TW201335375A - Method for improving sensitivity and specificity of screening assays for KRAS codons 12 and 13 mutations - Google Patents
Method for improving sensitivity and specificity of screening assays for KRAS codons 12 and 13 mutations Download PDFInfo
- Publication number
- TW201335375A TW201335375A TW101106402A TW101106402A TW201335375A TW 201335375 A TW201335375 A TW 201335375A TW 101106402 A TW101106402 A TW 101106402A TW 101106402 A TW101106402 A TW 101106402A TW 201335375 A TW201335375 A TW 201335375A
- Authority
- TW
- Taiwan
- Prior art keywords
- seq
- mutant
- probe
- paired
- dna
- Prior art date
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本發明係關於一種檢測KRAS c12-13基因突變型的方法,能專一且靈敏地診斷癌症及/或作癌症預後的評估。 The present invention relates to a method for detecting a mutant of the KRAS c12-13 gene, which can specifically and sensitively diagnose cancer and/or evaluate the prognosis of cancer.
KRAS(正式名稱:v-Ki-ras2 Kirsten小鼠肉瘤病毒同源制癌基因;別名:KRAS2,RASK2;基因庫登錄號NM_033360,係全部併入本發明以供參酌)係一種在EGFR所活化的訊息傳遞路徑中的小型GTP酶,影響癌細胞的生長、存活及分化等過程。EGFR被認為是種會引發上皮細胞異常增生的致癌因子,抗EGFR的標把藥物對全世界數以百萬計的此類癌症病患,有控制惡化的功效。有c12-13突變的K-ras所產生的組成蛋白,GTP酶會不斷被激活,GTP鍵結也被改變。屬EGFR下游的K-ras突變蛋白,即持久活化的GTP酶,會使抗EGFR標把藥物的療效不彰。 KRAS (official name: v-Ki-ras2 Kirsten mouse sarcoma virus homologous oncogene; alias: KRAS2, RASK2; gene bank accession number NM_033360, all incorporated into the present invention for reference) is a type of activation in EGFR Small GTPases in the message transmission pathway affect the growth, survival and differentiation of cancer cells. EGFR is thought to be a carcinogen that causes abnormal proliferation of epithelial cells, and anti-EGFR drugs have a deteriorating effect on millions of cancer patients worldwide. The constituent proteins produced by the C12-13 mutant K-ras, the GTPase is continuously activated, and the GTP linkage is also altered. The K-ras mutant protein downstream of EGFR, the persistently activated GTPase, will make the anti-EGFR drug efficacy less effective.
K-ras基因中單一核苷酸的錯誤及取代,主要發生於編碼12及13(>98%)的第1、第2及第5的核苷酸位點,常見於胰腺癌(75-90%)、肺腺癌(20-50%)、以及結腸癌(CRC,30-60%)等上皮細胞性腫瘤,而有K-ras突變的病人不建議使用抗EGFR藥物,例如panitumumab及cetuximab(VECTIBIX®及ERBITUX®),因治療效果會受阻。KRAS的檢測已成為肺腺癌及CRC病患的用藥指南,而KRAS突變狀態的評估亦可提供癌症進展、轉移以及CRC遺傳潛因等的預測值,此外, 檢測胰腺癌病患血漿中的KRAS突變,可得知腫瘤細胞的殘餘,有助於評估病人治療的效果;膽汁中偵測到KRAS突變,亦助於膽道癌的早期診斷。 Errors and substitutions of single nucleotides in the K-ras gene occur mainly at the 1st, 2nd, and 5th nucleotide positions encoding 12 and 13 (>98%), common in pancreatic cancer (75-90) %), lung adenocarcinoma (20-50%), and colon cancer (CRC, 30-60%) and other epithelial tumors, while patients with K-ras mutations are not recommended to use anti-EGFR drugs, such as panitumumab and cetuximab ( VECTIBIX® and ERBITUX®) are blocked due to treatment effects. KRAS detection has become a guideline for the treatment of lung adenocarcinoma and CRC patients, and the assessment of KRAS mutation status can also provide predictive values for cancer progression, metastasis, and CRC genetic potential. Detection of KRAS mutations in the plasma of patients with pancreatic cancer can be used to determine the residual of tumor cells, which is helpful to evaluate the effect of treatment in patients; detection of KRAS mutations in bile also contributes to the early diagnosis of biliary tract cancer.
目前KRAS熱點突變的快速篩選正值發展,檢測效果有賴於探針(probe)及引子(primer)的組合,然而其設計與組合如何能提升等位基因(allele)鑑別的靈敏度及專一性則鮮少被討論。 At present, the rapid screening of KRAS hotspot mutations is developing positively. The detection effect depends on the combination of probes and primers. However, how the design and combination can improve the sensitivity and specificity of allele identification. Less discussed.
於一態樣中,本發明係關於在DNA樣本中,檢測KRAS基因編碼子12-13突變的方法,該方法包括:以不同螢光標示的突變型探針、及與之對應的野生型探針,搭配一正向及一反向引子進行等位基因鑑別的檢測法。上述的突變型探針係針對位於KRAS基因編碼子12-13的主要單一核苷酸突變包括:1A、1T、1C、2A、2T、2C或5A,搭配一對各不超過25個核苷酸長度的引子,放大橫跨KRAS外顯子2編碼子12-13的區段,其中,突變型及野生型探針的螢光標示各為Fam及Vic。 In one aspect, the invention relates to a method for detecting a 12-13 mutation of a KRAS gene in a DNA sample, the method comprising: a mutant probe labeled with different fluorescence, and a wild type probe corresponding thereto Needle, with a forward and a reverse primer for allele identification. The above-mentioned mutant probes are directed to major single nucleotide mutations located at 12-13 of the KRAS gene, including: 1A, 1T, 1C, 2A, 2T, 2C or 5A, with a pair of no more than 25 nucleotides each. The length of the primer is amplified across the segment of KRAS exon 2 coding 12-13, wherein the fluorescent markers of the mutant and wild-type probes are each Fam and Vic.
其他態樣將藉由以下較佳實施例配合圖式的描述而更明瞭,在不背離本發明精神及揭露之新穎構想範圍下,可作各種不同的改變及修飾。 Other aspects and modifications may be made without departing from the spirit and scope of the invention.
本發明之一或多個實施例所隨附的圖式以及描述將會解釋本發明之範疇,而圖式所使用的相同參酌編號盡可能代表實施例中相同或相似的元件。 The drawings and the description of the present invention are intended to be illustrative of the scope of the invention, and the same reference numerals are used to represent the same or similar elements in the embodiments.
於發明之上下文以及於特殊上下文中所使用的每一個術語,基本上在其所屬技術領域中有其常見之意義,用於描述本發明之特定術語於以下或說明書之其他處探討,以進一步導引從事者瞭解本發明之描述。為求便利,說明書中的特定術語將會藉由例如斜體字及/或引號而強調,而此強調並不會影響該術語的範疇以及意義,且於相同上下文中,無論是否有特別強調,該術語的範疇及意義皆相同。另外,由於相同事物可由多種方式描述,因此,在此討論之任一個或多個術語亦可以替代詞或同義字描述,但並非說明書中任何一個特殊含意的術語皆需在此討論及詳述。本發明會對特殊的術語提供其同義字,然而於此所列舉之一或多個同義字並不會排除其他同義字的使用,本說明書任何地方所使用的任何術語僅為說明使用,並不會侷限本發明或任何示範術語的範疇及意含。同樣的,本說明書中的各種實施例亦不會限制本發明之範疇。 Each of the terms used in the context of the invention, as well as in a particular context, substantially have its ordinary meaning in the art to which it pertains. The specific terms used to describe the invention are discussed below or elsewhere in the specification for further guidance. The practitioner is referred to the description of the invention. For convenience, specific terms in the specification will be emphasized by, for example, italics and/or quotation marks, and this emphasis does not affect the scope and meaning of the term, and in the same context, with or without special emphasis, The term has the same meaning and meaning. In addition, since the same matter may be described in a variety of ways, any one or more of the terms discussed herein may also be replaced by a word or a synonym, but not any of the specific meanings of the specification are discussed and detailed herein. The present invention provides synonym for specific terms, but one or more of the synonyms listed herein does not exclude the use of other synonyms. Any term used anywhere in this specification is for illustrative purposes only and is not intended to The scope and meaning of the invention or any exemplary term may be limited. Likewise, the various embodiments of the present specification are not intended to limit the scope of the invention.
除非有其他的定義,否則與本發明相關之所有技術及科學術語皆和所屬技術領域具有共同技藝者所瞭解的意思相同,假如有不同處,將會於說明書中加以定義。 Unless otherwise defined, all technical and scientific terms related to the present invention have the same meaning as those skilled in the art, and if there are differences, they will be defined in the specification.
於此所使用的「大約(around)」、「大概(about)」或「近乎(approximately)」代表一給定值或給定範圍的百分比20以內,較佳為百分比10以內,更佳為百分比5以內。在此,若給定之數量無特別指出「大約(around)」、「大概(about)」 或「近乎(approximately)」之詞語時,亦能推測該給定之數量隱含有大約的意思。 As used herein, "around", "about" or "approximately" means a given value or a percentage of a given range of 20, preferably within a percentage of 10, more preferably as a percentage. Within 5. Here, if the given quantity does not specifically indicate "around" or "about" Or the term "approximately" can also presume that the given quantity implies an approximate meaning.
於此,所屬技術領域具有共同技藝者能瞭解,本發明所敘的數量或範圍意指包含本發明相關特殊領域適當且合理的範圍。 It is to be understood by those skilled in the art that the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;
於此,「橫跨KRAS外顯子2編碼子12-13之區段」意指「包含KRAS基因外顯子2編碼子12-13序列之核苷酸序列」。 Here, "a segment spanning the KRAS exon 2 coder 12-13" means "a nucleotide sequence comprising the sequence 12-13 of the KRAS gene exon 2 coder".
於此,一術語「探針對(paired probes)」或「一(配)對探針(a pair of probes)」係表示包含一突變型探針以及一野生型探針之探針對,其中野生型探針係與突變型探針配對的設計。 Herein, the term "paired probes" or "a pair of probes" means a probe pair comprising a mutant probe and a wild type probe, wherein the wild type The design of the probe pair paired with the mutant probe.
質量控制(QC)突變型係與突變型探針相同的DNA序列。QC突變型的使用量被固定為平行測試(parallel PCR)的QC野生型DNA量的1~5%。舉例來說,使用突變型探針2CM(SEQ ID NO:5)時,則QC突變型需包含SEQ ID NO:5之核苷酸序列,且當使用突變型探針NIA(SEQ ID NO:9)時,則QC突變型需包含SEQ ID NO:9之核苷酸序列等等。 The quality control (QC) mutant is the same DNA sequence as the mutant probe. The amount of QC mutant used was fixed to 1 to 5% of the amount of QC wild-type DNA in parallel PCR. For example, when the mutant probe 2CM (SEQ ID NO: 5) is used, the QC mutant needs to comprise the nucleotide sequence of SEQ ID NO: 5, and when the mutant probe NIA is used (SEQ ID NO: 9) In case, the QC mutant type needs to include the nucleotide sequence of SEQ ID NO: 9 and the like.
於此,一用語「可比強度(comparable intensity)」意指DNA樣本的螢光訊號強度達到等同於QC突變型的螢光強度,表示該DNA樣本具有該突變型。偵測DNA樣本時,平行檢測QC突變型,係為建立突變型鑑別的基礎螢光讀值(baseline)。 Herein, the term "comparable intensity" means that the fluorescence intensity of the DNA sample reaches a fluorescence intensity equivalent to that of the QC mutant, indicating that the DNA sample has the mutant type. When detecting DNA samples, parallel detection of QC mutants is the establishment of a baseline fluorescent reading for mutation identification.
單一鹼基的配對錯誤會降低鹼基鍵結的能量以及熔點(Tm),係等位基因專一的寡核苷酸(allele specific oligonucleotide,ASO)的雜交基礎。ASO的應用常見於傳統的斑點雜交(dot blot)、即時PCR(qPCR)之螢光探針以及當下盛行的微陣列DNA晶片,而鍵結結構的強度係決定於探針序列的Tm以及打開擴增子(amplicon)二級結構的難易。因此,探針的序列以及擴增子的長度或結構,在以ASO為基礎的臨床檢測上扮演重要的角色。 A single base pairing error reduces the energy and melting point (Tm) of the base bond and is the basis for the hybridization of allele specific oligonucleotides (ASO). The application of ASO is common in traditional dot blot, real-time PCR (qPCR) fluorescent probes and the current microarray DNA wafers, and the strength of the bonding structure is determined by the Tm of the probe sequence and the opening and expansion. The difficulty of the secondary structure of the amplicon. Therefore, the sequence of the probe and the length or structure of the amplicon play an important role in clinical testing based on ASO.
本發明係以即時PCR(qPCR)為平台,同時增強及檢測K-ras的c12-13區段,使用能放大該區段的引子以及能鑑別突變型的雜交探針,進行寡核苷酸序列專一的等位基因檢測。於一較佳實施例中,Taqman探針的小凹槽鍵結(MGB),能使短的探針(13-20個核苷酸鏈)具有高熔點差(△Tm)。本發明係應用等位基因專一的寡核苷酸(allele specific oligonucleotide,ASO)雜交在快速、簡單的qPCR上,藉由探針對及引子對的序列及配對的改換,改善K-ras c12-13突變型檢測的檢測能力。 The present invention uses real-time PCR (qPCR) as a platform to simultaneously enhance and detect the c12-13 segment of K-ras, and uses an primer capable of amplifying the segment and a hybridization probe capable of identifying a mutant to perform an oligonucleotide sequence. Specific allele detection. In a preferred embodiment, the small groove junction (MGB) of the Taqman probe enables short probes (13-20 nucleotide strands) to have a high melting point difference (ΔTm). The present invention utilizes allele specific oligonucleotide (ASO) hybridization on a fast, simple qPCR to improve K-ras c12-13 by the sequence and pairing of probe pairs and primer pairs. Detection ability of mutant detection.
以qPCR鑑定K-ras基因型,必須能在佔絕大多數的野生型中分辨出各位點的突變等位基因。此困難有兩個層面:一為測試材料(檢樣的基因)本身的異質性,另為檢測法的極限。檢樣基因的異質性可能受到腫瘤對非腫瘤的成分模板(template)混合,野生型及突變型DNA的莫耳量不均,突變屬雜合或純合性(heterozygosity or homozygosity)等的影響。近來K-ras突變檢測多半以原發性腫瘤組織(primary tumor tissue)為樣本,不僅取得容易且腫瘤細胞量充足,因手術前有內視鏡辨別腫瘤所在,由切片也可確認癌細胞的分佈。對癌細胞已轉移的病人,則有約20%未在先前發現有原發性腫瘤,即無腫瘤的移除及切片被保存。故而唯有藉由剛切除的轉移性腫瘤組織樣本,例如肝或陽性淋巴結等,進行測試。然而,K-ras狀態在原發性及轉移性腫瘤組織的不一致,並不罕見。(Mariani et al.(2010)“Concordant analysis of KRAS status in primary colon carcinoma and matched metastasis.Anticancer Res”30,4229-35) Identification of the K-ras genotype by qPCR must distinguish the mutant alleles at each point in the majority of the wild type. There are two levels of this difficulty: one is the heterogeneity of the test material (the gene for the test sample) itself, and the limit of the test method. The heterogeneity of the test gene may be mixed by the tumor to the non-tumor component template, the wild type and the mutant DNA are unevenly distributed, and the mutation is heterozygous or homozygosity. Recently, K-ras mutation detection mostly uses primary tumor tissue (primary The tumor tissue) is not only easy to obtain, but also has a sufficient amount of tumor cells. The endoscopic lens is used to identify the tumor before surgery, and the distribution of cancer cells can also be confirmed by the slice. About 20% of patients with metastatic cancer have not previously found a primary tumor, ie no tumor removal and sections are preserved. Therefore, the test is performed only by a sample of a metastatic tumor tissue that has just been removed, such as a liver or a positive lymph node. However, it is not uncommon for the K-ras status to be inconsistent in primary and metastatic tumor tissues. (Mariani et al. (2010) "Concordant analysis of KRAS status in primary colon carcinoma and matched metastasis. Anticancer Res" 30, 4229-35)
不同探針對有二級結構的擴增子(amplicon)(尤其是鍵結區(binding motifs)的附近)親和力也不同,不能僅以熔點(Tm)的估算來改良等位基因的探針及引子。首先,以ABI的SNP軟體v1.3搜尋適合的引子(例如AS12F及AS12R)以及部分探針的序列,透過平行測試以及個別因子(例如探針、引子、Taq DNA聚合酶)等的替換,評估結果選出較佳的因子後,又重複三次才予以確認。參考Chow,L.et al.(2012)“依性別及結腸癌之病理表現型,以等位基因檢測法檢測K-ras c12-13基因型的頻率差異(Differences in the frequencies of K-ras c12-13 genotypes by gender and pathologic phenotypes in colorectal tumors measured using the allele discrimination method.Environmental and Molecular Mutagenesis)”53:22-31,亦併入本發明以供參酌。此外,不同的樣本來源(組織切片、新鮮或冷凍組織、病人血清)、所含的模板種類(gDNA或cDNA)及使用量等亦有評估以確認效果。 Different probes have different affinities for secondary structures of amplicons (especially in the vicinity of binding motifs), and it is not possible to improve allele probes and primers only by melting point (Tm) estimation. . First, search for suitable primers (such as AS12F and AS12R) and partial probe sequences using ABI's SNP software v1.3, and evaluate them by parallel testing and replacement of individual factors (such as probes, primers, Taq DNA polymerase). As a result, after selecting a better factor, it was confirmed three times. Reference Chow, L. et al. (2012) "Differences in the frequencies of K-ras c12 by allelic detection by pathological phenotypes of sex and colon cancer -13 genotypes by gender and pathologic phenotypes in colorectal tumors measured using the allele discrimination method. Environmental and Molecular Mutagenesis)" 53: 22-31, also incorporated herein by reference. In addition, different sample sources (tissue sections, fresh or frozen tissue, patient serum), the type of template (gDNA or cDNA) contained, and the amount used are also evaluated to confirm the effect.
於此的Taq DNA聚合酶並無特別限制,可包含TaqMan快速通用PCR預混試劑(TaqMan Fast Universal PCR Master Mix)(Applied Biosystems,CA,USA)以及KAPA探針快速qPCR套組(KAPA Probe Fast qPCR Kit)(Kapa Biosystems,MA,USA)。 The Taq DNA polymerase herein is not particularly limited and may include TaqMan Fast Universal PCR Master Mix (Applied Biosystems, CA, USA) and KAPA probe rapid qPCR kit (KAPA Probe Fast qPCR). Kit) (Kapa Biosystems, MA, USA).
該qPCR儀器可包括ABI 7900及ABI 7500 Fast,但不限於此。 The qPCR instrument may include ABI 7900 and ABI 7500 Fast, but is not limited thereto.
人類DNA包含基因體DNA(gDNA)以及mRNA反轉錄的互補DNA(cDNA)。於本發明一實施例中,石蠟包埋(FFPE)的人類組織gDNA係以DNeasy Blood & Tissue Kit(Qiagene,Valencia,CA,USA)萃取。另一方面,冷凍組織或新鮮培養的癌細胞株的mRNA可使用Trizol(Invitrogen,NY,USA)萃取並反轉錄成cDNA。本發明可同步偵測樣本中七個等位基因,每次的檢測反應無論有多少個樣本(於8x12孔盤中,除去必要的QC突變型,最多為11個樣本),都必須包含各別突變型的QC以解釋偵測結果。除了等位基因專一探針之外,全部七個反應的反應試劑皆相同。 Human DNA contains genomic DNA (gDNA) and complementary DNA (cDNA) for reverse transcription of mRNA. In one embodiment of the invention, the paraffin-embedded (FFPE) human tissue gDNA line is extracted with the DNeasy Blood & Tissue Kit (Qiagene, Valencia, CA, USA). On the other hand, mRNA of frozen tissues or freshly cultured cancer cell lines can be extracted and reverse transcribed into cDNA using Trizol (Invitrogen, NY, USA). The invention can simultaneously detect seven alleles in the sample, and each time the detection reaction is no matter how many samples (in the 8x12 well plate, the necessary QC mutant type is removed, the maximum is 11 samples), all must contain different Mutant QC to interpret the detection results. All seven reactions were identical except for the allele-specific probe.
於臨床應用上,本發明可利用適當的萃取溶液抽取豐富且新鮮的血清DNA作為樣本。 For clinical applications, the present invention utilizes a suitable extraction solution to extract rich and fresh serum DNA as a sample.
於一態樣中,本發明係關於在DNA樣本中,檢測KRAS第12及13編碼子上單一核苷酸突變之方法,其包括:藉由使用一突變型探針、一相對應的野生型探針、一正向及一反向引子,以等位基因鑑別法檢測DNA樣本是否有 KRASc12-13的某個或多個突變。該突變型探針係針對KRASc12-13上的1A、1T、1C、2A、2T、2C或5A單一核苷酸突變,而放大KRAS外顯子2編碼子12-13區段的引子,長度皆不超過25個核苷酸;突變型及野生型探針則標示有不同的螢光染劑。 In one aspect, the invention relates to a method for detecting a single nucleotide mutation in the 12th and 13th coding sequences of KRAS in a DNA sample, comprising: by using a mutant probe, a corresponding wild type Probe, a forward and a reverse primer, using a allelic discrimination method to detect whether a DNA sample has One or more mutations in KRASc12-13. The mutant probe is directed against a 1A, 1T, 1C, 2A, 2T, 2C or 5A single nucleotide mutation on KRASc12-13, and amplifies the primer of the 12-13 segment of the KRAS exon 2 coder, both of which are No more than 25 nucleotides; mutant and wild-type probes are labeled with different fluorescent dyes.
該突變型及野生型探針配對係選自下列群組:(i)SEQ ID NO:1與SEQ ID NO:2配對;(ii)SEQ ID NO:3與SEQ ID NO:4配對;(iii)SEQ ID NO:5與SEQ ID NO:2配對;(iv)SEQ ID NO:7與SEQ ID NO:8配對;(v)SEQ ID NO:9與SEQ ID NO:8或10配對;(vi)SEQ ID NO:11與SEQ ID NO:10配對;以及(vii)SEQ ID NO:12與SEQ ID NO:13配對。 The mutant and wild type probe pairings are selected from the group consisting of: (i) SEQ ID NO: 1 paired with SEQ ID NO: 2; (ii) SEQ ID NO: 3 paired with SEQ ID NO: 4; SEQ ID NO: 5 is paired with SEQ ID NO: 2; (iv) SEQ ID NO: 7 is paired with SEQ ID NO: 8; (v) SEQ ID NO: 9 is paired with SEQ ID NO: 8 or 10; SEQ ID NO: 11 is paired with SEQ ID NO: 10; and (vii) SEQ ID NO: 12 is paired with SEQ ID NO: 13.
於本發明一實施例中,檢測步驟包括:(a)將DNA樣本與成對探針、引子以及聚合酶鏈鎖反應(PCR)試劑混合;(b)放大橫跨KRAS外顯子2編碼子12-13之區段;(c)測量DNA樣本中突變型探針的螢光強度;以及(d)比較對應的質量控制(QC)突變型的螢光強度,若相近(comparable)或較強則代表具有突變型。 In an embodiment of the invention, the detecting step comprises: (a) mixing the DNA sample with the paired probe, the primer, and the polymerase chain reaction (PCR) reagent; (b) amplifying the crossover KRAS exon 2 coder Sections 12-13; (c) measuring the fluorescence intensity of the mutant probe in the DNA sample; and (d) comparing the fluorescence intensity of the corresponding quality control (QC) mutant, if comparable or stronger It means that it has a mutant type.
於本發明另一實施例中,正向及反向引子係各自獨立包含核苷酸序列SEQ ID NO:14及15。 In another embodiment of the invention, the forward and reverse primers each independently comprise the nucleotide sequences SEQ ID NO: 14 and 15.
於本發明另一實施例中,上述方法係包含:檢測KRASc12-13上1A、1T、1C、2A、2T、2C及5A的突變型,其中的探針配對包含以下的成對序列:(i)SEQ ID NO:1與SEQ ID NO:2配對;(ii)SEQ ID NO:3與SEQ ID NO:4配對;(iii)SEQ ID NO:5與SEQ ID NO:2配對;(iv)SEQ ID NO:7與SEQ ID NO:8配對;(v)SEQ ID NO:9與SEQ ID NO:8或10配對;(vi)SEQ ID NO:11與SEQ ID NO:10配對;以及(vii)SEQ ID NO:12與SEQ ID NO:13配對。 In another embodiment of the present invention, the method comprises: detecting a mutant of 1A, 1T, 1C, 2A, 2T, 2C, and 5A on KRASc12-13, wherein the probe pairing comprises the following paired sequence: (i SEQ ID NO: 1 is paired with SEQ ID NO: 2; (ii) SEQ ID NO: 3 is paired with SEQ ID NO: 4; (iii) SEQ ID NO: 5 is paired with SEQ ID NO: 2; (iv) SEQ ID NO:7 is paired with SEQ ID NO:8; (v) SEQ ID NO:9 is paired with SEQ ID NO:8 or 10; (vi) SEQ ID NO:11 is paired with SEQ ID NO:10; and (vii) SEQ ID NO: 12 is paired with SEQ ID NO: 13.
於本發明另一實施例中,該突變型探針係以FAM標記。 In another embodiment of the invention, the mutant probe is labeled with FAM.
於本發明另一實施例中,該野生型探針係以VIC標記。 In another embodiment of the invention, the wild type probe is labeled with VIC.
於本發明另一實施例中,每一探針長度皆不超過18或16個核苷酸。 In another embodiment of the invention, each probe is no more than 18 or 16 nucleotides in length.
於本發明另一實施例中,引子係用於放大小於80或70鹼基對(bp)的擴增子(amplicon)。 In another embodiment of the invention, the primer is used to amplify an amplicon of less than 80 or 70 base pairs (bp).
於本發明另一實施例中,引子係用於放大包含SEQ ID NO:16核苷酸序列的DNA片段。 In another embodiment of the invention, the primer is used to amplify a DNA fragment comprising the nucleotide sequence of SEQ ID NO: 16.
於本發明另一實施例中,引子係用於放大由SEQ ID NO:16的核苷酸序列組成的DNA片段。 In another embodiment of the invention, the primer is used to amplify a DNA fragment consisting of the nucleotide sequence of SEQ ID NO: 16.
於本發明另一實施例中,該放大的步驟包含行使即時PCR(qPCR)。 In another embodiment of the invention, the step of amplifying comprises performing an instant PCR (qPCR).
於本發明之另一實施例中,該DNA樣本係包含由腫瘤活檢(biopsy)、石蠟包埋(FFPE)的腫瘤組織切片、新鮮或 冷凍的腫瘤組織,或培養的癌細胞株所製備的gDNA或cDNA。 In another embodiment of the invention, the DNA sample comprises a tumor biopsy (biopsy), paraffin embedded (FFPE) tumor tissue section, fresh or Frozen DNA tissue, or gDNA or cDNA prepared from cultured cancer cell lines.
於本發明另一實施例中,有切片係來自黏液性或轉移性直腸癌、或膽管癌腫瘤。 In another embodiment of the invention, the section is from a mucinous or metastatic rectal cancer, or a cholangiocarcinoma.
於本發明另一實施例中,cDNA係製備於冷凍腫瘤組織。 In another embodiment of the invention, the cDNA is prepared in frozen tumor tissue.
於本發明另一實施例中,DNA係得自於CRC病人的血清。 In another embodiment of the invention, the DNA is obtained from the serum of a CRC patient.
於本發明另一實施例中,gDNA的量不大於10 ng/μl. In another embodiment of the present invention, the amount of gDNA is not more than 10 ng / μl.
在不限定本發明範疇下,以下係提供本發明相關之實施例之儀器、裝置、方法及結果。於實施例中用來便於閱讀者的名稱及副標題並不限制本發明之範疇,此外,於此所提出及揭露的理論,無論正確與否皆歸入本發明之範疇,且無論任何理論或功能組合,只要能實施本發明即屬本發明之範圍。 Without limiting the scope of the invention, the instrument, apparatus, method and results of the embodiments of the invention are provided below. The names and subtitles used in the examples to facilitate the reader do not limit the scope of the invention, and the theory presented and disclosed herein, whether correct or not, falls within the scope of the invention, and regardless of any theory or function. Combinations, as long as the invention can be practiced, are within the scope of the invention.
將取字21個腫瘤細胞株(結腸癌或肺癌)的gDNA進行KRAS定序及測試,而腫瘤樣本係收集自2007至2009年間204位自願參加的結腸癌病人,所有腫瘤檢體經蘇木精伊紅(Hematoxylin and Eosin)染色,由台灣國家衛生研究院之癌症研究所病理學者重新評估,此研究獲得成大醫院人體試驗委員會認可。 The gDNA of 21 tumor cell lines (colon cancer or lung cancer) was subjected to KRAS sequencing and testing, and the tumor samples were collected from 204 volunteer patients who participated in the colon cancer from 2007 to 2009. All tumor samples were treated with hematoxylin. Hematoxylin and Eosin staining was re-evaluated by pathologists from the Cancer Institute of the National Institutes of Health of Taiwan. The study was approved by the Human Body Testing Committee of the Chengdu University Hospital.
同步以Fam標示的1A、1T、1C、2A、2T、2C及5A突變型探針以及以Vic標示的同向野生型探針(如表1所設計),檢測突變型(Y)及野生型(X)等位基因。每個即時PCR(qPCR)反應,加入1X TaqMan基因分形試劑(Genotyping Master Mix)(P/N4352042,購自Applied Biosystem)或1X KAPA引子快速qPCR試劑(KAPA Probe Fast qPCR Kit Master Mix Universal)(KK4701,購自Kapa Biosystems),20或10 ng gDNA或100 ng cDNA反轉錄自RNA,3.38 pmole的Fam-及Vic-標示的探針對,以及9 pmole的引子。設定ABI PRISM 7900HT或7500快速序列檢測系統(Fast Sequence Detection System)(購自Applied Biosystems)的流程為:50℃下2分鐘,95℃下10分鐘,接著在95℃下15秒後,循環40次60℃下60秒。正向控制組(positive control)的QC突變型,係由定點突變(site directed mutagenesis)所產生,經大量複製後萃取得到的DNA質體,混1-5%於野生型DNA質體中。每個測試都要包括無模板的控制組(no-template control,NTC),作為負向控制組(negative control)。 Synchronous (Y) and wild type were detected by synchronizing the 1A, 1T, 1C, 2A, 2T, 2C and 5A mutant probes indicated by Fam and the wild-type probes labeled with Vic (as designed in Table 1). (X) allele. For each real-time PCR (qPCR) reaction, add 1X TaqMan Genotyping Master Mix (P/N4352042, available from Applied Biosystem) or 1X KAPA Probe Fast qPCR Kit Master Mix Universal (KK4701, Purchased from Kapa Biosystems), 20 or 10 ng of gDNA or 100 ng of cDNA was reverse transcribed from RNA, 3.38 pmole of Fam- and Vic-labeled probe pairs, and 9 pmole of primers. The procedure for setting the ABI PRISM 7900HT or 7500 Fast Sequence Detection System (available from Applied Biosystems) was: 2 minutes at 50 ° C, 10 minutes at 95 ° C, then 15 cycles after 15 seconds at 95 ° C. 60 seconds at 60 ° C. The QC mutant of the positive control group is produced by site directed mutagenesis, and the DNA plastid obtained after extensive replication is mixed with 1-5% in the wild-type DNA plastid. Each test includes a no-template control (NTC) as a negative control.
所有等位基因偵測各個K-ras突變型的螢光標示探針如表1所列。 Fluorescent labeling probes for all K-ras mutants detected by all alleles are listed in Table 1.
於表1中,探針1TM、2TM、2CM、5AM分別偵測1T、2T、2C及5A之突變,而新探針N1A、N2A及N1C分別偵測1A、2A及1C底線之單一突變。 In Table 1, probes 1TM, 2TM, 2CM, and 5AM detect mutations of 1T, 2T, 2C, and 5A, respectively, while new probes N1A, N2A, and N1C detect single mutations of the 1A, 2A, and 1C bottom lines, respectively.
PCR引子:測試過的引子序列如下:正向引子:1F:TGACTGAATATAAACTTGTGGTAGTTG(SEQ ID NO:14);AS12F:AGGCCTGCTGAAAATGACTGAATAT(SEQ ID NO:21;由外顯子2前端序列往後建構)。 PCR primer: The sequence of the introduced primer was as follows: forward primer: 1F : TGACTGAATATAAACTTGTGGTAGTTG (SEQ ID NO: 14); AS12F: AGGCCTGCTGAAAATGACTGAATAT (SEQ ID NO: 21; constructed from the exon 2 front-end sequence).
反向引子:AS12R:GCTGTATCGTCAAGGCACTCTT(SEQ ID NO:15);1R:TCgTCCACAAAATgATTCTgAA(SEQ ID NO:22;由外顯子2後端序列往前建構)。 Reverse primer: AS12R : GCTGTATCGTCAAGGCACTCTT (SEQ ID NO: 15); 1R: TCgTCCACAAAATgATTCTgAA (SEQ ID NO: 22; constructed from the exon 2 rear-end sequence).
經證實(畫底線)較佳的引子可合成66 bp的擴增子,其野生型擴增子序列為:TGACTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGCCTTGACGATACAGC(SEQ ID NO:16),其中底線為1F及AS12R(互補性)的序列。 A 66 bp amplicon was synthesized by a primer (bottom line). The wild type amplicon sequence is: TGACTGAATATAAACTTGTGGTAGTTG GAGCT GGTGGC GTAGGC AAGAGTGCCTTGACGATACAGC (SEQ ID NO: 16), where the bottom line is 1F and AS12R (complementarity) )the sequence of.
另一方面,1F及AS12R可能合成的突變型擴增子的序列,可表示為:tgactgaa tataaacttg tggtagttgg agct NNtgAc gtaggcaaga gtgccttgac gatacagc,其字母「NN」代表除野生型G外的三個可能的核苷酸(A、C、T)。 On the other hand, the sequence of the mutant amplicon that may be synthesized by 1F and AS12R can be expressed as: tgactgaa tataaacttg tggtagttgg agct NNtgAc gtaggcaaga gtgccttgac gatacagc, the letter "NN" represents three possible nucleotides other than wild type G (A, C, T).
結合1F及AS12R引子與新的K-ras探針配對(表1中粗體所標示的序列頭銜),能改善K-ras c12-13的常見7個突變型的等位基因檢測。 Binding to the 1F and AS12R primers paired with the new K-ras probe (the sequence title indicated by the bold in Table 1) can improve the allelic detection of the seven common mutants of K-ras c12-13.
K-Ras NM_004985外顯子2序列如下: tggtagttgg agct ggtggc gtaggcaaga gtgccttgac gatacagcta ccaacaatag ag/(SEQ ID NO:17),編碼子12區段為ggt,而編碼子13區域為ggc,框起來的序列為AS12F及1R(互補序列),另外,SEQ ID NO:17序列包含SEQ ID NO:16序列。 The sequence of exon 2 of K-Ras NM_004985 is as follows: Tggtagttgg agct ggtggc gtaggcaaga gtgccttgac gatacagcta Ccaacaatag ag/(SEQ ID NO: 17), the coding 12 segment is ggt , the coding 13 region is ggc , the framed sequence is AS12F and 1R (complementary sequence), and the SEQ ID NO: 17 sequence comprises SEQ ID NO: 16 sequence.
在總體積15 μl的PRC反應中,各成份的最終濃度如下:
表3列示所偵測的單一核苷酸突變的位置及種類。 Table 3 lists the location and type of single nucleotide mutations detected.
樣本中各等位基因反應的Fam強度(Y),與1%至5%對應的QC突變型,即本定性測量法的區分點,做比較(圖2及3),除了純質性突變型(homogeneous mutant)外,代表野生型的Vic(X軸),或強或弱會在所有樣本中看到。訊號呈現無論是顏色圖式或數字皆由excel檔輸出。凡樣本之Y值等於或高於QC突變型Y值係判定為具有突變。實施例中的長條圖代表多次實驗所獲Y值的平均值。 The Fam intensity (Y) of each allele reaction in the sample is compared with the QC mutant corresponding to 1% to 5%, which is the distinguishing point of this qualitative measurement (Figures 2 and 3), except for the pure mutant Outside (homogeneous mutant), representing the wild type of Vic (X-axis), either strong or weak will be seen in all samples. The signal presentation is output by the excel file whether it is a color pattern or a number. Where the Y value of the sample is equal to or higher than the QC mutant Y value, it is determined to have a mutation. The bar graph in the examples represents the average of the Y values obtained for multiple experiments.
等位基因鑑別檢測雖為定性分析法,藉由增加與野生型的Fam強度差(△Y),提升QC突變型的測出量從起始的5%到最後低於1%。改善此檢測的過程包括改變:引子的配對以縮短擴增子的長度從80至66 bp,及探針的序列及其配對(實施例4)。最後,含引子1F及AS12R的探針N1A、N1C、 1T、N2A、2C、2T及5A經證實可達到檢測1% QC突變型的靈敏度。 Although the allelic discrimination test is a qualitative analysis method, by increasing the difference in Fam intensity from the wild type (ΔY), the measured amount of the QC mutant is increased from the initial 5% to the last less than 1%. The process of improving this assay involves a change: pairing of primers to shorten the length of the amplicon from 80 to 66 bp, and the sequence of the probe and its pairing (Example 4). Finally, probes N1A, N1C containing primers 1F and AS12R, 1T, N2A, 2C, 2T and 5A have been shown to achieve sensitivity in detecting 1% QC mutants.
本發明證實等位基因專一的探針以及引子序列與擴增子長度可能會影響檢測的效果,而所改變的序列經不同試劑、儀器以及樣本型態的組合,尚有進一步改善檢測靈敏度及專一性的空間。 The invention proves that the allele-specific probe and the primer sequence and the length of the amplicon may affect the detection effect, and the changed sequence is further improved by the combination of different reagents, instruments and sample types, and further improves the detection sensitivity and specificity. Sexual space.
為了比較三種方法的結果,靈敏度定義為測量確認為正確突變(視為陽性對照)的比例,而專一性係測量確認為正確野生型(視為陰性對照)的比例。若一方法所測量的等位基因結果不同於其他兩個方法,則被視為偽陽性或偽陰性。 To compare the results of the three methods, sensitivity was defined as the proportion of measurements that were confirmed to be correct mutations (considered as a positive control), while the specificity measures were confirmed to be the correct proportion of wild type (considered as a negative control). If the allelic result measured by one method is different from the other two methods, it is regarded as a false positive or a false negative.
(為正確陽性的陽性可能性) (positive possibility for correct positive)
(為正確陰性的陰性的可能性) (Possibility of negative for correct negative)
以等位基因檢測、定序及RFLP方法初試21株癌細胞,證實六個有K-ras c12的突變(A549及H358於第一鹼基及SW480、SW620、PRMI-8226及H2444於第二鹼基),八個有c13的突變(H1355、H1734及H1755於第一鹼基及DLD-1、HCT-8、HCT-116、Lovo及SW48於第二鹼基),以及七個K-ras野生型。RFLP所測到的15株有突變型的細胞中,有一個是 偽突變型(6.7%)(A172),係限制酶裂解核酸不完全所致,在FFPE組織此問題更惡化(n=62)(表4)。 21 strains of cancer cells were initially tested by allele detection, sequencing and RFLP methods, and six mutations with K-ras c12 were confirmed (A549 and H358 were in the first base and SW480, SW620, PRMI-8226 and H2444 were in the second base). Base), eight mutations with c13 (H1355, H1734 and H1755 in the first base and DLD-1, HCT-8, HCT-116, Lovo and SW48 in the second base), and seven K-ras wild type. One of the 15 mutant cells detected by RFLP is The pseudo-mutant type (6.7%) (A172) was caused by incomplete restriction of the cleavage of the nucleic acid by the restriction enzyme, and this problem was worsened in the FFPE tissue (n=62) (Table 4).
在RFLP所測出的25個K-ras突變型中,有8個被等位基因檢測及定序法證實為偽突變(8/25=32%),16個正確以及1個有不同的突變型(1/17=6%錯誤突變型)。由於RFLP在FFPE樣本的靈敏度(在混合樣本中能偵測>10%以上的突變型)及專一性(82%,表4)均較差,故被dHPLC取代作為第三種檢測法以證實等位基因與定序檢測法的結果差異。 Of the 25 K-ras mutants detected by RFLP, 8 were confirmed to be pseudo-mutations (8/25=32%) by allele detection and sequencing, 16 correct and 1 with different mutations. Type (1/17 = 6% false mutant). Since RFLP is poor in the sensitivity of FFPE samples (>10% or more of mutants can be detected in mixed samples) and specificity (82%, Table 4), it is replaced by dHPLC as the third test to confirm the allele. The difference between the results of the gene and the sequencing test.
定序法在FFPE組織樣本,有12.4%的錯誤率,其定序結果的圖式中多有雜訊,其中有些檢樣在做定序前即呈現較差的PCR產量。首次定序即失敗檢樣,在至少加倍量後才再送出檢測。該研究發現DNA定序偵測到具有雙突變型的檢樣多於等位基因法(表6),經第三個方法證實多半為偽,故而稍微降低DNA定序法的靈敏度及專一性(各為98.8%及97.5%,表5)。在定序一些較老的組織時,發現偏性突變(biased mutation)隨著Taq聚合酶的種類(Viogene,Qiagene,Invitrogen及KB HotStart)而不同,可能因生物降解或組織處理不良所致的DNA片段化。較新的DNA定序技術例如:焦磷酸定序(pyrosequencing)及新一代定序(NGS),無須經過PCR步驟而較可能克服上述問題。 The sequencing method has a 12.4% error rate in FFPE tissue samples, and there are many noises in the pattern of the sequencing results. Some of the samples show poor PCR yield before sequencing. The first time sequence is a failure test, and the test is sent again after at least double the amount. The study found that DNA sequencing detected more than the allele method with double mutants (Table 6), and most of them were false by the third method, thus slightly reducing the sensitivity and specificity of the DNA sequencing method ( Each is 98.8% and 97.5%, Table 5). When sequencing some older tissues, it was found that biased mutations vary with the type of Taq polymerase (Viogene, Qiagene, Invitrogen, and KB HotStart), possibly due to biodegradation or poor tissue processing. Fragmentation. Newer DNA sequencing techniques such as pyrosequencing and next generation sequencing (NGS) are more likely to overcome the above problems without going through the PCR step.
RFLP檢測因PCR操作及限制酶作用常結果難料外(專一性差如表4所示),也費時(至少兩天)。定序除了結果有12.4%錯誤率,整體仍有很高靈敏度的(98.8%,表5)及專一性(97.5%),堪任臨床檢測;但其在技術上的限制及誤差 率高導致解誤的困難及結果的延遲。表4顯示62個CRC樣本的RFLP結果,表5比較等位基因與DNA定序檢測法的結果。 RFLP detection is often unpredictable due to PCR manipulation and restriction enzymes (as shown in Table 4), which is also time consuming (at least two days). In addition to the result of 12.4% error rate, the overall sequence still has high sensitivity (98.8%, Table 5) and specificity (97.5%), which is suitable for clinical testing; but its technical limitations and errors The high rate leads to difficulties in troubleshooting and delays in results. Table 4 shows the RFLP results for 62 CRC samples, and Table 5 compares the results of the allele and DNA sequencing assays.
RFLP的靈敏度=100%(17/17)而專一性=82%(37/45)。 RFLP sensitivity = 100% (17/17) and specificity = 82% (37/45).
RFLP的偽MT=32%(8/25)而錯的MT=6%(1/17)。 The pseudo MT of RFLP = 32% (8/25) and the wrong MT = 6% (1/17).
以定序及等位基因檢測法的結果確認RFLP結果的對錯。 The correctness of the RFLP results was confirmed by the results of sequencing and allelic detection.
第三個檢測方法(dHPLC)已證實等位基因檢測法的靈敏度(100%)及專一性(100%)均比定序高,基因型結果的比較見表6。等位基因檢測法與定序法所測得的不同基因型中,經dHPLC證實為正確的有一個突變型(5A)及三個野生型(定序為一野生型、一2T、2A5A及1C5A的雙突變)。雖然雙突變與腫瘤內部的基因異質性(intratumoral genetic heterogeneity)有關,但需顯微解剖(microdissection)來證實。相較qPCR法,雙突變傾向發生於定序及SSCP檢測法[Bazan et al.,2002;Span M,1996]。整體而言,偵測204個CRC檢樣得到有83個K-RAS突變(40.7%),其中20%為G12D(GAT),7.4%為12V(GTT),7.4%為13D(GAC),及5.3%其他四種突變的總合(12C,12R,12A及12S)。 The third assay (dHPLC) has confirmed that the sensitivity (100%) and specificity (100%) of the allelic assay are higher than the sequencing, and the genotype results are compared in Table 6. Among the different genotypes measured by the allelic assay and the sequencing method, one mutant (5A) and three wild types (sequenced as one wild type, one 2T, 2A5A and 1C5A) confirmed by dHPLC were correct. Double mutation). Although double mutations are associated with intratumoral genetic heterogeneity within the tumor, they require microdissection to confirm. Compared to the qPCR method, the double mutation tends to occur in sequencing and SSCP assays [Bazan et al., 2002; Span M, 1996]. Overall, the detection of 204 CRC samples resulted in 83 K-RAS mutations (40.7%), of which 20% were G12D (GAT), 7.4% were 12V (GTT), and 7.4% were 13D (GAC), and 5.3% of the sum of the other four mutations (12C, 12R, 12A and 12S).
等位基因檢測法的準確性分析分兩種,運行內的精確度(intra-run precision)即隨機測試21個檢樣三次的重複性,及運行間的精確度(inter-run precision)係評估五個檢樣五次連同每次的QC組(5%QC突變型,WT以及NTC)的重複性,其中,五個CRC檢樣為兩個2A突變型(P18及P48),一個2T突變型(P30)以及兩個野生型(P02及P04)(Chow等,2012)。各檢樣的Fam螢光(MT)值在三重複或五次檢測中的標準差(SDs)都很小,證實檢測的準確性及再現性均良好。因此,由比較不同方法的結果及統計分析該檢測法在病人 檢樣的精確度與再現性,等位基因檢測法的確符合臨床檢測的要求(CLIA指導方針)。 The accuracy of the allelic detection method is divided into two types. The intra-run precision is the random test of the repeatability of 21 samples, and the inter-run precision evaluation. Five samples were taken five times together with the repeatability of each QC group (5% QC mutant, WT and NTC), of which five CRC samples were two 2A mutants (P18 and P48), one 2T mutant (P30) and two wild types (P02 and P04) (Chow et al., 2012). The standard deviation (SDs) of the Fam fluorescence (MT) values of each sample was small in three or five tests, confirming that the accuracy and reproducibility of the test were good. Therefore, by comparing the results of different methods and statistical analysis of the test in patients The accuracy and reproducibility of the sample, the allelic test does meet the requirements of clinical testing (CLIA guidelines).
在較少數的膽管細胞癌(cholangiacarcinoma)檢樣(n=40),評估並比較等位基因檢測法及DNA定序法的KRAS突變結果,發現等位基因檢測法較定序法多偵測到2個突變型及一個不同的突變型,扣除13個腫瘤細胞量不到5%的檢樣後,至少有7%的偵測率。檢測法的表現有賴於監測必要的QC,既用以區別每次的錯誤是發生在檢測前(檢樣及準備)或檢測法本身,更監視檢測操作的穩定性(圖1)。 In a small number of cholangiacarcinoma samples (n=40), the KRAS mutation results of allele detection and DNA sequencing were evaluated and compared. It was found that the allele detection method detected more than the sequencing method. Two mutants and one different mutant, after deducting 13 tumor cells with less than 5% of the samples, at least 7% of the detection rate. The performance of the test depends on monitoring the necessary QC, which is used to distinguish between the occurrence of each error before the test (sample and preparation) or the test itself, and to monitor the stability of the test operation (Figure 1).
不同於經歷二次PCR放大的RFLP及DNA定序法,等位基因檢測法能同步放大及偵測基因型,減少PCR放大的錯誤機率。新引子縮短qPCR擴增子的長度(從80 bp至66 bp)後,在FFPE檢樣的偵測率及靈敏度得到改善,相反地定序法的擴增子必須是150至250 bp的片段。該新引子係1F取代AS12F與原引子AS12R配對,加上新探針(表1之N1A、N1C、N2A及N2C)更大幅提升檢測靈敏度,由偵測5%突變型(圖1)至1%突變型(圖5及6)。新的N2A(圖2A)及N2C(圖3A)探針在等位基因檢測,較舊的(A,圈起來所示中之圓點)更能區分5至100%的2A或2C突變型。由突變型及野生型的Fam(Y)強度差(△Y=YMT-YWT)可看出新引子1F增加N2A探針的靈敏度,由偵測2A突變型5%提升至1%(圖2B)。但1F引子對新的N2C探針則未必優於舊的2C探針(圖3B),因偵測5% 2C及2C5A的QC突變型及含有2C的RPMI-8226細胞時,顯示舊的2C探針的△Y較佳。故除2C外,所有偵測到的5%突變型的△Y顯示於圖4A,及持續兩個月監測N1C探針的Fam(Y)值(圖4B)。 Unlike RFLP and DNA sequencing, which undergo secondary PCR amplification, allele detection can simultaneously amplify and detect genotypes, reducing the probability of PCR amplification errors. After the new primer shortens the length of the qPCR amplicon (from 80 bp to 66 bp), the detection rate and sensitivity of the FFPE sample are improved. On the contrary, the sequence amplicon must be a fragment of 150 to 250 bp. The new primer 1F replaces AS12F with the original primer AS12R, and the new probe (N1A, N1C, N2A and N2C in Table 1) greatly improves the detection sensitivity by detecting 5% mutant (Fig. 1) to 1%. Mutant (Figures 5 and 6). The new N2A (Fig. 2A) and N2C (Fig. 3A) probes are allele-detected, and the older (A, circled dots) distinguish 5 to 100% of the 2A or 2C mutants. From the difference in Fam(Y) intensity between mutant and wild type (△Y=Y MT -Y WT ), it can be seen that the sensitivity of the new primer 1F to increase the N2A probe is increased from 5% of the detected 2A mutant to 1% (Fig. 2B). However, the 1F primer is not necessarily superior to the old 2C probe for the new N2C probe (Fig. 3B). The old 2C probe is shown when the QC mutant of 5% 2C and 2C5A is detected and the RPMI-8226 cells containing 2C are detected. The ΔY of the needle is preferred. Therefore, except for 2C, the ΔY of all detected 5% mutants is shown in Figure 4A, and the Fam(Y) value of the N1C probe was monitored for two months (Fig. 4B).
以新的ASO序列比較不同試劑,Kapa探針快速qPCR套組(KAPA Probe Fast qPCR Kit)及TaqMan快速通用PCR預混試劑(TaqMan Fast Universal PCR Master Mix)(圖5),以及儀器,ABI 7900及7500 Fast(圖6A及6B)。以1%及2%QC突變型測試新的ASO序列,所測得的Fam強度(Y)隨百分比增加的程度即反映出靈敏度。 Compare the different reagents with the new ASO sequence, the Kapa Probe Fast qPCR Kit and the TaqMan Fast Universal PCR Master Mix (Figure 5), as well as the instrument, ABI 7900 and 7500 Fast (Figures 6A and 6B). The new ASO sequence was tested with 1% and 2% QC mutants, and the measured Fam intensity (Y) as a percentage increases reflects sensitivity.
細胞在每個反應的gDNA量,由20降低至10 ng(圖7)。新ASO的組合檢測兩共培養細胞的K-ras基因型,在10 ng gDNA(圖8)及100 ng cDNA(圖9)均與個別細胞的K-ras基因型有對應。分析少數CRC病人冷凍組織的RNA及少量血清檢樣時,雖腫瘤gDNA有測到2T及5A突變型,但凍存-80℃超過1年的6個血清DNA則未檢測到(圖10)。在冷凍組織mRNA反轉錄成cDNA檢測到2T及2A雙突變型,但缺乏gDNA數據的驗證。雖然檢樣有限,K-ras檢測是一種非侵入性診斷工具,其應用在循環DNA(circulating DNA)及組織 RNA的潛力,也可能在臨床上產生較大的影響力,例如高危險個體即時基因變異的快速篩檢。本發明簡單又快速,是極具臨床應用價值的檢測法。 The amount of gDNA in each reaction was reduced from 20 to 10 ng (Figure 7). The combination of the new ASO detected the K-ras genotype of the two co-cultured cells, and the 10 ng gDNA (Fig. 8) and 100 ng cDNA (Fig. 9) corresponded to the K-ras genotype of individual cells. When analyzing the RNA of a few CRC patients with frozen tissue and a small amount of serum samples, although the 2G and 5A mutants were detected in the tumor gDNA, 6 serum DNAs frozen at -80 °C for more than 1 year were not detected (Fig. 10). The 2T and 2A double mutants were detected by reverse transcription of cDNA into frozen tissue, but the validation of gDNA data was lacking. Although limited in sample size, K-ras detection is a non-invasive diagnostic tool for circulating DNA and tissues. The potential of RNA may also have a large clinical impact, such as rapid screening of immediate genetic variations in high-risk individuals. The invention is simple and rapid, and is a detection method with great clinical application value.
以上所述的實施例僅供說明及闡釋,並非詳盡或限制本發明所揭露的精確形式,而上述教示還可能有多種的修飾及變化。 The above-described embodiments are for illustrative purposes only and are not intended to be exhaustive or limiting.
所描述的實施例及範例係用以解釋本發明的原理及實際應用,以使精通本領域者能運用本發明及其中的實施例,或做改良以適於特殊的用途。在不背離本發明的精神及範疇下,此領域之精通者會將實施例明顯轉換,因此,本發明的範疇是由附加的請求項而非前面的描述或實施例加以定義。 The described embodiments and examples are intended to be illustrative of the principles of the invention and the application of the embodiments of the invention. The skilled artisan will clearly convert the embodiments without departing from the spirit and scope of the invention, and the scope of the invention is defined by the appended claims rather than the foregoing description or embodiments.
本發明所引用及詳述的包括專利、專利申請案以及各種參考文獻,僅用於說明本發明,並非承認他們是本發明的「前身技術」。在此說明書中被引用及討論的所有參考文獻全都以同樣的原則認定,就如同每份參考文獻也有其各引用的文獻。 The patents, patent applications, and various references, which are hereby incorporated by reference in their entirety, are hereby incorporated by reference in their entirety in their entirety in their entirety herein All references cited and discussed in this specification are all identified by the same principles, as if each reference has its own referenced.
圖1顯示K-ras等位基因檢測法在包含野生型(wt)以及5%突變型(mt)質體DNA之質量控制組(QC)的月監測,其係執行於服務CRC病患期間(Chow等)。 Figure 1 shows monthly monitoring of the K-ras allele assay in the quality control group (QC) containing wild-type (wt) and 5% mutant (mt) plastid DNA, which was performed during the course of serving CRC ( Chow et al.)
圖2顯示K-ras檢測的靈敏度,由測量5%2A突變型(A:係在可區別的範圍內最低的百分比)提升至1%(B),係新的突變 型探針-N2A(CTGATGGCGTAGGC;SEQ ID NO:11)配野生型探針TTGGAGCTGGTGGC(SEQ ID NO:10),加上新引子1F(TGACTGAATATAAACTTGTGGTAGTTG;SEQ ID NO:14)配引子AS12R(GCTGTATCGTCAAGGCACTCTT;SEQ ID NO:15)所達成。但與引子對1F/1R(TCgTCCACAAAATgATTCTgAA;SEQ ID NO:22)或AS12F(AGGCCTGCTGAAAATGACTGAATAT;SEQ ID NO:21)/AS12R,N2A突變型探針分辨突變型的能力則不穩。 Figure 2 shows the sensitivity of the K-ras assay, measured by measuring 5% 2A mutant (A: the lowest percentage in the distinguishable range) to 1% (B), a new mutation Type probe - N2A (CTGATGGCGTAGGC; SEQ ID NO: 11) with wild type probe TTGGAGCTGGTGGC (SEQ ID NO: 10), plus new primer 1F (TGACTGAATATAAACTTGTGGTAGTTG; SEQ ID NO: 14) with primer AS12R (GCTGTATCGTCAAGGCACTCTT; SEQ ID NO: 15) achieved. However, the ability to resolve mutants with the primer pair 1F/1R (TCgTCCACAAAATgATTCTgAA; SEQ ID NO: 22) or AS12F (AGGCCTGCTGAAAATGACTGAATAT; SEQ ID NO: 21)/AS12R, N2A mutant probe was unstable.
圖3A顯示起初將N2C突變型探針(CC TACGCCAGCAGC;SEQ ID NO:6)配野生型探針(CCTACGCCACCAGCT;SEQ ID NO:2)似乎有類似N2A的趨勢,但進一步觀察其區別5% 2C及2C5A質體DNA以及含2C的RPMI-8226細胞基因體DNA(gDNA)的Y差異(△Y)(B),以同樣的1F引子(TGACTGAATATAAACTTGTGGTAGTTG;SEQ ID NO:14)配AS12R(GCTGTATCGTCAAGGCACTCTT;SEQ ID NO:15),發現略遜於舊的2C探針(CTACGCCAGCAGCT;SEQ ID NO:5)。無論是新的或舊的探針在區分2C等位基因,與AS12F(AGGCCTGCTGAAAATGACTGAATAT;SEQ ID NO:21)/AS12R引子對(primer pairs)的效果優於1F(SEQ ID NO:14)/1R(TCgTCCACAAAATgATTCTgAA;SEQ ID NO:22)引子對。 Figure 3A shows that the N2C mutant probe (CC TACGCCAGCAGC; SEQ ID NO: 6) initially appeared to have a similar N2A trend with the wild type probe (CCTACGCCACCAGCT; SEQ ID NO: 2), but further observed the difference between 5% 2C and 2C5A plastid DNA and Y difference (ΔY) (B) of 2C-containing RPMI-8226 cell genomic DNA (gDNA), with the same 1F primer (TGACTGAATATAAACTTGTGGTAGTTG; SEQ ID NO: 14) with AS12R (GCTGTATCGTCAAGGCACTCTT; SEQ ID NO: 15) was found to be slightly inferior to the old 2C probe (CTACGCCAGCAGCT; SEQ ID NO: 5). Whether the new or old probe distinguishes the 2C allele, the effect with AS12F (AGGCCTGCTGAAAATGACTGAATAT; SEQ ID NO: 21) / AS12R primer pairs is better than 1F (SEQ ID NO: 14) / 1R ( TCgTCCACAAAATgATTCTgAA; SEQ ID NO: 22) primer pair.
圖4顯示除了2C外,新探針以及引子偵測所有5%QC突變型的△Y(當時的靈敏度);其中N1C突變型探針 (TTGGAGCTCGTGGC;SEQ ID NO:12)配野生型探針TTGGAGCTGGTGGCGT(SEQ ID NO:13)區別等位基因的能力似乎較佳(2009六月及七月的監測)(B)。 Figure 4 shows that in addition to 2C, the new probe and the primer detect ΔY (the sensitivity at the time) of all 5% QC mutants; among them, the N1C mutant probe (TTGGAGCTCGTGGC; SEQ ID NO: 12) The ability to distinguish alleles with the wild type probe TTGGAGCTGGTGGCGT (SEQ ID NO: 13) appears to be better (monitoring in June and July 2009) (B).
圖5顯示等位基因以新的探針及引子檢測1%及2%QC突變型的靈敏度(以△Y來看),ABI試劑(實心長條圖)-TaqMan快速通用PCR預混試劑(TaqMan Fast Universal PCR Master Mix)的效果優於較便宜的KAPA探針快速qPCR套組(KAPA Probe Fast qPCR Kit)許多(空心長條圖)(A);但在新的探針1A、1C及2A(所圈之內),KAPA試劑亦有不錯的靈敏度(B)。 Figure 5 shows the sensitivity of the alleles to detect 1% and 2% QC mutants with new probes and primers (in terms of ΔY), ABI reagent (solid bar graph) - TaqMan rapid universal PCR premix reagent (TaqMan) Fast Universal PCR Master Mix) is superior to the cheaper KAPA probe fast qPCR kit (KAPA Probe Fast qPCR Kit) (hollow strip diagram) (A); but in the new probes 1A, 1C and 2A ( Within the circle), KAPA reagent also has good sensitivity (B).
圖6比較新探針及引子偵測1%及2%QC突變型的靈敏度(以△Y來看),在ABI 7900(A)及7500(B)儀器間的差異。 Figure 6 compares the sensitivity of the new probes and primers to detect 1% and 2% QC mutants (in terms of ΔY) and the differences between ABI 7900 (A) and 7500 (B) instruments.
圖7比較細胞gDNA的10及20 ng使用量對K-ras等位基因檢測(新的引子及探針)的影響,結果相當。1C被省略因未發現具有1C突變型的細胞,詳細的探針對參見表1。 Figure 7 compares the effects of 10 and 20 ng of cellular gDNA on K-ras allele detection (new primers and probes) with comparable results. 1C was omitted because cells having the 1C mutant type were not found, and the detailed probe pair is shown in Table 1.
圖8顯示新探針及引子偵測細胞gDNA 10 ng,從共培養的兩種細胞所得的K-ras基因型相當於個別的基因型,例如:具野生型的Honel與具5A的DLD1共培養(H+D)測得5A型;各別的2T、1A及5A探針對參見表1。 Figure 8 shows that the new probe and primer detect cell gDNA 10 ng. The K-ras genotype obtained from the co-cultured two cells corresponds to individual genotypes. For example, wild-type Honel co-cultured with 5A-derived DLD1. (H+D) 5A was measured; the respective 2T, 1A and 5A probe pairs are shown in Table 1.
圖9顯示新探針及引子偵測細胞cDNA 100 ng,從共培養的兩種細胞所得的基因型相當於個別的基因型,例如:具2T的SW480與5A的DLD1共培養(S+D)測得2T及5A型;A549的1A在與Honel或DLD1共培養時會訊號減弱,但與SW480則不會,不排除基因的表現在共培養時可能被干擾。 Figure 9 shows that the new probe and primer detect 100 ng of cell cDNA. The genotypes obtained from the two cells co-culture correspond to individual genotypes, for example, SW480 with 2T and DLD1 co-culture with 5A (S+D) 2T and 5A were measured; 1A of A549 was weakened when co-cultured with Honel or DLD1, but not with SW480, and it was not excluded that gene expression may be disturbed during co-culture.
圖10顯示在血清DNA(20 ng)中測不到突變型的6位CRC病患(檢樣完整的有五位),病患I20及I350的腫瘤(T;非腫瘤,N)gDNA有測到2T及5A突變型;此外,病患I78的冷凍腫瘤組織cDNA(100 ng)(右側小表中)雖有測到2A2T雙突變型,但缺乏gDNA的檢樣做應證。 Figure 10 shows 6 CRC patients with no detectable mutations in serum DNA (20 ng) (five intact samples), tumors of patients I20 and I350 (T; non-tumor, N) gDNA To the 2T and 5A mutants; in addition, the frozen tumor tissue cDNA (100 ng) of the patient I78 (in the right small table) was found to have a 2A2T double mutant, but the lack of gDNA was tested.
<110> 國家衛生研究院 周俐慧 劉滄梧 <110> National Institute of Health Zhou Yihui Liu Wei
<120> 提升檢測KRAS編碼子12及13突變之靈敏度及專一性之方法(METHODS FOR IMPROVING SENSITIVITY AND SPECIFICITY OF SCREENING ASSAYS OF KRAS CODONS 12 AND 13 MUTATIONS) <120> Method for improving the sensitivity and specificity of detecting KRAS code 12 and 13 mutations (METHODS FOR IMPROVING SENSITIVITY AND SPECIFICITY OF SCREENING ASSAYS OF KRAS CODONS 12 AND 13 MUTATIONS)
<130> S 3525/0556-P 040TW <130> S 3525/0556-P 040TW
<160> 22 <160> 22
<170> PatentIn version 3.5 <170> PatentIn version 3.5
<210> 1 <210> 1
<211> 14 <211> 14
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 1TM <223> 1TM
<400> 1 <400> 1
<210> 2 <210> 2
<211> 15 <211> 15
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 1Tw <223> 1Tw
<400> 2 <400> 2
<210> 3 <210> 3
<211> 13 <211> 13
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 2TM <223> 2TM
<400> 3 <400> 3
<210> 4 <210> 4
<211> 15 <211> 15
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 2Tw <223> 2Tw
<400> 4 <400> 4
<210> 5 <210> 5
<211> 14 <211> 14
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 2CM <223> 2CM
<400> 5 <400> 5
<210> 6 <210> 6
<211> 14 <211> 14
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> N2C <223> N2C
<400> 6 <400> 6
<210> 7 <210> 7
<211> 15 <211> 15
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 5AM <223> 5AM
<400> 7 <400> 7
<210> 8 <210> 8
<211> 14 <211> 14
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 5Aw <223> 5Aw
<400> 8 <400> 8
<210> 9 <210> 9
<211> 14 <211> 14
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> N1A <223> N1A
<400> 9 <400> 9
<210> 10 <210> 10
<211> 14 <211> 14
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> N1Aw <223> N1Aw
<400> 10 <400> 10
<210> 11 <210> 11
<211> 14 <211> 14
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> N2A <223> N2A
<400> 11 <400> 11
<210> 12 <210> 12
<211> 14 <211> 14
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> N1C <223> N1C
<400> 12 <400> 12
<210> 13 <210> 13
<211> 16 <211> 16
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 1Cw <223> 1Cw
<400> 13 <400> 13
<210> 14 <210> 14
<211> 27 <211> 27
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> Forward primer 1F <223> Forward primer 1F
<400> 14 <400> 14
<210> 15 <210> 15
<211> 22 <211> 22
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> Reverse Primer AS12R <223> Reverse Primer AS12R
<400> 15 <400> 15
<210> 16 <210> 16
<211> 66 <211> 66
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> wild-type amplicon <223> wild-type amplicon
<400> 16 <400> 16
<210> 17 <210> 17
<211> 124 <211> 124
<212> DNA <212> DNA
<213> Homo sapiens <213> Homo sapiens
<400> 17 <400> 17
<210> 18 <210> 18
<211> 15 <211> 15
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 1AM <223> 1AM
<400> 18 <400> 18
<210> 19 <210> 19
<211> 16 <211> 16
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 1CM <223> 1CM
<400> 19 <400> 19
<210> 20 <210> 20
<211> 15 <211> 15
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 2AM <223> 2AM
<400> 20 <400> 20
<210> 21 <210> 21
<211> 25 <211> 25
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> AS12F <223> AS12F
<400> 21 <400> 21
<210> 22 <210> 22
<211> 22 <211> 22
<212> DNA <212> DNA
<213> Artificial Sequence <213> Artificial Sequence
<220> <220>
<223> 1R <223> 1R
<400> 22 <400> 22
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101106402A TW201335375A (en) | 2012-02-24 | 2012-02-24 | Method for improving sensitivity and specificity of screening assays for KRAS codons 12 and 13 mutations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101106402A TW201335375A (en) | 2012-02-24 | 2012-02-24 | Method for improving sensitivity and specificity of screening assays for KRAS codons 12 and 13 mutations |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201335375A true TW201335375A (en) | 2013-09-01 |
Family
ID=49627320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101106402A TW201335375A (en) | 2012-02-24 | 2012-02-24 | Method for improving sensitivity and specificity of screening assays for KRAS codons 12 and 13 mutations |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201335375A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113624665A (en) * | 2021-07-30 | 2021-11-09 | 中国药科大学 | Application of anti-tumor candidate compound in medicine for treating colorectal cancer and determination method |
-
2012
- 2012-02-24 TW TW101106402A patent/TW201335375A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113624665A (en) * | 2021-07-30 | 2021-11-09 | 中国药科大学 | Application of anti-tumor candidate compound in medicine for treating colorectal cancer and determination method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer | |
US11015213B2 (en) | Method of preparing cell free nucleic acid molecules by in situ amplification | |
EP2885427B1 (en) | Colorectal cancer methylation marker | |
CN103710460B (en) | Test kit of detection by quantitative EGFR genetic mutation and uses thereof | |
CN106795563B (en) | Method for rapid and sensitive detection of hotspot mutations | |
EP2663652A1 (en) | High resolution melting analysis as a prescreening tool | |
CN108949992B (en) | Biomarker related to esophageal squamous carcinoma and grading thereof | |
WO2017112738A1 (en) | Methods for measuring microsatellite instability | |
EP3927849A1 (en) | Biomarker panel for diagnosis and prognosis of cancer | |
US20080305493A1 (en) | Determining Cancer-Linked Genes and Therapeutic Targets Using Molecular Cytogenetic Methods | |
CN102154475A (en) | Kit for detecting ERCC1 mRNA (Excision Repair Cross Complement Group 1 Messenger Ribonucleic Acid) expression by using fluorescence quantitative PCR (Polymerase Chain Reaction) technology | |
KR102096498B1 (en) | MicroRNA-4732-5p for diagnosing or predicting recurrence of colorectal cancer and use thereof | |
EP1650311A1 (en) | Compounds and methods for assessment of Microsatellite Instability (MSI) status | |
CN106967810B (en) | Method and kit for detecting FGFR3 gene mutation to diagnose bladder cancer | |
US20210214807A1 (en) | Method and kit for the diagnosis of colorectal cancer | |
US20130217020A1 (en) | Methods for improving sensitivity and specificity of screening assays of kras codons 12 and 13 mutations | |
KR102096499B1 (en) | MicroRNA-3960 for diagnosing or predicting recurrence of colorectal cancer and use thereof | |
CN103352070B (en) | ROS1 fusion gene screening method | |
CN117233400A (en) | KCNN3 gene detection kit for diagnosis and prognosis evaluation of multiple myeloma and application thereof | |
TW201335375A (en) | Method for improving sensitivity and specificity of screening assays for KRAS codons 12 and 13 mutations | |
JP2013172705A (en) | Method for inspecting aldosterone production adenoma using kcnj5 gene and method for screening therapeutic agent of aldosterone production adenoma | |
KR20190113108A (en) | MicroRNA-3656 for diagnosing or predicting recurrence of colorectal cancer and use thereof | |
KR20190113100A (en) | MicroRNA-320c for diagnosing or predicting recurrence of colorectal cancer and use thereof | |
Gong et al. | Efficient detection of the V600E mutation of the BRAF gene in papillary thyroid carcinoma using multiplex allele-specific polymerase chain reaction combined with denaturing high-performance liquid chromatography | |
US11643690B2 (en) | Early detection of preliminary stages of testicular germ cell tumors |