[go: up one dir, main page]

TW201338052A - Method for fabricating MOS device - Google Patents

Method for fabricating MOS device Download PDF

Info

Publication number
TW201338052A
TW201338052A TW101108900A TW101108900A TW201338052A TW 201338052 A TW201338052 A TW 201338052A TW 101108900 A TW101108900 A TW 101108900A TW 101108900 A TW101108900 A TW 101108900A TW 201338052 A TW201338052 A TW 201338052A
Authority
TW
Taiwan
Prior art keywords
layer
forming
gate structure
source
mos device
Prior art date
Application number
TW101108900A
Other languages
Chinese (zh)
Other versions
TWI562244B (en
Inventor
Ling-Chun Chou
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW101108900A priority Critical patent/TWI562244B/en
Publication of TW201338052A publication Critical patent/TW201338052A/en
Application granted granted Critical
Publication of TWI562244B publication Critical patent/TWI562244B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method for fabricating a metal oxide semiconductor (MOS) device is described, including following steps. A gate stack structure is formed on a substrate. A first spacer is formed at a sidewall of the gate stack structure, and then source and drain extension regions are formed in the substrate beside each sidewall of the gate stack structure. Recesses are formed in the substrate beside the gate stack structure. Semiconductor compound layers are formed in each recess, and source and drain regions are formed in semiconductor compound layers. A second spacer is formed at the sidewall of the gate stack structure. The source and drain regions are formed by in-situ doping during the formation of the semiconductor compound layer instead of performing an ion implantation process after the semiconductor compound layer is formed.

Description

金氧半導體元件的製造方法Method for manufacturing MOS semiconductor device

本發明是有關於一種金氧半導體元件的製造方法。The present invention relates to a method of fabricating a MOS device.

金氧半電晶體是一種廣泛使用於諸如是記憶元件、影像感測器或是顯示器等各種半導體元件的基本結構。典型的金氧半電晶體包括氧化矽介電層、閘極導電層以及濃摻摻雜源極/汲極接觸區。隨著線寬的縮減,半導體元件的尺寸縮小,典型的金氧半電晶體因為閘極寬度縮減,使得其通道長度也因而縮小。Gold oxide semi-transistors are a basic structure widely used in various semiconductor elements such as memory elements, image sensors, or displays. A typical MOS transistor includes a yttrium oxide dielectric layer, a gate conductive layer, and a heavily doped dopant source/drain contact region. As the line width is reduced, the size of the semiconductor element is reduced, and the typical MOS transistor is reduced in length due to the reduction of the gate width.

隨著通道的縮減,在通道施加機械應力(Mechanical-stress)可以有效改變電子與電洞在通道中的移動速率,是一種可以增加電晶體的運作速率的方法。習知已有提出利用矽化鍺(SiGe)磊晶等材料做為電晶體源極/汲區的主要組成之技術。以矽化鍺做為源極/汲極區的主要組成,與矽的材料特性相比較,由於鍺具有較大的原子體積,可施予通道壓縮應力,因此以矽化鍺做為形成源極/汲極區之主要材料可增加電洞的遷移率(Mobility),進而提升元件的效能。As the channel is reduced, mechanical-stress is applied to the channel to effectively change the rate of movement of electrons and holes in the channel. This is a way to increase the operating speed of the transistor. It has been proposed to use materials such as bismuth telluride (SiGe) epitaxy as the main component of the source/deuterium region of the transistor. Taking bismuth telluride as the main component of the source/drain region, compared with the material properties of bismuth, since the ruthenium has a large atomic volume, the channel compressive stress can be applied, so the bismuth telluride is used as the source/汲The main material of the polar region can increase the mobility of the hole (Mobility), thereby improving the performance of the component.

然而,在元件製造的過程中,矽化鍺(SiGe)會因為後續用於形成源極與汲極區的離子植入製程而造成矽化鍺晶格差排,使得矽化鍺對於通道的應力作用下降,而影響元件的效能。However, in the process of component fabrication, bismuth telluride (SiGe) causes a lattice difference of bismuth due to the subsequent ion implantation process for forming the source and drain regions, so that the stress of the channel is reduced. Affect the performance of components.

本發明提供一種金氧半導體元件的製造法,其可以透過製程上的改變,減少半導體化合物晶格差排,增加半導體化合物對於通道的應力作用,提升元件的效能。The invention provides a method for manufacturing a MOS device, which can reduce the lattice difference of a semiconductor compound through a change in a process, increase the stress effect of a semiconductor compound on a channel, and improve the performance of the device.

本發明提供一種金氧半導體元件的製造方法,包括在基底的第一主動區上形成第一閘極結構,接著,在上述第一閘極結構的側壁形成第一間隙壁。然後,於上述第一閘極結構兩側的上述基底中分別形成第一源極與汲極延伸區。之後,於上述第一閘極結構兩側的基底中分別形成凹槽。繼之,於上述凹槽中形成半導體化合物層。接著,在上述半導體化合物層中形成第一源極與汲極區,之後,在上述第一閘極結構的側壁形成一第二間隙壁。上述第一源極與汲極延伸區以及上述第一源極與汲極區之摻質為第一導電型,且上述第一源極與汲極區是在形成上述半導體化合物層時臨場摻雜而成,而在形成上述半導體化合物層之後,並不對上述半導體化合物層進行離子植入製程。The present invention provides a method of fabricating a MOS device, comprising forming a first gate structure on a first active region of a substrate, and then forming a first spacer on a sidewall of the first gate structure. Then, a first source and a drain extension region are respectively formed in the substrate on both sides of the first gate structure. Thereafter, grooves are respectively formed in the substrates on both sides of the first gate structure. Next, a semiconductor compound layer is formed in the above recess. Next, a first source and a drain region are formed in the semiconductor compound layer, and then a second spacer is formed on a sidewall of the first gate structure. The dopants of the first source and drain extension regions and the first source and drain regions are of a first conductivity type, and the first source and drain regions are field doped when forming the semiconductor compound layer After the formation of the semiconductor compound layer, the semiconductor compound layer is not subjected to an ion implantation process.

依照本發明一實施例所述,上述第一導電型包括P型。According to an embodiment of the invention, the first conductivity type comprises a P type.

依照本發明一實施例所述,上述半導體化合物層包括矽化鍺。According to an embodiment of the invention, the semiconductor compound layer comprises bismuth telluride.

依照本發明一實施例所述,上述第一閘極結構之後不再對上述第一閘極結構進行離子植入製程。According to an embodiment of the invention, the first gate structure is no longer subjected to an ion implantation process on the first gate structure.

依照本發明一實施例所述,上述金氧半導體元件的製造方法更包括在上述基底上形成罩幕層,覆蓋上述半導體化合物層,裸露出上述第一閘極結構之上表面,之後,以上述罩幕層為罩幕,對上述第一閘極結構的導體層進行第一離子植入製程,其後,移除上述罩幕層。According to an embodiment of the invention, the method for fabricating the MOS device further includes forming a mask layer on the substrate, covering the semiconductor compound layer, exposing the upper surface of the first gate structure, and then The mask layer is a mask, and the first ion implantation process is performed on the conductor layer of the first gate structure, and then the mask layer is removed.

依照本發明一實施例所述,上述金氧半導體元件的製造方法,更包括在上述基底的第二主動區上形成第二閘極結構,接著,在上述第二閘極結構之側壁形成上述第一間隙壁,之後,於上述第二閘極結構兩側的上述基底中分別形成第二源極與汲極延伸區。然後,在上述第二閘極結構的側壁形成上述第二間隙壁,之後,進行第二離子植入製程,以在上述第二閘極結構兩側的上述基底中形成第二源極與汲極區。上述第二源極與汲極延伸區以及上述第二源極與汲極區之摻質為第二導電型。According to an embodiment of the present invention, the method for fabricating the MOS device further includes forming a second gate structure on the second active region of the substrate, and then forming the first sidewall on the sidewall of the second gate structure a spacer, and then a second source and drain extension are formed in the substrate on both sides of the second gate structure. Then, forming the second spacer on the sidewall of the second gate structure, and then performing a second ion implantation process to form a second source and the drain in the substrate on both sides of the second gate structure Area. The dopants of the second source and the drain extension region and the second source and drain regions are of a second conductivity type.

依照本發明一實施例所述,上述第二導電型包括N型。According to an embodiment of the invention, the second conductivity type comprises an N-type.

依照本發明一實施例所述,上述金氧半導體元件的製造方法,在形成上述第二源極與汲極區之後更包括在上述基底上形成罩幕層,覆蓋上述半導體化合物層,裸露出上述第一閘極結構之上表面,接著,以上述罩幕層為罩幕,對上述第一閘極結構的導體層進行第一離子植入製程,之後,移除上述罩幕層。According to an embodiment of the present invention, the method for fabricating the MOS device further includes forming a mask layer on the substrate after forming the second source and the drain region, covering the semiconductor compound layer, and exposing the above The upper surface of the first gate structure, and then the first ion implantation process is performed on the conductor layer of the first gate structure by using the mask layer as a mask, and then the mask layer is removed.

依照本發明一實施例所述,上述金氧半導體元件的製造方法,更包括於上述第一源極與汲極區上形成矽化金屬層,接著,於上述基底上形成介電層,然後,於上述介電層中形成接觸窗。According to an embodiment of the invention, the method for fabricating the MOS device further includes forming a deuterated metal layer on the first source and the drain region, and then forming a dielectric layer on the substrate, and then, A contact window is formed in the dielectric layer.

依照本發明一實施例所述,上述金氧半導體元件的製造方法,更包括於形成上述矽化金屬層之前,進行一熱回火製程。According to an embodiment of the invention, the method for fabricating the MOS device further includes performing a thermal tempering process before forming the bismuth metal layer.

依照本發明一實施例所述,上述第一閘極結構包括材料層以及導體層,且還包括移除上述第一閘極結構的上述導體層,以形成溝渠,接著,於上述溝渠中形成金屬材料層。According to an embodiment of the invention, the first gate structure includes a material layer and a conductor layer, and further includes removing the conductor layer of the first gate structure to form a trench, and then forming a metal in the trench Material layer.

依照本發明一實施例所述,上述材料層包括高介電常數材料層。According to an embodiment of the invention, the material layer comprises a layer of high dielectric constant material.

依照本發明一實施例所述,上述金氧半導體元件的製造方法,更包括在形成上述金屬材料層之前,於上述溝渠中的上述材料層上依序形成底金屬層、停止層以及功函數金屬層。According to an embodiment of the invention, the method for fabricating the MOS device further includes sequentially forming a bottom metal layer, a stop layer, and a work function metal on the material layer in the trench before forming the metal material layer. Floor.

依照本發明一實施例所述,上述之金氧半導體元件的製造方法,還包括在移除該導體層之前,移除該材料層,使該溝渠裸露出該基底,以及於上述溝渠中形成高介電常數材料層。According to an embodiment of the invention, the method for fabricating the MOS device further includes removing the material layer before the conductor layer is removed, exposing the trench to the substrate, and forming a high in the trench Dielectric constant material layer.

依照本發明一實施例所述,上述之金氧半導體元件的製造方法,還包括在形成該金屬材料層之前,於該高介電常數材料層上依序形成底金屬層、停止層以及功函數金屬層。According to an embodiment of the invention, the method for fabricating the MOS device further includes sequentially forming a bottom metal layer, a stop layer, and a work function on the high dielectric constant material layer before forming the metal material layer. Metal layer.

本發明之金氧半導體元件的製造法可以透過製程上的改變,減少半導體化合物晶格差排,增加半導體化合物對於通道的應力作用,提升元件的效能。The manufacturing method of the MOS device of the present invention can reduce the lattice difference of the semiconductor compound through the change of the process, increase the stress effect of the semiconductor compound on the channel, and improve the performance of the device.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1A至圖1H是依照本發明第一實施例所繪示之一種金氧半導體元件的製造流程的剖面示意圖。1A through 1H are schematic cross-sectional views showing a manufacturing process of a MOS device according to a first embodiment of the present invention.

請參照圖1A,在基底10中形成隔離結構12,以定義出第一主動區14a與第二主動區14b。基底10材料包括半導體,例如是矽。隔離結構12的材料包括絕緣材料。絕緣材料例如是氧化矽。隔離結構12的形成方法例如是淺溝渠隔離結構法。Referring to FIG. 1A, an isolation structure 12 is formed in the substrate 10 to define a first active region 14a and a second active region 14b. The substrate 10 material includes a semiconductor such as germanium. The material of the isolation structure 12 includes an insulating material. The insulating material is, for example, cerium oxide. The method of forming the isolation structure 12 is, for example, a shallow trench isolation structure method.

接著,在基底10的第一主動區14a與第二主動區14b上分別形成閘極結構16a與16b。閘極結構16a與16b分別包括材料層18、導體層20以及頂蓋層21。在一實施例中,閘極結構16a與16b的寬度例如是24nm。材料層18的材料包括介電層、高介電常數(K值大於4)材料或是阻障層,或其組合。介電層的材料例如是氧化矽。高介電常數材料可以是金屬氧化物層,例如稀土金屬氧化物層,如氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、鋁酸鑭(lanthanum aluminum oxide,LaAlO)、氧化鉭(tantalum oxide,Ta2O5)、氧化鋯(zirconium oxide,ZrO2)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、或鋯酸鉿(hafnium zirconium oxide,HfZrO),或其組合。阻障層例如是鈦、鉭、氮化鈦或氮化鉭,或其組合。導體層20的材料例如是單晶矽、未摻雜多晶矽、摻雜多晶矽、非晶矽、矽鍺材料或其組合。導體層20可以透過化學氣相沉積法來形成。若導體層20中具有摻雜質,其摻質可以在沉積的過程中臨場摻雜,使導體層20中的摻質達到所所需的濃度。若是導體層20的摻質的濃度不符合所需,則可以透過後續的製程進行選擇性離子植入製程,使其達到所所需的摻質濃度。導體層20的厚度例如是650埃。頂蓋層21之材料例如是氮化矽或氧化矽,或其組合。閘極結構16a與16b的形成方法可以先形成絕緣材料層、導體材料層以及頂蓋材料層,之後,再透過微影蝕刻製程圖案化。Next, gate structures 16a and 16b are formed on the first active region 14a and the second active region 14b of the substrate 10, respectively. The gate structures 16a and 16b include a material layer 18, a conductor layer 20, and a cap layer 21, respectively. In one embodiment, the width of the gate structures 16a and 16b is, for example, 24 nm. The material of material layer 18 includes a dielectric layer, a high dielectric constant (K value greater than 4) material or a barrier layer, or a combination thereof. The material of the dielectric layer is, for example, cerium oxide. The high dielectric constant material may be a metal oxide layer such as a rare earth metal oxide layer such as hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO), niobium niobate oxynitride ( Hafnium silicon oxynitride, HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), lanthanum aluminum oxide (LaAlO), tantalum oxide (Ta 2 ) O 5 ), zirconium oxide (ZrO 2 ), zirconium silicon oxide (ZrSiO 4 ), or hafnium zirconium oxide (HfZrO), or a combination thereof. The barrier layer is, for example, titanium, tantalum, titanium nitride or tantalum nitride, or a combination thereof. The material of the conductor layer 20 is, for example, a single crystal germanium, an undoped polysilicon, a doped polysilicon, an amorphous germanium, a germanium material, or a combination thereof. The conductor layer 20 can be formed by chemical vapor deposition. If the conductor layer 20 has a dopant, its dopant can be doped in the field during deposition to bring the dopant in the conductor layer 20 to the desired concentration. If the concentration of the dopant of the conductor layer 20 does not meet the requirements, the selective ion implantation process can be performed through a subsequent process to achieve the desired dopant concentration. The thickness of the conductor layer 20 is, for example, 650 angstroms. The material of the cap layer 21 is, for example, tantalum nitride or hafnium oxide, or a combination thereof. The gate structures 16a and 16b may be formed by first forming an insulating material layer, a conductor material layer, and a cap material layer, and then patterning through a photolithography process.

接著,在閘極結構16a與16b的側壁分別形成間隙壁24。間隙壁24的材料例如是氧化矽或氮化矽或兩者的組合。之後,分別進行離子植入製程,分別在第一主動區14a與第二主動區14b中形成源極與汲極延伸區25a與成源極與汲極延伸區25b。在一實施例中,第一主動區14a上預定形成PMOS元件,源極與汲極延伸區25a中的摻質為P型;第二主動區14b上預定形成NMOS,源極與汲極延伸區25b的摻質為N型。在另一實施例中,第一主動區14a上預定形成NMOS元件,源極與汲極延伸區25a中的摻質為N型;第二主動區14b上預定形成PMOS,源極與汲極延伸區25b的摻質為P型。摻質為P型例如為硼或二氟化硼;N型摻質例如為磷或是砷。Next, a spacer 24 is formed on the sidewalls of the gate structures 16a and 16b, respectively. The material of the spacers 24 is, for example, tantalum oxide or tantalum nitride or a combination of both. Thereafter, ion implantation processes are respectively performed to form source and drain extension regions 25a and source and drain extension regions 25b in the first active region 14a and the second active region 14b, respectively. In one embodiment, the PMOS device is pre-formed on the first active region 14a, and the dopant in the source and drain extension regions 25a is P-type; the NMOS, source and drain extension regions are predetermined on the second active region 14b. The dopant of 25b is N type. In another embodiment, the first active region 14a is predetermined to form an NMOS device, the dopant in the source and drain extension regions 25a is N-type; the second active region 14b is predetermined to form a PMOS, and the source and the drain are extended. The dopant of the region 25b is P-type. The dopant is P-type such as boron or boron difluoride; the N-type dopant is, for example, phosphorus or arsenic.

然後,在基底10上形成阻擋層26。阻擋層26的材料例如是氮化矽。之後,在第一主動區14a上形成罩幕層28。罩幕層28之材料例如是光阻。之後進行微影製程。Then, a barrier layer 26 is formed on the substrate 10. The material of the barrier layer 26 is, for example, tantalum nitride. Thereafter, a mask layer 28 is formed on the first active region 14a. The material of the mask layer 28 is, for example, a photoresist. After that, the lithography process is performed.

其後,請參照圖1B,以罩幕層28為蝕刻罩幕,進行蝕刻製程,移除部分的阻擋層26,以在第一主動區14a上的堆疊閘16a的側壁形成間隙壁30a。Thereafter, referring to FIG. 1B, the mask layer 28 is used as an etching mask, and an etching process is performed to remove a portion of the barrier layer 26 to form a spacer 30a on the sidewall of the stacking gate 16a on the first active region 14a.

之後,在間隙壁30a兩側的基底10中形成凹槽32。在一實施例中,凹槽32的深度例如是數百埃。凹槽32的形狀可以呈鑽石狀或是方形,並無特別的限制。形成凹槽32的方法可以先利用乾式蝕刻移除第一主動區14a中部分的基底10,之後,移除罩幕層28,然後,再以濕式蝕刻製程移除第一主動區14a中另一部分的基底10。Thereafter, grooves 32 are formed in the substrate 10 on both sides of the spacer 30a. In an embodiment, the depth of the recess 32 is, for example, hundreds of angstroms. The shape of the groove 32 may be diamond-shaped or square, and is not particularly limited. The method of forming the recess 32 may first remove a portion of the substrate 10 in the first active region 14a by dry etching, after which the mask layer 28 is removed, and then the first active region 14a is removed by a wet etching process. Part of the substrate 10.

然後,請參照圖1C,於各凹槽32之中形成半導體化合物層33半導體化合物層33例如是IV-IV族半導體化合物。IV-IV族半導體化合物可以是由第一IV族元素以及第二IV族元素所構成。第一IV族元素例如是矽;第二IV族元素為非矽元素,例如是鍺或是碳。亦即,IV-IV族半導體化合物例如是矽化鍺(SiGe)或是碳化矽(SiC)。在PMOS元件中,半導體化合物層33的材料為矽化鍺;在NMOS元件中,半導體化合物層33的材料為碳化矽。Then, referring to FIG. 1C, a semiconductor compound layer 33 is formed in each of the grooves 32. The semiconductor compound layer 33 is, for example, a group IV-IV semiconductor compound. The Group IV-IV semiconductor compound may be composed of a first Group IV element and a second Group IV element. The first Group IV element is, for example, ruthenium; the second Group IV element is a non-ruthenium element, such as ruthenium or carbon. That is, the Group IV-IV semiconductor compound is, for example, germanium telluride (SiGe) or tantalum carbide (SiC). In the PMOS device, the material of the semiconductor compound layer 33 is germanium germanium; in the NMOS device, the material of the semiconductor compound layer 33 is tantalum carbide.

在一實施例中,半導體化合物層33包括緩衝層38、主體層34與頂層36。主體層34中第二IV族元素的含量(含鍺量或含碳量)高於緩衝層38的第二IV族元素的含量(含鍺量或含碳量),緩衝層38的第二IV族元素的含量(含鍺量或含碳量)高於頂層36的第二IV族元素的含量(含鍺量或含碳量)。頂層36也可以是全部由第一IV族元素所組成,亦即第二IV族元素的含量的含量(含鍺量或含碳量)也可以是零。In an embodiment, the semiconductor compound layer 33 includes a buffer layer 38, a body layer 34, and a top layer 36. The content of the second group IV element (the amount of cerium or carbon) in the main body layer 34 is higher than the content of the second group IV element of the buffer layer 38 (the amount of cerium or carbon), and the second IV of the buffer layer 38. The content of the group element (containing cerium or carbon content) is higher than the content of the second group IV element of the top layer 36 (containing cerium or carbon). The top layer 36 may also be composed entirely of the first group IV element, that is, the content of the second group IV element (containing cerium or carbon content) may also be zero.

本發明在形成半導體化合物層33時臨場摻雜以形成源極與汲極區50a。在一實施例中,第一主動區14a上預定形成PMOS元件,源極與汲極區50a中的摻質為P型。在另一實施例中,第一主動區14a上預定形成NMOS元件,源極與汲極區50a中的摻質為N型。摻質為P型例如為硼或二氟化硼;N型摻質例如為磷或是砷。緩衝層38的摻質的濃度為零或低於頂層36的摻質的濃度,且頂層36的摻質的濃度低於主體層34中的摻質的濃度。The present invention is field-doped to form the source and drain regions 50a when the semiconductor compound layer 33 is formed. In one embodiment, the PMOS device is predetermined to be formed on the first active region 14a, and the dopant in the source and drain regions 50a is P-type. In another embodiment, the first active region 14a is predetermined to form an NMOS device, and the dopants in the source and drain regions 50a are N-type. The dopant is P-type such as boron or boron difluoride; the N-type dopant is, for example, phosphorus or arsenic. The concentration of the dopant of the buffer layer 38 is zero or lower than the concentration of the dopant of the top layer 36, and the concentration of the dopant of the top layer 36 is lower than the concentration of the dopant in the host layer 34.

在40奈米製程的PMOS元件中,半導體化合物層33為矽化鍺。緩衝層38中的硼摻雜量例如是0%;主體層34中的的硼摻雜量例如是3×1020/cm2;頂層36的硼摻雜量例如是7×1019至2×1020/cm2In the PMOS device of the 40 nm process, the semiconductor compound layer 33 is germanium germanium. The boron doping amount in the buffer layer 38 is, for example, 0%; the boron doping amount in the bulk layer 34 is, for example, 3 × 10 20 /cm 2 ; and the boron doping amount of the top layer 36 is, for example, 7 × 10 19 to 2 × 10 20 /cm 2 .

上述緩衝層38、主體層34以及頂層36可以在相同的反應室中進行磊晶成長製程,藉由調整反應氣體中兩種氣體源之間的比例,例如是矽源以及鍺源之反應氣體之間的比例(或是矽源以及碳源之反應氣體之間的比例)來形成含鍺量(含碳量)不同的矽化鍺(碳化矽),並在進行磊晶成長的過程中進行臨場摻雜以形成源極與汲極區50a。The buffer layer 38, the main body layer 34 and the top layer 36 may be subjected to an epitaxial growth process in the same reaction chamber by adjusting the ratio between the two gas sources in the reaction gas, for example, the reaction gas of the helium source and the helium source. The ratio between the two sources (or the ratio between the source of the gas and the reaction gas of the carbon source) to form a bismuth telluride (barium carbide) with different cerium content (carbon content), and to carry out on-site mixing during the epitaxial growth process. Miscellaneous to form the source and drain regions 50a.

之後,請參照圖1D,在第一主動區14a上形成另一罩幕層39。其後,蝕刻第二主動區14b上的阻擋層26,以在第二主動區14b上形成間隙壁30b,之後,再移除罩幕層39,如圖1E所示。Thereafter, referring to FIG. 1D, another mask layer 39 is formed on the first active region 14a. Thereafter, the barrier layer 26 on the second active region 14b is etched to form the spacers 30b on the second active region 14b, after which the mask layer 39 is removed, as shown in FIG. 1E.

之後,請參照圖1E,在移除罩幕層39之後,再於基底10上形成間隙壁材料層40以及間隙壁材料層42。間隙壁材料層40的材料與間隙壁材料層42的材料不同。在一實施例中,間隙壁材料層40的材料例如是氧化矽,間隙壁材料層42的材料例如是氮化矽。Thereafter, referring to FIG. 1E, after the mask layer 39 is removed, the spacer material layer 40 and the spacer material layer 42 are formed on the substrate 10. The material of the spacer material layer 40 is different from the material of the spacer material layer 42. In one embodiment, the material of the spacer material layer 40 is, for example, ruthenium oxide, and the material of the spacer material layer 42 is, for example, tantalum nitride.

其後,請參照圖1F,蝕刻間隙壁材料層40與間隙壁材料層42,以分別形成間隙壁44與間隙壁46。之後,進行離子植入製程,以將摻質植入於第二主動區14b的基底10之中,以形成源極與汲極區50b。在一實施例中,第一主動區14a上預定形成PMOS元件,源極與汲極區50a中的摻質為P型;第二主動區14b上預定形成NMOS,源極與汲極區50b的摻質為N型。在另一實施例中,第一主動區14a上預定形成NMOS元件,源極與汲極區50a中的摻質為N型;第二主動區14b上預定形成PMOS,源極與汲極區50b的摻質為P型。摻質為P型例如為硼或二氟化硼;N型摻質例如為磷或是砷。Thereafter, referring to FIG. 1F, the spacer material layer 40 and the spacer material layer 42 are etched to form the spacers 44 and the spacers 46, respectively. Thereafter, an ion implantation process is performed to implant dopants into the substrate 10 of the second active region 14b to form source and drain regions 50b. In one embodiment, the PMOS device is pre-formed on the first active region 14a, the dopant in the source and drain regions 50a is P-type, and the NMOS, source and drain regions 50b are predetermined on the second active region 14b. The dopant is N type. In another embodiment, the NMOS device is predetermined on the first active region 14a, the dopant in the source and drain regions 50a is N-type, and the PMOS, source and drain regions 50b are predetermined on the second active region 14b. The dopant is P type. The dopant is P-type such as boron or boron difluoride; the N-type dopant is, for example, phosphorus or arsenic.

由於第一主動區14a的源極與汲極區50a是在形成半導體化合物層33時臨場摻雜形成的,且在臨場摻雜時,已經提供了所需的源極與汲極區50a的濃度。因此,在半導體化合物層33形成之後無須再對半導體化合物層33進行用來形成源極與汲極區50a之預先非晶型植入(preamophorizing implants,PAI)製程以及離子植入製程。Since the source and drain regions 50a of the first active region 14a are formed by field doping when the semiconductor compound layer 33 is formed, and the on-site doping, the required concentration of the source and drain regions 50a has been provided. . Therefore, it is no longer necessary to perform the pre-amorphous implantation (PAI) process and the ion implantation process for forming the source and drain regions 50a of the semiconductor compound layer 33 after the formation of the semiconductor compound layer 33.

其後,在一實施例中,若是導體層20的摻質的濃度不符合所需,可以選擇性在導體層20中植入摻質。選擇性在導體層20中植入摻質的方法可以先移除頂蓋層21,使導體層20裸露出來。之後,在基底10上形成罩幕層56,罩幕層56的開口58裸露出第一主動區14a的閘極結構16a的導體層20。罩幕層56可以是光阻或是其他合適的材料。之後,進行離子植入製程60,將摻質植入於導體層20中。之後,將罩幕層56移除,如圖7所示。Thereafter, in an embodiment, if the concentration of the dopant of the conductor layer 20 is not satisfactory, the dopant may be selectively implanted in the conductor layer 20. The method of selectively implanting the dopant in the conductor layer 20 may first remove the cap layer 21 to expose the conductor layer 20. Thereafter, a mask layer 56 is formed on the substrate 10, and the opening 58 of the mask layer 56 exposes the conductor layer 20 of the gate structure 16a of the first active region 14a. Mask layer 56 can be photoresist or other suitable material. Thereafter, an ion implantation process 60 is performed to implant dopants into the conductor layer 20. Thereafter, the mask layer 56 is removed, as shown in FIG.

之後,請參照圖1G,進行熱回火製程。熱回火製程可以採用快速熱回火(RTA)或是雷射尖峰回火(laser-spike annealing,LSA)或兩者的組合。然後,在基底10上形成金屬層52,金屬層52之材料包括耐熱金屬,例如是鎳、鈦、鎢、鈷、鉑或是鈀。金屬層52的形成方法例如是濺鍍法。After that, please refer to FIG. 1G to perform a thermal tempering process. The thermal tempering process can employ either rapid thermal tempering (RTA) or laser-spike annealing (LSA) or a combination of the two. Then, a metal layer 52 is formed on the substrate 10, and the material of the metal layer 52 includes a heat resistant metal such as nickel, titanium, tungsten, cobalt, platinum or palladium. The method of forming the metal layer 52 is, for example, a sputtering method.

其後,請參照圖1H,進行加熱製程,進行矽化反應,使金屬層52與基底10中的矽以及導體層20之中的矽反應形成矽化金屬層54以及55。矽化金屬層54與55之材料例如是矽化鎳、矽化鈦、矽化鎢、矽化鈷、矽化鉑或矽化鈀。在另一實施例中(未繪示),導體層20上有頂蓋層21,在進行矽化反應時,金屬層52不會與頂蓋層21下方的導體層20接觸並反應,因而無法形成矽化金屬層55。Thereafter, referring to FIG. 1H, a heating process is performed to carry out a deuteration reaction, and the metal layer 52 is reacted with germanium in the substrate 10 and germanium in the conductor layer 20 to form deuterated metal layers 54 and 55. The materials of the deuterated metal layers 54 and 55 are, for example, nickel telluride, titanium telluride, tungsten telluride, cobalt telluride, platinum telluride or palladium telluride. In another embodiment (not shown), the conductor layer 20 has a cap layer 21 thereon. When the deuteration reaction is performed, the metal layer 52 does not contact and react with the conductor layer 20 under the cap layer 21, and thus cannot be formed. The metal layer 55 is deuterated.

之後,在基底10上形成蝕刻終止層61與介電層62。蝕刻終止層61之材料與介電層62之材料不同,例如是氮化矽,形成的方法例如是化學氣相沉積法。介電層62之材料例如是氧化矽、低介電常數材料、超低介電常數材料、未摻雜之璃璃或其任意組合,形成的方法例如是化學氣相沉積法。Thereafter, an etch stop layer 61 and a dielectric layer 62 are formed on the substrate 10. The material of the etch stop layer 61 is different from the material of the dielectric layer 62, such as tantalum nitride, and the formation method is, for example, chemical vapor deposition. The material of the dielectric layer 62 is, for example, ruthenium oxide, a low dielectric constant material, an ultra-low dielectric constant material, an undoped glass or any combination thereof, and the formation method is, for example, a chemical vapor deposition method.

然後,於介電層62與蝕刻終止層61中形成接觸窗64a與64b。接觸窗64的形成方法例如是先利用微影與蝕刻法在介電層62中形成接觸窗開口,之後,於接觸窗開口中填入導體層。導體層可以是摻雜多晶矽或是鎢。之後,再進行後段製程。Contact windows 64a and 64b are then formed in dielectric layer 62 and etch stop layer 61. The contact window 64 is formed by, for example, first forming a contact opening in the dielectric layer 62 by lithography and etching, and then filling the contact opening into the conductor layer. The conductor layer can be doped polysilicon or tungsten. After that, the back-end process is performed.

上述的矽化金屬層54是在介電層62形成之前就形成。然而,本發明並不以此為限。矽化金屬層54亦可以在介電層62中的接觸窗開口形成之後,尚未填入導體層之前,透過上述之製程方法來形成。The above-described deuterated metal layer 54 is formed before the dielectric layer 62 is formed. However, the invention is not limited thereto. The deuterated metal layer 54 may also be formed by the above-described process method after the contact opening in the dielectric layer 62 is formed and before the conductor layer has been filled.

圖2A至圖2B是依照本發明第二實施例所繪示之一種金氧半導體元件的製造流程的剖面示意圖。2A-2B are schematic cross-sectional views showing a manufacturing process of a MOS device according to a second embodiment of the present invention.

請參照圖1D與1E,在以上的實施例中,在形成間隙壁材料層40之前,第一主動區14a上的導體層20側壁形成了間隙壁24與間隙壁30a,第二主動區14b上的導體層20側壁形成了間隙壁24與間隙壁30b。然而,本發明並不以此為限,在另一實施例中,請參照圖2A,在形成間隙壁材料層40之前,第一主動區14a與第二主動區14b上的導體層20側壁也可以僅形成間隙壁24,而不形成間隙壁30a與30b。其做法可以依照上述第一實施例在形成圖1C所示的結構之後,不形成圖1D之罩幕層39,而直接透過濕式蝕刻製程(例如是利用磷酸)同時去除在第一主動區14a上已形成的間隙壁30a及覆蓋在第二主動區14b上的阻擋層26。而且若是頂蓋層21的材料與間隙壁30a以及阻擋層26的材料相同時,在進行濕式蝕刻製程時,也會順便去除部分或全部的頂蓋層21,如圖2A所示。之後,依照上述方法進行後續製程,所形成之結構如圖2B所示。Referring to FIGS. 1D and 1E, in the above embodiment, before forming the spacer material layer 40, the sidewalls of the conductor layer 20 on the first active region 14a form the spacers 24 and the spacers 30a, and the second active regions 14b. The sidewalls of the conductor layer 20 form a spacer 24 and a spacer 30b. However, the present invention is not limited thereto. In another embodiment, referring to FIG. 2A, before forming the spacer material layer 40, the sidewalls of the conductor layer 20 on the first active region 14a and the second active region 14b are also It is possible to form only the spacers 24 without forming the spacers 30a and 30b. After the formation of the structure shown in FIG. 1C, the mask layer 39 of FIG. 1D is not formed according to the first embodiment described above, and the first active region 14a is simultaneously removed by a wet etching process (for example, using phosphoric acid). A spacer 30a has been formed thereon and a barrier layer 26 overlying the second active region 14b. Further, if the material of the cap layer 21 is the same as that of the spacers 30a and the barrier layer 26, some or all of the cap layer 21 may be removed by the way of the wet etching process, as shown in Fig. 2A. Thereafter, the subsequent process is carried out in accordance with the above method, and the resulting structure is as shown in FIG. 2B.

圖3A至圖3B是依照本發明第三實施例所繪示之一種金氧半導體元件的製造流程的剖面示意圖。為清楚起見,圖3A至圖3B中僅會是出基底10的第一主動區14a的金氧半導體元件16a。3A-3B are schematic cross-sectional views showing a manufacturing process of a MOS device according to a third embodiment of the present invention. For the sake of clarity, only the oxynitride semiconductor element 16a of the first active region 14a of the substrate 10 will be shown in FIGS. 3A-3B.

請參照圖3B,閘極結構16a與16b也可以是包括材料層18與金屬材料層80。材料層18為高介電常數介電層;金屬材料層80之材料例如是鈦鋁合金。此金氧半導體元件的形成的方法可以依照上述第一實施例的方式進行至形成介電層62,但在進行矽化製程之前並不需要移除頂蓋層21(如圖3A)。之後,請參照圖3B,先進行化學機械平坦化或是回蝕刻製程,移除部分的介電層62以及蝕刻終止層61,使導體層20上方的頂蓋層21裸露出來,之後,移除頂蓋層21以及導體層20,形成溝渠66,然後,再於溝渠66中填入金屬材料層80,然後再透過化學機械研磨製程移除溝渠66外的金屬材料層80。在一實施例中,在填入金屬材料層80之前,可以在材料層18的高介電常數介電層上先形成底金屬層72、停止層74以及功函數金屬層76。底金屬層72之材料例如是氮化鈦。停止層74之材料例如是氮化鉭。功函數金屬層76之材料例如是氮化鈦(titanium nitride,TiN)、碳化鈦(titanium carbide,TiC)、氮化鉭(tantalum nitride,TaN)、碳化鉭(tantalum carbide,TaC)、碳化鎢(tungsten carbide,WC)、或氮化鋁鈦(aluminum titanium nitride,TiAlN),但不限於此。Referring to FIG. 3B, the gate structures 16a and 16b may also include a material layer 18 and a metal material layer 80. The material layer 18 is a high-k dielectric layer; the material of the metal material layer 80 is, for example, a titanium aluminum alloy. The method of forming the MOS device can be performed to form the dielectric layer 62 in the manner of the first embodiment described above, but it is not necessary to remove the cap layer 21 (Fig. 3A) before performing the deuteration process. Thereafter, referring to FIG. 3B, a chemical mechanical planarization or etch back process is performed first, and a portion of the dielectric layer 62 and the etch stop layer 61 are removed to expose the cap layer 21 above the conductor layer 20, and then removed. The cap layer 21 and the conductor layer 20 form a trench 66. Then, the trench 66 is filled with a metal material layer 80, and then the metal material layer 80 outside the trench 66 is removed by a chemical mechanical polishing process. In one embodiment, the bottom metal layer 72, the stop layer 74, and the work function metal layer 76 may be formed on the high-k dielectric layer of the material layer 18 prior to filling the metal material layer 80. The material of the bottom metal layer 72 is, for example, titanium nitride. The material of the stop layer 74 is, for example, tantalum nitride. The material of the work function metal layer 76 is, for example, titanium nitride (TiN), titanium carbide (TiC), tantalum nitride (TaN), tantalum carbide (TaC), tungsten carbide (tungsten carbide). Tungsten carbide, WC), or aluminum titanium nitride (TiAlN), but is not limited thereto.

上述第一至第三實施例係可與先高介電常數閘極介電層(high-k first)製程整合,亦即材料層18為高介電常數介電層,其係在導體層20形成之前形成。然而,本發明並不以此為限,本發明亦可與後高介電常數閘極介電層(high-k last)製程整合。The first to third embodiments described above can be integrated with a high-k first high dielectric dielectric layer (high-k first) process, that is, the material layer 18 is a high-k dielectric layer which is attached to the conductor layer 20. Formed before formation. However, the present invention is not limited thereto, and the present invention can also be integrated with a post-high dielectric constant high-k last process.

圖4是依照本發明第四實施例所繪示之一種金氧半導體元件的剖面示意圖。4 is a cross-sectional view showing a MOS device in accordance with a fourth embodiment of the present invention.

請參照圖4,在另一實施例中,閘極結構16a與16b包括高介電常數介電層78與金屬材料層80。此金氧半導體元件的形成的方法可以依照對應圖3A之上述第三實施例方法先形成材料層18以及導體層20,但材料層18不是具有高介電常數介電層的介電層(例如是二氧化矽層),之後依續進行後續製程至形成介電層62。然後,請參照圖4,進行化學機械平坦化或是回蝕刻製程移除部分的介電層62以及蝕刻終止層61,接著,移除頂蓋層21。然後,將導體層20移除,形成溝渠66,其後,在形成金屬材料層80、底金屬層72、停止層74以及功函數金屬層76之前,先移除溝渠66底部材料層18,才形成高介電常數介電層78。之後,再依照第三實施例所述之方法於溝渠66之中形成底金屬層72、停止層74、功函數金屬層76以及金屬材料層80,所形成之結構如圖4所示。Referring to FIG. 4, in another embodiment, the gate structures 16a and 16b include a high-k dielectric layer 78 and a metal material layer 80. The method of forming the MOS device may first form the material layer 18 and the conductor layer 20 in accordance with the method of the third embodiment corresponding to FIG. 3A, but the material layer 18 is not a dielectric layer having a high-k dielectric layer (for example, It is a ruthenium dioxide layer), and subsequent processes are continued until the dielectric layer 62 is formed. Then, referring to FIG. 4, a chemical mechanical planarization or etch-etching process removes portions of the dielectric layer 62 and the etch stop layer 61, and then the cap layer 21 is removed. Then, the conductor layer 20 is removed to form the trench 66, and thereafter, before the metal material layer 80, the bottom metal layer 72, the stop layer 74, and the work function metal layer 76 are formed, the material layer 18 at the bottom of the trench 66 is removed. A high-k dielectric layer 78 is formed. Thereafter, a bottom metal layer 72, a stop layer 74, a work function metal layer 76, and a metal material layer 80 are formed in the trench 66 according to the method described in the third embodiment, and the formed structure is as shown in FIG.

綜上所述,在本發明中,由於第一主動區的源極與汲極區是在形成半導體化合物層時臨場摻雜形成且具有所需濃度,因此,在半導體化合物層形成之後無需再對半導體化合物層進行植入第一導電型摻質之離子植入製程,也不需要再進行預先非晶型植入製程。因此,半導體化合物層的晶格不會受到離子植入製程或預先非晶型植入製程的破壞,可以減少半導體化合物層差排的現象,故,可以增加半導體化合物層對於通道的應力。經實驗證時,本發明確時可以增加半導體化合物層對於通道的應力,提升元件的效能達6.3%以上。In summary, in the present invention, since the source and drain regions of the first active region are formed by field doping when forming the semiconductor compound layer and have a desired concentration, there is no need to The semiconductor compound layer is implanted into the first conductive type dopant ion implantation process, and the prior amorphous implantation process is not required. Therefore, the crystal lattice of the semiconductor compound layer is not damaged by the ion implantation process or the pre-amorphous implantation process, and the phenomenon of the semiconductor compound layer difference can be reduced, so that the stress of the semiconductor compound layer to the channel can be increased. When verified, the present invention can increase the stress of the semiconductor compound layer on the channel, and improve the efficiency of the component by more than 6.3%.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10...基底10. . . Base

12...隔離結構12. . . Isolation structure

14a、14b...主動區14a, 14b. . . Active zone

16a、16b...閘極結構16a, 16b. . . Gate structure

18...材料層18. . . Material layer

20...導體層20. . . Conductor layer

21...頂蓋層twenty one. . . Roof layer

22...硬罩幕層twenty two. . . Hard mask layer

24、30a、30b、44、46...間隙壁24, 30a, 30b, 44, 46. . . Clearance wall

25a、25b...源極與汲極延伸區25a, 25b. . . Source and drain extension

26...阻擋層26. . . Barrier layer

28、39...罩幕層28, 39. . . Mask layer

32...凹槽32. . . Groove

33...半導體化合物層33. . . Semiconductor compound layer

34...主體層34. . . Main layer

36...頂層36. . . Top

38...緩衝層38. . . The buffer layer

40、42...間隙壁材料層40, 42. . . Gap material layer

50a、50b...源極與汲極區50a, 50b. . . Source and bungee area

52...金屬層52. . . Metal layer

54...矽化金屬層54. . . Deuterated metal layer

56...罩幕層56. . . Mask layer

58...開口58. . . Opening

60...離子植入製程60. . . Ion implantation process

61...蝕刻終止層61. . . Etch stop layer

62...介電層62. . . Dielectric layer

64a、64b...接觸窗64a, 64b. . . Contact window

66...溝渠66. . . ditch

72...底金屬層72. . . Bottom metal layer

74...停止層74. . . Stop layer

76...功函數金屬層76. . . Work function metal layer

78...高介電常數介電層78. . . High dielectric constant dielectric layer

80...金屬材料層80. . . Metal material layer

圖1A至圖1H是依照本發明第一實施例所繪示之一種金氧半導體元件的製造流程的剖面示意圖。1A through 1H are schematic cross-sectional views showing a manufacturing process of a MOS device according to a first embodiment of the present invention.

圖2A至圖2B是依照本發明第二實施例所繪示之一種金氧半導體元件的製造流程的剖面示意圖。2A-2B are schematic cross-sectional views showing a manufacturing process of a MOS device according to a second embodiment of the present invention.

圖3A至圖3B是依照本發明第三實施例所繪示之一種金氧半導體元件的製造流程的剖面示意圖。3A-3B are schematic cross-sectional views showing a manufacturing process of a MOS device according to a third embodiment of the present invention.

圖4是依照本發明第四實施例所繪示之一種金氧半導體元件的剖面示意圖。4 is a cross-sectional view showing a MOS device in accordance with a fourth embodiment of the present invention.

10...基底10. . . Base

12...隔離結構12. . . Isolation structure

14a、14b...主動區14a, 14b. . . Active zone

16a、16b...閘極結構16a, 16b. . . Gate structure

18...材料層18. . . Material layer

20...導體層20. . . Conductor layer

21...頂蓋層twenty one. . . Roof layer

24、30a...間隙壁24, 30a. . . Clearance wall

25a、25b...源極與汲極延伸區25a, 25b. . . Source and drain extension

26...阻擋層26. . . Barrier layer

32...凹槽32. . . Groove

33...半導體化合物層33. . . Semiconductor compound layer

34...主體層34. . . Main layer

36...頂層36. . . Top

38...緩衝層38. . . The buffer layer

50a...源極與汲極區50a. . . Source and bungee area

Claims (15)

一種金氧半導體元件的製造方法,包括:在一基底的一第一主動區上形成一第一閘極結構;在該第一閘極結構的側壁形成一第一間隙壁;於該第一閘極結構兩側的該基底中分別形成一第一源極與汲極延伸區;於該第一閘極結構兩側的該基底中分別形成一凹槽;於該些凹槽中形成一半導體化合物層;在該半導體化合物層中形成一第一源極與汲極區;以及在該第一閘極結構的側壁形成一第二間隙壁,其中,該第一源極與汲極延伸區以及該第一源極與汲極區之摻質為第一導電型,且該第一源極與汲極區是在形成該半導體化合物層時臨場摻雜而成,而在形成該半導體化合物層之後,並不對該半導體化合物層進行離子植入製程。A method of fabricating a MOS device, comprising: forming a first gate structure on a first active region of a substrate; forming a first spacer on a sidewall of the first gate structure; Forming a first source and a drain extension in the substrate on each side of the pole structure; forming a recess in the substrate on each side of the first gate structure; forming a semiconductor compound in the recesses a first source and a drain region are formed in the semiconductor compound layer; and a second spacer is formed on a sidewall of the first gate structure, wherein the first source and the drain extension region and the The dopant of the first source and the drain region is of a first conductivity type, and the first source and the drain region are doped in situ when the semiconductor compound layer is formed, and after the semiconductor compound layer is formed, The semiconductor compound layer is not subjected to an ion implantation process. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,其中該第一導電型包括P型。The method of manufacturing a MOS device according to claim 1, wherein the first conductivity type comprises a P type. 如申請專利範圍第2項所述之金氧半導體元件的製造方法,其中該半導體化合物層包括矽化鍺。The method of producing a MOS device according to claim 2, wherein the semiconductor compound layer comprises bismuth telluride. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,其中在該第一閘極結構之後不對該第一閘極結構進行離子植入製程。The method of fabricating a MOS device according to claim 1, wherein the first gate structure is not subjected to an ion implantation process after the first gate structure. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,更包括:在該基底上形成一罩幕層,覆蓋該半導體化合物層,裸露出該第一閘極結構之上表面;以該罩幕層為罩幕,對該第一閘極結構的一導體層進行一第一離子植入製程;以及移除該罩幕層。The method for fabricating a MOS device according to claim 1, further comprising: forming a mask layer on the substrate, covering the semiconductor compound layer, exposing the upper surface of the first gate structure; The mask layer is a mask, a first ion implantation process is performed on a conductor layer of the first gate structure; and the mask layer is removed. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,更包括:在該基底的一第二主動區上形成一第二閘極結構;在該第二閘極結構之側壁形成該第一間隙壁;於該第二閘極結構兩側的該基底中分別形成一第二源極與汲極延伸區;在該第二閘極結構的側壁形成該第二間隙壁;以及進行一第二離子植入製程,以在該第二閘極結構兩側的該基底中形成一第二源極與汲極區,其中,該第二源極與汲極延伸區以及該第二源極與汲極區之摻質為第二導電型。The method for manufacturing a MOS device according to claim 1, further comprising: forming a second gate structure on a second active region of the substrate; forming the sidewall of the second gate structure a first spacer; a second source and a drain extension are respectively formed in the substrate on both sides of the second gate structure; the second spacer is formed on a sidewall of the second gate structure; and performing a a second ion implantation process to form a second source and drain region in the substrate on both sides of the second gate structure, wherein the second source and the drain extension region and the second source The dopant with the drain region is of the second conductivity type. 如申請專利範圍第6項所述之金氧半導體元件的製造方法,其中該第二導電型包括N型。The method of manufacturing a MOS device according to claim 6, wherein the second conductivity type comprises an N type. 如申請專利範圍第6項所述之金氧半導體元件的製造方法,在形成該第二源極與汲極區之後更包括:在該基底上形成一罩幕層,覆蓋該半導體化合物層,裸露出該第一閘極結構之上表面;以該罩幕層為罩幕,對該第一閘極結構的一導體層進行一第一離子植入製程;以及移除該罩幕層。The method for fabricating a MOS device according to claim 6, further comprising: forming a mask layer on the substrate to cover the semiconductor compound layer, and exposing after forming the second source and the drain region And forming a first ion implantation process on a conductor layer of the first gate structure; and removing the mask layer. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,更包括:於該第一源極與汲極區上形成一矽化金屬層;於該基底上形成一介電層;以及於該介電層中形成一接觸窗。The method for fabricating a MOS device according to claim 1, further comprising: forming a deuterated metal layer on the first source and the drain region; forming a dielectric layer on the substrate; A contact window is formed in the dielectric layer. 如申請專利範圍第9項所述之金氧半導體元件的製造方法,更包括於形成該矽化金屬層之前,進行一熱回火製程。The method for fabricating a MOS device according to claim 9, further comprising performing a thermal tempering process before forming the bismuth metal layer. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,其中該第一閘極結構包括一材料層以及一導體層,且更包括:移除該第一閘極結構的該導體層,形成一溝渠;以及於該溝渠中形成一金屬材料層。The method of fabricating a MOS device according to claim 1, wherein the first gate structure comprises a material layer and a conductor layer, and further comprising: removing the conductor layer of the first gate structure Forming a trench; and forming a layer of metallic material in the trench. 如申請專利範圍第11項所述之金氧半導體元件的製造方法,其中該材料層包括高介電常數材料層。The method of fabricating a MOS device according to claim 11, wherein the material layer comprises a high dielectric constant material layer. 如申請專利範圍第12項所述之金氧半導體元件的製造方法,更包括在形成該金屬材料層之前,於該溝渠中的該材料層上依序形成一底金屬層、一停止層以及一功函數金屬層。The method for fabricating a MOS device according to claim 12, further comprising sequentially forming a bottom metal layer, a stop layer, and a layer on the material layer in the trench before forming the metal material layer. Work function metal layer. 如申請專利範圍第11項所述之金氧半導體元件的製造方法,更包括:在移除該導體層之前,移除該材料層,使該溝渠裸露出該基底;以及於該溝渠中形成一高介電常數材料層。The method for fabricating a MOS device according to claim 11, further comprising: removing the material layer to expose the trench before exposing the conductor layer; and forming a trench in the trench; High dielectric constant material layer. 如申請專利範圍第14項所述之金氧半導體元件的製造方法,更包括在形成該金屬材料層之前,於該高介電常數材料層上依序形成一底金屬層、一停止層以及一功函數金屬層。The method for fabricating a MOS device according to claim 14, further comprising sequentially forming a bottom metal layer, a stop layer, and a layer on the high dielectric constant material layer before forming the metal material layer. Work function metal layer.
TW101108900A 2012-03-15 2012-03-15 Method for fabricating mos device TWI562244B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101108900A TWI562244B (en) 2012-03-15 2012-03-15 Method for fabricating mos device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101108900A TWI562244B (en) 2012-03-15 2012-03-15 Method for fabricating mos device

Publications (2)

Publication Number Publication Date
TW201338052A true TW201338052A (en) 2013-09-16
TWI562244B TWI562244B (en) 2016-12-11

Family

ID=49627995

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108900A TWI562244B (en) 2012-03-15 2012-03-15 Method for fabricating mos device

Country Status (1)

Country Link
TW (1) TWI562244B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045407B2 (en) * 2003-12-30 2006-05-16 Intel Corporation Amorphous etch stop for the anisotropic etching of substrates
US7504301B2 (en) * 2006-09-28 2009-03-17 Advanced Micro Devices, Inc. Stressed field effect transistor and methods for its fabrication
TWI497716B (en) * 2010-04-13 2015-08-21 United Microelectronics Corp Semiconductor device having metal gate and manufacturing methd thereof

Also Published As

Publication number Publication date
TWI562244B (en) 2016-12-11

Similar Documents

Publication Publication Date Title
CN106328539B (en) Multigate device and its manufacturing method
KR101879042B1 (en) Semiconductor device and method of forming the same
KR101637718B1 (en) Fin structure of semiconductor device
US8647953B2 (en) Method for fabricating first and second epitaxial cap layers
US8063449B2 (en) Semiconductor devices and methods of manufacture thereof
US12211897B2 (en) Gate-all-around transistor with strained channels
US20220376072A1 (en) Spacer structure for nano-sheet-based devices
JP4473741B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2009032955A (en) Semiconductor device and method for manufacturing the same
US8980718B2 (en) PMOS transistors and fabrication method
JP2009099702A (en) Semiconductor device and manufacturing method thereof
US11217694B2 (en) Field-effect transistor and method for manufacturing the same
US20230387243A1 (en) Spacer Structures for Nano-Sheet-Based Devices
JP3998665B2 (en) Semiconductor device and manufacturing method thereof
CN103579314A (en) Semiconductor device and method for manufacturing the same
CN110838469A (en) Method for manufacturing integrated circuit structure
CN114122135A (en) Semiconductor structure
CN109390394B (en) Tunneling field effect transistor and manufacturing method thereof
CN203134802U (en) Semiconductor structure
CN113611736B (en) Semiconductor element and manufacturing method thereof
TWI446456B (en) Metal gate transistor and method for fabricating the same
TWI521565B (en) Mos device and method for fabricating the same
TW201338052A (en) Method for fabricating MOS device
TWI817704B (en) Semiconductor device and method for forming the same
CN118486590A (en) Semiconductor device with a semiconductor element having a plurality of electrodes