 336 (Fig. 9). The laser used can be Nd-YAG (wavelength 355 nm) or excimer laser (wavelength 248 nm), which is highly efficient and good in material removal. In other embodiments, the removal step can also be performed using other suitable methods, such as using a processing machine. In some embodiments, after defining a film side 308, a second film side 310 (Fig. 8), and perforations 326, 328, 330, 332, 334, 336 (Fig. 9) using a laser, The remaining insulating film 304 may be etched using an etchant containing, for example, ammonium ethoxide, potassium hydroxide or other suitable material to obtain a more elaborate thin film probe 302. In the embodiment, the thin film probe can be manufactured by using a semiconductor packaging process, and the package manufacturer does not need an additional design. Therefore, the thin film probe is low in manufacturing cost and simple in method, and is very suitable for mass production.

第10圖繪示根據一實施例之電性測試機所使用具有探針結構438之探針卡448的剖面圖。探針結構438係作為探針頭(probe core)。利用具有對應導電條406之第一導電末端416之穿孔陣列的導板450,如此在測試過程中,第一導電末端416便能穿過導板450的穿孔,以固定、控 制第一導電末端416的位置,使之能對準待測元件而形成良好的電性接觸,並得到精確的測試結果。 FIG. 10 is a cross-sectional view of a probe card 448 having a probe structure 438 for use in an electrical tester in accordance with an embodiment. The probe structure 438 serves as a probe core. The guide 450 having the array of perforations of the first conductive end 416 of the corresponding conductive strip 406 is utilized, so that during the test, the first conductive end 416 can pass through the perforation of the guide 450 to fix and control The position of the first conductive tip 416 is made such that it can be aligned with the device under test to form a good electrical contact and an accurate test result is obtained.

請參照第10圖,探針結構438亦可與空間轉換器452搭配使用,其中空間轉換器452內的導線(未顯示)係與導電條406之第二導電末端418形成電性接觸,以對應電路板454擴大接觸點例如焊墊或凸塊的間距,並符合電路板454之接觸點的設計。於一些實施例中,舉例來說,具有沿X方向扇開之導電條406的探針結構438可與沿Y方向扇開之導線(未顯示)的空間轉換器452搭配使用。可利用固定件456、458例如螺絲固定探針卡448之元件的位置。 Referring to FIG. 10, the probe structure 438 can also be used in conjunction with the space transformer 452, wherein a wire (not shown) in the space transformer 452 is in electrical contact with the second conductive end 418 of the conductive strip 406 to correspond. The board 454 expands the spacing of contact points such as pads or bumps and conforms to the design of the contact points of the board 454. In some embodiments, for example, the probe structure 438 having the conductive strips 406 fanned in the X direction can be used with a spatial transducer 452 that is fanned in the Y direction (not shown). The position of the components of the probe card 448 can be secured by fasteners 456, 458, such as screws.

如第10圖所示,外界的訊號機(未顯示)能透過電路板454、空間轉換器452與探針結構438的導電條406保持訊號耦合的關係,而對待測元件例如半導體積體電路晶片進行電性測試。 As shown in FIG. 10, an external signal processor (not shown) can maintain signal coupling relationship with the conductive strips 406 of the probe structure 438 through the circuit board 454 and the space converter 452, and the device to be tested, such as a semiconductor integrated circuit chip. Conduct an electrical test.

如第10圖所示,一般空間轉換器452係利用硬性材料例如陶瓷材料或鍋爐土(BT)作為基板,其中具有內部導線。基板露出的內部導線上設置有連接墊,用以與探針結構438的導電條406與電路板454形成電性接觸。空間轉換器452其受限於製程因素,例如作為基板的陶瓷材料係利用燒結技術形成,而無法使內部穿孔或導線的間距小於50μm,因此,於實施例中,必須搭配使用以可撓性材料製作而成的探針結構438作為探針頭,才能達成測試陣列接觸點間距小於50μm之待測元件的目的。應當要了解的是,實施例中的探針結構438並不限定作為探針頭(probe core),其也能作為空間轉換器。 As shown in Fig. 10, the general space converter 452 uses a hard material such as a ceramic material or boiler soil (BT) as a substrate having internal wires therein. The inner lead exposed on the substrate is provided with a connection pad for making electrical contact with the conductive strip 406 of the probe structure 438 and the circuit board 454. The space converter 452 is limited by process factors. For example, the ceramic material as the substrate is formed by a sintering technique, and the internal perforation or the pitch of the wires cannot be made smaller than 50 μm. Therefore, in the embodiment, it is necessary to use the flexible material together. The probe structure 438 is fabricated as a probe head for the purpose of testing the device to be tested with a contact point spacing of less than 50 μm. It should be understood that the probe structure 438 in the embodiment is not limited to being a probe core, which can also function as a space transformer.

請參照第11圖,其繪示根據一實施例之電性測試機所使用具有探針結構538之探針卡560的剖面圖。彈性膜562係具有電路設計,例如導線或接觸凸塊。在測試過程中,壓板564係將彈性膜562推向接觸探針結構538,藉此利用彈性膜562使與外界的訊號機(未顯示)耦合的電路板554能和探針結構538的導電條516具有電性耦合的關係,讓導電條516對待測元件(未顯示)例如半導體積體電路晶片進行電性測試。於一些實施例中,亦可使用空間轉換器(未顯示)設置在探針結構538上,而在測試過程中,壓板564係將彈性膜562推向接觸空間轉換器,藉此利用彈性膜562使電路板554與探針結構538具有電性耦合的關係。可利用固定件556、558例如螺絲固定探針卡560之元件的位置。 Referring to FIG. 11, a cross-sectional view of a probe card 560 having a probe structure 538 for use in an electrical tester in accordance with an embodiment is shown. The elastic film 562 has a circuit design such as a wire or a contact bump. During the test, the platen 564 pushes the elastic film 562 toward the contact probe structure 538, whereby the circuit board 554 coupled to an external signal (not shown) and the conductive strip of the probe structure 538 can be utilized by the elastic film 562. 516 has an electrically coupled relationship that allows the conductive strip 516 to be electrically tested by a component to be tested (not shown), such as a semiconductor integrated circuit wafer. In some embodiments, a space transformer (not shown) may also be disposed on the probe structure 538, and during testing, the platen 564 pushes the elastic film 562 toward the contact space transducer, thereby utilizing the elastic film 562. The circuit board 554 is electrically coupled to the probe structure 538. The position of the components of the probe card 560 can be secured by fasteners 556, 558, such as screws.

第12圖至第17圖繪示根據一實施例之半導體結構的製造過程,其中可使用電性測試機對半導體結構進行電性測試,以取得半導體結構的電性參數,例如電阻、電感、電容值等等。 12 to 17 illustrate a manufacturing process of a semiconductor structure according to an embodiment, wherein an electrical tester can be used to electrically test a semiconductor structure to obtain electrical parameters of the semiconductor structure, such as resistance, inductance, and capacitance. Value and so on.

請參考第12圖,在基材666例如矽基材中定義出穿孔668。在穿孔668的側壁上形成絕緣層670。利用導電層672填充穿孔668。絕緣層670可包括環氧樹脂(epoxy)、苯環丁烯(BCB,benzocyclobutene)、聚亞醯胺(PI,polyimide)或其他合適的材料。導電層672可包括金屬例如鎳、金、銅、鎢、鈦、鈀或上述之合金。 Referring to Figure 12, perforations 668 are defined in substrate 666, such as a crucible substrate. An insulating layer 670 is formed on the sidewalls of the vias 668. The perforations 668 are filled with a conductive layer 672. The insulating layer 670 may include epoxy, benzocyclobutene (BCB), polyimide (PI), or other suitable materials. Conductive layer 672 can comprise a metal such as nickel, gold, copper, tungsten, titanium, palladium or alloys thereof.

請參考第13圖,在導電層672上形成導電重佈層674,並在導電重佈層674上形成凸塊676。導電重佈層 674可形成在介電層678中並電性連接凸塊676至導電層672。於實施例中,可利用如第10圖或第11圖所示的探針卡448、560對如第13圖所示的結構進行電性測試例如開路測試(open test)。 Referring to FIG. 13, a conductive redistribution layer 674 is formed on the conductive layer 672, and a bump 676 is formed on the conductive redistribution layer 674. Conductive redistribution layer 674 can be formed in the dielectric layer 678 and electrically connected to the bump 676 to the conductive layer 672. In an embodiment, the structure shown in FIG. 13 can be electrically tested, such as an open test, using probe cards 448, 560 as shown in FIG. 10 or FIG.

請參考第14圖,將第13圖所示的結構貼附至載板680。 Referring to FIG. 14, the structure shown in FIG. 13 is attached to the carrier 680.

請參考第15圖,薄化基材666直到穿孔668中的導電層672露出。 Referring to Figure 15, the substrate 666 is thinned until the conductive layer 672 in the via 668 is exposed.

請參考第16圖,在導電層672上形成導電重佈層682,並在導電重佈層682上形成凸塊684。導電重佈層682可形成在介電層686中並電性連接凸塊684至導電層672。請參考第17圖,將薄膜架(film frame)688貼附至凸塊684上並電性連接至凸塊684。於一些實施例中,第17圖所示的半導體結構係作為承載器,並可在此步驟進行電性測試例如短路測試(short test)。之後,其他待測元件例如半導體積體電路晶片(未顯示)可貼附在如第17圖所示的薄膜架上,利用承載器承載並電性連接至半導體積體電路晶片,並可利用如第10圖或第11圖所示探針卡448、560進行電性測試。實施例並不限於利用如第17圖所示的承載器對半導體積體電路進行電性測試,而亦可根據實際需求使用其他適合的承載器。 Referring to FIG. 16, a conductive redistribution layer 682 is formed on the conductive layer 672, and a bump 684 is formed on the conductive redistribution layer 682. A conductive redistribution layer 682 can be formed in the dielectric layer 686 and electrically connected to the bumps 684 to the conductive layer 672. Referring to FIG. 17, a film frame 688 is attached to the bump 684 and electrically connected to the bump 684. In some embodiments, the semiconductor structure shown in FIG. 17 acts as a carrier and electrical testing such as a short test can be performed at this step. Thereafter, other devices to be tested, such as a semiconductor integrated circuit chip (not shown), may be attached to the film holder as shown in FIG. 17, carried by the carrier and electrically connected to the semiconductor integrated circuit chip, and may be utilized, for example. The probe cards 448, 560 shown in Fig. 10 or Fig. 11 were electrically tested. The embodiment is not limited to electrical testing of the semiconductor integrated circuit using the carrier as shown in FIG. 17, but other suitable carriers may be used according to actual needs.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

102、202、302‧‧‧薄膜式探針 102, 202, 302‧‧‧film probe

104、204、304‧‧‧絕緣薄膜 104, 204, 304‧‧‧ insulating film

106、206、306、406‧‧‧導電條 106, 206, 306, 406‧‧‧ Conductive strips

108、308‧‧‧第一薄膜側邊 108, 308‧‧‧ first film side

110、310‧‧‧第二薄膜側邊 110, 310‧‧‧ second film side

112、212‧‧‧第一薄膜表面 112, 212‧‧‧ first film surface

114、214‧‧‧第二薄膜表面 114, 214‧‧‧ second film surface

116、216、316、416、516‧‧‧第一導電末端 116, 216, 316, 416, 516‧‧‧ first conductive end

118、218、318、418‧‧‧第二導電末端 118, 218, 318, 418‧‧‧ second conductive end

120‧‧‧導電凸塊 120‧‧‧Electrical bumps

122‧‧‧下表面 122‧‧‧ lower surface

124‧‧‧上表面 124‧‧‧ upper surface

126、128、130、132、134、136、226、228、230、 232、234、236、326、328、330、332、334、336、668‧‧‧穿孔 126, 128, 130, 132, 134, 136, 226, 228, 230, 232, 234, 236, 326, 328, 330, 332, 334, 336, 668‧ ‧ piercing

238、438、538‧‧‧探針結構 238, 438, 538‧‧ ‧ probe structure

240‧‧‧定位件 240‧‧‧ Positioning parts

342‧‧‧絕緣材料層 342‧‧‧Insulation layer

344‧‧‧支撐基板 344‧‧‧Support substrate

346‧‧‧導電層 346‧‧‧ Conductive layer

448、560‧‧‧探針卡 448, 560‧ ‧ probe card

450‧‧‧導板 450‧‧‧ Guide

452‧‧‧空間轉換器 452‧‧‧ Space Converter

454、554‧‧‧電路板 454, 554‧‧‧ circuit board

456、458、556、558‧‧‧固定件 456, 458, 556, 558‧‧‧ fixing parts

562‧‧‧彈性膜 562‧‧‧elastic film

564‧‧‧壓板 564‧‧‧ pressure plate

666‧‧‧基材 666‧‧‧Substrate

670‧‧‧絕緣層 670‧‧‧Insulation

672‧‧‧導電層 672‧‧‧ Conductive layer

674、682‧‧‧導電重佈層 674, 682‧‧‧ Conductive redistribution

676、684‧‧‧凸塊 676, 684‧‧ ‧ bumps

678、686‧‧‧介電層 678, 686‧‧‧ dielectric layer

680‧‧‧載板 680‧‧‧ Carrier Board

688‧‧‧薄膜架 688‧‧‧ film holder

D1、D2、D3‧‧‧間距 D1, D2, D3‧‧‧ spacing

T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness

W1、W2‧‧‧寬度 W1, W2‧‧‧ width

第1圖繪示根據一實施例之薄膜式探針的上視圖。 1 is a top view of a film probe according to an embodiment.

第2圖繪示根據一實施例之探針結構的立體示意圖。 FIG. 2 is a schematic perspective view of a probe structure according to an embodiment.

第3圖繪示根據一實施例之探針結構的剖面圖。 3 is a cross-sectional view of a probe structure in accordance with an embodiment.

第4圖繪示根據一實施例之探針結構的導電條。 Figure 4 illustrates a conductive strip of a probe structure in accordance with an embodiment.

第5圖至第9圖繪示根據一實施例之薄膜式探針的製造方法。 5 to 9 illustrate a method of fabricating a thin film probe according to an embodiment.

第10圖繪示根據一實施例之探針卡的剖面圖。 Figure 10 is a cross-sectional view of a probe card in accordance with an embodiment.

第11圖繪示根據一實施例之探針卡的剖面圖。 Figure 11 is a cross-sectional view of a probe card in accordance with an embodiment.

第12圖至第17圖繪示根據一實施例之半導體結構的製造過程。 12 through 17 illustrate a fabrication process of a semiconductor structure in accordance with an embodiment.

102‧‧‧薄膜式探針 102‧‧‧Film probe

104‧‧‧絕緣薄膜 104‧‧‧Insulation film

106‧‧‧導電條 106‧‧‧ Conductive strip

108‧‧‧第一薄膜側邊 108‧‧‧First film side

110‧‧‧第二薄膜側邊 110‧‧‧Second film side

112‧‧‧第一薄膜表面 112‧‧‧First film surface

114‧‧‧第二薄膜表面 114‧‧‧Second film surface

116‧‧‧第一導電末端 116‧‧‧First conductive end

118‧‧‧第二導電末端 118‧‧‧Second conductive end

120‧‧‧導電凸塊 120‧‧‧Electrical bumps

122‧‧‧下表面 122‧‧‧ lower surface

124‧‧‧上表面 124‧‧‧ upper surface

126、128、130、132、134、136‧‧‧穿孔 126, 128, 130, 132, 134, 136‧ ‧ piercing

D1、D2‧‧‧間距 D1, D2‧‧‧ spacing

W1、W2‧‧‧寬度 W1, W2‧‧‧ width

Claims (10)

一種探針結構,包括一薄膜式探針,該薄膜式探針包括:一絕緣薄膜,具有相對的一第一薄膜表面與一第二薄膜表面,並具有相對的一第一薄膜側邊與一第二薄膜側邊,該絕緣薄膜係由可撓材料所構成;以及多數個導電條,設置在該絕緣薄膜的該第一薄膜表面上,該些導電條各具有相對的一第一導電末端與一第二導電末端,該第一導電末端係延伸超過該絕緣薄膜的該第一薄膜側邊,互相分開的該些導電條係呈扇狀配置,使得該些導電條的該些第一導電末端的間距係小於該些第二導電末端的間距。 A probe structure comprising a film probe, the film probe comprising: an insulating film having a first film surface and a second film surface, and having a first film side and a first film a second film side, the insulating film is made of a flexible material; and a plurality of conductive strips are disposed on the first film surface of the insulating film, the conductive strips each having a first conductive end and a second conductive end, the first conductive end extends beyond the first film side of the insulating film, and the conductive strips separated from each other are fan-shaped, such that the first conductive ends of the conductive strips The spacing is less than the spacing of the second conductive ends. 如申請專利範圍第1項所述之探針結構,其中該些導電條的各該第二導電末端係具有導電凸塊並位於該絕緣薄膜的該第二薄膜側邊上。 The probe structure of claim 1, wherein each of the second conductive ends of the conductive strips has conductive bumps and is located on a side of the second film of the insulating film. 如申請專利範圍第1項所述之探針結構,其係包括互相重疊配置的多數個該薄膜式探針,其中該些薄膜式探針其中之一的該第一薄膜表面係面對該些薄膜式探針其中另一的該第二薄膜表面。 The probe structure of claim 1, comprising a plurality of the film probes disposed one on another, wherein the first film surface of one of the film probes faces the The film probe is the other of the second film surface. 如申請專利範圍第3項所述之探針結構,更包括多數個定位件,配置穿過該些薄膜式探針之該些絕緣薄膜定義出的多數個穿孔,以定位重疊配置的該些薄膜式探針。 The probe structure of claim 3, further comprising a plurality of positioning members, configured to pass through a plurality of perforations defined by the insulating films of the film probes to position the films in an overlapping configuration Probe. 如申請專利範圍第1項所述之探針結構,其中該些導電條的該些第一導電末端的間距係介於20μm~50μm。 The probe structure of claim 1, wherein the first conductive ends of the conductive strips have a pitch of between 20 μm and 50 μm. 如申請專利範圍第1項所述之探針結構,其中該探 針結構係用作電性測試機的空間轉換器或探針頭。 Such as the probe structure described in claim 1 of the patent scope, wherein the probe The needle structure is used as a space transformer or probe head for an electrical tester. 一種薄膜式探針的製造方法,包括:於一絕緣材料層上形成一導電層;圖案化該導電層以形成多數個導電條,該些導電條各具有相對的一第一導電末端與一第二導電末端,互相分開的該些導電條係呈扇狀配置,使得該些導電條的該些第一導電末端的間距係小於該些第二導電末端的間距;以及移除部分該絕緣材料層以形成一絕緣薄膜,該絕緣薄膜具有相對的一第一薄膜側邊與一第二薄膜側邊,該些導電條的各該第一導電末端係延伸超過該絕緣薄膜的該第一薄膜側邊。 A method for manufacturing a thin film probe includes: forming a conductive layer on an insulating material layer; patterning the conductive layer to form a plurality of conductive strips, each of the conductive strips having a first conductive end and a first The conductive strips are separated from each other by a fan shape, such that the spacing of the first conductive ends of the conductive strips is smaller than the spacing of the second conductive ends; and removing a portion of the insulating material layer An insulating film is formed, the insulating film has a first film side and a second film side, and each of the first conductive ends of the conductive strips extends beyond the first film side of the insulating film . 如申請專利範圍第7項所述之薄膜式探針的製造方法,其中在移除部分該絕緣材料層以形成該絕緣薄膜的步驟中,該絕緣薄膜係定義出多數個穿孔。 The method of manufacturing a thin film probe according to claim 7, wherein in the step of removing a portion of the insulating material layer to form the insulating film, the insulating film defines a plurality of perforations. 如申請專利範圍第7項所述之薄膜式探針的製造方法,其中移除部分該絕緣材料層的方法包括雷射方法,於該絕緣薄膜定義該些穿孔的雷射功率係大於切割出該絕緣薄膜的該第一薄膜側邊的雷射功率。 The method for manufacturing a thin film probe according to claim 7, wherein the method of removing a portion of the insulating material layer comprises a laser method, wherein the insulating film defines the perforated laser power system to be larger than the cut The laser power of the side of the first film of the insulating film. 如申請專利範圍第7項所述之薄膜式探針的製造方法,其中該絕緣材料層係由可撓材料所構成,該薄膜式探針的製造方法更包括於該絕緣材料層上形成該導電層之前,將該絕緣材料層配置在一支撐基板上,該支撐基板係由硬性材料所構成。 The method of manufacturing a thin film probe according to claim 7, wherein the insulating material layer is composed of a flexible material, and the method of manufacturing the thin film probe further comprises forming the conductive layer on the insulating material layer. Prior to the layer, the insulating material layer is disposed on a support substrate composed of a hard material.
TW101122517A 2012-06-22 2012-06-22 Probe structure and method for fabricating thin film probe TW201400819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101122517A TW201400819A (en) 2012-06-22 2012-06-22 Probe structure and method for fabricating thin film probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101122517A TW201400819A (en) 2012-06-22 2012-06-22 Probe structure and method for fabricating thin film probe

Publications (1)

Publication Number Publication Date
TW201400819A true TW201400819A (en) 2014-01-01

Family

ID=50345003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101122517A TW201400819A (en) 2012-06-22 2012-06-22 Probe structure and method for fabricating thin film probe

Country Status (1)

Country Link
TW (1) TW201400819A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583962B (en) * 2015-07-06 2017-05-21 Mpi Corp Space conversion module and its manufacturing method
TWI680300B (en) * 2019-03-18 2019-12-21 中華精測科技股份有限公司 Probe card device and conductive probe thereof
TWI716808B (en) * 2018-02-06 2021-01-21 日商日立全球先端科技股份有限公司 Probe module and probe
CN113597561A (en) * 2019-04-22 2021-11-02 李诺工业股份有限公司 test device
TWI773381B (en) * 2021-06-15 2022-08-01 美商全球連接器科技有限公司 Electrical testing carrier board device
US11709199B2 (en) 2018-02-06 2023-07-25 Hitachi High-Tech Corporation Evaluation apparatus for semiconductor device
US11977099B2 (en) 2018-02-06 2024-05-07 Hitachi High-Tech Corporation Method for manufacturing semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583962B (en) * 2015-07-06 2017-05-21 Mpi Corp Space conversion module and its manufacturing method
TWI716808B (en) * 2018-02-06 2021-01-21 日商日立全球先端科技股份有限公司 Probe module and probe
US11391756B2 (en) 2018-02-06 2022-07-19 Hitachi High-Tech Corporation Probe module and probe
US11709199B2 (en) 2018-02-06 2023-07-25 Hitachi High-Tech Corporation Evaluation apparatus for semiconductor device
US11977099B2 (en) 2018-02-06 2024-05-07 Hitachi High-Tech Corporation Method for manufacturing semiconductor device
TWI680300B (en) * 2019-03-18 2019-12-21 中華精測科技股份有限公司 Probe card device and conductive probe thereof
CN113597561A (en) * 2019-04-22 2021-11-02 李诺工业股份有限公司 test device
TWI773381B (en) * 2021-06-15 2022-08-01 美商全球連接器科技有限公司 Electrical testing carrier board device

Similar Documents

Publication Publication Date Title
US7049837B2 (en) Probe sheet, probe card, semiconductor test equipment and semiconductor device fabrication method
TW201400819A (en) Probe structure and method for fabricating thin film probe
KR101339493B1 (en) Space Transformer for Probe Card and Manufacturing Method Thereof
CN109425764A (en) Probe card, test device including the same, and related manufacturing method
CN102692530A (en) Probe structure and method for manufacturing film probe
KR100980369B1 (en) Probe needle structure of the probe card and its manufacturing method
JP5276895B2 (en) Probe card and manufacturing method thereof
JP4343256B1 (en) Manufacturing method of semiconductor device
TWI434044B (en) Probe card and manufacturing method thereof
KR101990458B1 (en) Probe card and method for manufacturing the same
JP5859834B2 (en) Membrane sheet with bump for probe card, probe card, and method for manufacturing membrane sheet with bump for probe card
JP2004144742A (en) Probe sheet, probe card, semiconductor inspection apparatus, and method for manufacturing semiconductor device
CN100498345C (en) Method for manufacturing probe card
US20160091532A1 (en) Flexible film electrical-test substrates with conductive coupling post(s) for integrated circuit (ic) bump(s) electrical testing, and related methods and testing apparatuses
JP6333225B2 (en) Membrane sheet with bump for probe card, probe card, and method for manufacturing membrane sheet with bump for probe card
JP2005156365A (en) Probe for measuring electrical characteristics, and manufacturing method therefor
TW201025450A (en) Conducting film structure, fabrication method thereof, and conducting film type probe device for IC
JP5068133B2 (en) Semiconductor chip laminated structure and semiconductor device
KR101066551B1 (en) Pin array frame used to manufacture probe cards
JP4492976B2 (en) Semiconductor device
TWI601959B (en) Proximity patch for probe card, method for manufacturing patch for probe card and probe card
CN222994543U (en) Probe assembly structure
JP3218484U (en) Elastic probe device
JPH0555327A (en) Screening method of semiconductor element
KR100446551B1 (en) Volcano type probe, its manufacturing method and probe card having it