TW201316504A - Electrically insulating joint for connecting a light-emitting element - Google Patents
Electrically insulating joint for connecting a light-emitting element Download PDFInfo
- Publication number
- TW201316504A TW201316504A TW101136742A TW101136742A TW201316504A TW 201316504 A TW201316504 A TW 201316504A TW 101136742 A TW101136742 A TW 101136742A TW 101136742 A TW101136742 A TW 101136742A TW 201316504 A TW201316504 A TW 201316504A
- Authority
- TW
- Taiwan
- Prior art keywords
- wafer
- light emitting
- layer
- adhesive sheet
- conductive
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims description 102
- 235000012431 wafers Nutrition 0.000 claims description 56
- 239000000853 adhesive Substances 0.000 claims description 45
- 230000001070 adhesive effect Effects 0.000 claims description 45
- 239000000758 substrate Substances 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 24
- 239000004020 conductor Substances 0.000 claims description 18
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 15
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 239000012790 adhesive layer Substances 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 description 36
- 239000000463 material Substances 0.000 description 23
- 229910052732 germanium Inorganic materials 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000012777 electrically insulating material Substances 0.000 description 3
- -1 for example Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910008599 TiW Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/16—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/018—Bonding of wafers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0364—Manufacture or treatment of packages of interconnections
Landscapes
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
本發明係關於一種用於將一半導體發光元件附接至一黏片之電性絕緣接合。半導體發光元件可經由一晶圓級處理而附接至一黏片。 The present invention relates to an electrically insulating joint for attaching a semiconductor light emitting element to a bonding sheet. The semiconductor light emitting element can be attached to a die via a wafer level process.
半導體發光元件(其包含發光二極體(LED)、諧振腔發光二極體(RCLED)、垂直腔雷射二極體(諸如一表面發射雷射(VCSEL))及邊緣發射雷射)係當前可用之最有效率光源。在製造能够在整個可見光譜內操作之高亮度發光元件時,當前所關注之材料系統包含III至V族半導體,尤其是鎵、鋁、銦及氮之二元、三元及四元合金(亦被稱為III族氮化物材料)。通常,通過有機金屬化學氣相沈積(MOCVD)、分子束磊晶(MBE)或其他磊晶技術,藉由使具有不同組合物及摻雜劑濃度之一堆疊之半導體層磊晶地生長於一藍寶石、矽碳化物、III族氮化物或其他適合基板上而製造III族氮化物發光元件。該堆疊通常包含形成於基板上之例如摻雜有Si之一或多個n型層、形成於該或該等n型層上之一作用區中之一或多個發光層及形成於該作用區上之例如摻雜有Mg之一或多個p型層。電性接點係形成於該等n型及p型區上。 Semiconductor light-emitting elements (including light-emitting diodes (LEDs), resonant cavity light-emitting diodes (RCLEDs), vertical-cavity laser diodes (such as a surface-emitting laser (VCSEL)), and edge-emitting lasers) are currently The most efficient light source available. In the manufacture of high-brightness light-emitting elements capable of operating throughout the visible spectrum, current material systems of interest include Group III to V semiconductors, especially binary, ternary and quaternary alloys of gallium, aluminum, indium and nitrogen (also Known as the Group III nitride material). Typically, a semiconductor layer having a stack of different compositions and dopant concentrations is epitaxially grown by organometallic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) or other epitaxial techniques. A group III nitride light-emitting element is produced by using sapphire, germanium carbide, group III nitride or other suitable substrate. The stack generally includes one or more light-emitting layers formed on the substrate, such as one or more n-type layers doped with Si, formed on one of the n-type layers, and formed in the function The region is doped, for example, with one or more p-type layers of Mg. Electrical contacts are formed on the n-type and p-type regions.
LED通常安裝於一載體上且經封裝以保護LED免受環境損害及機械損傷。習知地,LED晶片係一次一個地安裝於載體上。即,各LED係個別地安裝至(例如)一印刷電路板 或一反射器杯上。此外,以習知方式使引缐接合連接至各LED晶片。此等操作既昂貴又耗時且需要大量人力及/或專用設備。 LEDs are typically mounted on a carrier and packaged to protect the LED from environmental damage and mechanical damage. Conventionally, LED chips are mounted on a carrier one at a time. That is, each LED is individually mounted to, for example, a printed circuit board Or a reflector on the cup. In addition, the pinch joints are connected to the respective LED wafers in a conventional manner. These operations are expensive and time consuming and require a lot of manpower and/or special equipment.
US 2008/0142817描述一種用於封裝LED之「晶片級」方法。「晶片級」意指將一LED晶圓接合至一晶圓級上之一載體基板。圖11中展示藉由US 2008/0142817之方法而形成之一元件。其上形成複數個二極體160之一基板係晶圓接合至其上形成複數個接合墊240之一載體基板200。各二極體上之一金屬堆疊260接合至載體基板200上之一接合墊240。可在將晶圓接合至載體基板200之後移除生長基板。 複數個介層孔22A及22B可形成於載體基板中,接著,用與基板200之背側上之接合墊28A、28B(即,與二極體160相對)電性連接之金屬或其他導電材料來電鍍或填充介層孔22A及22B。一鈍化層320可形成於與二極體160相鄰之基板200之上表面上且經圖案化以顯露二極體160之一表面上之一電極之至少一部分及介層孔22B(接著,用金屬互連件330覆蓋介層孔22B,如下所述)之至少一部分。介層孔22A與22B彼此電性隔離(同樣地,接合墊28A與28B彼此隔離)。可使用習知技術(諸如蒸鍍)來形成一金屬互連件330以將導電介層孔22B與二極體160之暴露電極連接。接著,完成元件可經分離以提供個別封裝元件。 US 2008/0142817 describes a "wafer level" method for packaging LEDs. "Wafer level" means bonding an LED wafer to a carrier substrate on a wafer level. One of the elements formed by the method of US 2008/0142817 is shown in FIG. A substrate wafer on which a plurality of diodes 160 are formed is bonded to a carrier substrate 200 on which a plurality of bonding pads 240 are formed. One of the metal stacks 260 on each of the diodes is bonded to one of the bond pads 240 on the carrier substrate 200. The growth substrate can be removed after bonding the wafer to the carrier substrate 200. A plurality of via holes 22A and 22B may be formed in the carrier substrate, and then metal or other conductive material electrically connected to the bonding pads 28A, 28B on the back side of the substrate 200 (ie, opposite to the diode 160). The via holes 22A and 22B are plated or filled. A passivation layer 320 may be formed on the upper surface of the substrate 200 adjacent to the diode 160 and patterned to expose at least a portion of one of the electrodes on one surface of the diode 160 and the via hole 22B (then, Metal interconnects 330 cover at least a portion of via holes 22B, as described below. The via holes 22A and 22B are electrically isolated from each other (again, the bond pads 28A and 28B are isolated from each other). A metal interconnect 330 can be formed using conventional techniques, such as evaporation, to connect the conductive via 22B to the exposed electrode of the diode 160. The finished components can then be separated to provide individual package components.
本發明之一目的係提供一種用於將半導體發光元件之一晶圓附接至一黏片(諸如矽晶圓)之廉價晶圓級處理。 It is an object of the present invention to provide an inexpensive wafer level process for attaching a wafer of a semiconductor light emitting element to a die, such as a germanium wafer.
本發明之實施例包含一晶圓及一黏片。該晶圓包含複數個發光元件,各發光元件包括佈置於一n型區與一p型區之間之一發光區。一第一導電墊係電性連接至該n型區。一第二導電墊係電性連接至該p型區。一電性絕緣接合層係佈置於該晶圓與該黏片之間。與該等第一及第二導電墊對準之開口係形成於該電性絕緣接合層中。 Embodiments of the invention include a wafer and an adhesive sheet. The wafer includes a plurality of light emitting elements, and each of the light emitting elements includes a light emitting region disposed between an n-type region and a p-type region. A first conductive pad is electrically connected to the n-type region. A second conductive pad is electrically connected to the p-type region. An electrically insulating bonding layer is disposed between the wafer and the adhesive sheet. An opening aligned with the first and second conductive pads is formed in the electrically insulating bonding layer.
根據本發明之實施例之一方法包含在一晶圓及一黏片之一者上形成一電性絕緣接合層。該晶圓包含複數個發光元件,各發光元件包括佈置於一n型區與一p型區之間之一發光區。一第一導電墊係電性連接至該n型區。一第二導電墊係電性連接至該p型區。該方法進一步包含經由該電性絕緣接合層而將該晶圓附接至該黏片。在將該晶圓附接至該黏片之後,形成該電性絕緣接合層中之至少一開口以暴露該第一導電墊及該第二導電墊之至少一者。一導電材料係形成於該開口中。 A method in accordance with an embodiment of the present invention includes forming an electrically insulating bonding layer on one of a wafer and a die. The wafer includes a plurality of light emitting elements, and each of the light emitting elements includes a light emitting region disposed between an n-type region and a p-type region. A first conductive pad is electrically connected to the n-type region. A second conductive pad is electrically connected to the p-type region. The method further includes attaching the wafer to the adhesive sheet via the electrically insulating bonding layer. After attaching the wafer to the adhesive sheet, at least one opening of the electrically insulating bonding layer is formed to expose at least one of the first conductive pad and the second conductive pad. A conductive material is formed in the opening.
在以上參考圖11而描述之方法中,二極體之晶圓係藉由亦建立二極體與載體基板之間之電性連接之金屬接合而附接至載體基板。 In the method described above with reference to Figure 11, the diode wafer is attached to the carrier substrate by metal bonding that also establishes an electrical connection between the diode and the carrier substrate.
在本發明之實施例中,半導體發光元件之一晶圓係藉由一電性絕緣材料(諸如一介電接合)而附接至一黏片。該黏片可例如為一經部分處理之矽晶圓。在該接合材料中形成開口以暴露該等發光元件上之電性墊,接著在該等開口中佈置導電材料。與一金屬接合不同,可在接近室溫時形成 該介電接合,此可減小由半導體發光元件之該晶圓與該黏片之間之熱膨脹係數差引起之該接合之內部應力。 In an embodiment of the invention, one of the semiconductor light emitting elements is attached to a die by an electrically insulating material such as a dielectric bond. The adhesive sheet can be, for example, a partially processed tantalum wafer. An opening is formed in the bonding material to expose an electrical pad on the light emitting elements, and then a conductive material is disposed in the openings. Unlike a metal bond, it can be formed near room temperature The dielectric bonding reduces the internal stress of the bond caused by the difference in thermal expansion coefficient between the wafer and the adhesive sheet of the semiconductor light emitting element.
圖1繪示半導體發光元件之一晶圓之一部分。圖1中繪示三個發光元件11A、11B及11C。半導體發光元件之一完全晶圓通常將包含諸多更多發光元件。雖然在以下實例中發出藍光或UV光之III族氮化物LED位於半導體發光元件下方,但可使用除LED以外之半導體發光元件,諸如由其他材料系統(諸如其他III至V族材料、III族磷化物、III族砷化物、II至VI族材料、ZnO或矽基材料)製成之雷射二極體及半導體發光元件。 FIG. 1 illustrates a portion of a wafer of a semiconductor light emitting device. Three light-emitting elements 11A, 11B, and 11C are illustrated in FIG. A complete wafer of semiconductor light emitting elements will typically contain many more light emitting elements. Although a group III nitride LED emitting blue or UV light in the following examples is located under the semiconductor light emitting element, a semiconductor light emitting element other than the LED may be used, such as by other material systems (such as other group III to V materials, group III phosphorous). A laser diode and a semiconductor light-emitting device made of a compound, a group III arsenide, a group II to VI material, a ZnO or a ruthenium-based material.
在一生長基板10上生長一半導體結構12以形成圖1中所繪示之結構。生長基板10可為任何適合基板,諸如(例如)藍寶石、SiC、Si、GaN或複合基板。半導體結構12包含夾於n型區與p型區之間之一發光或作用區。一n型區可首先被生長且可包含具有不同組合物及摻雜劑濃度之多個層,其等例如包含:製備層,諸如緩衝層或成核層;及/或經設計以促進生長基板之移除之層,其等可為n型或未經有意摻雜;及n型或甚至p型元件層,其等針對發光區所要之特定光學、材料或電性質而設計以有效率地發出光。在n型區上生長一發光或作用區。適合發光區之實例包含:一單一較厚或較薄發光層;或一多量子井發光區,其包含由障壁層分離之多個較薄或較厚發光層。接著,可在發光區上生長一p型區。與n型區一樣,該p型區可包含具有不同組合物、厚度及摻雜劑濃度之多個層,其等包含未經有意 摻雜之層,或n型層。元件中之全部半導體材料之總厚度在一些實施例中小於10微米且在一些實施例中小於6微米。 A semiconductor structure 12 is grown on a growth substrate 10 to form the structure depicted in FIG. The growth substrate 10 can be any suitable substrate such as, for example, sapphire, SiC, Si, GaN, or a composite substrate. The semiconductor structure 12 includes a light-emitting or active region sandwiched between an n-type region and a p-type region. An n-type region may be grown first and may comprise a plurality of layers having different compositions and dopant concentrations, such as, for example, comprising: a preparation layer, such as a buffer layer or a nucleation layer; and/or designed to promote growth of the substrate The removed layer, which may be n-type or unintentionally doped; and an n-type or even a p-type element layer, which is designed to efficiently emit for the particular optical, material or electrical properties desired for the illuminating region Light. A luminescent or active region is grown on the n-type region. Examples of suitable illuminating regions include: a single thicker or thinner luminescent layer; or a multi-quantum well illuminating region comprising a plurality of thinner or thicker luminescent layers separated by a barrier layer. Next, a p-type region can be grown on the light-emitting region. Like the n-type region, the p-type region can comprise multiple layers having different compositions, thicknesses, and dopant concentrations, etc., including unintentional Doped layer, or n-type layer. The total thickness of all of the semiconductor material in the component is less than 10 microns in some embodiments and less than 6 microns in some embodiments.
一金屬p接點係形成於p型區上。若光之大部分係透過與p接點相對之一表面而自半導體結構向外導引(諸如在一覆晶元件中),則該p接點可具反射性。可藉由圖案化半導體結構(通過標準光微影操作)且蝕刻半導體結構以移除p型區之整個厚度之一部分及發光區之整個厚度之一部分而形成一覆晶元件以形成一臺面,該臺面顯露其上形成一金屬n接點之n型區之一表面。可以任何適合方式形成該臺面及p接點與n接點。該臺面及p接點與n接點之形成已為熟習技術者所熟知且不再於圖1中加以繪示。在元件11之間之區13中,半導體結構12被向下蝕刻至一絕緣層,該絕緣層可為作為半導體結構12或基板10之部分之一半導體絕緣層。 A metal p-contact is formed on the p-type region. The p-contact may be reflective if a substantial portion of the light is directed outward from the semiconductor structure (such as in a flip-chip element) through a surface opposite the p-contact. Forming a flip-chip element to form a mesa by patterning a semiconductor structure (operating by standard photolithography) and etching the semiconductor structure to remove a portion of the entire thickness of the p-type region and a portion of the entire thickness of the emissive region The mesa reveals one of the n-type regions on which a metal n junction is formed. The mesas and p-contacts and n-contacts can be formed in any suitable manner. The formation of the mesas and p-contacts and n-contacts is well known to those skilled in the art and is no longer shown in FIG. In region 13 between elements 11, semiconductor structure 12 is etched down to an insulating layer, which may be a semiconductor insulating layer that is part of semiconductor structure 12 or substrate 10.
可藉由絕緣層與金屬之一堆疊(如此項技術中所知)而重新分佈p接點及n接點以形成大的電性墊14A及14B。電性墊14A及14B之一者係電性連接至半導體結構12之p型區且電性墊14A及14B之另一者係電性連接至半導體結構12之n型區。電性墊可為任何適合導電材料,其例如包含銅、金及合金。在一些實施例中,形成p接點及n接點、重新分佈該等接點之堆疊及電性墊14A與14B以在生長基板10之隨後移除期間支撐半導體結構12以例如防止或減少半導體結構12中之裂化。如圖1中所繪示,一間隙16使電性墊14A與14B彼此電性隔離。可用一絕緣材料(諸如一介電質、空氣 或任何其他適合氣體)填充間隙16。 The p and n contacts can be redistributed by stacking one of the insulating layers and the metal (as known in the art) to form large electrical pads 14A and 14B. One of the electrical pads 14A and 14B is electrically connected to the p-type region of the semiconductor structure 12 and the other of the electrical pads 14A and 14B is electrically connected to the n-type region of the semiconductor structure 12. The electrically conductive pad can be any suitable electrically conductive material including, for example, copper, gold, and alloys. In some embodiments, a p-contact and an n-contact are formed, the stack of the contacts is re-distributed, and the electrical pads 14A and 14B are supported to support the semiconductor structure 12 during subsequent removal of the growth substrate 10 to, for example, prevent or reduce semiconductors. Cracking in structure 12. As shown in FIG. 1, a gap 16 electrically isolates the electrical pads 14A and 14B from each other. An insulating material (such as a dielectric, air) can be used. Or any other suitable gas) fill gap 16.
圖2係可與圖1之結構附接之一黏片18之一部分之一橫截面圖。圖3係黏片18之一部分之一平面圖。在一些實施例中,黏片18係矽晶圓。可形成穿過矽20之整個厚度之介層孔22。介層孔22經定尺寸及配置以與圖1之結構上之電性墊14A及14B對應。介層孔22可具有實質上垂直之側壁(如圖所繪示)或成角度側壁。可藉由用一塗層24塗覆矽20而使矽黏片18不具電性,塗層24可例如為藉由任何適合處理(其包含電漿增強型化學氣相沈積或熱氧化)而形成之矽之氧化物。 2 is a cross-sectional view of one of the portions of the adhesive sheet 18 that can be attached to the structure of FIG. 1. Figure 3 is a plan view of one of the portions of the adhesive sheet 18. In some embodiments, the adhesive sheet 18 is a wafer. A via hole 22 may be formed through the entire thickness of the crucible 20. The via holes 22 are sized and configured to correspond to the electrical pads 14A and 14B of the structure of FIG. The vias 22 can have substantially vertical sidewalls (as shown) or angled sidewalls. The tantalum sheet 18 can be rendered non-electrical by coating the crucible 20 with a coating 24 which can be formed, for example, by any suitable treatment which includes plasma enhanced chemical vapor deposition or thermal oxidation. Oxide oxide.
在圖4中,元件11之晶圓係藉由一接合層26而附接至黏片18。接合層26可為一電性絕緣材料諸如一介電質、苯並環丁烯(BCB)、聚矽氧或適合於將元件11之晶圓附接至黏片18之任何材料。黏片18可接觸元件11之晶圓或可藉由接合層26而與元件11之晶圓隔開,如圖4中所繪示。在一些實施例中,接合材料係佈置於元件11之晶圓、黏片18或晶圓與黏片18兩者上,接著,元件11之晶圓與黏片18經對準以被壓製在一起,且接合層26被固化。可根據依序或同時處理步驟而執行對準、壓製在一起及固化。可在高溫處執行該等步驟之部分或全部。例如,藉由目視調準而使黏片18中之開口22與元件11上之電性墊14A及14B大致對準。如圖4中所繪示,接合層26可完全覆蓋電性墊14A及14B。相應地,接合層26僅形成一機械連接,其不是藉由將元件之晶圓附接至黏片而建立之元件11之晶圓與黏片18之間之 電性連接。接合層26亦可經形成使得其填充元件11之晶圓之表面上之任何間隙或凹口以例如防止污染物到達元件11或在生長基板10之層移除期間支撐元件11。 In FIG. 4, the wafer of component 11 is attached to the adhesive sheet 18 by a bonding layer 26. Bonding layer 26 can be an electrically insulating material such as a dielectric, benzocyclobutene (BCB), polyfluorene, or any material suitable for attaching the wafer of component 11 to the adhesive sheet 18. The adhesive sheet 18 can contact the wafer of the component 11 or can be separated from the wafer of the component 11 by the bonding layer 26, as depicted in FIG. In some embodiments, the bonding material is disposed on the wafer of the component 11, the adhesive sheet 18, or both the wafer and the adhesive sheet 18. Then, the wafer of the component 11 is aligned with the adhesive sheet 18 to be pressed together. And the bonding layer 26 is cured. Alignment, pressing together, and curing can be performed according to sequential or simultaneous processing steps. Some or all of these steps may be performed at a high temperature. For example, the opening 22 in the adhesive sheet 18 is substantially aligned with the electrical pads 14A and 14B on the component 11 by visual alignment. As shown in FIG. 4, the bonding layer 26 can completely cover the electrical pads 14A and 14B. Accordingly, the bonding layer 26 forms only a mechanical connection between the wafer of the component 11 and the adhesive sheet 18 that is not created by attaching the wafer of the component to the adhesive. Electrical connection. The bonding layer 26 can also be formed such that it fills any gaps or recesses on the surface of the wafer of the component 11 to, for example, prevent contaminants from reaching the component 11 or supporting the component 11 during removal of the layer of the growth substrate 10.
在圖5中,可例如藉由蝕除矽晶圓20之厚度之一部分而視情況薄化黏片18。例如,一6英寸直徑矽晶圓之一典型厚度為650微米。黏片18之矽層20可在一些實施例中被薄化至例如200微米或更薄、在一些實施例中被薄化至150微米或更薄及在一些實施例中被薄化至100微米或更薄。黏片18可經薄化以減小填充有金屬之開口22之厚度,如以下參考圖7所述。在一些實施例中,黏片18經薄化使得黏片18之厚度不足以機械地支撐元件11。在此等實施例中,在圖5及圖6所繪示之處理階段中,由生長基板10支撐元件11。 In FIG. 5, the adhesive sheet 18 can be thinned as appropriate, for example, by etching away a portion of the thickness of the germanium wafer 20. For example, one of a 6 inch diameter germanium wafers typically has a thickness of 650 microns. The layer 20 of the adhesive sheet 18 can be thinned to, for example, 200 microns or less in some embodiments, thinned to 150 microns or less in some embodiments, and thinned to 100 microns in some embodiments. Or thinner. The adhesive sheet 18 can be thinned to reduce the thickness of the metal-filled opening 22, as described below with reference to FIG. In some embodiments, the adhesive sheet 18 is thinned such that the thickness of the adhesive sheet 18 is insufficient to mechanically support the element 11. In these embodiments, element 11 is supported by growth substrate 10 during the processing stages illustrated in FIGS. 5 and 6.
亦在圖5中,於電性絕緣接合層26中形成開口28以暴露電性墊14A及14B。通過任何適合技術(其例如包含電漿蝕刻),可藉由習知遮蔽、圖案化及蝕刻而形成開口28。在一些實施例中,黏片晶圓20及其預成型開口22足以用作為一硬遮罩以充當界定開口28之圖案化之防護層。使用一各向異性蝕刻化學反應(諸如反應性離子蝕刻或感應耦合電漿蝕刻)來形成開口22,使得填充金屬之進一步處理係可行的。 Also in FIG. 5, an opening 28 is formed in the electrically insulating bonding layer 26 to expose the electrical pads 14A and 14B. The opening 28 can be formed by conventional masking, patterning, and etching by any suitable technique, including, for example, plasma etching. In some embodiments, the adhesive wafer 20 and its preformed opening 22 are sufficient to act as a hard mask to act as a patterned protective layer defining the opening 28. The opening 22 is formed using an anisotropic etch chemistry, such as reactive ion etching or inductively coupled plasma etching, such that further processing of the fill metal is possible.
為清晰起見,圖6、圖7、圖8、圖9及圖10中僅繪示一單一元件11。應瞭解,此等圖中所繪示之結構可形成於元件11之一晶圓上。相應地,可在元件11之整個晶圓中多次重 複此等圖中所繪示之結構。 For the sake of clarity, only a single component 11 is illustrated in Figures 6, 7, 8, 9, and 10. It should be understood that the structures depicted in these figures can be formed on one of the elements 11 wafers. Accordingly, it can be repeated multiple times in the entire wafer of the component 11. The structure depicted in these figures is repeated.
在圖6中,一導電晶種層30係形成於結構之底面(沿圖6中所繪示之定向)上。晶種層30亦形成於開口22之側壁及矽層20之暴露表面上。晶種層30可例如為一單一金屬、一合金或一金屬堆疊。適合材料之實例包含Cu、Au、Ti及TiW。在一實例中,晶種層30包含一TiW障壁/黏著層及一Cu層。適合厚度之實例包含50奈米至100奈米TiW及0.5微米至1微米Cu。可藉由任何適合處理(其例如包含濺鍍、蒸鍍或一沈積處理(諸如CVD))而形成晶種層30。晶種層30與電性墊14A及14B直接電性接觸。晶種層30形成圖7中所繪示之介層孔填充處理之基礎層。 In Figure 6, a conductive seed layer 30 is formed on the bottom surface of the structure (in the orientation depicted in Figure 6). A seed layer 30 is also formed on the sidewalls of the opening 22 and the exposed surface of the layer 20. The seed layer 30 can be, for example, a single metal, an alloy, or a metal stack. Examples of suitable materials include Cu, Au, Ti, and TiW. In one example, the seed layer 30 comprises a TiW barrier/adhesive layer and a Cu layer. Examples of suitable thicknesses include 50 nm to 100 nm TiW and 0.5 micron to 1 micron Cu. The seed layer 30 can be formed by any suitable process which includes, for example, sputtering, evaporation or a deposition process such as CVD. The seed layer 30 is in direct electrical contact with the electrical pads 14A and 14B. The seed layer 30 forms the base layer of the via fill process illustrated in FIG.
亦在圖6中,一頂層32係形成於晶種層30之部分上,晶種層30位於矽層20之底面(沿所繪示之定向)上。頂層32可例如為一電性絕緣材料,諸如一介電質、一有機層、聚醯亞胺、BCB或環氧樹脂。可藉由任何適合處理(其例如包含滾塗)而形成頂層32。頂層防止形成於圖7之介層孔中之導電材料形成於矽層20上。 Also in FIG. 6, a top layer 32 is formed over portions of the seed layer 30, and the seed layer 30 is located on the bottom surface of the layer 20 (in the orientation shown). The top layer 32 can be, for example, an electrically insulating material such as a dielectric, an organic layer, polyimide, BCB or epoxy. The top layer 32 can be formed by any suitable treatment, which includes, for example, roll coating. The top layer prevents the conductive material formed in the via holes of FIG. 7 from being formed on the germanium layer 20.
在圖7中,一導電材料34係形成於黏片18之開口22中。導電材料34可為一金屬,諸如藉由任何適合處理(其包含電鍍)而形成之Cu。在電鍍期間,金屬僅黏著至導電表面,諸如晶種層30之暴露表面。由於頂層32係電性絕緣的,所以無金屬黏著至頂層32;相應地,無金屬電鍍至矽層20上。導電材料34可完全填充開口22(如圖7中所繪示),或導電材料34可等形地塗覆與電性墊14A及14B接觸且位 於開口22之側壁上之晶種層30,使得開口22僅部分被填充。在圖7所繪示之組態中,導電金屬34係直接佈置於接合材料26中所形成之開口下方以暴露電性墊14A及14B。在一些實施例中,可藉由以下步驟而形成呈一替代組態之導電材料34:在結構之底面上形成一等形頂層32;接著,圖案化頂層32以在需要導電材料34之區中暴露晶種層30。 In FIG. 7, a conductive material 34 is formed in the opening 22 of the adhesive sheet 18. Conductive material 34 can be a metal such as Cu formed by any suitable process that includes electroplating. During plating, the metal only adheres to the conductive surface, such as the exposed surface of the seed layer 30. Since the top layer 32 is electrically insulative, no metal adheres to the top layer 32; accordingly, no metal is electroplated onto the tantalum layer 20. The conductive material 34 can completely fill the opening 22 (as shown in FIG. 7), or the conductive material 34 can be isomorphically coated in contact with the electrical pads 14A and 14B. The seed layer 30 on the sidewalls of the opening 22 is such that the opening 22 is only partially filled. In the configuration depicted in FIG. 7, conductive metal 34 is disposed directly beneath the opening formed in bonding material 26 to expose electrical pads 14A and 14B. In some embodiments, the conductive material 34 in an alternate configuration can be formed by forming an equi-top layer 32 on the bottom surface of the structure; then, patterning the top layer 32 in the region where the conductive material 34 is desired The seed layer 30 is exposed.
在圖8中,藉由任何適合處理(諸如蝕刻)而移除矽層20之底面上之晶種層30及頂層32之部分。一層絕緣材料36(諸如阻焊劑、可光成像之阻焊劑(PI)或BCB)係施加至結構之底面,接著經圖案化以形成與導電材料34對準之開口。絕緣材料層36使半導體矽層20電性隔離,界定墊38之位置且可產生墊38與矽層20之間之應力釋放。適合於此絕緣材料36之厚度之實例為針對BCB之5微米及針對更習知之薄板層壓阻焊劑材料之高達50微米至100微米。接著,墊38係形成於絕緣材料36之開口中。墊38可例如為一導電材料,諸如適合於附接至其他基板(諸如印刷電路板)之一惰性、可焊或焊料層。 In FIG. 8, portions of seed layer 30 and top layer 32 on the bottom surface of germanium layer 20 are removed by any suitable process, such as etching. A layer of insulating material 36, such as a solder resist, photoimageable solder resist (PI) or BCB, is applied to the bottom surface of the structure and then patterned to form openings that are aligned with the conductive material 34. The layer of insulating material 36 electrically isolates the semiconductor germanium layer 20, defining the location of the pads 38 and creating stress relief between the pads 38 and the germanium layer 20. Examples of thicknesses suitable for this insulating material 36 are up to 50 microns to 100 microns for BCB 5 microns and for more conventional thin plate laminated solder resist materials. Next, the pad 38 is formed in the opening of the insulating material 36. Pad 38 can be, for example, a conductive material such as an inert, solderable or solder layer suitable for attachment to other substrates, such as printed circuit boards.
在圖9中,視情況移除(如圖9中所繪示)或薄化生長基板10。在其他實施例中,生長基板10可仍為最終元件之部分。藉由適合於特定生長基板材料之任何處理(諸如用於一藍寶石基板之雷射剝離、蝕刻或一機械技術(諸如研磨))而移除或薄化生長基板10。在移除生長基板之後,暴露半導體結構12之頂面及元件之間之區13中之接合層26。可視情況粗糙化或圖案化半導體結構12之頂面以例如改良光提 取。一或多個可選額外層40(諸如波長轉換層、濾光層、二向色層、透鏡或其他光學器件)可形成於生長基板(若存在)或半導體結構12(若生長基板已被移除)上。可選額外層可與結構接觸(如圖9中所繪示)或與結構之頂面隔開。 In FIG. 9, the growth substrate 10 is removed (as shown in FIG. 9) or thinned as appropriate. In other embodiments, the growth substrate 10 can remain part of the final component. The growth substrate 10 is removed or thinned by any process suitable for the particular growth substrate material, such as laser lift-off, etching, or a mechanical technique (such as grinding) for a sapphire substrate. After the growth substrate is removed, the top surface of the semiconductor structure 12 and the bonding layer 26 in the region 13 between the components are exposed. The top surface of the semiconductor structure 12 may be roughened or patterned as appropriate to, for example, improve the light extraction take. One or more optional additional layers 40 (such as a wavelength conversion layer, a filter layer, a dichroic layer, a lens, or other optical device) may be formed on the growth substrate (if present) or the semiconductor structure 12 (if the growth substrate has been removed) Except). An optional additional layer can be in contact with the structure (as depicted in Figure 9) or spaced from the top surface of the structure.
接著,可視情況測試已完成結構上之個別元件。接著,可藉由任何適合技術而將結構切割成個別元件11或元件11之群組。 Next, individual components of the completed structure can be tested as appropriate. The structure can then be cut into individual elements 11 or groups of elements 11 by any suitable technique.
圖10繪示本發明之一替代實施例,其中整合電性功能係形成於黏片18之矽晶圓20中。例如,矽晶圓可經處理以形成積體電路42及介層孔22。積體電路42可例如為一靜電保護二極體,諸如一齊納二極體。可在一些實施例中包含其他電路,諸如(例如)用於選擇待驅動之一單一元件或一陣列之元件之部分之開關,或驅動器。在矽晶圓中形成此一元件係已為熟習技術者所熟知。如圖10中所繪示,積體電路可形成於電性墊14A與14B之間所佈置之矽晶圓20之區中。由於晶圓20已在圖5中被薄化,所以電路42可形成於矽層20之頂部部分中。 FIG. 10 illustrates an alternate embodiment of the present invention in which an integrated electrical function is formed in the germanium wafer 20 of the adhesive sheet 18. For example, the germanium wafer can be processed to form integrated circuit 42 and via 22 . The integrated circuit 42 can be, for example, an electrostatic protection diode such as a Zener diode. Other circuitry may be included in some embodiments, such as, for example, a switch for selecting a portion of a single component or an array of components to be driven, or a driver. The formation of such a component in a germanium wafer is well known to those skilled in the art. As shown in FIG. 10, an integrated circuit can be formed in the region of the germanium wafer 20 disposed between the electrical pads 14A and 14B. Since the wafer 20 has been thinned in FIG. 5, the circuit 42 can be formed in the top portion of the germanium layer 20.
可在接合之前形成黏片18上之電性接點44至電路42之直接接觸。電性接點44可形成於矽晶圓20中之介層孔22上。接著,晶種層30係沈積於介層孔22中,如圖6中所述。晶種層30與電性接點44電性接觸。可形成與電路42電性接觸之額外介層孔22。在圖10所繪示之實例中,電路42係串聯連接於電性墊14A與14B之間。電路42之第一側係透過導電材料34B及34A而連接至電性墊14A。電路42之第二側係 透過導電材料34C及34D而連接至電性墊14B。 Direct contact of the electrical contacts 44 on the adhesive sheet 18 to the circuitry 42 can be formed prior to bonding. Electrical contacts 44 may be formed on vias 22 in germanium wafer 20. Next, a seed layer 30 is deposited in the via holes 22 as described in FIG. The seed layer 30 is in electrical contact with the electrical contacts 44. Additional via holes 22 that are in electrical contact with circuit 42 can be formed. In the example depicted in FIG. 10, circuit 42 is connected in series between electrical pads 14A and 14B. The first side of circuit 42 is coupled to electrical pad 14A via conductive materials 34B and 34A. The second side of circuit 42 It is connected to the electrical pad 14B through the conductive materials 34C and 34D.
雖然已詳細描述本發明,但熟習技術者應瞭解,就本發明而言,可在不背離本文中所述之本發明之精神之情況下對本發明作出修改。因此,非意欲本發明之範疇受限於所繪示及所述之特定實施例。 Although the invention has been described in detail, it is understood by those skilled in the art that the invention may be modified without departing from the spirit of the invention described herein. Therefore, the scope of the invention is not intended to be limited to the particular embodiments shown and described.
10‧‧‧生長基板 10‧‧‧ Growth substrate
11‧‧‧元件 11‧‧‧ components
11A‧‧‧發光元件 11A‧‧‧Lighting elements
11B‧‧‧發光元件 11B‧‧‧Lighting elements
11C‧‧‧發光元件 11C‧‧‧Lighting elements
12‧‧‧半導體結構 12‧‧‧Semiconductor structure
13‧‧‧區 13‧‧‧ District
14A‧‧‧電性墊 14A‧‧‧Electrical mat
14B‧‧‧電性墊 14B‧‧‧Electrical mat
16‧‧‧間隙 16‧‧‧ gap
18‧‧‧黏片 18‧‧‧Adhesive
20‧‧‧矽晶圓/矽層/黏片晶圓 20‧‧‧矽 Wafer/Layer/Adhesive Wafer
22‧‧‧介層孔/開口 22‧‧‧Medium hole/opening
22A‧‧‧介層孔 22A‧‧‧Interlayer hole
22B‧‧‧介層孔 22B‧‧‧Interlayer hole
24‧‧‧塗層 24‧‧‧Coating
26‧‧‧接合層/接合材料 26‧‧‧Connection layer/bonding material
28‧‧‧開口 28‧‧‧ openings
28A‧‧‧接合墊 28A‧‧‧Material pads
28B‧‧‧接合墊 28B‧‧‧Join Mat
30‧‧‧晶種層 30‧‧‧ seed layer
32‧‧‧頂層 32‧‧‧ top
34‧‧‧導電材料/導電金屬 34‧‧‧Conductive materials/conductive metals
34A‧‧‧導電材料 34A‧‧‧Electrical materials
34B‧‧‧導電材料 34B‧‧‧Electrical materials
34C‧‧‧導電材料 34C‧‧‧Electrical materials
34D‧‧‧導電材料 34D‧‧‧Electrical materials
36‧‧‧絕緣材料 36‧‧‧Insulation materials
38‧‧‧墊 38‧‧‧ pads
40‧‧‧額外層 40‧‧‧Additional layer
42‧‧‧積體電路 42‧‧‧ integrated circuit
44‧‧‧電性接點 44‧‧‧Electrical contacts
160‧‧‧二極體 160‧‧‧ diode
200‧‧‧載體基板 200‧‧‧ Carrier substrate
240‧‧‧接合墊 240‧‧‧ joint pad
260‧‧‧金屬堆疊 260‧‧‧Metal stacking
320‧‧‧鈍化層 320‧‧‧ Passivation layer
330‧‧‧金屬互連件 330‧‧‧Metal interconnects
圖1繪示包含三個半導體發光元件之一晶圓之一部分。 FIG. 1 illustrates a portion of a wafer including one of three semiconductor light emitting elements.
圖2繪示黏片之一部分。 Figure 2 depicts a portion of the adhesive sheet.
圖3繪示圖2中所繪示之黏片之一部分之一俯視圖。 3 is a top plan view of a portion of the adhesive sheet illustrated in FIG. 2.
圖4繪示附接至圖2中所繪示之結構之圖1之結構。 4 illustrates the structure of FIG. 1 attached to the structure depicted in FIG. 2.
圖5繪示在形成接合材料中之開口且薄化黏片之後之圖4之結構。 Figure 5 illustrates the structure of Figure 4 after forming an opening in the bonding material and thinning the adhesive.
圖6繪示在形成一晶種層及一頂層之後之圖5中所展示之元件之一者。 Figure 6 illustrates one of the components shown in Figure 5 after forming a seed layer and a top layer.
圖7繪示在將一金屬層佈置於開口中之後之圖6之結構。 Figure 7 illustrates the structure of Figure 6 after a metal layer is disposed in the opening.
圖8繪示在移除頂層及晶種層且形成墊之後之圖7之結構。 Figure 8 illustrates the structure of Figure 7 after removal of the top layer and seed layer and formation of the pad.
圖9繪示在移除生長基板且形成半導體發光元件上之可選額外層之後之圖8之結構。 Figure 9 illustrates the structure of Figure 8 after removing the growth substrate and forming an optional additional layer on the semiconductor light emitting element.
圖10繪示附接至包含積體電路之一黏片之一半導體發光元件。 FIG. 10 illustrates a semiconductor light emitting element attached to one of the adhesive sheets including the integrated circuit.
圖11繪示附接至一黏片之一先前技術半導體發光元件。 Figure 11 illustrates a prior art semiconductor light emitting element attached to one of the adhesive sheets.
10‧‧‧生長基板 10‧‧‧ Growth substrate
11‧‧‧元件 11‧‧‧ components
12‧‧‧半導體結構 12‧‧‧Semiconductor structure
14A‧‧‧電性墊 14A‧‧‧Electrical mat
14B‧‧‧電性墊 14B‧‧‧Electrical mat
18‧‧‧黏片 18‧‧‧Adhesive
20‧‧‧矽晶圓/矽層/黏片晶圓 20‧‧‧矽 Wafer/Layer/Adhesive Wafer
22‧‧‧介層孔/開口 22‧‧‧Medium hole/opening
24‧‧‧塗層 24‧‧‧Coating
26‧‧‧接合層/接合材料 26‧‧‧Connection layer/bonding material
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161544417P | 2011-10-07 | 2011-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201316504A true TW201316504A (en) | 2013-04-16 |
Family
ID=47116144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101136742A TW201316504A (en) | 2011-10-07 | 2012-10-04 | Electrically insulating joint for connecting a light-emitting element |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201316504A (en) |
WO (1) | WO2013050898A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105637636A (en) * | 2013-10-18 | 2016-06-01 | 欧司朗光电半导体有限公司 | Optoelectronic component and production method therefor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101578266B1 (en) * | 2013-03-12 | 2015-12-16 | 박진성 | Wafer Level Chip Scale Light Emitting Diode Package |
KR102235020B1 (en) * | 2013-07-03 | 2021-04-02 | 루미리즈 홀딩 비.브이. | Led with stress-buffer layer under metallization layer |
CN112542481A (en) * | 2020-12-28 | 2021-03-23 | 无锡新仕嘉半导体科技有限公司 | LED structure of integrated polycrystalline silicon diode |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6661029B1 (en) * | 2000-03-31 | 2003-12-09 | General Electric Company | Color tunable organic electroluminescent light source |
US7902062B2 (en) * | 2002-11-23 | 2011-03-08 | Infineon Technologies Ag | Electrodepositing a metal in integrated circuit applications |
TWI246783B (en) * | 2003-09-24 | 2006-01-01 | Matsushita Electric Works Ltd | Light-emitting device and its manufacturing method |
US9368428B2 (en) * | 2004-06-30 | 2016-06-14 | Cree, Inc. | Dielectric wafer level bonding with conductive feed-throughs for electrical connection and thermal management |
TWI422044B (en) | 2005-06-30 | 2014-01-01 | Cree Inc | Wafer-scale method for packaging light-emitting device and light-emitting device packaged by wafer scale |
CN100446288C (en) * | 2006-08-01 | 2008-12-24 | 金芃 | Semiconductor chip with through-hole vertical structure and manufacturing method thereof |
-
2012
- 2012-09-21 WO PCT/IB2012/055008 patent/WO2013050898A1/en active Application Filing
- 2012-10-04 TW TW101136742A patent/TW201316504A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105637636A (en) * | 2013-10-18 | 2016-06-01 | 欧司朗光电半导体有限公司 | Optoelectronic component and production method therefor |
CN105637636B (en) * | 2013-10-18 | 2018-10-12 | 欧司朗光电半导体有限公司 | Method for manufacturing opto-electronic semiconductor module and opto-electronic semiconductor module |
Also Published As
Publication number | Publication date |
---|---|
WO2013050898A1 (en) | 2013-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7134198B2 (en) | Method for attaching a light emitting device to a supporting substrate | |
CN103650171B (en) | Semiconductor device is attached to the method for supporting substrate | |
JP2019114804A (en) | Light-emitting device bonded to supporting substrate | |
TWI612696B (en) | Light-emitting diode (LED) structure and method of forming a flip-chip LED structure | |
CN104205366B (en) | The light emitting semiconductor device of sealing | |
JP6100794B2 (en) | Semiconductor light emitting device having a thick metal layer | |
US8314443B2 (en) | Semiconductor light emitting device with a contact formed on a textured surface | |
TW201316504A (en) | Electrically insulating joint for connecting a light-emitting element | |
TW201304206A (en) | Method of attaching a light emitting device to a support substrate | |
TW201332149A (en) | Forming a thick metal layer on the semiconductor light emitting device |