TW201326765A - Regional personnel positioning and activity evaluation apparatus and method - Google Patents
Regional personnel positioning and activity evaluation apparatus and method Download PDFInfo
- Publication number
- TW201326765A TW201326765A TW100146798A TW100146798A TW201326765A TW 201326765 A TW201326765 A TW 201326765A TW 100146798 A TW100146798 A TW 100146798A TW 100146798 A TW100146798 A TW 100146798A TW 201326765 A TW201326765 A TW 201326765A
- Authority
- TW
- Taiwan
- Prior art keywords
- area
- human body
- infrared sensing
- activity
- person
- Prior art date
Links
- 230000000694 effects Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000011156 evaluation Methods 0.000 title abstract 2
- 238000001514 detection method Methods 0.000 claims abstract description 22
- 238000004364 calculation method Methods 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 238000012360 testing method Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 11
- 238000011161 development Methods 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 238000013500 data storage Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 15
- 238000007726 management method Methods 0.000 description 15
- 230000005611 electricity Effects 0.000 description 7
- 238000004378 air conditioning Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
本發明係有關一種區域內人員位置定位與活動量之偵測方法與裝置,尤指一種提供區域人員日常活動量資訊,可作為智慧節能管理、智慧家電、居家照護服務等加值應用。The invention relates to a method and a device for detecting the position and activity of a person in an area, in particular to providing information on the daily activities of the regional personnel, which can be used as a value-added application such as smart energy-saving management, smart home appliances and home care services.
住商建築物電力耗能佔全國總用電之比例高達30%以上,如何改善住商建築用電效率,提高節能減碳效益是世界各國所關注的議題之一,除了透過節能設備更換與效能改善,建築能源管理系統是目前建築節能領域之重點發展方向。建築能源管理系統技術為建築節能技術領域之最後一哩(Last Mile)技術,亦為未未來智慧電網系統中之重要次系統,透過網路通訊、能源及環境感測器、節能控制模組及控制器、人工智慧耗能分析、預測及控制等先進資通訊技術,可有效管制建築物之傳統電力耗能,並透過耗能資訊的精確分析、預測計算,及交易等機制,達到區域能源的最適化調度及電力能源的最經濟化運用,實現未來零耗能建築物的目標。The power consumption of residential buildings accounts for more than 30% of the total electricity consumption in the country. How to improve the electricity efficiency of residential buildings and improve energy conservation and carbon reduction benefits is one of the topics of concern in the world, except through energy-saving equipment replacement and efficiency improvement. The building energy management system is currently the key development direction in the field of building energy conservation. Building energy management system technology is the last mile technology in the field of building energy-saving technology. It is also an important sub-system in the future smart grid system, through network communication, energy and environmental sensors, energy-saving control modules and Advanced communication technologies such as controllers, artificial intelligence energy consumption analysis, prediction and control can effectively control the traditional power consumption of buildings, and achieve regional energy through mechanisms such as accurate analysis, prediction calculation, and transaction of energy consumption information. Optimize the scheduling and the most economical use of electric energy to achieve the goal of zero-energy buildings in the future.
習知建築能源管理之一實施例為日立電器(Hitachi Appliances)於2009年9月展示一項新型空調產品,室內機可檢測遙控器位置,並重點對其周圍溫度進行溫度調節。室內機與遙控器距離分為遠、中、近三級,該空調之偵測區域可以把室內分為九等份,並且向遙控器所在區域送風,再配合遙控器上的溫度感測器所感測之環境溫度值,以適當溫度及風量的空調氣流吹向遙控器所在的區域位置。以遙控器位置代表室內人員活動位置,可達到節能效果,在製暖時可節能約為14%,在製冷時可節能約為25%。One example of conventional building energy management is Hitachi Appliances, which introduced a new air conditioning product in September 2009. The indoor unit can detect the position of the remote control and focus on temperature adjustment of its ambient temperature. The distance between the indoor unit and the remote control is divided into three levels: far, medium and near. The detection area of the air conditioner can divide the indoor into nine equal parts, and send air to the area where the remote controller is located, and then feel the temperature sensor on the remote controller. The measured ambient temperature value is blown to the area where the remote controller is located with the air temperature of the appropriate temperature and air volume. The remote control position represents the indoor personnel's active position, which can achieve energy-saving effect. It can save energy by about 14% during heating and about 25% when cooling.
習知建築能源管理之再一實施例為松下電子於2009年4月展示一種可偵測人員所在位置區域,並據以自動調整最佳的風向與風量的冷氣機,以創造室內人員舒適及節能的環境。對於風向及風量的控制,可避免無效送風之能源浪費,其節能效果可達30%。此外冷氣遙控器上還具有顯示電費和CO2排量的功能,可顯示“本次電費”、“本月電費”、“上月電費”、“去年同月電費”、“本次CO2排放量”、以及“本月CO2排放量”等各項資訊以供使用者來做參考。A further embodiment of the conventional building energy management is that Matsushita Electric exhibited an air-conditioner that automatically detects the optimal wind direction and air volume in April 2009 to create an indoor air-conditioner comfort and energy saving. environment of. For the control of wind direction and air volume, energy waste of ineffective air supply can be avoided, and the energy saving effect can reach 30%. In addition, the air conditioner remote control also has the function of displaying electricity tariff and CO2 displacement, which can display “this electricity bill”, “this month’s electricity bill”, “last month’s electricity bill”, “the same month last year’s electricity bill”, “this CO2 emission amount”, And the "CO2 emissions this month" and other information for users to refer to.
習知建築能源管理之另一實施例為韓國Suk Lee學者等研究團隊2006年發表研究論文,應用人體紅外線感測模組,開發室內區域人員定位系統,應用複雜的貝氏分類器演算法,以提升定位精度,其缺點即為需要利用複雜運算電路,其製造成本亦相對提高。Another embodiment of the conventional building energy management is a research paper published by the research team of Suk Lee Scholars in Korea in 2006, applying the human body infrared sensing module, developing an indoor regional personnel positioning system, and applying a complex Bayesian classifier algorithm to The disadvantage of improving the positioning accuracy is that it requires the use of complex arithmetic circuits, and the manufacturing cost thereof is relatively increased.
另外,現有室內區域人員位置定位技術(Indoor Positioning System;IPS)包括有:紅外線(Infrared,IR)攜帶式標籤、無線射頻辨識系統(Radio Frequency Identification,RFID)、超音波(Ultrasound)反射與測距、無線電波(Radio Frequency)、地磁效應(Electronmagnetic)、影像處理與辨識(Computer Vision)等,評估並比較不同的室內區域人員活動位置偵測技術,需考量以下因素:In addition, the existing indoor location personnel (Indoor Positioning System (IPS) includes: infrared (IR) portable tags, radio frequency identification (RFID), ultrasonic (Ultrasound) reflection and ranging , Radio Frequency (Radio Frequency), Geomagnetic Effect (Electronmagnetic), Image Processing and Identification (Computer Vision), etc., to evaluate and compare different indoor area personnel location detection technology, the following factors should be considered:
1. 安全性與隱私:人員位置資訊的安全性與隱私是最重要的考量因素;1. Security and privacy: The security and privacy of personnel location information is the most important consideration;
2. 成本:分為基礎偵測設備成本、人員佩帶的偵測元件成本、與安裝建置成本;2. Cost: divided into basic detection equipment cost, cost of detecting components worn by personnel, and installation and installation costs;
3. 性能:準確度(Accuracy)與精確度(Precision);3. Performance: Accuracy and Precision;
4. 可靠性(Robustness)與系統容錯度(Fault Tolerance);4. Reliability (Robustness) and System Tolerance (Fault Tolerance);
5. 系統複雜性;5. System complexity;
6. 使用者偏好、商品化接受程度。6. User preferences, commercial acceptance.
若未符合上述的條件,將室內區域人員活動位置偵測技術商業化就具有一定的困難度,需一併加以考量,本發明即符合上述條件,為一具有可商業化之方法。If the above conditions are not met, it is difficult to commercialize the indoor location detection technology in the indoor area. The present invention satisfies the above conditions and is a commercially viable method.
基於解決以上所述習知技術的缺失,本發明為一種區域內人員位置定位與活動量之偵測方法與裝置,主要目的為應用低成本人體紅外線感測模組,開發區域人員位置定位與日常活動量感知技術,人員位置資訊的安全性與隱私可獲得保障,且整體系統所需運算需求大幅降低,開發成本低,商品化接受程度高,區域人員位置定位包括縱向與橫向的位移,定位誤差小於15.7cm以內,同時提供區域人員日常活動量資訊,可作為智慧節能管理、智慧家電、居家照護服務等加值應用。Based on solving the above-mentioned shortcomings of the prior art, the present invention is a method and device for detecting position and activity of a person in an area, and the main purpose is to apply a low-cost human body infrared sensing module to develop regional personnel position and daily life. Activity-aware technology, the security and privacy of personnel location information can be guaranteed, and the computing requirements of the overall system are greatly reduced, the development cost is low, and the commercialization acceptance is high. The positional positioning of regional personnel includes vertical and horizontal displacement, positioning error. Less than 15.7cm, and provide information on the daily activities of regional personnel, it can be used as a value-added application such as smart energy management, smart home appliances, and home care services.
本發明之另一目的在於開發建築能源管理系統之前端環境感知模組技術,以進行最適化能源管理,也就是將能源傳輸至人員所在、所需要的地方,有人員的空間則提供足夠的照明、舒適的空調等,而人員離開時,能自動地降低能源使用、調整耗能設備運轉,做到當用則用及該省則省,要達成這應用條件,人流與活動量資訊便顯得相當重要,於住商建築、智慧家庭應用場域,以不侵害室內人員隱私條件下,可即時感知人員位置定位與活動量等變化資訊,進行最適化能源管理。Another object of the present invention is to develop a front-end environment-aware module technology for a building energy management system to optimize energy management, that is, to transfer energy to a place where personnel are needed, and a space for personnel to provide sufficient illumination. Comfortable air conditioning, etc., when the personnel leave, can automatically reduce energy use, adjust the operation of energy-consuming equipment, so that the use and the province are saved, to achieve this application condition, the flow of people and activity information is quite Importantly, in the residential building and smart home application field, under the condition of not invading the privacy of indoor personnel, the information such as the location and activity of the personnel can be immediately sensed to optimize the energy management.
為達上述目的,本發明為一種區域內人員位置定位與活動量之偵測方法,其包括有:利用一微控制單元讀取複數組人體紅外線感測模組之類比訊號;利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理;利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理;獲得一能量曲線並計算能量曲線面積;利用一應用軟體來進行不同路徑之能量曲線之面積計算分析;利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離;以及利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值。In order to achieve the above object, the present invention is a method for detecting position and activity of a person in an area, which comprises: reading a analog signal of a complex array of human body infrared sensing module by using a micro control unit; Multiple arrays of different path tests are performed, and the signal outputs of the human body infrared sensing modules are separately obtained, and the micro control unit is used for an analysis process; the micro control unit is used to perform analog signals of each group of human body infrared sensing modules. The short-time energy calculation process; obtaining an energy curve and calculating the energy curve area; using an application software to calculate the area of the energy curve of different paths; using the application software to convert the energy curve area into the human body infrared sensing The relative distance of the module; and the application software to convert the relative distance of the complex array into the position coordinates and the activity amount of the regional personnel.
為進一步對本發明有更深入的說明,乃藉由以下圖示、圖號說明及發明詳細說明,冀能對 貴審查委員於審查工作有所助益。In order to further explain the present invention, it will be helpful to review the review by the following illustrations, illustrations, and detailed descriptions of the invention.
茲配合下列之圖式說明本發明之詳細結構,及其連結關係,以利於 貴審委做一瞭解。The detailed structure of the present invention and its connection relationship will be described in conjunction with the following drawings to facilitate an understanding of the audit committee.
請參閱圖一、二所示,係為本發明利用複數組人體紅外線感測模組偵測位置之示意圖、本發明人體紅外線感測模組之電路架構示意圖,其中人體紅外線感測模組(Pyroelectric Infrared Radial,PIR) 11,當人體(熱源)12經過感測區域13,經由一菲涅耳透鏡(Fresnel lens)14將感測訊號聚焦在人體紅外線感測模組11上,經過類比放大電路處理,輸出相對應訊號,據以判斷人體紅外線感測模組11前方是否有人員12經過。並以其基本四組感測面積為單元,可感測人員12的「縱向」與「橫向」的移動,與人員12活動量等資訊。Please refer to FIG. 1 and FIG. 2 , which are schematic diagrams of detecting the position of the human body infrared sensing module by using the complex array, and the circuit structure diagram of the human body infrared sensing module of the present invention, wherein the human body infrared sensing module (Pyroelectric) Infrared Radial (PIR) 11, when the human body (heat source) 12 passes through the sensing area 13, the sensing signal is focused on the human body infrared sensing module 11 via a Fresnel lens 14, and processed by an analog amplification circuit. The corresponding signal is output, and it is determined whether there is a person 12 passing in front of the human body infrared sensing module 11. With its basic four sensing areas as the unit, it can sense the movement of "longitudinal" and "horizontal" of personnel 12, and the amount of activity of personnel 12.
圖三A~C係為本發明於人體紅外線感測模組前加置一套筒結構的結構示意圖,圖二所揭露該菲涅耳透鏡14係為藉助一套筒結構15設置於該人體紅外線感測模組11之前端,其結合結構即可設置於一天花板16,並可依室內環境區域調整其聚焦感測特性。FIG. 3A to FIG. 3 are schematic diagrams showing the structure of a sleeve structure in front of the human body infrared sensing module. FIG. 2 discloses that the Fresnel lens 14 is disposed on the human body by means of a sleeve structure 15. The front end of the sensing module 11 can be disposed on a ceiling 16 in combination with the structure, and can adjust its focus sensing characteristics according to the indoor environment area.
請參閱圖四所示,係為本發明區域內人員位置定位與活動量之偵測方法的流程圖,且該區域內人員位置定位與活動量之偵測結果係藉由一數位示波器做一顯示,具體實施方法步驟如下說明:21~利用一微控制單元(圖中未示)讀取複數組人體紅外線感測模組之類比訊號,該微控制單元可為一單晶片、一整合電路或是一電腦,配合適當的韌體或軟體來控制該複數組人體紅外線感測模組之運作,且該微控制單元根據該人體位置資料建構一動能變化模型,以獲得人體活動量的數值,該人體紅外線感測模組係為一焦電型紅外線感測器,且該複數組人體紅外線感測模組以四組為一基本單位;22~利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理;23~利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理;24~獲得一能量曲線並計算能量曲線面積;25~利用一應用軟體來進行不同路徑之能量曲線之面積計算分析;26~利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離;以及27~利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值。Please refer to FIG. 4, which is a flow chart of the method for detecting the position and activity of the personnel in the region of the present invention, and the detection result of the position and activity of the personnel in the region is displayed by a digital oscilloscope. The specific implementation method steps are as follows: 21 - using a micro control unit (not shown) to read the analog signal of the complex array human body infrared sensing module, the micro control unit can be a single chip, an integrated circuit or a computer, with appropriate firmware or software to control the operation of the complex array human body infrared sensing module, and the micro control unit constructs a kinetic energy change model according to the human body position data to obtain a numerical value of the human body activity amount, the human body The infrared sensing module is a pyroelectric infrared sensor, and the complex array human infrared sensing module is divided into four groups as a basic unit; 22 to use complex array personnel to perform complex array different path testing, and each Obtaining signal output of the human body infrared sensing module, using the micro control unit to perform an analysis process; 23 using the micro control unit to perform each group of human red Line sensing module analog signal short-term energy calculation processing; 24 ~ obtain an energy curve and calculate the energy curve area; 25 ~ use an application software to calculate the area of the energy curve of different paths; 26 ~ use the application The software converts the area of the energy curve into a relative distance from the human body infrared sensing module; and 27 to use the application software to convert the relative distance of the complex array into the position coordinates and the activity amount of the regional personnel.
上述七個步驟之詳細解說分別如下所述:The detailed explanations of the above seven steps are as follows:
本技術先進行可行性評估,安裝兩組人體紅外線感測模組,安裝位置與測試方式如圖五A,於天花板上至少設置有第一人體感測模組34及第二人體感測模組35,由測試人員進行第一路徑31、第二路徑32與第三路徑33,每條路徑各行走兩次,使用數位示波器進行人體紅外線感測模組的訊號顯示與儲存。兩組類比人體紅外線感測模組(34、35)的訊號輸出結果如圖五B。由圖五B輸出結果顯示,選用的人體紅外線感測模組輸出訊號與其人員感測區域範圍有相關性,藉由多組人體紅外線感測模組安裝位置與感測區域重疊方式,可區分人員目前在何處感測區域,可為日後技術開發需求做一調整。本案之主要硬體架構電路(圖中未示),係為一感測訊號線整合電路板,由電源供應器供應人體紅外線感測模組工作電壓,當人體紅外線感測模組感測到下方區域有人員(熱源)紅外線時,便會輸出類比感測訊號至一微控制單元做信號處理。並藉由一人體紅外線感測模組之訊號的應用軟體,具有硬體驅動、設定、數據讀取、顯示與數據儲存之功能,可作為區域內人員活動位置偵測演算法開發平台。The technology first performs feasibility assessment and installs two sets of human body infrared sensing modules. The installation position and test mode are shown in FIG. 5A, and at least a first human body sensing module 34 and a second human body sensing module are disposed on the ceiling. 35. The tester performs the first path 31, the second path 32, and the third path 33. Each path travels twice, and the digital oscilloscope is used to display and store the signal of the human body infrared sensing module. The signal output results of the two groups of analog infrared sensing modules (34, 35) are shown in Figure 5B. The output of Figure 5B shows that the selected human infrared sensing module output signal has a correlation with the range of its sensor sensing area. By means of multiple sets of human infrared sensing module mounting position and sensing area overlapping mode, the personnel can be distinguished. Where is the sensing area currently available, which can be adjusted for future technology development needs. The main hardware architecture circuit (not shown) of the present case is a sensing signal line integrated circuit board, and the power supply device supplies the working voltage of the human body infrared sensing module, when the human body infrared sensing module senses the lower side. When there is a person (heat source) in the area, the analog sensing signal is output to a micro control unit for signal processing. The application software of the signal of the human body infrared sensing module has the functions of hardware driving, setting, data reading, display and data storage, and can be used as a development platform for the human activity position detection algorithm in the region.
請繼續參閱圖五B所示,經過一可行性分析測試,人員行走不同路徑與人體紅外線感測訊號輸出有其相關性,應用此物理特性作為區域人員活動位置偵測演算法開發基礎。Please continue to refer to Figure 5B. After a feasibility analysis test, the different paths of the personnel walking are related to the output of the human body infrared sensing signal, and the physical characteristics are applied as the basis for the development of the regional human activity location detection algorithm.
請參閱圖六所示,係為圖五B之距離感測信號轉換成能量曲線圖,係為一種開發短時距能量曲線面積演算法,人員行走不同路徑可分析獲得不同的能量曲線。其中第一路徑距離偵測信號31可轉換成第一距離轉換能量曲線311;第二路徑距離偵測信號32可轉換成第二距離轉換能量曲線321;第三路徑距離偵測信號33可轉換成第三距離轉換能量曲線331。Referring to FIG. 6, the distance sensing signal of FIG. 5B is converted into an energy graph, which is an algorithm for developing a short-time energy curve area, and different paths can be analyzed to obtain different energy curves. The first path distance detecting signal 31 can be converted into a first distance converting energy curve 311; the second path distance detecting signal 32 can be converted into a second distance converting energy curve 321; the third path distance detecting signal 33 can be converted into The third distance converts the energy curve 331.
請參圖七所示,係為圖六之能量曲線之積分面積圖,本實施例係以圖六所揭露第二距離轉換能量曲線321做為舉例,經過計算分析後,即可獲得能量曲線之積分面積322,本實施例揭露以曲線積分基本方法,來計算其曲線面積。Please refer to FIG. 7 , which is an integral area diagram of the energy curve of FIG. 6 . In this embodiment, the second distance conversion energy curve 321 disclosed in FIG. 6 is taken as an example. After calculation and analysis, the energy curve can be obtained. The integrated area 322, this embodiment discloses the basic method of curve integration to calculate the curve area.
請參閱圖八A所示係為第一組能量曲線之積分面積數值表示圖;請參閱圖八B所示係為第二組能量曲線之積分面積數值表示圖;請參閱圖八C所示係為第三組能量曲線之積分面積數值表示圖,其中該A與B兩位測試人員行走路徑一至三,獲得能量區線,積分計算其面積數值。舉例而言,圖八A所揭露第一路徑由A人員走過,其第一積分面積數值41為923.5274;第一路徑由B人員走過,其第二積分面積數值42為856.2620。圖八B所揭露第二路徑由A人員走過,其第三積分面積數值43為567.4067;第二路徑由B人員走過,其第四積分面積數值44為624.5555。圖八C所揭露第三路徑由A人員走過,其第五積分面積數值45為167.7535;第三路徑由B人員走過,其第六積分面積數值46為147.3674。Please refer to Figure 8A for the integral area numerical representation of the first set of energy curves; see Figure 8B for the integral area numerical representation of the second set of energy curves; see Figure 8C. The numerical representation of the integral area of the third set of energy curves, wherein the two testers A and B travel the path one to three, obtain the energy zone line, and calculate the area value by integral. For example, the first path disclosed in FIG. 8A is passed by the A personnel, and the first integral area value 41 is 923.5274; the first path is passed by the B personnel, and the second integrated area value 42 is 856.2620. The second path disclosed in FIG. 8B is passed by the A personnel, and the third integral area value 43 is 567.4067; the second path is passed by the B personnel, and the fourth integral area value 44 is 624.5555. The eighth path disclosed in FIG. 8C is passed by the A personnel, and the fifth integral area value 45 is 167.7535; the third path is passed by the B personnel, and the sixth integral area value 46 is 147.3674.
請參閱圖九所示,係為本發明能量積分面積轉換成與人體紅外線感測模組之相對距離示意圖,對於由人體紅外線感測能量之運算處理,換算成所在感測區域內之人員行走路徑與人體紅外線感測模組(PIR)圓心距離。其中第一人體紅外線感測模組51之偵測範圍為第一感測區域511,一人員之第一行走路徑512通過該第一感測區域511,而該第一感測區域511則偵測後形成第一人體紅外線感測能量之轉換相對距離54,而第一行走路徑512因距離第一人體紅外線感測模組51最遠,故其感測能量最小,但其計算而出的第一人體紅外線感測能量之轉換相對距離54數值最大(能量與距離的比值為呈反比),以表示人員是通過第一感測區域511之邊緣。第二人體紅外線感測模組52之偵測範圍為第二感測區域521,一人員之第二行走路徑522通過該第二感測區域521,而該第二感測區域521則偵測後形成第二人體紅外線感測能量之轉換相對距離55,而第二行走路徑522因距離第二人體紅外線感測模組52為中等距離,故其感測能量亦為中間值,而其計算而出的第二人體紅外線感測能量之轉換相對距離55數值為中間值,以表示人員是通過第二感測區域511之中等距離。第三人體紅外線感測模組53之偵測範圍為第三感測區域531,一人員之第三行走路徑532通過該第一感測區域531,而該第三感測區域531則偵測後形成第三人體紅外線感測能量之轉換相對距離56,而第三行走路徑532因距離第三人體紅外線感測模組53之中心點,故其感測能量最大,但其計算而出的第三人體紅外線感測能量之轉換相對距離56數值最小,以表示人員是通過第三感測區域511之中心點。而所有的能量與距離的計算以本實施例為準則,以精確計算出人員的位置座標。Please refer to FIG. 9 , which is a schematic diagram of the relative distance between the energy integral area of the invention and the human body infrared sensing module, and is converted into the walking path of the person in the sensing area by the operation processing of the human body infrared sensing energy. The distance from the center of the human body infrared sensing module (PIR). The detection range of the first human infrared sensing module 51 is the first sensing area 511, the first walking path 512 of a person passes through the first sensing area 511, and the first sensing area 511 detects The first human body infrared sensing energy conversion relative distance 54 is formed, and the first walking path 512 is the farthest from the first human body infrared sensing module 51, so the sensing energy is the smallest, but the first calculated The conversion of the human infrared sensing energy relative distance 54 is the largest (the ratio of energy to distance is inversely proportional) to indicate that the person is passing the edge of the first sensing region 511. The detection range of the second human body infrared sensing module 52 is the second sensing area 521. The second walking path 522 of a person passes through the second sensing area 521, and the second sensing area 521 is detected. Forming a second human body infrared sensing energy conversion relative distance 55, and the second traveling path 522 is a medium distance from the second human body infrared sensing module 52, so the sensing energy is also an intermediate value, and the calculated value is The second human infrared sensing energy conversion relative distance 55 value is an intermediate value to indicate that the person is equidistant through the second sensing region 511. The detection range of the third human body infrared sensing module 53 is the third sensing area 531. The third walking path 532 of a person passes through the first sensing area 531, and the third sensing area 531 is detected. Forming a third human body infrared sensing energy conversion relative distance 56, and the third traveling path 532 is the largest in the sensing energy due to the distance from the center point of the third human body infrared sensing module 53, but the third calculated The conversion value of the human infrared sensing energy relative distance 56 is the smallest to indicate that the person passes through the center point of the third sensing area 511. All energy and distance calculations are based on this embodiment to accurately calculate the position coordinates of the person.
請參閱圖十所示,係為本發明利用四組人體紅外線感測模組所偵測距離轉換成人員位置座標示意圖,其中測試方法係包括第一人體紅外線感測模組51、第二人體紅外線感測模組52、第三人體紅外線感測模組53、第四人體紅外線感測模組57,該四組人體紅外線感測模組同時偵測到一人員位置58,前四組便分別形成第一人體紅外線感測能量之轉換相對距離54、第二人體紅外線感測能量之轉換相對距離55、第三人體紅外線感測能量之轉換相對距離56,而第四人體紅外線感測模組57,由於其第四感測區域571未偵測到該人員位置58,故未形成任何人體紅外線感測能量之轉換相對距離,上述明確表達由人體紅外線感測能量之運算處理,換算成所在感測區域內之人員活動位置與活動量的情況。Please refer to FIG. 10 , which is a schematic diagram of the distance detected by the four groups of human body infrared sensing modules converted into a human position coordinate, wherein the testing method includes a first human body infrared sensing module 51 and a second human body infrared light. The sensing module 52, the third human body infrared sensing module 53, and the fourth human body infrared sensing module 57, the four groups of human body infrared sensing modules simultaneously detect a person position 58, and the first four groups are respectively formed. The first human infrared sensing energy conversion relative distance 54, the second human infrared sensing energy conversion relative distance 55, the third human infrared sensing energy conversion relative distance 56, and the fourth human infrared sensing module 57, Since the fourth sensing area 571 does not detect the human position 58, the conversion relative distance of the human body infrared sensing energy is not formed, and the above explicit expression is processed by the human body infrared sensing energy, and converted into the sensing area. The location of the person's activity and the amount of activity within.
上述人體紅外線感測模組可嵌入於天花板上之人體紅外線感測模組夾具套筒,可依現場環境調整其聚焦感測區域,當人員移動時,本創意技術分析感測模組輸出訊號量值,同時處理運算其中四組感測模組輸出訊號,由輸出訊號經過短時距能量計算,獲得能量曲線,再經過積分以計算曲線面積,人員位移與感測模組中心之距離與曲線面積有比例關係,應用數學運算負荷最低之重心法公式,計算方式如下,由此計算式可換算成人體紅外線感測模組所在聚焦感測區域內之人員活動位置與活動量。The human body infrared sensing module can be embedded in the ceiling of the human body infrared sensing module fixture sleeve, and the focus sensing area can be adjusted according to the scene environment. When the person moves, the creative technology analyzes the sensing module output signal amount. The value is simultaneously processed to calculate the output signals of the four sets of sensing modules. The output signal is calculated by the short-time energy to obtain the energy curve, and then integrated to calculate the curve area, the distance between the person displacement and the sensing module center and the curve area. In the proportional relationship, the gravity center formula with the lowest mathematical load is applied, and the calculation method is as follows. The calculation formula can convert the position and activity of the person in the focus sensing area where the adult body infrared sensing module is located.
本技術以五公尺見方(5m x 5m)之智慧節能家庭示範屋(Demo room)為技術實測空間6,將複數個人體紅外線感測模組61嵌入在天花板上,便形成複數個感測區域62,來驗證區域人員位置定位與日常活動量感知,包括人員的「縱向」與「橫向」的移動,與人員活動量等資訊。The technology uses a five-meter square (5m x 5m) smart energy-saving home demo room (Demo room) as the technical measurement space 6, and a plurality of personal infrared sensing modules 61 are embedded in the ceiling to form a plurality of sensing areas. 62, to verify the location of the regional personnel and the daily activity volume perception, including the "longitudinal" and "horizontal" movement of the personnel, and the amount of personnel activity.
請再參閱圖十二所示,係為本發明於一空間內設定一人員行走第一路徑示意圖,於圖十一所揭露的空間6中,其中三位受測者於實驗空間內進行測試,其中第一、二位受測者行走六點路徑並回到原點630,不過二者為行走路徑互為逆向,而第一位受測者行走路線(順時針方向)為原點630至第一位置631至第二位置632至第三位置633至第四位置634至第五位置635,最後回到原點630(如圖十三A至圖十三D)。第二位受測者行走路線(逆時針方向)為原點630至第五位置635至第四位置634至第三位置633至第二位置632至第一位置631,最後回到原點630(如圖十四A至圖十四D)。第三位受測者行走路徑僅有五點,且為順時針方向,而行走的路線為原點640至第一位置641至第二位置642至第三位置643至第四位置644,最後回到原點640(如圖十五A至圖十五E)。Please refer to FIG. 12 again, which is a schematic diagram of setting a first path for a person to walk in a space. In the space 6 disclosed in FIG. 11 , three subjects are tested in the experimental space. The first and second subjects walked the six-point path and returned to the origin 630, but the two paths were reversed, and the first subject's walking route (clockwise) was the origin 630 to the first. A position 631 to a second position 632 to a third position 633 to a fourth position 634 to a fifth position 635, and finally return to the origin 630 (as shown in FIGS. 13A to 13D). The second subject's walking route (counterclockwise direction) is the origin 630 to the fifth position 635 to the fourth position 634 to the third position 633 to the second position 632 to the first position 631, and finally returns to the origin 630 ( Figure 14A to Figure 14D). The third subject has only five points of walking path and is clockwise, and the walking route is the origin 640 to the first position 641 to the second position 642 to the third position 643 to the fourth position 644, and finally Go to the origin 640 (as shown in Figure 15A to Figure 15E).
由上述測試結果顯示偵測人員行走路徑趨勢,並可不需經過校正,即時偵知人員初始位置,進入位置定位偵測功能。The above test results show the trend of the walking path of the detecting personnel, and can detect the initial position of the person and enter the position and position detecting function without correction.
為證實本技術之定位誤差範圍可小於直徑30cm以內,以符合實際應用需求,於5m x 5m之智慧節能家庭示範屋Demo room地板上每60cm標示指示座標,受測者依指示行走特定座標點,由區域人員活動位置偵測模組辨識人員行走座標數據輸出,與指示特定座標點進行定位距離誤差值分析,以驗證人員定位誤差值是否符合需求。In order to confirm that the positioning error range of the technology can be less than 30cm in diameter, in order to meet the practical application requirements, the indicator coordinates are marked every 60cm on the Demo room floor of the 5m x 5m smart energy-saving family demonstration house, and the subject walks a specific coordinate point according to the instruction. The regional personnel activity position detection module identifies the person walking coordinate data output, and analyzes the positioning distance error value with the specified specific coordinate point to verify whether the personnel positioning error value meets the demand.
請參閱圖十六、七所示,係為本發明於一空間內設定一人員行走第三路徑示意圖,與圖十二至圖十五E揭露不同之處為人員走直線之實施例,其中要求受測者從初始點座標(180,0)做為起始點730,一路至第一位置座標(180,60)至第二位置座標(180,120)至第三位置座標(180,180)至第四位置座標(180,240)至第五位置座標(180,300),再迴轉回至初始點730,進行測試,由實驗結果分析,指定座標點中心與偵測模組所辨識之人員活動座標中心,由圖十七之定位誤差(cm)之數據觀察之,定位距離誤差皆在直徑15.7cm以內,而符合以低價成本來偵測人員位置活動量的方法。Please refer to FIG. 16 and FIG. 7 , which is a schematic diagram of setting a third path for a person to walk in a space in the present invention. The difference from FIG. 12 to FIG. 15E is an embodiment in which a person walks straight, wherein the requirement is The subject takes the initial point coordinate (180, 0) as the starting point 730, all the way to the first position coordinate (180, 60) to the second position coordinate (180, 120) to the third position coordinate (180, 180) From the coordinates of the fourth position (180, 240) to the coordinates of the fifth position (180, 300), and then returning to the initial point 730, the test is performed. The result of the experiment is analyzed, and the person identified by the center of the coordinate point and the detection module is identified. The center of the active coordinate is observed by the data of the positioning error (cm) in Figure 17. The positioning distance error is within 15.7 cm of the diameter, which is in line with the method of detecting the amount of activity of the person at a low cost.
藉由上述圖一至圖十七之揭露,即可瞭解本發明為一種區域內人員位置定位與活動量之偵測方法與裝置,主要技術特徵為應用低成本人體紅外線感測模組,開發區域人員位置定位與日常活動量感知技術,人員位置資訊的安全性與隱私可獲得保障,且整體系統所需運算需求大幅降低,開發成本低,商品化接受程度高,區域人員位置定位包括縱向與橫向的位移,定位誤差小於15.7cm以內,同時提供區域人員日常活動量資訊,可作為智慧節能管理、智慧家電、居家照護服務等加值應用。同時於開發建築能源管理系統之前端環境感知模組技術,以進行最適化能源管理,也就是將能源傳輸至人員所在、所需要的地方,有人員的空間則提供足夠的照明、舒適的空調等,而人員離開時,能自動地降低能源使用、調整耗能設備運轉,做到當用則用及該省則省,要達成這應用條件,人流與活動量資訊便顯得相當重要,於住商建築、智慧家庭應用場域,以不侵害室內人員隱私條件下,可即時感知人員位置定位與活動量等變化資訊,進行最適化能源管理。而揭露技術內容提供區域人員日常活動量資訊,可作為智慧節能管理、智慧家電、居家照護服務等加值應用,而具有可保護的技術標的,故提出專利權申請以尋求專利權之保護。Through the disclosure of FIG. 1 to FIG. 17 above, it can be understood that the present invention is a method and device for detecting position and activity of a person in an area, and the main technical feature is to apply a low-cost human body infrared sensing module to develop regional personnel. Position location and daily activity volume sensing technology, security and privacy of personnel location information can be guaranteed, and the computing requirements of the overall system are greatly reduced, development cost is low, commercialization acceptance is high, and regional personnel location positioning includes vertical and horizontal Displacement, positioning error is less than 15.7cm, and provide information on the daily activities of regional personnel, which can be used as value-added applications such as smart energy management, smart home appliances, and home care services. At the same time, it develops the environment-aware module technology in front of the building energy management system to optimize the energy management, that is, to transfer energy to the place where the personnel are needed, and the space for personnel provides sufficient lighting, comfortable air conditioning, etc. When the personnel leave, they can automatically reduce the energy use and adjust the operation of the energy-consuming equipment. When it is used, the province and the province will save it. To achieve this application condition, the flow of people and activity information is very important. The smart home application field can optimize the energy management by instantly sensing the change information of the location and activity of the personnel without infringing the privacy of the indoor staff. The disclosure of technical content provides information on the daily activities of regional personnel, and can be used as a value-added application such as smart energy-saving management, smart home appliances, and home care services, and has a technical target that can be protected. Therefore, a patent application is filed to seek protection of patent rights.
綜上所述,本發明之結構特徵及各實施例皆已詳細揭示,而可充分顯示出本發明案在目的及功效上均深賦實施之進步性,極具產業之利用價值,且為目前市面上前所未見之運用,依專利法之精神所述,本發明案完全符合發明專利之要件。In summary, the structural features and embodiments of the present invention have been disclosed in detail, and can fully demonstrate the progress of the invention in terms of purpose and efficacy, and is of great industrial value, and is currently The unprecedented use in the market, according to the spirit of the patent law, the invention is fully in line with the requirements of the invention patent.
唯以上所述者,僅為本發明之較佳實施例而已,當不能以之限定本發明所實施之範圍,即大凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬於本發明專利涵蓋之範圍內,謹請 貴審查委員明鑑,並祈惠准,是所至禱。The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent variations and modifications made by the scope of the present invention should still belong to the present invention. Within the scope of the patent, I would like to ask your review committee to give a clear understanding and pray for it. It is the prayer.
11...人體紅外線感測模組11. . . Human body infrared sensing module
12...人員12. . . personnel
13...感測區域13. . . Sensing area
14...菲涅耳透鏡14. . . Fresnel lens
15...套筒結構15. . . Sleeve structure
16...天花板16. . . ceiling
21...利用一微控制單元讀取複數組人體紅外線感測模組之類比訊號twenty one. . . Using a micro control unit to read analog signals of a complex array of human body infrared sensing modules
22...利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理twenty two. . . The complex array is used to perform different path test of the complex array, and the signal output of the human body infrared sensing module is obtained separately, and the micro control unit is used for analysis and processing.
23...利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理twenty three. . . Using the micro control unit to perform short-term energy calculation processing of analog signals of each group of human infrared sensing modules
24...獲得一能量曲線並計算能量曲線面積twenty four. . . Obtain an energy curve and calculate the energy curve area
25...利用一應用軟體來進行不同路徑之能量曲線之面積計算分析25. . . Area calculation and analysis of energy curves for different paths using an application software
26...利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離26. . . The application software is used to convert the energy curve area into a relative distance from the human body infrared sensing module.
27...利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值27. . . Using the application software to convert the relative distance of the complex array into the position coordinates and activity values of the regional personnel
31...第一路徑距離偵測信號31. . . First path distance detection signal
311...第一距離轉換能量曲線311. . . First distance conversion energy curve
32...第二路徑距離偵測信號32. . . Second path distance detection signal
321...第二距離轉換能量曲線321. . . Second distance conversion energy curve
322...能量曲線之積分面積322. . . Integral area of energy curve
33...第三路徑距離偵測信號33. . . Third path distance detection signal
331...第三距離轉換能量曲線331. . . Third distance conversion energy curve
34...第一人體紅外線感測模組34. . . First human body infrared sensing module
35...第二人體紅外線感測模組35. . . Second human body infrared sensing module
41...第一積分面積數值41. . . First integral area value
42...第二積分面積數值42. . . Second integral area value
43...第三積分面積數值43. . . Third integral area value
44...第四積分面積數值44. . . Fourth integral area value
45...第五積分面積數值45. . . Fifth integral area value
46...第六積分面積數值46. . . Sixth integral area value
51...第一人體紅外線感測模組51. . . First human body infrared sensing module
511...第一感測區域511. . . First sensing area
512...第一行走路徑512. . . First walking path
52...第二人體紅外線感測模組52. . . Second human body infrared sensing module
521...第二感測區域521. . . Second sensing area
522...第二行走路徑522. . . Second walking path
53...第三人體紅外線感測模組53. . . Third human infrared sensing module
531...第三感測區域531. . . Third sensing area
532...第三行走路徑532. . . Third walking path
54...第一人體紅外線感測能量之轉換相對距離54. . . First human infrared sensing energy conversion relative distance
55...第二人體紅外線感測能量之轉換相對距離55. . . Second human infrared sensing energy conversion relative distance
56...第三人體紅外線感測能量之轉換相對距離56. . . Third human infrared sensing energy conversion relative distance
57...第四人體紅外線感測模組57. . . Fourth human body infrared sensing module
571...第四感測區域571. . . Fourth sensing area
6...空間6. . . space
61...人體紅外線感測模組61. . . Human body infrared sensing module
62...感測區域62. . . Sensing area
630...原點630. . . origin
631...第一位置631. . . First position
632...第二位置632. . . Second position
633...第三位置633. . . Third position
634...第四位置634. . . Fourth position
635...第五位置635. . . Fifth position
640...原點640. . . origin
641...第一位置641. . . First position
642...第二位置642. . . Second position
643...第三位置643. . . Third position
644...第四位置644. . . Fourth position
7...空間7. . . space
71...人體紅外線感測模組71. . . Human body infrared sensing module
72...感測區域72. . . Sensing area
730...起始點730. . . Starting point
731...第一位置731. . . First position
732...第二位置732. . . Second position
733...第三位置733. . . Third position
734...第四位置734. . . Fourth position
735...第五位置735. . . Fifth position
圖一係為本發明利用複數組人體紅外線感測模組偵測位置之示意圖;1 is a schematic diagram of detecting a position by using a complex array human body infrared sensing module according to the present invention;
圖二係為本發明人體紅外線感測模組之電路架構示意圖;2 is a schematic diagram of a circuit structure of a human body infrared sensing module of the present invention;
圖三A~C係為本發明於人體紅外線感測模組前加置一套筒結構的結構示意圖;FIG. 3A to FIG. 3 are schematic diagrams showing the structure of a sleeve structure in front of a human body infrared sensing module according to the present invention; FIG.
圖四係為本發明區域內人員位置定位與活動量之偵測方法的流程圖;Figure 4 is a flow chart showing the method for detecting the position and activity of personnel in the region of the present invention;
圖五A係為本發明區域內設置複數人體紅外線感測模組來偵測複數組路徑之示意圖;Figure 5A is a schematic diagram of detecting a complex array path by setting a plurality of human body infrared sensing modules in the region of the present invention;
圖五B係為圖五A之該些人體紅外線感測模組之距離感測信號曲線圖;Figure 5B is a graph of distance sensing signals of the human body infrared sensing modules of Figure 5A;
圖六係為圖五B之距離感測信號轉換成能量曲線圖;Figure 6 is a graph of the distance sensing signal of Figure 5B converted into an energy curve;
圖七係為圖六之能量曲線之積分面積圖;Figure 7 is the integral area diagram of the energy curve of Figure 6.
圖八A係為第一組能量曲線之積分面積數值表示圖;Figure 8A is a numerical representation of the integral area of the first set of energy curves;
圖八B係為第二組能量曲線之積分面積數值表示圖;Figure 8B is a numerical representation of the integral area of the second set of energy curves;
圖八C係為第三組能量曲線之積分面積數值表示圖;Figure 8C is a numerical representation of the integral area of the third set of energy curves;
圖九係為本發明能量積分面積轉換成與人體紅外線感測模組之相對距離示意圖;Figure 9 is a schematic diagram showing the relative distance between the energy integral area of the present invention and the human body infrared sensing module;
圖十係為本發明利用四組人體紅外線感測模組所偵測距離轉換成人員位置座標示意圖;Figure 10 is a schematic diagram of the present invention using the four groups of human body infrared sensing modules to detect the distance converted into a person position coordinate;
圖十一係為本發明於一空間內設置複數組人體紅外線感測模組之示意圖;11 is a schematic diagram of a multi-array human body infrared sensing module disposed in a space of the present invention;
圖十二係為本發明於一空間內設定一人員行走第一路徑示意圖;Figure 12 is a schematic view showing a first path for a person to walk in a space;
圖十三A~D係為圖十二之第一偵測結果示意圖;Figure 13A to D are schematic diagrams showing the first detection result of Figure 12;
圖十四A~D係為圖十二之第二偵測結果示意圖;Figure 14A to D are schematic diagrams showing the second detection result of Figure 12;
圖十五A係為本發明於一空間內設定一人員行走第二路徑示意圖;Figure 15A is a schematic view showing a second path for a person to walk in a space;
圖十五B~E係為圖十五A之偵測結果示意圖;Figure 15B to E are schematic diagrams of the detection results of Figure 15A;
圖十六係為本發明於一空間內設定一人員行走第三路徑示意圖;Figure 16 is a schematic diagram of setting a third path for a person to walk in a space according to the present invention;
圖十七係為圖十六之偵測結果示意圖。Figure 17 is a schematic diagram of the detection results of Figure 16.
21...利用一微控制單元讀取複數組人體紅外線感測模組之類比訊號twenty one. . . Using a micro control unit to read analog signals of a complex array of human body infrared sensing modules
22...利用複數組人員進行複數組不同路徑測試,並各別獲得該些人體紅外線感測模組的訊號輸出,利用該微控制單元做一分析處理twenty two. . . The complex array is used to perform different path test of the complex array, and the signal output of the human body infrared sensing module is obtained separately, and the micro control unit is used for analysis and processing.
23...利用該微控制單元來進行每一組人體紅外線感測模組類比訊號之短時距能量計算處理twenty three. . . Using the micro control unit to perform short-term energy calculation processing of analog signals of each group of human infrared sensing modules
24...獲得一能量曲線並計算能量曲線面積twenty four. . . Obtain an energy curve and calculate the energy curve area
25...利用一應用軟體來進行不同路徑之能量曲線之面積計算分析25. . . Area calculation and analysis of energy curves for different paths using an application software
26...利用該應用軟體來進行能量曲線面積轉換成與人體紅外線感測模組之相對距離26. . . The application software is used to convert the energy curve area into a relative distance from the human body infrared sensing module.
27...利用該應用軟體來進行複數組相對距離轉換成區域人員之位置座標與活動量數值27. . . Using the application software to convert the relative distance of the complex array into the position coordinates and activity values of the regional personnel
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100146798A TWI448669B (en) | 2011-12-16 | 2011-12-16 | Regional personnel positioning and activity evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100146798A TWI448669B (en) | 2011-12-16 | 2011-12-16 | Regional personnel positioning and activity evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201326765A true TW201326765A (en) | 2013-07-01 |
TWI448669B TWI448669B (en) | 2014-08-11 |
Family
ID=49224940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100146798A TWI448669B (en) | 2011-12-16 | 2011-12-16 | Regional personnel positioning and activity evaluation method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI448669B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105719368A (en) * | 2014-12-04 | 2016-06-29 | 台达电子工业股份有限公司 | Personnel detection system and personnel detection method |
TWI554747B (en) * | 2014-12-04 | 2016-10-21 | 台達電子工業股份有限公司 | Human detection system and human detection method |
TWI662289B (en) * | 2018-07-02 | 2019-06-11 | 廣達電腦股份有限公司 | Tracking distance measuring system and method thereof |
TWI730861B (en) * | 2020-07-31 | 2021-06-11 | 國立勤益科技大學 | Warning method of social distance violation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3940826B2 (en) * | 1996-08-29 | 2007-07-04 | 浜松ホトニクス株式会社 | 3D shape measuring device |
US7602413B2 (en) * | 2002-10-18 | 2009-10-13 | Sony Corporation | Information processing system and method, information processing apparatus, image-capturing device and method, recording medium, and program |
US20080136914A1 (en) * | 2006-12-07 | 2008-06-12 | Craig Carlson | Mobile monitoring and surveillance system for monitoring activities at a remote protected area |
TWM374841U (en) * | 2009-08-21 | 2010-03-01 | jin-ye Hong | Monitoring device of patient's physiological information |
-
2011
- 2011-12-16 TW TW100146798A patent/TWI448669B/en active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105719368A (en) * | 2014-12-04 | 2016-06-29 | 台达电子工业股份有限公司 | Personnel detection system and personnel detection method |
TWI554747B (en) * | 2014-12-04 | 2016-10-21 | 台達電子工業股份有限公司 | Human detection system and human detection method |
US9811065B2 (en) | 2014-12-04 | 2017-11-07 | Delta Electronics, Inc. | Human detection system and human detection method |
TWI662289B (en) * | 2018-07-02 | 2019-06-11 | 廣達電腦股份有限公司 | Tracking distance measuring system and method thereof |
TWI730861B (en) * | 2020-07-31 | 2021-06-11 | 國立勤益科技大學 | Warning method of social distance violation |
Also Published As
Publication number | Publication date |
---|---|
TWI448669B (en) | 2014-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Trivedi et al. | Occupancy detection systems for indoor environments: A survey of approaches and methods | |
Li et al. | Measuring and monitoring occupancy with an RFID based system for demand-driven HVAC operations | |
Wang et al. | Modeling occupancy distribution in large spaces with multi-feature classification algorithm | |
Abolhassani et al. | Improving residential building energy simulations through occupancy data derived from commercial off-the-shelf Wi-Fi sensing technology | |
Spataru et al. | How to monitor people ‘smartly’to help reducing energy consumption in buildings? | |
Randall et al. | LuxTrace: Indoor positioning using building illumination | |
CN102859550A (en) | Energy demand prediction device and method | |
TWI448669B (en) | Regional personnel positioning and activity evaluation method | |
JP2007323526A (en) | Environmental control system and input device | |
CN106780182A (en) | Scenic spot network-enabled intelligent control system based on " electronic entrance ticket " | |
CN105320834B (en) | Method for calculating number of people based on using state of electric appliance and monitoring system thereof | |
Sinha et al. | Thermal comfort evaluation of an underground metro station in New Delhi using agent-based modelling | |
US20220222944A1 (en) | Security camera drone base station detection | |
CN115808211A (en) | A public building temperature and thermal comfort monitoring and forecasting system | |
Zhou et al. | Study workplace space occupancy: a review of measures and technologies | |
KR102357589B1 (en) | Device for evaluating energy performance of existing building and method thereof | |
Hong et al. | A living lab to develop smart home services for the residential welfare of older adults | |
He et al. | Green building interior design based on digital image processing and thermal environment simulation | |
Duan et al. | Occupant-centric dynamic heating demand in residential buildings based on a temporal-spatial combined quantification method | |
Guo et al. | Exploring and field-demonstrating geofence-based occupancy-centric control in residential buildings | |
Khan et al. | Occupancy prediction in buildings: State of the art and future directions | |
CN114169797A (en) | An energy management system and method | |
Bielskis et al. | Ambient lighting controller based on reinforcement learning components of multi-agents | |
Papadopoulos et al. | Indoor thermal comfort analysis for developing energy-saving strategies in buildings | |
TW201428324A (en) | A pyroelectric infrared sensor-based indoor location detection system |