[go: up one dir, main page]

TW201307621A - Single crystal germanium wafer and preparation method thereof - Google Patents

Single crystal germanium wafer and preparation method thereof Download PDF

Info

Publication number
TW201307621A
TW201307621A TW101120055A TW101120055A TW201307621A TW 201307621 A TW201307621 A TW 201307621A TW 101120055 A TW101120055 A TW 101120055A TW 101120055 A TW101120055 A TW 101120055A TW 201307621 A TW201307621 A TW 201307621A
Authority
TW
Taiwan
Prior art keywords
pyramid
single crystal
compound
germanium wafer
crystal germanium
Prior art date
Application number
TW101120055A
Other languages
Chinese (zh)
Other versions
TWI537437B (en
Inventor
Hyung-Pyo Hong
Myun-Kyu Park
Jae-Yun Lee
Young-Jun Jin
Original Assignee
Dongwoo Fine Chem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongwoo Fine Chem Co Ltd filed Critical Dongwoo Fine Chem Co Ltd
Publication of TW201307621A publication Critical patent/TW201307621A/en
Application granted granted Critical
Publication of TWI537437B publication Critical patent/TWI537437B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/70Surface textures, e.g. pyramid structures
    • H10F77/703Surface textures, e.g. pyramid structures of the semiconductor bodies, e.g. textured active layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/02Etching, surface-brightening or pickling compositions containing an alkali metal hydroxide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)

Abstract

揭露了一種單晶矽晶圓以及製備該單晶矽晶圓的方法。更特別的是,本發明揭露了一種結晶矽晶圓以及製備該結晶矽晶圓的方法,該結晶矽晶圓具有由多個金字塔構成的表面,其中每個金字塔具有從該金字塔的頂點延伸至底部的曲面,以最大化陽光吸收,並大大地減少光反射,藉此改進光轉換效率。A single crystal germanium wafer and a method of preparing the single crystal germanium wafer are disclosed. More particularly, the present invention discloses a crystalline germanium wafer having a surface composed of a plurality of pyramids, and a method of preparing the crystalline germanium wafer, wherein each pyramid has a radii extending from the apex of the pyramid The curved surface at the bottom maximizes sun absorption and greatly reduces light reflection, thereby improving light conversion efficiency.

Description

單晶矽晶圓及其製備方法Single crystal germanium wafer and preparation method thereof

相關申請案
此申請案主張於2011年6月7日向韓國智慧財產局申請的韓國專利申請案編號10-2011-0054569、2012年6月1日申請的韓國專利申請案編號0-2012-0059142以及2012年6月4日申請的韓國專利申請案編號10-2012-0059966的優先權,其全部揭露內容併入於本文中以作為參考。
本發明有關一種能夠最大化陽光吸收同時大量的減少光反射以進一步增加光轉換效率的單晶矽晶圓,以及該單晶矽晶圓的製備方法。
Related Application This application claims Korean Patent Application No. 10-2011-0054569, filed on June 7, 2011, and Korean Patent Application No. 0-2012-0059142, filed on June 1, 2012, and The priority of Korean Patent Application No. 10-2012-0059966, filed on Jun. 4, 2012, the entire disclosure of which is hereby incorporated by reference.
The present invention relates to a single crystal germanium wafer capable of maximizing solar absorption while substantially reducing light reflection to further increase light conversion efficiency, and a method of preparing the single crystal germanium wafer.

近年來,太陽能電池(一般已知為「電池(cell)」)已迅速地普及,且熟知為下個世代的能源來源,以及為一種直接將乾淨的能源(即,陽光)轉變成電力的電子裝置。這種裝置典型地包括PN接面半導體基板,其中具有硼加入於矽中的P型矽半導體為基礎材料,並將磷擴散至該基礎材料的表面上以形成N型矽半導體層。
當例如陽光的光照射於具有由PN接面形成的電場的基板時,半導體中的電子(-)以及電洞(+)被激發並於其中自由地移動。如果這些移動的電荷在移動期間進入由該PN接面形成的電場,則該電子(-)移至N型半導體,且該電洞(+)移至P型半導體。在該P型半導體以及N型半導體表面上分別形成電極,且電子沿著外部電路流動的例子中,會發生電流的產生。基於這種原理,可將太陽能轉變成電能。因此,為了增加太陽能轉換效率,應最大化該PN接面半導體基板的每單位面積的電輸出。為了此目的,在大量減少光反射的同時必須盡可能高地增加光吸收。

在考慮上述的情況下,用以製造PN接面型半導體基板的用於太陽能電池的矽晶圓表面具有微金字塔結構,以形成抗反射薄膜。形成在該矽晶圓表面上的微金字塔結構,如第1圖所示,包括由在單個頂點會合的四個三角形面S以及矩形底部B所形成的四邊形金字塔。一般而言,如第2圖中所示,該微金字塔的面S1為三角形形式,其中在基部b1會合以形成該底部的兩個側邊c11以及c12是從該頂點a1的直線。
這種具有微金字塔結構的矽晶圓減少了在其表面具有較寬波長帶的入射光反射,以增加所吸收光的強度,因此改進了太陽能電池的效率。此外,太陽能電池的效率可藉由再檢查微金字塔結構而進一步提高。
In recent years, solar cells (generally known as "cells") have rapidly spread and are known as the next generation of energy sources, as well as an electron that directly converts clean energy (ie, sunlight) into electricity. Device. Such a device typically includes a PN junction semiconductor substrate in which a P-type germanium semiconductor having boron added to the germanium is used as a base material, and phosphorus is diffused onto the surface of the base material to form an N-type germanium semiconductor layer.
When light such as sunlight is irradiated onto a substrate having an electric field formed by a PN junction, electrons (-) and holes (+) in the semiconductor are excited and freely moved therein. If these moving charges enter the electric field formed by the PN junction during the movement, the electrons (-) move to the N-type semiconductor, and the hole (+) moves to the P-type semiconductor. An electrode is formed on the surface of the P-type semiconductor and the N-type semiconductor, and an electric current is generated in an example in which electrons flow along an external circuit. Based on this principle, solar energy can be converted into electrical energy. Therefore, in order to increase solar energy conversion efficiency, the electrical output per unit area of the PN junction semiconductor substrate should be maximized. For this purpose, it is necessary to increase the light absorption as much as possible while reducing the amount of light reflection.

In consideration of the above, the surface of the germanium wafer for solar cells for fabricating the PN junction type semiconductor substrate has a micropyramid structure to form an antireflection film. The micropyramid structure formed on the surface of the germanium wafer, as shown in Fig. 1, includes a quadrilateral pyramid formed by four triangular faces S and a rectangular bottom B which meet at a single vertex. In general, as shown in Fig. 2, the face S 1 of the micro-pyramid is in the form of a triangle, wherein the two sides c 11 and c 12 at which the base b 1 meets to form the bottom are from the vertex a 1 straight line.
Such a germanium wafer having a micropyramid structure reduces incident light reflection having a wider wavelength band on its surface to increase the intensity of the absorbed light, thereby improving the efficiency of the solar cell. In addition, the efficiency of the solar cell can be further improved by rechecking the micropyramid structure.

因此,本發明的一個目標是提供一種具有特定結構的單晶矽晶圓,以大大地減少光反射,同時最大化陽光吸收。
本發明的另一個目標是提供一種簡單製備具有微金字塔結構的單晶矽晶圓,而不使用蝕刻罩的方法。
為了完成上述目標,本發明提供了下述。
(1)一種具有表面的單一矽晶圓,該表面上重複形成了金字塔,該金字塔具有從該金字塔的頂點延伸至其底部的曲面。
(2)根據上述第(1)項所述的晶圓,該曲面為朝向該金字塔中心的中凸曲面。
(3)根據上述第(1)項所述的晶圓,不使用蝕刻罩來製備該晶圓。
(4)根據上述第(1)項所述的晶圓,該金字塔的面以及上述金字塔旁的另一個金字塔的面一起產生形狀,且該形狀的垂直區段具有尖端。
(5)根據上述第(1)項所述的晶圓,使用蝕刻組成物來紋理蝕刻該晶圓。
(6)根據上述第(5)項所述的晶圓,該蝕刻組成物包含0.1至20重量%的鹼性化合物以及80至99.9重量%的水。
(7)根據上述第(6)項所述的晶圓,該鹼性化合物為選自氫氧化鉀、氫氧化鈉、氫氧化銨、四羥甲基銨以及四羥乙基銨所組成的群組的至少其中之一。
(8)根據上述第(6)項所述的晶圓,該蝕刻組成物更包含10-6至10重量%的環狀化合物,該環狀化合物含有鍵結至官能基的氮原子,該官能基包括具有2至6個碳原子的烯烴基。
(9)根據上述第(8)項所述的晶圓,該環狀化合物為選自N-乙烯基哌嗪、N-乙烯基甲基哌嗪、N-乙烯基乙基哌嗪、N-乙烯基-N’-甲基哌嗪、N-丙烯醯基哌嗪、N-丙烯醯基-N’-甲基哌嗪、N-乙烯基嗎啉、N-乙烯基甲基嗎啉、N-乙烯基乙基嗎啉、N-丙烯醯基嗎啉、N-乙烯基哌啶酮、N-乙烯基甲基哌啶酮、N-乙烯基乙基哌啶酮、N-丙烯醯基哌啶酮、N-乙烯基吡咯烷酮、N-乙烯基甲基吡咯烷酮、N-乙烯基乙基-2-吡咯烷酮、N-丙烯醯基吡咯烷酮、N-乙烯基咔唑以及N-丙烯醯基咔唑所組成的群組的至少其中之一。
(10)根據上述第(6)項所述的晶圓,該蝕刻組成物更包含至少一多醣,該多醣選自聚葡萄糖化合物、聚果糖化合物、聚甘露糖化合物、聚半乳糖化合物以及其金屬鹽類所組成的群組。
(11)一種製備單晶矽晶圓的方法,包含:藉由塗佈蝕刻組成物而不使用蝕刻罩來紋理蝕刻該單晶矽晶圓的表面,以使金字塔能被重複形成在該單晶矽晶圓的表面上,其中每個金字塔具有從該金字塔的頂點延伸至底部的曲面。
(12)根據上述第(11)項所述的方法,該曲面朝向該金字塔的中心而中凸地彎曲。
(13)根據上述第(11)項所述的方法,該蝕刻組成物包含0.1至20重量%的鹼性化合物以及80至99.9重量%的水。
(14)根據上述第(11)項所述的方法,該鹼性化合物為選自氫氧化鉀、氫氧化鈉、氫氧化銨、四羥甲基銨以及四羥乙基銨所組成的群組的至少其中之一。
(15)根據上述第(13)項所述的方法,該蝕刻化合物更包含10-6至10重量%的環狀化合物,該環狀化合物含有鍵結至官能基的氮原子,該官能基包括具有2至6個碳原子的烯烴基。
(16)根據上述第(15)項所述的方法,該環狀化合物為選自N-乙烯基哌嗪、N-乙烯基甲基哌嗪、N-乙烯基乙基哌嗪、N-乙烯基-N'-甲基哌嗪、N-丙烯醯基哌嗪、N-丙烯醯基-N'-甲基哌嗪、N-乙烯基嗎啉、N-乙烯基甲基嗎啉、N-乙烯基乙基嗎啉、N-丙烯醯基嗎啉、N-乙烯基哌啶酮、N-乙烯基甲基哌啶酮、N-乙烯基乙基哌啶酮、N-丙烯醯基哌啶酮、N-乙烯基吡咯烷酮、N-乙烯基甲基吡咯烷酮、N-乙烯基乙基-2-吡咯烷酮、N-丙烯醯基吡咯烷酮、N-乙烯基咔唑以及N-丙烯醯基咔唑所組成的群組的至少其中之一。
(17)根據上述第(13)項所述的方法,該蝕刻組成物更包含選自聚葡萄糖化合物、聚果糖化合物、聚甘露糖化合物、聚半乳糖化合物以及其金屬鹽類所組成的群組的至少其中之一。
因此,本發明的單晶矽晶圓具有包括多個微金字塔的表面,每個微金字塔具有曲面,以顯著地增加陽光吸收,同時大大地減少光反射,藉此提高光轉換效率。
此外,根據本發明製備單晶矽晶圓的方法能夠形成具有曲面的多個微金字塔結構,而不使用替代性的蝕刻罩,因此達成極佳的生產力。
Accordingly, it is an object of the present invention to provide a single crystal germanium wafer having a specific structure to greatly reduce light reflection while maximizing solar absorption.
Another object of the present invention is to provide a method of simply preparing a single crystal germanium wafer having a micropyramid structure without using an etching cap.
In order to accomplish the above object, the present invention provides the following.
(1) A single tantalum wafer having a surface on which a pyramid is repeatedly formed, the pyramid having a curved surface extending from the apex of the pyramid to the bottom thereof.
(2) The wafer according to the above (1), wherein the curved surface is a convex curved surface toward a center of the pyramid.
(3) The wafer according to the above (1), wherein the wafer is prepared without using an etching cap.
(4) The wafer according to the above (1), wherein the face of the pyramid and the face of the other pyramid beside the pyramid form a shape, and the vertical section of the shape has a tip end.
(5) The wafer according to the above (1), wherein the wafer is textured by etching using an etching composition.
(6) The wafer according to the above (5), wherein the etching composition contains 0.1 to 20% by weight of a basic compound and 80 to 99.9% by weight of water.
(7) The wafer according to the above (6), wherein the basic compound is a group selected from the group consisting of potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylolmonium, and tetrahydroxyethylammonium. At least one of the groups.
(8) The wafer according to the above (6), wherein the etching composition further contains 10 -6 to 10% by weight of a cyclic compound containing a nitrogen atom bonded to a functional group, the functional group The group includes an olefin group having 2 to 6 carbon atoms.
(9) The wafer according to the above item (8), wherein the cyclic compound is selected from the group consisting of N-vinylpiperazine, N-vinylmethylpiperazine, N-vinylethylpiperazine, N- Vinyl-N'-methylpiperazine, N-propylenesulfonylpiperazine, N-propenyl-N'-methylpiperazine, N-vinylmorpholine, N-vinylmethylmorpholine, N -vinylethylmorpholine, N-propenylmorpholine, N-vinylpiperidone, N-vinylmethylpiperidone, N-vinylethylpiperidone, N-propenylhydrazino Pyridone, N-vinylpyrrolidone, N-vinylmethylpyrrolidone, N-vinylethyl-2-pyrrolidone, N-propenylpyrrolidone, N-vinylcarbazole and N-propenylcarbazole At least one of the group consisting of.
(10) The wafer according to the above (6), wherein the etching composition further comprises at least one polysaccharide selected from the group consisting of a polydextrose compound, a polyfructose compound, a polymannose compound, a polygalactose compound, and the like. A group of metal salts.
(11) A method of preparing a single crystal germanium wafer, comprising: texturing a surface of the single crystal germanium wafer by coating an etching composition without using an etching cap, so that a pyramid can be repeatedly formed on the single crystal On the surface of the wafer, each of the pyramids has a curved surface extending from the apex of the pyramid to the bottom.
(12) The method according to the above (11), wherein the curved surface is convexly curved toward a center of the pyramid.
(13) The method according to the above (11), wherein the etching composition contains 0.1 to 20% by weight of a basic compound and 80 to 99.9% by weight of water.
(14) The method according to the above (11), wherein the basic compound is selected from the group consisting of potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylolmonium, and tetrahydroxyethylammonium. At least one of them.
(15) The method according to the above (13), wherein the etching compound further contains 10 -6 to 10% by weight of a cyclic compound containing a nitrogen atom bonded to a functional group, the functional group including An olefin group having 2 to 6 carbon atoms.
(16) The method according to the above item (15), wherein the cyclic compound is selected from the group consisting of N-vinylpiperazine, N-vinylmethylpiperazine, N-vinylethylpiperazine, N-ethylene -N'-methylpiperazine, N-propenylhydrazine piperazine, N-propenyl-N'-methylpiperazine, N-vinylmorpholine, N-vinylmethylmorpholine, N- Vinylethylmorpholine, N-propenylmorpholine, N-vinylpiperidone, N-vinylmethylpiperidone, N-vinylethylpiperidone, N-propenylpiperidine Ketone, N-vinylpyrrolidone, N-vinylmethylpyrrolidone, N-vinylethyl-2-pyrrolidone, N-propenylpyrrolidone, N-vinylcarbazole and N-propenylcarbazole At least one of the groups.
(17) The method according to the above (13), wherein the etching composition further comprises a group selected from the group consisting of a polydextrose compound, a polyfructose compound, a polymannose compound, a polygalactose compound, and a metal salt thereof. At least one of them.
Therefore, the single crystal germanium wafer of the present invention has a surface including a plurality of micropyramids each having a curved surface to remarkably increase sunlight absorption while greatly reducing light reflection, thereby improving light conversion efficiency.
Furthermore, the method of preparing a single crystal germanium wafer according to the present invention is capable of forming a plurality of micropyramid structures having curved surfaces without using an alternative etching mask, thus achieving excellent productivity.

本發明揭露了一種能夠最大化陽光吸收,同時大大地減少光反射以進一步增加光轉換效率的單晶矽晶圓,以及製備該單晶矽晶圓的方法。
此後,將參照伴隨的圖式而更具體地描述本發明。
參照第1圖,在此揭露內容中的金字塔意指配置有矩形底部B以及在頂點會合的四個三角形面S的四邊形圓椎體。
本發明的單晶矽晶圓的特徵在於具有在該晶圓表面上重複形成的金字塔,其中每個金字塔具有從其頂點至底部的曲面。
更具體而言,如第3圖中所示,金字塔的面S2具有從頂點a2延伸,然後在基部b2會合以形成底部的兩個側邊c21以及c22,其中該側邊c21以及c22不是直線而為曲線。因此,該面S2變成曲面。
形成金字塔一個面的兩個側邊c21以及c22可彼此相同或不同。也就是說,當沿著垂直於基部b2的中心線L從頂點a2劃分該面時,該面分開的兩個部分可變成彼此相同(第3a圖)或不同(第3b圖)。
更佳的是,如第6圖中所示,形成在金字塔的面以及鄰接金字塔的面之間的形狀的垂直區段可具有尖端d。
參照第6圖,其為說明本發明金字塔的垂直截面圖,該尖端d可為由金字塔的側邊c21以及與其鄰接的另一個金字塔的側邊c22所形成的切線上的點。如第6(a)圖中所示,這種尖端可存在於單晶矽晶圓的表面上。或者,如第6(b)圖中所示,如果之間具有不對稱關係的兩個金字塔的切線存在於該單晶矽晶圓的表面上方,該尖端可位在該單晶矽晶圓的表面上方。
由於具創造性的晶圓具有第6圖中所示例的這種結構,可進一步增加光轉換效率的改進。可使用蝕刻組成物以直接蝕刻物體來提供本發明的金字塔結構,而不使用任何蝕刻罩。在使用這種蝕刻罩的例子中,金字塔與另一個金字塔會合的部分不可避免地形成了曲面,以因此無法得到具有該尖端的重複的金字塔結構。
金字塔的面可為朝向該金字塔中心的中凸曲面。
此外,在用以形成金字塔的四個面之中的至少其中之一可如上述彎曲。
如第4圖中所示,重複的金字塔結構的形成意指,如上述所形成的多個金字塔被放置在晶圓的表面上。更特別的是,在以複數形成具有從其頂點延伸至底部的面的金字塔的條件下,除了具有相同形狀的多個金字塔之外,本發明的重複金字塔結構可包括具有混合在一起的不同形態的多個金字塔(即,如第3(a)以及3(b)圖所示的金字塔,具有不同大小的金字塔L,等等)。
重複的金字塔不需要以相對於晶圓表面積的預定比例來佔據面積。然而為了促成最大化的陽光吸收以及光反射的減少,該重複金字塔可佔據至少50%、較佳為至少70%的晶圓表面積。
重複的金字塔不一定包括每單位面積固定數量的金字塔。然而,為了促成最大化的陽光吸收以及光反射的減少,具有大約數奈米大小的微金字塔是較佳的。例如,形成在單晶矽晶圓表面上大約70%或更多的金字塔可具有1至6μm的平均大小。在本文中,該金字塔的平均大小意指從金字塔的頂點延伸至底部的垂直線的長度。
如上所述,在根據本發明的單晶矽晶圓表面上重複形成金字塔的過程的特徵可在於不使用任何蝕刻罩,其中該金字塔具有從其頂點延伸至底部的曲面。
根據本發明不使用蝕刻罩的一個具體實施例,單晶矽晶圓可具有藉由使用鹼性蝕刻溶液來紋理蝕刻而形成在其表面上的微金字塔結構。
本發明的蝕刻組成物可包含0.1至20重量%的鹼性化合物以及80至99.9重量%的水。
或者,蝕刻溶液可更包含環狀化合物,該環狀化合物含有鍵結至官能基的氮原子,該官能基包括具有2至6個碳原子的烯烴基。
鹼性化合物是一種用以蝕刻結晶矽晶圓表面的成分,且其類型或種類不特別受限。例如,此化合物可包括氫氧化鉀、氫氧化鈉、氫氧化銨、四羥甲基銨、四羥乙基銨,等等。在這些之中,氫氧化鉀以及氫氧化鈉是較佳的。這些化合物可被單獨或以其二或更多個組合使用。
相對於總共100重量%的蝕刻組成物,鹼性化合物可以0.1至20重量%、且更佳為1至5重量%的量被包含於其中。當上述化合物的含量在上述範圍內時,可成功地蝕刻矽晶圓的表面。
環狀化合物是一種用以控制作為矽晶方向的Si100以及   Si111方向之間蝕刻率差異的成分,且因此可調節金字塔的形狀,因此使該金字塔能夠具有根據本發明的曲面,該環狀化合物含有鍵結至官能基的氮原子,該官能基包括具有2至6個碳原子的烯烴基。
本發明中所使用的環狀化合物可包括,例如,N-乙烯基哌嗪、N-乙烯基甲基哌嗪、N-乙烯基乙基哌嗪、N-乙烯基-N’-甲基哌嗪、N-丙烯醯基哌嗪、N-丙烯醯基-N’-甲基哌嗪、N-乙烯基嗎啉、N-乙烯基甲基嗎啉、N-乙烯基乙基嗎啉、N-丙烯醯基嗎啉、N-乙烯基哌啶酮、N-乙烯基甲基哌啶酮、N-乙烯基乙基哌啶酮、N-丙烯醯基哌啶酮、N-乙烯基吡咯烷酮、N-乙烯基甲基吡咯烷酮、N-乙烯基乙基-2-吡咯烷酮、N-丙烯醯基吡咯烷酮、N-乙烯基咔唑、N-丙烯醯基咔唑或諸如此類,其可被單獨或以其二或更多個組合使用。
相對於總共100重量%的蝕刻組成物,環狀化合物可以  10-6至10重量%、且更佳為10-3至1重量%的量而被包含於其中。當上述環狀化合物的含量在上述範圍內時,可有效地進改矽晶圓表面的可濕性,因此最小化紋理品質的偏差,並能夠輕易形成具有與相關技術領域中所述者不同的形狀的微金字塔。如果該含量超過10重量%,會難以控制矽晶方向的蝕刻率的差異,因此導致難以形成想要的微金字塔。
該蝕刻組成物可更包括多醣。
多醣是一種經由二或更多個單醣的醣苷鍵而產生大分子的糖類,且是一種預防被鹼性化合物過度蝕刻以及蝕刻加速的成分,以製備均勻的微金字塔,且同時快速地從矽晶圓表面移除由蝕刻產生氫氣泡,以藉此改進該金字塔的外觀。
多醣可包括,例如,聚葡萄糖化合物、聚果糖化合物、聚甘露糖化合物、聚半乳糖化合物或其金屬鹽類。在這些之中,該聚葡萄糖化合物以及其金屬鹽類是較佳的。這些可被單獨或以其二或更多個組合使用。
該聚葡萄糖化合物可包括,例如;纖維素、二甲基胺基乙基纖維素、二乙基胺基乙基纖維素、乙基羥乙基纖維素、甲基羥乙基纖維素、4-胺基苯甲基纖維素、三乙基胺基乙基纖維素、氰基乙基纖維素、乙基纖維素、甲基纖維素、羧甲基纖維素、羥乙基纖維素、羥丙基纖維素、藻酸、直鏈澱粉、支鏈澱粉、果膠、澱粉、糊精、α-環糊精、β-環糊精、γ-環糊精、羥丙基-β-環糊精、甲基-β-環糊精、類糊精、類糊精硫酸鈉、皂素、肝糖、酵母聚糖、香菇多糖、裂褶菌多糖或其金屬鹽類,以及諸如此類。
多醣可具有5,000至1,000,000、且更佳為50,000至200,000的平均分子量。
相對於總共100重量%的蝕刻組成物,多醣可以10-9至10重量%、且更佳為10-6至1重量%的量被包含於其中。如果多醣的含量在上述範圍內,可有效地預防過度蝕刻以及蝕刻加速。如果該含量超過10重量%,會大大地減少鹼性化合物的蝕刻率,因此導致難以形成想要的微金字塔。
或者,根據本發明用於結晶矽晶圓的紋理蝕刻組成物可更包括界面活性劑、脂防酸以及其鹼性金屬鹽類、含有二氧化矽的化合物或諸如此類的至少其中之一。
本發明中所使用的水的種類不特別受限,但可包括去離子蒸餾水,且更佳為用於半導體製程的去離子蒸餾水,其具有等於或大於18MΩ/cm的特定電阻。
水可作為總共100重量%的結晶蝕刻組成物的剩餘部分而被包含於其中。
水的種類不特別受限,但可包括去離子蒸餾水,更佳為用於半導體製程的去離子蒸餾水,其具有等於或大於18MΩ/cm的特定電阻。
藉由使用如上所述而製備的蝕刻組成物來處理單晶矽晶圓的製程,其包括浸泡、噴灑、或浸泡以及噴灑,該晶圓的表面可具有包括微金字塔的結構。浸泡或噴灑程序的次數不特別受限,且在執行浸泡以及噴灑的例子中,它們的操作順序也不受限。此外,可在50至100℃的溫度下執行浸泡、噴灑或浸泡以及噴灑階段達30秒至60分鐘。在此例子中,可使用浸泡、噴灑或單一晶圓類型蝕刻製程。
在本文之後,將參考範例以及比較性範例來描述較佳的具體實施例,以更具體地了解本發明。然而,本領域的技術人員將領略到,這種具體實施例被提供用於示例的目的,且不限制如詳細描述以及附帶申請專利範圍中所揭露將受保護的主題。因此,對於本領域的技術人員而言顯而易見的是,具體實施例的各種改變以及修飾是可能的,而不悖離本發明的範圍以及精神,且被充分地包括在如附帶申請專利範圍所定義的範圍內。
範例
範例1
將2重量%的氫氧化鉀(KOH)、0.1重量%的N-乙烯基吡咯烷酮、0.02重量%的藻酸鈉(AANa)以及作為剩餘部分的去離子蒸餾水混合在一起以製備蝕刻組成物。
在80℃下藉由將單晶矽晶圓基板浸泡在所製備的蝕刻組成物中達20分鐘,以完成紋理蝕刻。

比較性範例1
將2重量%的氫氧化鉀、0.1重量%的N-甲基吡咯烷酮、0.02重量%的藻酸鈉(AANa)以及作為剩餘部分的去離子蒸餾水混合在一起以製備蝕刻組成物。
在80℃下藉由將單晶矽晶圓基板浸泡在所製備的蝕刻組成物中達20分鐘,以完成紋理蝕刻。
示範性範例
根據下述程序,決定上述範例以及比較性範例中紋理蝕刻的矽晶圓基板的物理特性,且其結果示於下面表1中。
(1)微金字塔的形態學
使用掃瞄式電子顯微鏡(SEM)來確認形成在每個單晶晶圓基板表面上的微金字塔結構的形態學。
(2)紋理均勻性
使用數位相機、3D光學顯微鏡以及SEM來視覺觀察形成在單晶矽晶圓基板表面上的微金字塔結構的偏差,即均勻性,且基於下述標準來評估其結果。
<評估標準>
◎:在整個晶圓基板上形成金字塔
○:金字塔不存在於部分的晶圓基板上(非金字塔部分少於該晶圓基板的5%)
△:金字塔不存在於部分的晶圓基板上(非金字塔部分的範圍為該晶圓基板的5至50%)
×:在大部分的晶圓基板上不形成金字塔(非金字塔部分等於或多於該晶圓基板的90%)
(3)反射(%)
使用UV光譜儀將每個單晶矽晶圓基板進行光反射,其中具有600 nm的波長的光用以照射表面。
第4以及5圖為SEM照片,以分別顯示出範例1以及比較性範例1中紋理蝕刻的單晶矽晶圓基板的表面。更特別的是,可看到的是,範例1中所形成的微金字塔具有兩個從其頂點延伸並在其底部會合的彎曲側邊,即,導致曲面,其接著具有小且均勻的大小。
另一方面,可以看到的是,比較性範例1中所形成的微金字塔具有兩個從其頂點延伸並在其底部會合的直側邊,即,提供了平面,其相對於範例1中所製備者具有較大的大小。
簡而言之,根據本發明的單晶矽晶圓可最大化陽光吸收,同時基於上述微金字塔的形態學中的差異而進一步減少光反射。

如上面表1所示,相較於比較性範例1中所製備的基板,根據本發明的範例1中所製備的單晶矽晶圓基板,其中每個具有曲面的多個微金字塔被形成在該微金字塔的表面上,展現了極佳的微金字塔紋理均勻性。此外,所確認的是,由於微金字塔的形狀,光反射比比較性範例1中的光反射還低。因此,本發明可達成光轉換效率的改進。
The present invention discloses a single crystal germanium wafer capable of maximizing solar absorption while greatly reducing light reflection to further increase light conversion efficiency, and a method of preparing the single crystal germanium wafer.
Hereinafter, the present invention will be more specifically described with reference to the accompanying drawings.
Referring to Fig. 1, the pyramid in the disclosure herein means a quadrangular vertebral body configured with a rectangular bottom B and four triangular faces S that meet at the apex.
The single crystal germanium wafer of the present invention is characterized by having a pyramid repeatedly formed on the surface of the wafer, wherein each pyramid has a curved surface from its apex to the bottom.
More specifically, as shown in FIG. 3, the face S 2 of the pyramid has two sides c 21 and c 22 extending from the apex a 2 and then joined at the base b 2 to form a bottom, wherein the side c 21 and c 22 are not straight lines and are curved. Therefore, the face S 2 becomes a curved surface.
The two side edges c 21 and c 22 forming one face of the pyramid may be the same or different from each other. That is, when the face is divided from the vertex a 2 along the center line L perpendicular to the base b 2 , the two portions separated by the face may become identical to each other (Fig. 3a) or different (Fig. 3b).
More preferably, as shown in Fig. 6, the vertical section formed in the shape of the face of the pyramid and the face adjacent to the pyramid may have a tip d.
Referring to Figure 6, which is a vertical cross-sectional view illustrating a pyramid of the present invention, the tip d may be a point on a tangent line formed by the side c 21 of the pyramid and the side c 22 of another pyramid adjacent thereto. As shown in Figure 6(a), such a tip may be present on the surface of a single crystal germanium wafer. Alternatively, as shown in FIG. 6(b), if tangent lines of two pyramids having an asymmetrical relationship exist above the surface of the single crystal germanium wafer, the tip may be positioned on the single crystal germanium wafer Above the surface.
Since the inventive wafer has such a structure as illustrated in Fig. 6, the improvement in light conversion efficiency can be further increased. The etch composition can be used to directly etch the object to provide the pyramid structure of the present invention without the use of any etch mask. In the example using such an etching hood, the portion where the pyramid meets the other pyramid inevitably forms a curved surface, so that a repeated pyramid structure having the tip is not obtained.
The face of the pyramid can be a convex curved surface that faces the center of the pyramid.
Further, at least one of the four faces used to form the pyramid may be curved as described above.
As shown in Fig. 4, the formation of the repeated pyramid structure means that a plurality of pyramids formed as described above are placed on the surface of the wafer. More particularly, in the case of forming a pyramid having a face extending from its apex to the bottom in plural, the repeating pyramid structure of the present invention may include different forms mixed together, in addition to a plurality of pyramids having the same shape Multiple pyramids (ie, pyramids as shown in Figures 3(a) and 3(b), pyramids L of different sizes, etc.).
The repeated pyramids do not need to occupy an area in a predetermined ratio relative to the surface area of the wafer. However, to promote maximum solar absorption and reduction in light reflection, the repeating pyramid can occupy at least 50%, preferably at least 70% of the wafer surface area.
A repeating pyramid does not necessarily include a fixed number of pyramids per unit area. However, in order to promote maximum solar absorption and reduction in light reflection, a micro-pyramid having a size of about several nanometers is preferred. For example, a pyramid formed on the surface of a single crystal germanium wafer of about 70% or more may have an average size of 1 to 6 μm. In this context, the average size of the pyramid means the length of the vertical line extending from the apex of the pyramid to the bottom.
As described above, the process of repeatedly forming a pyramid on the surface of the single crystal germanium wafer according to the present invention may be characterized in that no etching cover is used, wherein the pyramid has a curved surface extending from its apex to the bottom.
In accordance with one embodiment of the present invention that does not use an etch mask, the single crystal germanium wafer can have a micro-pyramid structure formed on its surface by texture etching using an alkaline etching solution.
The etching composition of the present invention may contain 0.1 to 20% by weight of a basic compound and 80 to 99.9% by weight of water.
Alternatively, the etching solution may further comprise a cyclic compound containing a nitrogen atom bonded to a functional group including an olefin group having 2 to 6 carbon atoms.
The basic compound is a component for etching the surface of the crystalline germanium wafer, and the type or kind thereof is not particularly limited. For example, the compound may include potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylammonium chloride, tetrahydroxyethylammonium, and the like. Among these, potassium hydroxide and sodium hydroxide are preferred. These compounds may be used singly or in combination of two or more thereof.
The basic compound may be contained therein in an amount of 0.1 to 20% by weight, and more preferably 1 to 5% by weight, based on the total of 100% by weight of the etching composition. When the content of the above compound is within the above range, the surface of the tantalum wafer can be successfully etched.
The cyclic compound is a component for controlling the difference in etching rate between the Si 100 and Si 111 directions as the twinning direction, and thus the shape of the pyramid can be adjusted, thereby enabling the pyramid to have a curved surface according to the present invention, the ring The compound contains a nitrogen atom bonded to a functional group including an alkene group having 2 to 6 carbon atoms.
The cyclic compound used in the present invention may include, for example, N-vinylpiperazine, N-vinylmethylpiperazine, N-vinylethylpiperazine, N-vinyl-N'-methylpiperidin Pyrazine, N-propenylhydrazine piperazine, N-propenyl-N'-methylpiperazine, N-vinylmorpholine, N-vinylmethylmorpholine, N-vinylethylmorpholine, N - propylene decylmorpholine, N-vinylpiperidone, N-vinylmethylpiperidone, N-vinylethylpiperidone, N-propenylpiperidone, N-vinylpyrrolidone, N-vinylmethylpyrrolidone, N-vinylethyl-2-pyrrolidone, N-propenylpyridrolidone, N-vinylcarbazole, N-propenylcarbazole or the like, which may be used alone or in its Two or more combinations are used.
The cyclic compound may be contained therein in an amount of 10 -6 to 10% by weight, and more preferably 10 -3 to 1% by weight, based on the total of 100% by weight of the etching composition. When the content of the above cyclic compound is within the above range, the wettability of the surface of the wafer can be effectively improved, thereby minimizing variations in texture quality, and can be easily formed to have a structure different from that described in the related art. The shape of the micro pyramid. If the content exceeds 10% by weight, it is difficult to control the difference in the etching rate in the twinning direction, thus making it difficult to form a desired micropyramid.
The etching composition may further comprise a polysaccharide.
A polysaccharide is a saccharide that generates a macromolecule via a glycosidic bond of two or more monosaccharides, and is a component that prevents over-etching of an alkaline compound and acceleration of etching to prepare a uniform micro-pyramid, and at the same time rapidly from 矽The wafer surface removal creates hydrogen bubbles by etching to thereby improve the appearance of the pyramid.
The polysaccharide may include, for example, a polydextrose compound, a polyfructose compound, a polymannose compound, a polygalactose compound or a metal salt thereof. Among these, the polydextrose compound and its metal salt are preferred. These can be used singly or in combination of two or more thereof.
The polydextrose compound may include, for example, cellulose, dimethylaminoethylcellulose, diethylaminoethylcellulose, ethylhydroxyethylcellulose, methylhydroxyethylcellulose, 4- Aminobenzyl cellulose, triethylaminoethyl cellulose, cyanoethyl cellulose, ethyl cellulose, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl Cellulose, alginic acid, amylose, amylopectin, pectin, starch, dextrin, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, hydroxypropyl-β-cyclodextrin, Methyl-β-cyclodextrin, dextrin, sodium dextrin-like, saponin, glycogen, zymosan, lentinan, Schizophyllum polysaccharide or a metal salt thereof, and the like.
The polysaccharide may have an average molecular weight of 5,000 to 1,000,000, and more preferably 50,000 to 200,000.
The polysaccharide may be contained therein in an amount of 10 -9 to 10% by weight, and more preferably 10 -6 to 1% by weight, relative to a total of 100% by weight of the etching composition. If the content of the polysaccharide is within the above range, over etching and etching acceleration can be effectively prevented. If the content exceeds 10% by weight, the etching rate of the basic compound is greatly reduced, thus making it difficult to form a desired micropyramid.
Alternatively, the texture etching composition for a crystalline germanium wafer according to the present invention may further include at least one of a surfactant, a lipid acid-proof, and an alkali metal salt thereof, a compound containing cerium oxide, or the like.
The kind of water used in the present invention is not particularly limited, but may include deionized distilled water, and more preferably deionized distilled water for a semiconductor process having a specific electric resistance equal to or greater than 18 MΩ/cm.
Water may be included as the remainder of a total of 100% by weight of the crystalline etch composition.
The kind of water is not particularly limited, but may include deionized distilled water, more preferably deionized distilled water for a semiconductor process, which has a specific resistance equal to or greater than 18 MΩ/cm.
The process of processing a single crystal germanium wafer, including soaking, spraying, or soaking and spraying, by using the etching composition prepared as described above, may have a structure including a micropyramid. The number of times of immersion or spraying procedures is not particularly limited, and in the examples in which immersion and spraying are performed, their order of operation is not limited. Further, the soaking, spraying or soaking and spraying stages may be performed at a temperature of 50 to 100 ° C for 30 seconds to 60 minutes. In this example, a soak, spray, or single wafer type etch process can be used.
The preferred embodiments are described with reference to the examples and comparative examples to more specifically understand the invention. However, those skilled in the art will appreciate that such specific embodiments are provided for the purpose of illustration, and are not intended to limit the scope of the claimed subject matter. Therefore, it is apparent to those skilled in the art that various changes and modifications may be made without departing from the scope and spirit of the invention, and are fully included as defined in the appended claims. In the range.
Sample example 1
2% by weight of potassium hydroxide (KOH), 0.1% by weight of N-vinylpyrrolidone, 0.02% by weight of sodium alginate (AANa), and deionized distilled water as the remainder were mixed together to prepare an etching composition.
The texture etching was completed by immersing the single crystal germanium wafer substrate in the prepared etching composition at 80 ° C for 20 minutes.

Comparative example 1
2% by weight of potassium hydroxide, 0.1% by weight of N-methylpyrrolidone, 0.02% by weight of sodium alginate (AANa), and deionized distilled water as a remainder were mixed together to prepare an etching composition.
The texture etching was completed by immersing the single crystal germanium wafer substrate in the prepared etching composition at 80 ° C for 20 minutes.
Exemplary Example The physical properties of the texture-etched tantalum wafer substrate in the above examples and comparative examples were determined according to the following procedure, and the results are shown in Table 1 below.
(1) Morphology of Micropyramid The morphology of the micropyramid structure formed on the surface of each single crystal wafer substrate was confirmed using a scanning electron microscope (SEM).
(2) Texture uniformity The deviation, that is, uniformity, of the micropyramid structure formed on the surface of the single crystal germanium wafer substrate was visually observed using a digital camera, a 3D optical microscope, and an SEM, and the results were evaluated based on the following criteria.
<Evaluation criteria>
◎: Pyramid is formed on the entire wafer substrate. ○: The pyramid does not exist on part of the wafer substrate (the non-pyramid portion is less than 5% of the wafer substrate)
△: The pyramid does not exist on part of the wafer substrate (the range of the non-pyramid portion is 5 to 50% of the wafer substrate)
×: no pyramid is formed on most of the wafer substrates (the non-pyramid portion is equal to or more than 90% of the wafer substrate)
(3) Reflection (%)
Each single crystal germanium wafer substrate was light-reflected using a UV spectrometer in which light having a wavelength of 600 nm was used to illuminate the surface.
4 and 5 are SEM photographs showing the surfaces of the single-crystal ruthenium wafer substrate of the texture etching in Example 1 and Comparative Example 1, respectively. More specifically, it can be seen that the micro-pyramid formed in Example 1 has two curved sides extending from its apex and meeting at its bottom, i.e., resulting in a curved surface, which then has a small and uniform size.
On the other hand, it can be seen that the micropyramid formed in Comparative Example 1 has two straight sides extending from the apex thereof and meeting at the bottom thereof, that is, providing a plane, which is relative to that in Example 1. The preparer has a larger size.
In short, the single crystal germanium wafer according to the present invention can maximize solar absorption while further reducing light reflection based on differences in the morphology of the micropyramids described above.

As shown in Table 1 above, a single crystal germanium wafer substrate prepared according to Example 1 of the present invention, in which a plurality of micro pyramids each having a curved surface are formed, in comparison with the substrate prepared in Comparative Example 1 The surface of the micro-pyramid exhibits excellent micro-pyramid texture uniformity. Further, it was confirmed that the light reflection was lower than the light reflection in Comparative Example 1 due to the shape of the micropyramid. Therefore, the present invention can achieve an improvement in light conversion efficiency.

a1、a2...頂點a 1 , a 2 . . . vertex

B...矩形底部B. . . Rectangular bottom

b1、b2...基部b 1 , b 2 . . . Base

c11、c12...側邊c 11 , c 12 . . . Side

c21、c22...金字塔的側邊c 21 , c 22 . . . Side of the pyramid

d...尖端d. . . Cutting edge

L...中心線L. . . Center line

S...四個三角形面S. . . Four triangular faces

S1...微金字塔的面S 1 . . . Micropyramid face

S2...金字塔的面S 2 . . . Pyramid face

從下述詳細的描述,結合伴隨的圖式,將更清楚地了解本發明的上述以及其他的目標、特徵與其他優勢,其中:
第1圖是說明形成在傳統單晶矽晶圓表面上的微金字塔的透視圖;
第2圖是說明形成在傳統單晶矽晶圓表面上的微金字塔面的截面圖;
第3圖是說明形成在根據本發明的單晶矽晶圓表面上的微金字塔面的截面圖;
第4圖是顯示,形成在根據本發明一個具體實施例的矽晶圓表面上的微金字塔的(a)表面以及(b)截面的SEM照片;
第5圖是顯示,形成在傳統矽晶圓表面上的的微金字塔的(a)表面以及(b)截面的SEM照片;以及
第6圖是說明兩種不同金字塔的垂直截面圖,該兩種不同的金字塔在彼此旁邊,並形成在根據本發明一個具體實施例的矽晶圓表面上。
The above and other objects, features and other advantages of the present invention will become more <RTIgt;
Figure 1 is a perspective view illustrating a micro-pyramid formed on the surface of a conventional single crystal germanium wafer;
Figure 2 is a cross-sectional view showing the micropyramid plane formed on the surface of a conventional single crystal germanium wafer;
Figure 3 is a cross-sectional view showing a micropyramid plane formed on the surface of a single crystal germanium wafer according to the present invention;
4 is a SEM photograph showing (a) a surface and (b) a cross section of a micropyramid formed on a surface of a tantalum wafer according to an embodiment of the present invention;
Figure 5 is a SEM photograph showing the (a) surface and (b) cross section of the micropyramid formed on the surface of the conventional tantalum wafer; and Fig. 6 is a vertical sectional view illustrating two different pyramids, the two Different pyramids are next to each other and formed on the surface of the tantalum wafer in accordance with an embodiment of the present invention.

c21、c22...金字塔的側邊c 21 , c 22 . . . Side of the pyramid

d...尖端d. . . Cutting edge

Claims (17)

一種具有一表面的單一矽晶圓,在該表面上重複形成具有一曲面的一金字塔,該曲面從該金字塔的一頂點延伸至底部。A single tantalum wafer having a surface on which a pyramid having a curved surface extending from an apex to the bottom of the pyramid is repeatedly formed. 如申請專利範圍第1項所述的單晶矽晶圓,其中該曲面是朝向該金字塔中心的一中凸曲面。The single crystal germanium wafer of claim 1, wherein the curved surface is a convex curved surface toward a center of the pyramid. 如申請專利範圍第1項所述的單晶矽晶圓,其中不使用一蝕刻罩來製備該晶圓。The single crystal germanium wafer of claim 1, wherein the wafer is prepared without using an etching cap. 如申請專利範圍第1項所述的單晶矽晶圓,其中該金字塔的一面以及上述金字塔旁的另一個金字塔的一面一起產生一形狀,且該形狀的一垂直區段具有一尖端。A single crystal germanium wafer according to claim 1, wherein one side of the pyramid and one side of the other pyramid beside the pyramid form a shape, and a vertical section of the shape has a tip. 如申請專利範圍第1項所述的單晶矽晶圓,其中使用一蝕刻組成物來紋理蝕刻該晶圓。The single crystal germanium wafer of claim 1, wherein an etching composition is used to texture etch the wafer. 如申請專利範圍第5項所述的單晶矽晶圓,其中該蝕刻組成物包含0.1至20重量%的一鹼性化合物以及80至99.9重量%的水。The single crystal germanium wafer according to claim 5, wherein the etching composition comprises 0.1 to 20% by weight of a basic compound and 80 to 99.9% by weight of water. 如申請專利範圍第6項所述的單晶矽晶圓,其中該鹼性化合物為選自氫氧化鉀、氫氧化鈉、氫氧化銨、四羥甲基銨以及四羥乙基銨所組成的群組的至少其中之一。The single crystal germanium wafer according to claim 6, wherein the basic compound is selected from the group consisting of potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylol ammonium, and tetrahydroxyethyl ammonium. At least one of the groups. 如申請專利範圍第6項所述的單晶矽晶圓,其中該蝕刻組成物更包含10-6至10重量%的一環狀化合物,該環狀化合物含有鍵結至一官能基的一氮原子,該官能基包括具有2至6個碳原子的一烯烴基。The single crystal germanium wafer according to claim 6, wherein the etching composition further comprises 10-6 to 10% by weight of a cyclic compound containing a nitrogen bonded to a functional group. An atom, the functional group comprising a monoolefin group having 2 to 6 carbon atoms. 如申請專利範圍第8項所述的單晶矽晶圓,其中該環狀化合物為選自N-乙烯基哌嗪、N-乙烯基甲基哌嗪、N-乙烯基乙基哌嗪、N-乙烯基-N’-甲基哌嗪、N-丙烯醯基哌嗪、N-丙烯醯基-N’-甲基哌嗪、N-乙烯基嗎啉、N-乙烯基甲基嗎啉、N-乙烯基乙基嗎啉、N-丙烯醯基嗎啉、N-乙烯基哌啶酮、N-乙烯基甲基哌啶酮、N-乙烯基乙基哌啶酮、N-丙烯醯基哌啶酮、N-乙烯基吡咯烷酮、N-乙烯基甲基吡咯烷酮、N-乙烯基乙基-2-吡咯烷酮、N-丙烯醯基吡咯烷酮、N-乙烯基咔唑以及N-丙烯醯基咔唑所組成的群組的至少其中之一。The single crystal germanium wafer according to claim 8, wherein the cyclic compound is selected from the group consisting of N-vinylpiperazine, N-vinylmethylpiperazine, N-vinylethylpiperazine, N -vinyl-N'-methylpiperazine, N-propenylhydrazine piperazine, N-propenyl-N'-methylpiperazine, N-vinylmorpholine, N-vinylmethylmorpholine, N-vinylethylmorpholine, N-propenylmorpholine, N-vinylpiperidone, N-vinylmethylpiperidone, N-vinylethylpiperidone, N-propylene fluorenyl Piperidone, N-vinylpyrrolidone, N-vinylmethylpyrrolidone, N-vinylethyl-2-pyrrolidone, N-propenylpyrrolidone, N-vinylcarbazole and N-propenylcarbazole At least one of the group consisting of. 如申請專利範圍第6項所述的單晶矽晶圓,其中該蝕刻組成物更包含至少一多醣,該多醣選自一聚葡萄糖化合物、一聚果糖化合物、一聚甘露糖化合物、一聚半乳糖化合物以及其金屬鹽類所組成的群組。The single crystal germanium wafer according to claim 6, wherein the etching composition further comprises at least one polysaccharide selected from the group consisting of a polydextrose compound, a polyfructose compound, a polymannose compound, and a polycondensation. A group consisting of a galactose compound and a metal salt thereof. 一種製備一單晶矽晶圓的方法,包含:藉由應用一蝕刻組成物而不使用一蝕刻罩來紋理蝕刻該單晶矽晶圓的一表面,以能夠讓金字塔被重複形成在該單晶矽晶圓的該表面上,其中每個金字塔具有從該金字塔的一頂點延伸至底部的一曲面。A method of preparing a single crystal germanium wafer, comprising: texturing a surface of the single crystal germanium wafer by applying an etching composition without using an etching cap to enable the pyramid to be repeatedly formed on the single crystal On the surface of the wafer, each of the pyramids has a curved surface extending from a vertex to the bottom of the pyramid. 如申請專利範圍第11項所述的方法,其中該曲面朝向該金字塔的中心而中凸地彎曲。The method of claim 11, wherein the curved surface is convexly curved toward a center of the pyramid. 如申請專利範圍第11項所述的方法,其中該蝕刻組成物包含包含0.1至20重量%的一鹼性化合物以及80至99.9重量%的水。The method of claim 11, wherein the etching composition comprises 0.1 to 20% by weight of a basic compound and 80 to 99.9% by weight of water. 如申請專利範圍第13項所述的方法,其中該鹼性化合物為選自氫氧化鉀、氫氧化鈉、氫氧化銨、四羥甲基銨以及四羥乙基銨所組成的群組的至少其中之一。The method of claim 13, wherein the basic compound is at least one selected from the group consisting of potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylolmonium, and tetrahydroxyethylammonium. one of them. 如申請專利範圍第13項所述的方法,其中該蝕刻組成物更包含10-6至10重量%的一環狀化合物,該環狀化合物含有鍵結至一官能基的一氮原子,該官能基包括具有2至6個碳原子的一烯烴基。The method of claim 13, wherein the etching composition further comprises 10 -6 to 10% by weight of a cyclic compound containing a nitrogen atom bonded to a functional group, the functional group The group includes a monoolefin group having 2 to 6 carbon atoms. 如申請專利範圍第15項所述的方法,其中該環狀化合物為選自N-乙烯基哌嗪、N-乙烯基甲基哌嗪、N-乙烯基乙基哌嗪、N-乙烯基-N’-甲基哌嗪、N-丙烯醯基哌嗪、N-丙烯醯基-N’-甲基哌嗪、N-乙烯基嗎啉、N-乙烯基甲基嗎啉、N-乙烯基乙基嗎啉、N-丙烯醯基嗎啉、N-乙烯基哌啶酮、N-乙烯基甲基哌啶酮、N-乙烯基乙基哌啶酮、N-丙烯醯基哌啶酮、N-乙烯基吡咯烷酮、N-乙烯基甲基吡咯烷酮、N-乙烯基乙基-2-吡咯烷酮、N-丙烯醯基吡咯烷酮、N-乙烯基咔唑以及N-丙烯醯基咔唑所組成的群組的至少其中之一。The method of claim 15, wherein the cyclic compound is selected from the group consisting of N-vinylpiperazine, N-vinylmethylpiperazine, N-vinylethylpiperazine, N-vinyl- N'-methylpiperazine, N-propenylhydrazine piperazine, N-propenyl-N'-methylpiperazine, N-vinylmorpholine, N-vinylmethylmorpholine, N-vinyl Ethylmorpholine, N-propenylmorpholine, N-vinylpiperidone, N-vinylmethylpiperidone, N-vinylethylpiperidone, N-acrylopyrylpiperidone, a group consisting of N-vinylpyrrolidone, N-vinylmethylpyrrolidone, N-vinylethyl-2-pyrrolidone, N-propenylpyrrolidone, N-vinylcarbazole and N-propenylcarbazole At least one of the groups. 如申請專利範圍第13項所述的方法,其中該蝕刻組成物更包含選自一聚葡萄糖化合物、一聚果糖化合物、一聚甘露糖化合物、一聚半乳糖化合物以及其金屬鹽類所組成的群組的至少其中之一。The method of claim 13, wherein the etching composition further comprises a polyphosphorus compound, a polyfructose compound, a polymannose compound, a polygalactose compound, and a metal salt thereof. At least one of the groups.
TW101120055A 2011-06-07 2012-06-05 Single crystal germanium wafer and preparation method thereof TWI537437B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20110054569 2011-06-07
KR1020120059142A KR20120135870A (en) 2011-06-07 2012-06-01 Single crystalline silicon wafers and method of preparing the same
KR1020120059966A KR101896619B1 (en) 2011-06-07 2012-06-04 Single crystalline silicon wafers and method of preparing the same

Publications (2)

Publication Number Publication Date
TW201307621A true TW201307621A (en) 2013-02-16
TWI537437B TWI537437B (en) 2016-06-11

Family

ID=47903484

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101120055A TWI537437B (en) 2011-06-07 2012-06-05 Single crystal germanium wafer and preparation method thereof

Country Status (3)

Country Link
KR (2) KR20120135870A (en)
CN (1) CN103563093B (en)
TW (1) TWI537437B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618261B (en) * 2016-12-07 2018-03-11 財團法人金屬工業研究發展中心 Etching agent and etching method for? manufacturing a pyramidal structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465821B (en) * 2014-12-25 2017-11-24 胡明建 A kind of design method of conical isometric matrix arranged solar plate
KR20220121317A (en) 2021-02-25 2022-09-01 주식회사 솔라인 How to construct a single crystal solar wafer module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3740138B2 (en) * 2003-06-25 2006-02-01 直江津電子工業株式会社 Etching solution for texture formation
US7291280B2 (en) * 2004-12-28 2007-11-06 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Multi-step methods for chemical mechanical polishing silicon dioxide and silicon nitride
JP2011515872A (en) * 2008-03-25 2011-05-19 アプライド マテリアルズ インコーポレイテッド Surface cleaning and uneven formation process of crystalline solar cell
JP4937233B2 (en) * 2008-11-19 2012-05-23 三菱電機株式会社 Method for roughening substrate for solar cell and method for manufacturing solar cell
US7955989B2 (en) * 2009-09-24 2011-06-07 Rohm And Haas Electronic Materials Llc Texturing semiconductor substrates
KR20110046308A (en) * 2009-10-26 2011-05-04 동우 화인켐 주식회사 Etching liquid composition for texture of crystalline silicon wafer
WO2011056948A2 (en) * 2009-11-05 2011-05-12 Advanced Technology Materials, Inc. Methods of texturing surfaces for controlled reflection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618261B (en) * 2016-12-07 2018-03-11 財團法人金屬工業研究發展中心 Etching agent and etching method for? manufacturing a pyramidal structure

Also Published As

Publication number Publication date
TWI537437B (en) 2016-06-11
KR101896619B1 (en) 2018-09-07
KR20120135870A (en) 2012-12-17
CN103563093A (en) 2014-02-05
KR20120135874A (en) 2012-12-17
CN103563093B (en) 2016-05-25

Similar Documents

Publication Publication Date Title
TWI599060B (en) Suede structure of a crystalline silicon solar cell and its preparation method
AU2017204336A1 (en) A method for producing a textured structure of a crystalline silicon solar cell
US20220344106A1 (en) Perovskite/silicon tandem photovoltaic device
JP2005150614A (en) Solar cell and manufacturing method thereof
JP2014534630A (en) Texture etching solution composition for crystalline silicon wafer and texture etching method
JP6114603B2 (en) Crystalline silicon solar cell, method for manufacturing the same, and solar cell module
TWI537437B (en) Single crystal germanium wafer and preparation method thereof
JP6434837B2 (en) Texture etching solution composition for crystalline silicon wafer and method for texture etching
CN106158996B (en) Monocrystalline silicon-based nano inverted pyramid structure carries on the back passivating solar battery
TWI544060B (en) Texture etching liquid composition and crystallization wafer texture etching method
TW201245418A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
CN106784063A (en) Monocrystalline silicon piece and its application comprising the suede structure of falling rectangular pyramid
KR101731497B1 (en) Method for texturing of semiconductor substrate, semiconductor substrate manufactured by the method and solar cell comprising the same
CN104409564B (en) N-type nanometer black silicon manufacturing method and solar cell manufacturing method
JP6185674B2 (en) Texture etching solution composition for crystalline silicon wafer and texture etching method
WO2012169788A2 (en) Single crystal silicon wafer and a fabrication method thereof
Ji et al. Improvement of the surface structure for the surface passivation of black silicon
KR101718630B1 (en) Texturing method for solar cell wafer
KR101892624B1 (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
CN206490072U (en) Monocrystalline silicon piece and solar cell comprising the suede structure of falling rectangular pyramid
Abdulkadir et al. Influence of micro-texture sizes towards light absorption improvement in hybrid microtextured/nanotextured black silicon for solar cells
CN103296137A (en) Method for manufacturing silicon solar cell substrate
Lounas et al. Electrochemical etching of porous-pyramids structure with low reflectance
KR20150106221A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
TW201526275A (en) Silicon substrate of solar cell and manufacturing method thereof