[go: up one dir, main page]

TW201301749A - Amplifier - Google Patents

Amplifier Download PDF

Info

Publication number
TW201301749A
TW201301749A TW101117327A TW101117327A TW201301749A TW 201301749 A TW201301749 A TW 201301749A TW 101117327 A TW101117327 A TW 101117327A TW 101117327 A TW101117327 A TW 101117327A TW 201301749 A TW201301749 A TW 201301749A
Authority
TW
Taiwan
Prior art keywords
low noise
noise amplifier
input
topology
circuit
Prior art date
Application number
TW101117327A
Other languages
Chinese (zh)
Inventor
Jari Johannes Heikkinen
Jonne Juhani Riekki
Jouni Kristian Kaukovuori
Original Assignee
Renesas Mobile Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/111,423 external-priority patent/US8378748B2/en
Priority claimed from GB1108444.9A external-priority patent/GB2481487B/en
Application filed by Renesas Mobile Corp filed Critical Renesas Mobile Corp
Publication of TW201301749A publication Critical patent/TW201301749A/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45188Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45641Measuring at the loading circuit of the differential amplifier
    • H03F3/45645Controlling the input circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/135Indexing scheme relating to amplifiers there being a feedback over one or more internal stages in the global amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/144Indexing scheme relating to amplifiers the feedback circuit of the amplifier stage comprising a passive resistor and passive capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/156One or more switches are realised in the feedback circuit of the amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/159Indexing scheme relating to amplifiers the feedback circuit being closed during a switching time
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/39Different band amplifiers are coupled in parallel to broadband the whole amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45306Indexing scheme relating to differential amplifiers the common gate stage implemented as dif amp eventually for cascode dif amp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45318Indexing scheme relating to differential amplifiers the AAC comprising a cross coupling circuit, e.g. two extra transistors cross coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45386Indexing scheme relating to differential amplifiers the AAC comprising one or more coils in the source circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

The invention relates to a configurable low noise amplifier circuit which is configurable between a first topology in which the low noise amplifier circuit comprises a degeneration inductance whereby the low noise amplifier circuit operates as an inductively degenerated low noise amplifier, and a second topology in which the low noise amplifier circuit comprises a feedback resistance whereby the low noise amplifier circuit operates as a resistive feedback low noise amplifier.

Description

放大器 Amplifier

本發明係關於低雜訊放大器。特別地,但不是唯一地,本發明係關於可配置低雜訊放大器電路。 This invention relates to low noise amplifiers. In particular, but not exclusively, the present invention relates to configurable low noise amplifier circuits.

射頻接收器可被配置以在許多不同射頻頻帶內操作。例如,基地台的接收器(或者蜂巢式電話裝置)可被配置,以在任何以下頻帶內操作:全球行動通訊系統(GSM)850、900、1800與/或1900、寬頻多重分碼存取(WCDMA)、高速封包存取(HSPA)、以及/或者長期演進(LTE)頻帶1、2、3等等。這允許基地台包含被使用於不同區域中的此種接收器,在此,變化子集的以上射頻頻帶可被支撐(例如,以致使漫遊)。 The radio frequency receiver can be configured to operate in many different radio frequency bands. For example, a base station receiver (or cellular telephone device) can be configured to operate in any of the following frequency bands: Global System for Mobile Communications (GSM) 850, 900, 1800, and/or 1900, wideband multiple code access ( WCDMA), High Speed Packet Access (HSPA), and/or Long Term Evolution (LTE) bands 1, 2, 3, and the like. This allows the base station to include such receivers that are used in different areas, where the above radio frequency bands of the varying subset can be supported (eg, to cause roaming).

接收器基本上合併一或更多射頻積體電路(RFIC),其係包括在該接收器中當作第一放大級的低雜訊放大器(LNA)。例如,一或更多LNA基本上可被使用來放大由一天線所收集的射頻訊號,且由LNA所產生的放大訊號隨後可由在該接收器中的其他元件所使用。 The receiver basically incorporates one or more radio frequency integrated circuits (RFICs), which include a low noise amplifier (LNA) that acts as a first amplification stage in the receiver. For example, one or more LNAs can be used substantially to amplify the RF signals collected by an antenna, and the amplified signals produced by the LNA can then be used by other components in the receiver.

接收器基本上包括置於天線與LNA之間的一或更多射頻(RF)濾波器,其係會形成該接收器的第一放大級。圖1顯示一示範接收器,其係包含射頻模組100與天線130。射頻模組100包含一射頻前端模組132,其係依次包括一或更多個(多到全部n個)射頻濾波器110-112,其係過濾由 天線130所收集的射頻訊號。射頻模組100同樣包含RFIC 134,其係依次包含一或更多個(多到全部n個)LNA 120-122,其係會放大由RF濾波器110-112所產生的過濾訊號。 The receiver basically includes one or more radio frequency (RF) filters disposed between the antenna and the LNA, which form a first amplification stage of the receiver. FIG. 1 shows an exemplary receiver that includes a radio frequency module 100 and an antenna 130. The radio frequency module 100 includes a radio frequency front end module 132, which in turn includes one or more (multiple to all n) radio frequency filters 110-112, which are filtered by The RF signal collected by the antenna 130. The RF module 100 also includes an RFIC 134 that in turn includes one or more (up to all n) LNAs 120-122 that amplify the filtered signals generated by the RF filters 110-112.

從雜訊指數的Friis公式已知,形成接收器之第一放大級的LNA會控制該接收器的雜訊指數。形成第一級的LNA同樣具有決定該接收器之輸入阻抗的關鍵角色。此LNA的輸入阻抗必須仔細匹配特定阻抗,否則在LNA前面之RF濾波器(例如,110-112)的性能將會被退化。此外,在LNA之前的RF濾波器基本上會具有固定頻率範圍,該固定頻率範圍會要求LNA的輸入同樣匹配那頻率範圍。 It is known from the Friis formula of the noise index that the LNA forming the first amplification stage of the receiver controls the noise index of the receiver. The LNA forming the first stage also has a key role in determining the input impedance of the receiver. The input impedance of this LNA must be carefully matched to the specific impedance, otherwise the performance of the RF filter (eg, 110-112) in front of the LNA will be degraded. In addition, the RF filter prior to the LNA will essentially have a fixed frequency range that would require the input of the LNA to also match that frequency range.

結果,依據LNA結構,有必要使用在包含LNA之RFIC外面的匹配元件,以適當地設定該輸入阻抗與頻率範圍匹配。不過,這些外匹配元件很昂貴,且在一些情形中,較佳地可使用具有內匹配性能的LNA,以適當設定其輸入阻抗與頻率範圍匹配。 As a result, depending on the LNA structure, it is necessary to use a matching element outside the RFIC including the LNA to appropriately set the input impedance to match the frequency range. However, these external matching components are expensive, and in some cases, it is preferable to use an LNA having internal matching performance to appropriately set its input impedance to match the frequency range.

接收器性能的另一測量係為其敏感度(參考敏感度位準),其係測量在該接收器輸入的最小可檢測訊號位準。所接收訊號的訊號特性基本上可藉由位元錯誤率或產量來決定。敏感度位準S係由以下方式決定:S=-174dBm/Hz+10log(BW)+SNRmin+NF (1)其中-174dBm/Hz係為來自在溫度290K之輸入源的可用雜訊功率密度,BW係為通道頻帶寬度,SNRmin係為必要的訊號對雜訊比率,且NF係為接收器的雜訊指數。例如,SNRmin依據該目標位元錯誤率與所使用的模組方法。 Another measure of receiver performance is its sensitivity (reference sensitivity level), which measures the minimum detectable signal level at the receiver input. The signal characteristics of the received signal can basically be determined by the bit error rate or yield. The sensitivity level S is determined by: S = -174dBm / Hz + 10log (BW) + SNR min + NF (1) where -174dBm / Hz is the available noise power density from the input source at a temperature of 290K BW is the channel bandwidth, SNR min is the necessary signal-to-noise ratio, and NF is the receiver's noise index. For example, SNR min is based on the target bit error rate and the module method used.

在形成第一放大級於接收器中之LNA之前的RF濾波器,其係具有明顯的插入耗損於一些射頻頻帶中,在該射頻頻帶內,該接收器可被配置以操作。該插入耗損可造成接收器較不敏感,其係並且具有用於這些射頻頻帶的更高雜訊指數。因為在這些射頻頻帶中的接收器敏感度較糟,所以在可操作接收器之收發器與接收器之間的範圍則會被減少,因此使該蜂巢式網路設計更具挑戰且更昂貴。此外,被連接到接收器之天線的尺寸會由於在譬如基地台之裝置中的空間限制而受限,其係因此限制該天線的性能;這會以較低的頻率惡化,例如低於1GHz,在此天線的尺寸會由於更長的波長而傾向於變得更大。該接收器性能因此可退化,而造成連結性能減少。 The RF filter prior to forming the LNA in the first amplification stage in the receiver has significant insertion loss in some radio frequency bands within which the receiver can be configured to operate. This insertion loss can cause the receiver to be less sensitive, and it has a higher noise index for these RF bands. Because the receiver sensitivity in these RF bands is poor, the range between the transceiver and receiver of the operational receiver is reduced, thus making the cellular network design more challenging and more expensive. Furthermore, the size of the antenna connected to the receiver may be limited due to space limitations in devices such as base stations, which thus limits the performance of the antenna; this can be degraded at lower frequencies, such as below 1 GHz, The size of this antenna tends to become larger due to longer wavelengths. The receiver performance can therefore be degraded, resulting in reduced link performance.

為了緩和以上影響,LNA之雜訊指數應該儘可能地好。不過,在LNA以前沒有使用外匹配元件並且以低電流耗損來得到良好的雜訊性能是項具挑戰的任務。此外,和昂貴且尺寸完美的外元件一樣,包含LNA之RFIC的成本亦會被考慮。為了維持RFIC的半導體晶粒面積很小,晶片上電感器的數目應該維持在最小,其係因為高品質的電感器需要明顯的晶粒面積,且它們的尺寸不會伴隨積體電路之特徵寬度的減少而縮減規模。 In order to mitigate the above effects, the LNA noise index should be as good as possible. However, the use of external matching components before the LNA and good noise performance with low current consumption is a challenging task. In addition, as with expensive and well-sized external components, the cost of RFCs containing LNAs will also be considered. In order to maintain a small semiconductor die area of the RFIC, the number of inductors on the wafer should be kept to a minimum because high quality inductors require significant grain area and their size does not accompany the feature width of the integrated circuit. Reduced and reduced in size.

從以上可見到的是,當設計LNA時,會有許多不同的設計因素要考慮,且同時接納一些或部份的這些因素證明有困難。因此,有需要藉由提供接納種種設計因素的改善方式,來改進LNA設計。 It can be seen from the above that when designing the LNA, there are many different design factors to consider, and at the same time accepting some or some of these factors proves to be difficult. Therefore, there is a need to improve LNA design by providing improved ways of accepting various design factors.

根據本發明的第一態樣,提供一可配置的低雜訊放大器電路,該低雜訊放大器電路可被配置於第一拓樸與第二拓樸之任一者之間,在該第一拓樸中,該低雜訊放大器電路包含一退化電感,藉此該低雜訊放大器電路充當感應退化低雜訊放大器,且在該第二拓樸中,該低雜訊放大器電路包含一反饋電阻,藉此該低雜訊放大器電路充當電阻反饋低雜訊放大器。因此,本發明允許經由單一低雜訊放大器電路來提供感應退化低雜訊放大器功能或電阻性反饋低雜訊放大器功能。只有兩拓樸所共用之單一情形的元件是必要,且此些可再使用的元件有助於減少成本與晶粒面積。 According to a first aspect of the present invention, a configurable low noise amplifier circuit is provided, the low noise amplifier circuit being configurable between any of a first topology and a second topology, at the first In the topology, the low noise amplifier circuit includes a degraded inductor, whereby the low noise amplifier circuit functions as an inductively degraded low noise amplifier, and in the second topology, the low noise amplifier circuit includes a feedback resistor Thereby, the low noise amplifier circuit acts as a resistance feedback low noise amplifier. Thus, the present invention allows to provide an inductively degraded low noise amplifier function or a resistive feedback low noise amplifier function via a single low noise amplifier circuit. Only a single-case component that is shared by both topologies is necessary, and such reusable components help to reduce cost and die area.

在本發明的實施例中,該電路包含一切換排列,並且經由該切換排列而被配置於第一拓樸與第二拓樸任一者之間。因此,根據該電路的希望特性,該電路可被配置於感應退化拓樸或電阻性反饋拓樸中。 In an embodiment of the invention, the circuit includes a switching arrangement and is disposed between the first topology and the second topology via the switching arrangement. Thus, depending on the desired characteristics of the circuit, the circuit can be configured in an inductively degraded topology or a resistive feedback topology.

在本發明的一種實施例中,低雜訊放大器包含第一輸入電晶體,且退化電感包含一退化電感器,其係被連接於第一輸入電晶體的第一輸出端與接地之間。因此,本發明提供具有相關良好雜訊指數與敏感度性能的低雜訊放大器拓樸。阻抗匹配係經由退化電感以及一或更多外匹配元件來提供。 In one embodiment of the invention, the low noise amplifier includes a first input transistor and the degraded inductor includes a degeneration inductor coupled between the first output of the first input transistor and ground. Accordingly, the present invention provides a low noise amplifier topology with associated good noise index and sensitivity performance. Impedance matching is provided via degenerate inductance and one or more external matching elements.

在本發明的另一實施例中,低雜訊放大器包含第一輸入電晶體,且反饋電阻包含一反饋電阻器,其係被連接於 第一輸入電晶體的輸入端與該電路的第一輸出之間。在本拓樸中,不需要使用外匹配元件的阻抗匹配,阻抗匹配可經由內反饋電阻來提供。 In another embodiment of the invention, the low noise amplifier includes a first input transistor, and the feedback resistor includes a feedback resistor that is coupled to The input of the first input transistor is between the first output of the circuit. In this topology, impedance matching of external matching components is not required, and impedance matching can be provided via an internal feedback resistor.

在本發明的一些實施例中,切換排列包含被連接於第一輸入電晶體的第一輸出端與接地之間的第一拓樸切換構件(或功能)、以及被連接於第一輸入電晶體的輸入端與反饋電阻器之間的第二拓樸切換構件(或功能)。藉由配置第一與第二拓樸切換構件成開啟狀態,該電路可被配置於第一拓樸中,且藉由配置第一與第二拓樸切換構件成關閉狀態,該電路可被配置於第二拓樸中。 In some embodiments of the invention, the switching arrangement includes a first topology switching member (or function) coupled between the first output of the first input transistor and ground, and is coupled to the first input transistor A second topology switching member (or function) between the input and the feedback resistor. The circuit can be configured in the first topology by configuring the first and second topological switching members to be in an open state, and the circuit can be configured by configuring the first and second topological switching members to be in a closed state. In the second topology.

在本發明的排列中,第一與/或第二拓樸切換構件包含切換電晶體,每一切換電晶體係經由將開啟狀態控制訊號輸入到個別切換電晶體的輸入端而被配置成開啟狀態,且每一切換電晶體係經由將關閉狀態控制訊號輸入到個別切換電晶體的輸入端而被配置成關閉狀態。因此,該電路的拓樸可藉由將適當的控制訊號(例如數位控制訊號)施加到在該電路內的許多切換電晶體而被方便地配置。 In the arrangement of the present invention, the first and/or second topological switching members comprise switching transistors, each switching transistor system being configured to be in an on state by inputting an on state control signal to an input of the individual switching transistor And each switching transistor system is configured to be in a closed state by inputting a shutdown state control signal to an input of the individual switching transistor. Thus, the topology of the circuit can be conveniently configured by applying appropriate control signals (e.g., digital control signals) to a plurality of switching transistors within the circuit.

在本發明的實施例中,該電路包含被連接到第一輸入電晶體之第二輸出端以及該電路之第一輸出的第一串疊電晶體。因此,第一輸入電晶體之輸入電容到該放大器輸出的不希望放大則會減少。 In an embodiment of the invention, the circuit includes a first series of transistors connected to a second output of the first input transistor and a first output of the circuit. Therefore, the undesired amplification of the input capacitance of the first input transistor to the output of the amplifier is reduced.

在本發明的實施例中,該電路包含一去耦合電容器,其係被連接在第一輸入電晶體的輸入端與第二拓樸切換構件之間。因此可提供到第一輸入電晶體與第二拓樸切換構 件之交流電的去耦合。 In an embodiment of the invention, the circuit includes a decoupling capacitor coupled between the input of the first input transistor and the second topology switching member. Therefore, it can be provided to the first input transistor and the second topology Decoupling of alternating current.

在本發明的一些排列中,該電路包含被連接於該反饋電阻器與該電路之輸出之間的去耦合電容器。因此可提供交流電至第二拓樸切換構件的另一去耦合。 In some arrangements of the invention, the circuit includes a decoupling capacitor coupled between the feedback resistor and an output of the circuit. It is thus possible to provide another decoupling of the alternating current to the second topological switching member.

在本發明的其他排列中,該電路包含一反饋放大器,其係被連接於該反饋電阻器與該電路的輸出之間。因此可提供提高該電路性能的額外緩衝。 In other arrangements of the invention, the circuit includes a feedback amplifier coupled between the feedback resistor and the output of the circuit. This provides an additional buffer to improve the performance of the circuit.

在本發明的一種實施例中,第一拓樸包含被連接於第一輸入電晶體的第一輸出端與接地之間的電容器。因此,可調整互導級(包含200、250與/或202)PSRR與/或CMRR度量指標。 In one embodiment of the invention, the first topology includes a capacitor coupled between the first output of the first input transistor and ground. Therefore, the mutual conductance level (including 200, 250, and/or 202) PSRR and/or CMRR metrics can be adjusted.

本發明實施例包含包含可配置負載的電路,例如LC(電感器/電容器)共振器負載,其係被連接到該電路的第一輸出。本發明因此允許該電路之互導狀態的配置。 Embodiments of the invention include circuitry including a configurable load, such as an LC (inductor/capacitor) resonator load, that is coupled to a first output of the circuit. The invention thus allows for the configuration of the transconductance state of the circuit.

在本發明的排列中,當低雜訊放大器電路被配置於第二拓樸時,該退化電感適於提供一電源雜訊拒斥阻抗。因此,該感應退化低雜訊放大器拓樸的退化電感可被有用地應用於電阻性反饋拓樸中,以抵銷該電路電源的雜訊效果。 In the arrangement of the present invention, when the low noise amplifier circuit is configured in the second topology, the degraded inductor is adapted to provide a power supply noise rejection impedance. Therefore, the degraded inductance of the inductively degraded low noise amplifier topology can be usefully applied to the resistive feedback topology to offset the noise effects of the circuit power supply.

在本發明的實施例中,該電路包含第二輸入電晶體,藉此該低雜訊放大器電路包含一差分低雜訊放大器電路。該退化電感器包含中心分接差分退化電感器,其係被連接到第一輸入電晶體的第一輸出端、第二輸入電晶體的第一輸出端以及接地。該反饋電阻包含另一反饋電阻器,其係被連接於第二輸入電晶體的輸入端與電路的第二輸出之 間。因此,本發明提供一可配置的差分放大器,其係具有相關良好的共用模式拒斥性能。 In an embodiment of the invention, the circuit includes a second input transistor, whereby the low noise amplifier circuit includes a differential low noise amplifier circuit. The degraded inductor includes a center tap differential degeneration inductor that is coupled to a first output of the first input transistor, a first output of the second input transistor, and to ground. The feedback resistor includes another feedback resistor coupled to the input of the second input transistor and the second output of the circuit between. Accordingly, the present invention provides a configurable differential amplifier with associated good common mode rejection performance.

在本發明的實施例中,第一拓樸切換構件係被連接於第一輸入電晶體的第一輸出端與第二輸入電晶體的第一輸出端之間,且該電路包含被連接於第二輸入電晶體的輸入端與該另一反饋電阻器之間的第三拓樸切換構件(或功能)。藉由配置第一、第二與第三拓樸切換構件成開啟狀態,該電路可被配置於第一拓樸中,且藉由配置第一、第二與第三拓樸切換構件成關閉狀態,該電路可被配置於第二拓樸中。因此,進一步拓樸切換構件可被使用來將該差分低雜訊放大器電路配置成一適當拓樸。 In an embodiment of the invention, the first topology switching component is connected between the first output end of the first input transistor and the first output end of the second input transistor, and the circuit includes being connected to the first A third topology switching member (or function) between the input of the two input transistor and the other feedback resistor. The circuit can be configured in the first topology by configuring the first, second, and third topological switching members to be in an open state, and configured to be in a closed state by configuring the first, second, and third topological switching members The circuit can be configured in the second topology. Therefore, a further topology switching component can be used to configure the differential low noise amplifier circuit to an appropriate topology.

在本發明的排列中,當低雜訊放大器電路被配置在第二拓樸中時,退化電感適於提供一共用模式訊號拒斥阻抗,其係相關於與差分低雜訊放大器電路之輸入訊號共用的訊號元件。因此,感應退化低雜訊放大器拓樸的退化電感可被有用地使用於電阻反饋拓樸中,以提供希望的共用模式訊號拒斥給一差分放大器。 In the arrangement of the present invention, when the low noise amplifier circuit is configured in the second topology, the degraded inductor is adapted to provide a common mode signal rejection impedance associated with the input signal to the differential low noise amplifier circuit Shared signal component. Therefore, the degraded inductance of the inductively degraded low noise amplifier topology can be usefully used in the resistance feedback topology to provide the desired common mode signal rejection to a differential amplifier.

根據本發明的第二態樣,有提供一射頻半導體積體電路,其係包含根據本發明第一態樣所設計的一或更多可配置低雜訊放大器電路。 In accordance with a second aspect of the present invention, there is provided a radio frequency semiconductor integrated circuit comprising one or more configurable low noise amplifier circuits designed in accordance with a first aspect of the present invention.

根據本發明的第三態樣,有提供一射頻模組,其係包含根據本發明第一態樣所設計之耦合到一或更多可配置低雜訊放大器電路的一或更多射頻濾波器電路。 In accordance with a third aspect of the present invention there is provided a radio frequency module comprising one or more radio frequency filters coupled to one or more configurable low noise amplifier circuits designed in accordance with a first aspect of the present invention Circuit.

根據本發明第四態樣,有提供一裝置,其係包含根據 本發明第一態樣所設計的可配置低雜訊放大器電路。 According to a fourth aspect of the present invention, there is provided a device comprising A configurable low noise amplifier circuit designed in accordance with a first aspect of the invention.

根據本發明第五態樣,有提供一種配置低雜訊放大器電路的方法,其係包含以下其中一者:施加第一組一或更多控制訊號到該電路,以配置該電路於第一拓樸中,其中該低雜訊放大器電路包含一退化電感,藉此該低雜訊放大器電路充當一感應性退化低雜訊放大器;或者 According to a fifth aspect of the present invention, there is provided a method of configuring a low noise amplifier circuit, comprising: one of: applying a first set of one or more control signals to the circuit to configure the circuit in the first extension Park, wherein the low noise amplifier circuit includes a degraded inductor, whereby the low noise amplifier circuit acts as an inductively degraded low noise amplifier; or

施加第二組一或更多控制訊號到該電路,以配置該電路於第二拓樸中,其中該低雜訊放大器電路包含一反饋電阻,藉此該低雜訊放大器電路充當一電阻性反饋低雜訊放大器。 Applying a second set of one or more control signals to the circuit to configure the circuit in a second topology, wherein the low noise amplifier circuit includes a feedback resistor, whereby the low noise amplifier circuit acts as a resistive feedback Low noise amplifier.

根據本發明的第六態樣,有提供一可配置低雜訊放大器電路,該低雜訊放大器電路係可被配置於以下之間:一內輸入阻抗匹配拓樸,其中低雜訊放大器電路包含一或更多內輸入阻抗匹配元件,其係適於匹配低雜訊放大器的輸入阻抗到一已知輸入,該一或更多內輸入阻抗匹配元件係被放置於低雜訊放大器電路內;以及一拓樸,不同於該內輸入阻抗匹配拓樸。 In accordance with a sixth aspect of the present invention, there is provided a configurable low noise amplifier circuit that can be configured between: an internal input impedance matching topology, wherein the low noise amplifier circuit includes One or more internal input impedance matching components adapted to match an input impedance of the low noise amplifier to a known input, the one or more internal input impedance matching components being placed in the low noise amplifier circuit; A topology is different from the internal input impedance matching topology.

與內輸入阻抗匹配拓樸所不同的拓樸,其係與內輸入阻抗匹配拓樸不同的是在於,該拓樸不包括內輸入阻抗匹配拓樸的一或更多內輸入阻抗匹配元件。 The topology different from the internal input impedance matching topology differs from the internal input impedance matching topology in that the topology does not include one or more internal input impedance matching components of the internal input impedance matching topology.

因此,當該可配置低雜訊放大器電路被配置於內輸入阻抗匹配拓樸時,對於將低雜訊放大器的輸入阻抗匹配已知輸入而言,沒有任何外匹配元件是必要的。當可配置低 雜訊放大器電路被配置於與內輸入阻抗匹配拓樸所不同的拓樸中時,對於將低雜訊放大器的輸入阻抗匹配已知輸入而言,一或更多個外阻抗匹配元件是必要的。 Therefore, when the configurable low noise amplifier circuit is configured for the internal input impedance matching topology, no external matching components are necessary for matching the input impedance of the low noise amplifier to the known input. When configurable low When the noise amplifier circuit is configured in a topology different from the internal input impedance matching topology, one or more external impedance matching components are necessary for matching the input impedance of the low noise amplifier to the known input. .

本發明的進一步特徵與優點將從本發明較佳實施例的以下說明而變得明顯可見,其係僅僅藉由實例來產生,其係參考附圖來進行。 Further features and advantages of the present invention will become apparent from the following description of the preferred embodiments of the invention.

數個LNA結構係為已知,這些的每一個皆具有相關於它們雜訊特性、總成本與輸入匹配能力的特定優點與缺點。 Several LNA architectures are known, each of which has specific advantages and disadvantages associated with their noise characteristics, total cost, and input matching capabilities.

第一已知的LNA拓樸係為感應退化LNA拓樸,其係會被詳細分析於例如D.K.Shaeffer與T.H.Lee所提出的〝A 1.5-V,1.5-GHz CMOS低雜訊放大器〞中,固態電路的IEEE J.,第32冊,第5號,1997年5月,第745-759頁。 The first known LNA topology is an inductively degraded LNA topology, which is analyzed in detail in 〝A 1.5-V, 1.5-GHz CMOS low noise amplifier, as proposed by DK Shaeffer and THLee, in solid state. Circuit IEEE J., Vol. 32, No. 5, May 1997, pp. 745-759.

示範性感應退化LNA電路會被說明於圖2。圖2的LNA係為差分放大器,在此電晶體200與210形成差分放大器的正或〝+〞側,且電晶體202與212形成差分放大器的負或〝-〞側。差分放大器的+與-側被各自排列在串疊配置中,在此各自排列在共源極配置的電晶體200與202,其各別形成+與-側的輸入電晶體,且電晶體210與212則各自形成+與-側的串疊電晶體。在本情形中,電晶體200、202、210、212各者係為增強型模式的n通道金屬氧化物半導體場效電晶體(MOSFET),(同樣稱為NMOS)。 An exemplary inductively degraded LNA circuit will be illustrated in FIG. The LNA of Figure 2 is a differential amplifier where transistors 200 and 210 form the positive or negative + 〞 side of the differential amplifier, and transistors 202 and 212 form the negative or 〝-〞 side of the differential amplifier. The + and - sides of the differential amplifier are each arranged in a tandem configuration, where they are each arranged in a common source configuration of transistors 200 and 202, which respectively form + and - side input transistors, and the transistor 210 and 212 then form a + and - side tandem transistor. In this case, each of the transistors 200, 202, 210, 212 is an enhancement mode n-channel metal oxide semiconductor field effect transistor (MOSFET), (also referred to as NMOS).

差分放大器會將被施加到其輸入端Input_p 220與 Input_m 222之兩輸入訊號之間的差放大,在此被施加到輸入端Input_m 222的訊號係為具有與被施加到輸入端Input_p 220之訊號相同量值但卻與那訊號反相180度的一訊號(亦即,該些訊號具有相反相)。差分放大器能夠拒斥與其兩輸入訊號共用的訊號成分,同時放大兩訊號之間的差。差分放大器拒斥其兩輸入訊號所共用之訊號成分的同時放大該兩訊號之間差的程度,其係可藉由共用模式拒斥比率(CMRR)度量指標所測量。 The differential amplifier will be applied to its input Input_p 220 with The difference between the two input signals of Input_m 222 is amplified, and the signal applied to the input terminal Input_m 222 is one having the same magnitude as the signal applied to the input terminal Input_p 220 but inverted 180 degrees from the signal. Signals (ie, the signals have opposite phases). The differential amplifier rejects the signal components that are common to both input signals and amplifies the difference between the two signals. The difference amplifier amplifies the difference between the two signals while rejecting the signal component shared by the two input signals, which can be measured by the Common Mode Rejection Ratio (CMRR) metric.

在放大器之+側上之輸入電晶體200的閘極端會被連接到去耦合電容器240,該去耦合電容器會依次連接到外匹配元件230。輸入端Input_p220會被連接到外匹配元件230。外匹配元件230則會被放置在各別電路或者到包含圖2 LNA之電路的裝置上,亦即,匹配元件230係在‘晶片外’(由在圖2中的虛線圍繞封塊所表示)。在本情形中,匹配元件230係為一電感器。 The gate terminal of the input transistor 200 on the + side of the amplifier is connected to a decoupling capacitor 240, which in turn is connected to the outer matching element 230. The input Input_p220 will be connected to the outer matching element 230. The outer matching component 230 will then be placed in a separate circuit or onto a device containing the circuitry of the LNA of Figure 2, i.e., the matching component 230 is external to the wafer (represented by the dashed line in Figure 2) . In this case, the matching component 230 is an inductor.

同樣在放大器的-側,輸入電晶體202的閘極端會被連接到去耦合電容器242,其依次連接到外匹配元件232。輸入端Input_m 222則會被連接到外匹配元件232。再者,匹配元件232會被置於晶片外,且在此情形中為一電感器。 Also on the - side of the amplifier, the gate terminal of the input transistor 202 is connected to a decoupling capacitor 242, which in turn is connected to the outer matching element 232. The input Input_m 222 is then connected to the outer matching element 232. Again, the matching component 232 will be placed outside the wafer, and in this case an inductor.

輸入電晶體200與202的閘極端每一個因此會形成它們各自輸入電晶體的輸入端。輸入電晶體200與202的源極與汲極端因此會形成該輸入電晶體的輸出端。 The gate terminals of the input transistors 200 and 202 each thus form the input of their respective input transistors. The source and drain terminals of the input transistors 200 and 202 thus form the output of the input transistor.

兩輸入電晶體200、202之每一個的源極端會被連接到電感器250的不同各別端。電感器250係為具有相互耦合 的中心分接差分電感器裝置。電感器250提供兩輸入電晶體200、202之源極端的感應退化。電感器250的中心分接端會被連接到接地。 The source terminals of each of the two input transistors 200, 202 are connected to different respective ends of the inductor 250. Inductor 250 is coupled to each other The center taps the differential inductor device. Inductor 250 provides inductive degradation of the source terminals of the two input transistors 200, 202. The center tap of the inductor 250 is connected to ground.

在差分放大器之+側上之輸入電晶體200的汲極端會被連接到串疊電晶體210的源極端。同樣地,在差分放大器之-側上之輸入電晶體202的汲極端會被連接到串疊電晶體212的源極端。 The drain terminal of the input transistor 200 on the + side of the differential amplifier is connected to the source terminal of the tandem transistor 210. Likewise, the drain terminal of the input transistor 202 on the side of the differential amplifier will be connected to the source terminal of the tandem transistor 212.

串疊電晶體210與212的閘極端兩者均會被連接到電路電壓供應Vdd(DC電壓)。要注意的是,閘極端DC電壓可被設定在不同於Vdd的位準,以致於輸入電晶體200的汲極電壓能夠被設定在希望位準,以便增加在串疊電晶體210之汲極端上的有效電壓擺動。 Both the gate terminals of the tandem transistors 210 and 212 are connected to the circuit voltage supply Vdd (DC voltage). It is to be noted that the gate terminal DC voltage can be set at a level different from Vdd, so that the gate voltage of the input transistor 200 can be set at a desired level to increase at the top of the tandem transistor 210. The effective voltage swing.

串疊電晶體210與212的閘極端會被各別連接到輸出端Output_p 260與Output_m 262,在此Output_p係為差分放大器之+側的輸出端,且Output_m係為差分放大器之-側的輸出端。串疊電晶體210與212的汲極端同樣每一個會經由可配置負載而被連接到電壓供應Vdd;在此情形中,可配置負載包含被並聯連接的電感器280與可變電容器270。電感器280係為中心分接差分電感器裝置,且其中心分接端會被連接到電壓供應Vdd。圖2之LNA的輸出端Output_p 260與Output_m 262因此會被連接到可配置負載。 The gate terminals of the tandem transistors 210 and 212 are individually connected to the output terminals Output_p 260 and Output_m 262, where Output_p is the output of the + side of the differential amplifier, and Output_m is the output of the side of the differential amplifier. . The turns of the tandem transistors 210 and 212 are each also connected to a voltage supply Vdd via a configurable load; in this case, the configurable load includes an inductor 280 and a variable capacitor 270 that are connected in parallel. Inductor 280 is a center tap differential inductor device with its center tap connected to voltage supply Vdd. The outputs OUT_p 260 and Output_m 262 of the LNA of Figure 2 are therefore connected to the configurable load.

在圖2中說明之LNA拓樸的雜訊特性基本上係由輸入電晶體200與202的雜訊特性所掌控。雜訊特性可藉由將輸入匹配網路(例如包括輸入電晶體200與202以及外匹 配元件230與232)最佳化來改善。在本拓樸中,在輸入電晶體以前的輸入匹配網路會提供被動電壓增益,其係可以在相應輸入電晶體(例如200)之閘極至源極端接面上所觀察到的電壓擺動與在LNA輸入上的電壓擺動之比率來測量。在此內文中被認為是輸入匹配網路之Q值之此比率的高值,其係在減少輸入電晶體200之汲極電流雜訊上有效,但是它卻增加輸入電晶體的感應閘極電流雜訊。最適宜的Q-值可使用以下方程式來決定: The noise characteristics of the LNA topology illustrated in Figure 2 are essentially controlled by the noise characteristics of the input transistors 200 and 202. The noise characteristics can be improved by optimizing the input matching network (e.g., including input transistors 200 and 202 and outer matching components 230 and 232). In this topology, the input matching network before the input transistor provides passive voltage gain, which is the voltage swing that can be observed at the gate-to-source junction of the corresponding input transistor (eg, 200). The ratio of the voltage swing on the LNA input is measured. In this context, it is considered to be a high value of the ratio of the Q value of the input matching network, which is effective in reducing the buckling current noise of the input transistor 200, but it increases the sensing gate current of the input transistor. Noise. The most appropriate Q-value can be determined using the following equation:

在方程式(2)中,RLin、Rg與Rs各別為外匹配元件230的串聯電阻、輸入電晶體200的閘極電阻、以及電晶體200的源極阻抗。符號δ、γ與α係為電晶體雜訊參數,同時Qin係為輸入匹配網路的Q-值,且fo與fT係各別為操作與單位增益頻率。最後,c係為輸入電晶體200之汲極端與閘極端雜訊之間的相關係數。 In equation (2), R Lin , R g and R s are each a series resistance of the outer matching element 230, a gate resistance of the input transistor 200, and a source impedance of the transistor 200. The symbols δ, γ, and α are the transistor noise parameters, while Q in is the Q-value of the input matching network, and f o and f T are the operation and unity gain frequencies, respectively. Finally, c is the correlation coefficient between the 汲 extremes of the input transistor 200 and the gate extreme noise.

圖2的感應退化LNA具有比較良好的雜訊指數,因而可減少在該接收器中之其後續級的雜訊作用,並且提供電流與電壓增益兩者。一般而言,此LNA拓樸的雜訊指數會連同更高的單位增益頻率來改善。不過,隨著電晶體通道縮短,雜訊參數γ與α會傾向於增加。幸運地,一些成分可被定型為雜訊指數γ與α的比率,其係可大概被視為固定;這是合理的假設,因為兩雜訊源具有相同的物理源。 因此,起因於短通道效果之雜訊參數γ與α的增加,其係不會如感應退化LNA輸入級嚴重。不過,感應退化LNA拓樸需要數個晶片外外匹配元件230與232,其係並且因而有相當昂貴的傾向。 The inductively degraded LNA of Figure 2 has a relatively good noise index, thereby reducing the noise effects of its subsequent stages in the receiver and providing both current and voltage gain. In general, the noise index of this LNA topology will improve with higher unity gain frequencies. However, as the transistor channel is shortened, the noise parameters γ and α tend to increase. Fortunately, some components can be shaped as the ratio of the noise index γ to α, which can be considered to be fixed; this is a reasonable assumption because the two sources have the same physical source. Therefore, the increase in the noise parameters γ and α due to the short channel effect is not as severe as the inductively degraded LNA input stage. However, inductively degraded LNA topologies require several off-chip mating components 230 and 232, which are and therefore tend to be relatively expensive.

第二個已知的LNA拓樸係為電阻性反饋(或者‘分路電阻器’)LNA,其係已經詳細地分析於C.-F.Liao與S.-I.Liu所提出的〝用於3.1-10.6-GHz UWB接收器的寬頻雜訊取消CMOS LNA〞固態電路的IEEE J.,第42冊,第號,2007年2月,第329-339頁。 The second known LNA topology is the resistive feedback (or 'shunt resistor') LNA, which has been analyzed in detail by C.-F.Liao and S.-I.Liu. Broadband Noise in the 3.1-10.6-GHz UWB Receiver Eliminates CMOS LNA/Solid State Circuit IEEE J., Volume 42, Number, February 2007, pp. 329-339.

示範電阻性反饋LNA電路會被說明於圖3中。至於圖2的感應退化LNA,圖3的LNA係為差分放大器,在此電晶體200與210會形成差分放大器的正或〝+〞側,且電晶體202與212會形成差分放大器的負或〝-〞側。 An exemplary resistive feedback LNA circuit will be illustrated in FIG. As for the inductively degraded LNA of Figure 2, the LNA of Figure 3 is a differential amplifier where transistors 200 and 210 form the positive or negative + side of the differential amplifier, and transistors 202 and 212 form a negative or negative of the differential amplifier. -"side.

圖3電阻性反饋LNA的拓樸類似圖2感應退化LNA者;不過,會有數個如下差異: Figure 3 shows the topology of the resistive feedback LNA similar to Figure 2 inductively degrading the LNA; however, there are several differences:

首先,在圖3的電阻性反饋LNA中不會出現任何電感器250,其係會提供輸入電晶體200與202之源極端的感應退化於圖2的感應退化LNA中。替代地,圖3電阻性反饋LNA之輸入電晶體200與202的源極端被直接連接到接地。 First, no inductor 250 will appear in the resistive feedback LNA of Figure 3, which would provide inductance degradation of the source terminals of input transistors 200 and 202 in the inductively degraded LNA of Figure 2. Alternatively, the source terminals of the input transistors 200 and 202 of the resistive feedback LNA of Figure 3 are directly connected to ground.

第二,輸出端Output_p 260(亦即差分放大器之+側的輸出端)會經由反饋電阻器300而被連接到輸入端Input_p 220,亦即,差分放大器之+側的輸入。同樣地,輸出端Output_m 262,亦即差分放大器之-側的輸出端,會經由反饋電阻器302而連接到輸入端Input_m 222,亦即差分放大 器之-側的輸入端。反饋電阻器300與302因此可各別提供電阻性反饋到差分放大器的+與-側。 Second, the output terminal Output_p 260 (i.e., the output of the + side of the differential amplifier) is connected via the feedback resistor 300 to the input terminal Input_p 220, that is, the input of the + side of the differential amplifier. Similarly, the output terminal Output_m 262, that is, the output of the side of the differential amplifier, is connected to the input terminal Input_m 222 via the feedback resistor 302, that is, differential amplification. The input of the side of the device. Feedback resistors 300 and 302 can thus each provide resistive feedback to the + and - sides of the differential amplifier.

第三,在這些LNA拓樸之間的重要差異係為輸入匹配頻率的可組態度。在電阻反饋拓樸中,最佳輸入匹配頻率會跟隨在該輸出的輸出擺動。當藉由調整被施加到該輸出的共振器負載而將在該電阻性反饋LNA輸出上的增益設定成希望頻率時,該輸入匹配可在相同頻率上被觀察。這可藉由計算該電阻性反饋拓樸的輸入阻抗值來理解,其係大概由Zin=(Rfb+ZL)/(1+Gm ZL)所定義,在此Rfb係為反饋電阻器值,ZL係為負載阻抗,且Gm係為輸入裝置的互導。這會相較於通常可更固定在特定頻率之感應退化LNA拓樸的輸入匹配。 Third, the important difference between these LNA topologies is the groupable attitude of input matching frequencies. In the resistance feedback topology, the optimal input matching frequency follows the output swing of the output. When the gain on the resistive feedback LNA output is set to the desired frequency by adjusting the resonator load applied to the output, the input match can be observed on the same frequency. This can be understood by calculating the input impedance value of the resistive feedback topology, which is roughly defined by Z in = (R fb + Z L ) / (1 + G m * Z L ), where R fb is For feedback resistor values, Z L is the load impedance and G m is the mutual conductance of the input device. This would match the input of the inductively degraded LNA topology that would normally be more fixed at a particular frequency.

最後,沒有任何外匹配元件230與232會被提供在圖3的電阻性反饋LNA中。輸入電晶體200與202因此可各別經由去耦合電容器240與242而被各別直接地連接到Input_p 220與Input_m 222端。 Finally, none of the outer matching elements 230 and 232 will be provided in the resistive feedback LNA of FIG. The input transistors 200 and 202 can thus be individually connected directly to the Input_p 220 and Input_m 222 terminals via decoupling capacitors 240 and 242, respectively.

寧可使圖3的電阻性反饋LNA能夠匹配被內連接到在LNA內的輸入端Input_p 220與Input_m 222之阻抗,也不需要外匹配元件以匹配將輸入端Input_p 220與Input_m 222連接到的阻抗(在此,欲被匹配的阻抗例如係為在LNA之前之射頻濾波器的輸出阻抗)。 The resistive feedback LNA of Figure 3 can be matched to the impedance of the input terminals Input_p 220 and Input_m 222 that are internally connected to the LNA, and no external matching components are needed to match the impedance to which the input terminals Input_p 220 and Input_m 222 are connected ( Here, the impedance to be matched is, for example, the output impedance of the RF filter before the LNA).

沒有任何外匹配元件230與232存在於圖3的電阻性反饋LNA中,其係會在電容器240與242以前提供被動電壓增益,如以上圖2之感應退化LNA所說明,如此輸入電 晶體200與202的雜訊效果不會被緩和。此外,由於在LNA之輸出端260與262以及輸入端220與222之間的反饋迴路,在圖3的電阻性反饋LNA中會有額外的雜訊源。隨著反饋電阻器300與302電阻的減少,來自可配置負載與反饋迴路的輸入參考雜訊則會增加。 No external matching components 230 and 232 are present in the resistive feedback LNA of Figure 3, which would provide passive voltage gain before capacitors 240 and 242, as illustrated by the inductively degraded LNA of Figure 2 above, thus inputting electricity The noise effects of crystals 200 and 202 are not alleviated. In addition, due to the feedback loop between the output terminals 260 and 262 of the LNA and the inputs 220 and 222, there is an additional source of noise in the resistive feedback LNA of FIG. As the resistance of feedback resistors 300 and 302 decreases, the input reference noise from the configurable load and feedback loop increases.

一般而言,相較於圖2的感應退化LNA,圖3電阻性反饋LNA的雜訊性能會更糟。不過,因為圖3的電阻性反饋LNA不需要外匹配元件230與232,也不需要用於感應退化的電感器250,所以圖3電阻性反饋LNA的總成本相較於圖2感應退化LNA的總成本會更低。 In general, the noise performance of the resistive feedback LNA of Figure 3 is worse than that of the inductively degraded LNA of Figure 2. However, since the resistive feedback LNA of FIG. 3 does not require external matching components 230 and 232 and does not require inductor 250 for inductive degradation, the total cost of the resistive feedback LNA of FIG. 3 is comparable to that of FIG. 2 for inductively degraded LNA. The total cost will be lower.

本發明係關於一種LNA電路,其係被配置於第一拓樸與第二拓樸任一者之間,在第一拓樸中,低雜訊放大器電路包含退化電感,以致於低雜訊放大器電路能夠充當感應退化低雜訊放大器,且在第二拓樸中,低雜訊放大電路包含一反饋電阻,以致於低雜訊放大器電路能夠充當電阻性反饋低雜訊放大器。在第一拓樸中,外匹配元件可聯合LNA來使用,以用於輸入阻抗匹配目的。在第二拓樸中,輸入阻抗匹配可使用在LNA拓樸內的元件來實施;在第二拓樸中,沒有任何外匹配元件是必要的。輸入阻抗匹配例如包含涉及匹配到被連接到LNA之一或更多輸入之射頻濾波器之輸出阻抗。 The present invention relates to an LNA circuit that is disposed between either a first topology and a second topology. In the first topology, the low noise amplifier circuit includes a degraded inductor such that the low noise amplifier The circuit can act as an inductively degraded low noise amplifier, and in the second topology, the low noise amplifier circuit includes a feedback resistor such that the low noise amplifier circuit can act as a resistive feedback low noise amplifier. In the first topology, the outer matching component can be used in conjunction with the LNA for input impedance matching purposes. In the second topology, input impedance matching can be implemented using components within the LNA topology; in the second topology, no external matching components are necessary. Input impedance matching, for example, includes an output impedance that relates to a radio frequency filter that is matched to one or more inputs that are connected to the LNA.

根據本發明所設計的示範性可配置LNA電路係被顯示於圖4中。與圖2以及圖3的LNA一樣,圖4的示範性LNA係為差分放大器,在此電晶體200與210形成差分放大器 的正或‘+’側,且電晶體202與212形成差分放大器的負或‘-’側。 An exemplary configurable LNA circuit designed in accordance with the present invention is shown in FIG. Like the LNAs of Figures 2 and 3, the exemplary LNA of Figure 4 is a differential amplifier where transistors 200 and 210 form a differential amplifier. The positive or '+' side, and transistors 202 and 212 form the negative or '-' side of the differential amplifier.

圖4之可配置LNA的拓樸一定會包含與圖2感應退化低雜訊放大器以及圖3電阻性反饋LNA兩者類似的一些特徵;不過,會有數個重要差異,其係包括如下:首先,圖4的可配置LNA包含一切換排列,以用於配置在第一拓樸與第二拓樸任一者之間的LNA。該切換排列包含許多拓樸切換構件。 The topology of the configurable LNA of Figure 4 must include some features similar to those of the inductively degraded low noise amplifier of Figure 2 and the resistive feedback LNA of Figure 3; however, there are several important differences, including the following: First, The configurable LNA of Figure 4 includes a switch arrangement for configuring an LNA between either the first topology and the second topology. The switching arrangement includes a number of topology switching components.

第二,與圖3電阻性反饋LNA類似地,圖4的可配置LNA包括反饋電阻器300於該差分放大器的+側上。然而,與其將差分放大器+側上的反饋電阻器300直接連接到輸入端Input_p 220,倒不如將反饋電阻器300連接到拓樸切換構件,在此情形中為切換電晶體400,其係依次被連接到輸入端Input_p 220。切換電晶體400之汲極端與源極端的其中一個會被連接到反饋電阻器300,同時,另一個端點則會被連接到輸入端Input_p 220。切換電晶體400的閘極端係被連接到一配置控制訊號端421。拓樸切換構件400因此會被連接於輸入電晶體200的閘極(經由去耦合電容器240)與反饋電阻器300之間。 Second, similar to the resistive feedback LNA of FIG. 3, the configurable LNA of FIG. 4 includes a feedback resistor 300 on the + side of the differential amplifier. However, instead of directly connecting the feedback resistor 300 on the differential amplifier + side to the input terminal Input_p 220, it is better to connect the feedback resistor 300 to the topology switching member, in this case switching the transistor 400, which in turn is Connect to the input Input_p 220. One of the 汲 extreme and source terminals of the switching transistor 400 will be connected to the feedback resistor 300 while the other terminal will be connected to the input Input_p 220. The gate terminal of the switching transistor 400 is connected to a configuration control signal terminal 421. The topology switching member 400 will thus be connected between the gate of the input transistor 200 (via the decoupling capacitor 240) and the feedback resistor 300.

第三,類似圖3的電阻性反饋LNA,圖4的可配置LNA包括反饋電阻器302於差分放大器的-側上。然而,與其將差分放大器-側上的反饋電阻器302直接連接到輸入端Input_m 222,倒不如將反饋電阻器302連接到拓樸切換構件,在此情形中為切換電晶體402,其係依次被連接到輸入 端Input_m 222。切換電晶體402之汲極端與源極端的其中一個會被連接到反饋電阻器302,同時另一個端點則會被連接到輸入端Input_m 222。切換電晶體402的閘極端係被連接到一配置控制訊號端423。拓樸切換構件402因此會被連接於輸入電晶體202的閘極(經由去耦合電容器242)與反饋電阻器302之間。 Third, similar to the resistive feedback LNA of FIG. 3, the configurable LNA of FIG. 4 includes a feedback resistor 302 on the - side of the differential amplifier. However, instead of directly connecting the feedback resistor 302 on the differential amplifier-side to the input terminal Input_m 222, it is better to connect the feedback resistor 302 to the topology switching member, in this case switching the transistor 402, which in turn is Connect to input Terminal Input_m 222. One of the 汲 extreme and source terminals of the switching transistor 402 will be connected to the feedback resistor 302 while the other terminal will be connected to the input Input_m 222. The gate terminal of switching transistor 402 is coupled to a configuration control signal terminal 423. The topology switching component 402 will thus be connected between the gate of the input transistor 202 (via the decoupling capacitor 242) and the feedback resistor 302.

第四,類似圖2的感應退化LNA,電感器250係存在於圖4的可配置LNA中。 Fourth, similar to the inductively degraded LNA of FIG. 2, inductor 250 is present in the configurable LNA of FIG.

第五,拓樸切換構件,在此情形中為切換電晶體410,其係會被連接於輸入電晶體200與202的源極端之間。切換電晶體410之汲極端與源極端的其中一個會被連接到輸入電晶體200的源極端,同時另一端點會被連接到輸入電晶體202的源極端。切換電晶體410的閘極端係被連接到配置控制訊號端425。 Fifth, the topology switching member, in this case the switching transistor 410, is connected between the source terminals of the input transistors 200 and 202. One of the 汲 extreme and source terminals of the switching transistor 410 will be connected to the source terminal of the input transistor 200 while the other end will be connected to the source terminal of the input transistor 202. The gate terminal of switching transistor 410 is coupled to configuration control signal terminal 425.

第六,去耦合電容器430與432各別提供電壓供應到接地電位的去耦合,以用於切換電晶體400與402。 Sixth, decoupling capacitors 430 and 432 each provide decoupling of voltage supply to ground potential for switching transistors 400 and 402.

藉由施加適當的配置控制訊號到配置控制端421、423與425,切換電晶體400、402與410可被切換於開啟狀態(藉此,圖4的可配置LNA可被配置於第一拓樸中)與關閉狀態(藉此,圖4的可配置LNA可被配置於第二拓樸中)之間。藉由使用拓樸切換構件而配置的第一與第二拓樸現將更詳細地被說明。 By applying appropriate configuration control signals to configuration control terminals 421, 423, and 425, switching transistors 400, 402, and 410 can be switched to an on state (by which the configurable LNA of FIG. 4 can be configured for the first topology) And between the closed state (wherein the configurable LNA of Figure 4 can be configured in the second topology). The first and second topologies configured by using the topology switching member will now be explained in more detail.

在第一拓樸中,切換電晶體400、402與410可被配置成開啟狀態。當在開啟狀態時,切換電晶體會提供一高電 阻於其汲極與源極端之間,其係會使該汲極與源極端有效地中斷(或開路)。切換電晶體可藉由施加一適當控制訊號到各別配置控制訊號端而被放置在開啟狀態中,以致於在該切換電晶體的閘極端與源極端之間的電壓(亦即,電壓Vgs)能夠小於(或者大概小於)該切換電晶體的臨界電壓(亦即,電壓Vt),亦即,一切換電晶體因此可被說明為呈切斷模式。用於將切換電晶體配置成開啟狀態的配置控制訊號例如可包含數位〝0〞訊號(譬如包含第一電壓位準的訊號)。 In the first topology, the switching transistors 400, 402, and 410 can be configured to be in an on state. When in the on state, switching the transistor will provide a high voltage Blocking between its drain and source terminals, it effectively interrupts (or opens) the drain and source terminals. The switching transistor can be placed in an on state by applying an appropriate control signal to the respective configuration control signal terminals such that the voltage between the gate terminal and the source terminal of the switching transistor (ie, voltage Vgs) It can be less than (or approximately less than) the threshold voltage of the switching transistor (i.e., voltage Vt), that is, a switching transistor can therefore be illustrated as being in a cut-off mode. The configuration control signal for configuring the switching transistor to be in an on state may include, for example, a digital 〞0 signal (eg, a signal including a first voltage level).

藉由將切換電晶體400與402配置成開啟狀態,反饋電阻器300與302可各自有效地自被施加到輸入端Input_p 220與Input_m 222的輸入訊號切斷。結果,沒有任何反饋迴路各別地存在於輸出端Output_p 260與Output_m以及輸入端Input_p 220與Input_m 222之間。 By configuring switching transistors 400 and 402 to be in an on state, feedback resistors 300 and 302 can each effectively be disconnected from an input signal applied to input terminals Input_p 220 and Input_m 222. As a result, no feedback loops exist between the output terminals Output_p 260 and Output_m and the input terminals Input_p 220 and Input_m 222, respectively.

藉由將切換電晶體410配置成開啟狀態,輸入電晶體200與202的源極端可僅僅經由電感器250而有效地連接,其中心分接則會被連接到接地。電感器250因此可提供輸入電晶體200與202之源極端的感應退化,如在圖2的感應退化LNA中。 By configuring the switching transistor 410 to be in an on state, the source terminals of the input transistors 200 and 202 can be effectively connected only via the inductor 250, and their center taps are connected to ground. Inductor 250 can thus provide inductive degradation of the source terminals of input transistors 200 and 202, as in the inductively degraded LNA of FIG.

當切換電晶體400、402與410被切換成開啟狀態時,亦即當可配置LNA被配置在第一拓樸時,可配置LNA因此充當感應退化LNA。 When the switching transistors 400, 402, and 410 are switched to the on state, that is, when the configurable LNA is configured in the first topology, the configurable LNA thus acts as an inductively degraded LNA.

因此,當被配置在第一拓樸中時,可配置LNA不會提供內輸入阻抗匹配,例如到被連接至輸入端Input_p 220與 Input_m 222之先前射頻濾波器之輸出阻抗的匹配。結果,藉由分別將外阻抗匹配元件(例如在圖2之感應退化LNA中所描述的外匹配元件230與232)連接在去耦合電容器240和輸入端Input_p 220之間以及去耦合電容器242和輸入端Input_m 222之間,圖4中可配置LNA的輸入阻抗則應該例如匹配到先前射頻濾波器。 Therefore, when configured in the first topology, the configurable LNA does not provide internal input impedance matching, for example to be connected to the input Input_p 220 and Matching of the output impedance of the previous RF filter of Input_m 222. As a result, the external impedance matching elements (e.g., the outer matching elements 230 and 232 described in the inductively degraded LNA of FIG. 2) are respectively coupled between the decoupling capacitor 240 and the input terminal Input_p 220 and the decoupling capacitor 242 and input. Between the inputs Input_m 222, the input impedance of the configurable LNA in Figure 4 should, for example, be matched to the previous RF filter.

圖4中可配置LNA的第一拓樸因此可提供圖2之感應退化LNA的好處,亦即,相當低的雜訊指數,但卻需要使用外匹配元件,以便提供輸入阻抗匹配。 The first topology of the configurable LNA in Figure 4 thus provides the benefit of the inductively degraded LNA of Figure 2, i.e., a relatively low noise index, but requires the use of external matching components to provide input impedance matching.

在第二拓樸中,切換電晶體400、402與410會被配置成關閉狀態。當在關閉狀態中時,切換電晶體會提供一低電阻於其汲極與源極端之間,其係會將該汲極與源極端有效地連接(或者‘短路’)。一切換電晶體可藉由施加一配置控制訊號到其控制訊號端而被放置在關閉狀態中,以致於在切換電晶體的閘極端與源極端之間的電壓(亦即,電壓Vgs)會大於切換電晶體的臨界電壓(亦即,電壓Vt),亦即切換電晶體因此可被說明為呈三極管模式。用來將一切換電晶體配置成關閉狀態的配置控制訊號例如包含數字‘1’(譬如包含第二電壓位準的訊號)。 In the second topology, the switching transistors 400, 402, and 410 are configured to be in a closed state. When in the off state, the switching transistor provides a low resistance between its drain and source terminals, which effectively connects (or 'shorts') the drain to the source terminal. A switching transistor can be placed in a closed state by applying a configuration control signal to its control signal terminal such that the voltage (ie, voltage Vgs ) between the gate terminal and the source terminal of the switching transistor is is greater than the threshold voltage (i.e., voltage V t) of the transistor switch, i.e. switching transistor may therefore be described as shape triode mode. The configuration control signal used to configure a switching transistor to be in a closed state includes, for example, a number '1' (eg, a signal containing a second voltage level).

藉由將切換電晶體400與402配置成關閉狀態,反饋電晶體300與302會各別有效地連接到輸入端Input_p220以及Input_m 222。結果,反饋迴路會各自存在於輸出端Output_p 260與Output_m以及輸入端Input_p 220與Input_m 222之間(以及因此各別經由去耦合電容器240與 242之輸入電晶體200與202的輸入端)。 By configuring switching transistors 400 and 402 to be in a closed state, feedback transistors 300 and 302 are effectively coupled to input terminals Input_p 220 and Input_m 222, respectively. As a result, the feedback loops will each exist between the output terminals Output_p 260 and Output_m and between the input terminals Input_p 220 and Input_m 222 (and thus via decoupling capacitors 240, respectively). The input terminals of the input transistors 200 and 202 of 242).

當切換電晶體400、402與410被配置成關閉狀態時,亦即當可配置LNA被配置在第二拓樸中時,可配置LNA因此會充當電阻性反饋LNA。 When the switching transistors 400, 402, and 410 are configured to be in a closed state, that is, when the configurable LNA is configured in the second topology, the configurable LNA thus acts as a resistive feedback LNA.

因此,當被配置在第二拓樸中時,可配置LNA會提供內輸入阻抗匹配,例如到被連接到輸入端Input_p 220與Input_m 222之先前RF濾波器之輸出阻抗的匹配。結果,外匹配元件(例如如在圖2之感應退化LNA中所描述的外匹配元件230與232)其係當可配置LNA被配置在第二配置狀態中時不需要。 Thus, when configured in the second topology, the configurable LNA provides internal input impedance matching, such as to the output impedance of the previous RF filter connected to input Input_p 220 and Input_m 222. As a result, the outer matching elements (e.g., outer matching elements 230 and 232 as described in the inductively degraded LNA of Figure 2) are not required when the configurable LNA is configured in the second configuration state.

當圖4的可配置LNA被配置在第二拓樸中時,切換電晶體410會被配置成關閉狀態;這會提供額外的好處,其係將於此時被說明。 When the configurable LNA of Figure 4 is configured in the second topology, the switching transistor 410 will be configured to be in an off state; this will provide additional benefits, which will be explained at this time.

藉由將切換電晶體410配置成關閉狀態,輸入電晶體200與202的源極端會被有效地連接(亦即,短路)。藉由在輸入電晶體200與202之源極端之間切換電晶體410所形成的連接,其係會平行電感器250,該電感器會連接輸入電晶體200與202的源極端。 By configuring the switching transistor 410 to be in a closed state, the source terminals of the input transistors 200 and 202 are effectively connected (i.e., shorted). By switching the connections formed by the transistors 410 between the source terminals of the input transistors 200 and 202, they are parallel to the inductor 250, which connects the source terminals of the input transistors 200 and 202.

如在圖2之感應退化LNA,電感器250係為具有相互耦合的差分電感器裝置。相較於被施加到差分放大器的差分模式訊號,差分電感器裝置的相互耦合會造成該電感器不同地操作,以用於被施加到差分放大器的共用模式訊號。 As in the inductively degraded LNA of Figure 2, the inductor 250 is a differential inductor device with mutual coupling. The mutual coupling of the differential inductor devices causes the inductor to operate differently for the common mode signal applied to the differential amplifier as compared to the differential mode signal applied to the differential amplifier.

被施加到差分放大器的共用模式訊號係為訊號元件,其係在被施加到輸入端Input_p 220與Input_m 222的各別 輸入訊號中具有相同量值與相同相位。相較之下,差分模式訊號係為在被施加到輸入端Input_p 220與Input_m 222之各別輸入訊號中具有相同量值與相反相位的訊號元件。 The common mode signal applied to the differential amplifier is a signal component that is applied to the input terminals Input_p 220 and Input_m 222. The input signal has the same magnitude and the same phase. In contrast, the differential mode signal is a signal component having the same magnitude and opposite phase in the respective input signals applied to the input terminals Input_p 220 and Input_m 222.

就被施加到輸入端Input_p 220與Input_m 222的差分模式訊號而言,當可配置的LNA被配置在第二拓樸中時,藉由在輸入電晶體200與202之源極端之間的切換電晶體410所形成的連結則會形成一虛擬接地給該差分訊號。 With respect to the differential mode signal applied to the input terminals Input_p 220 and Input_m 222, when the configurable LNA is configured in the second topology, by switching between the input terminals of the input transistors 200 and 202 The connection formed by the crystal 410 forms a virtual ground to the differential signal.

不過,相關於被施加到輸入端Input_p 220與Input_m 222的共用模式訊號,當可配置LNA被配置在第二拓樸中時,電感器230仍會維持主動,以在輸入電晶體200與202的源極端與接地(其係連接到電感器250的中心分接)之間提供等於以下的電感:(1-k)/2Ln (3)其中在此k係為電感器250的相互耦合係數,且Ln係為依據電感器250之電性長度的標稱電感。 However, in relation to the common mode signal applied to the input terminals Input_p 220 and Input_m 222, when the configurable LNA is configured in the second topology, the inductor 230 will remain active to input the transistors 200 and 202. An inductance equal to or less is provided between the source terminal and the ground (which is connected to the center of the inductor 250): (1-k)/2 * L n (3) where k is the mutual coupling of the inductor 250 The coefficient, and L n , is the nominal inductance based on the electrical length of the inductor 250.

因此,當可配置LNA被配置於第二拓樸中時,電感器250(按照以上方程式(3))所提供相關於共用模式訊號的電感會形成一阻抗,該阻抗用來減弱來自該接地電壓供應的干擾與其他雜訊。當被配置於第二拓樸中時,例如由可配置LNA之更高電源供應拒斥比(PSRR)度量指標所控制之電源供應雜訊拒斥性能因此會被改善。當可配置LNA被配置於第二拓樸中時,電感器250所提供的退化電感因此適於提供一電源供應拒斥阻抗。 Therefore, when the configurable LNA is configured in the second topology, the inductor 250 (according to equation (3) above) provides an impedance related to the common mode signal, which is used to weaken the ground voltage. Supply of interference and other noise. When configured in the second topology, power supply noise rejection performance, such as controlled by a higher power supply rejection ratio (PSRR) metric of the configurable LNA, is therefore improved. When the configurable LNA is configured in the second topology, the degraded inductance provided by the inductor 250 is thus adapted to provide a power supply rejection impedance.

在PSRR度量指標中的此些改善基本上僅僅在譬如圖2 之感應退化LNA拓樸中被看見。不過,藉由從感應退化LNA拓樸‘借’電感器250,可配置LNA致使電阻反饋LNA拓樸的此些改善。‘借’電感器250同樣確保從可配置LNA之第一拓樸的昂貴(根據晶片面積)晶片元件可被使用於可配置LNA架構兩者中。 These improvements in the PSRR metrics are basically only in Figure 2 The induced degradation is seen in the LNA topology. However, by substituting the 'borrowed' inductor 250 from the inductively degraded LNA, the LNA can be configured to cause such improvements in the resistance feedback LNA topology. The 'borrowed' inductor 250 also ensures that the expensive (according to wafer area) wafer elements from the first topology of the configurable LNA can be used in both the configurable LNA architecture.

此外,當可配置LNA被架構在第二拓樸中時,由電感器250(按照以上方程式(3))所提供之相關於共用模式訊號的電感會形成一退化電感器,以用於輸入電晶體200與202的源極端。如以上關於圖2之感應退化LNA所說明地,此一退化電感器適用於改善當被架構於第二拓樸中時可配置LNA之共用模式的拒斥性能,其係例如由更高的CMRR度量指標所顯示。當可配置LNA被配置在第二拓樸中時,由電感器250所提供的退化電感因此適於提供共用模式訊號拒斥阻抗,其係相關於與被施加到輸入端Input_p 220與Input_m 222的輸入訊號所共用的訊號元件。 In addition, when the configurable LNA is architected in the second topology, the inductance associated with the common mode signal provided by the inductor 250 (according to equation (3) above) forms a degraded inductor for inputting the input. The source terminals of crystals 200 and 202. As explained above with respect to the inductively degraded LNA of FIG. 2, this degraded inductor is suitable for improving the rejection performance of the shared mode of the configurable LNA when architected in the second topology, for example by a higher CMRR The metrics are displayed. When the configurable LNA is configured in the second topology, the degraded inductance provided by the inductor 250 is thus adapted to provide a common mode signal rejection impedance that is related to and applied to the inputs Input_p 220 and Input_m 222. Enter the signal component common to the signal.

在CMRR度量指標中的此些改善基本上僅僅可在感應退化LNA拓樸中看到,譬如圖2。不過,藉由從圖2的感應退化LNA‘借’電感器250,該可配置LNA促使於電阻性反饋LNA拓樸中的此些改善。‘借’電感器250同樣確保從可配置LNA之第一拓樸的昂貴(根據晶片面積)晶片上元件會被使用於可配置LNA架構兩者中。 These improvements in the CMRR metrics are basically only seen in the inductively degraded LNA topology, as shown in Figure 2. However, by omitting the inductor 250 from the inductively degraded LNA of Figure 2, the configurable LNA facilitates such improvements in the resistive feedback LNA topology. The 'borrowed' inductor 250 also ensures that the on-wafer components from the configurable LNA's first topology are expensive (depending on the die area) that will be used in both the configurable LNA architecture.

圖4的可配置LNA因此提供一LNA,其係可根據希望的使用情形或設計規格來配置。 The configurable LNA of Figure 4 thus provides an LNA that can be configured according to a desired use case or design specification.

假如需要具有較佳雜訊指數之更敏感LNA的話,LNA 可被配置於第二拓樸中,其代價為需要外匹配元件(例如230與232),以便提供阻抗匹配給可配置LNA的輸入。 If you need a more sensitive LNA with a better noise index, LNA It can be configured in the second topology at the expense of requiring external matching components (e.g., 230 and 232) to provide impedance matching to the input of the configurable LNA.

另或者,LNA可被配置於第二拓樸中,以便提供更符合成本效應的辦法。 Alternatively, the LNA can be configured in a second topology to provide a more cost effective approach.

此外,當可配置LNA被配置於第二拓樸中時,電感器250的使用可提供改善於圖3之電阻性反饋LNA上之LNA的PSRR與CMRR。這會造成昂貴晶片上元件(亦即,電感器250)的再使用,其係會消費可配置LNA之明顯額度的晶片面積。 Moreover, when the configurable LNA is configured in the second topology, the use of the inductor 250 can provide PSRR and CMRR that are improved over the LNA on the resistive feedback LNA of FIG. This can result in the reuse of components on the expensive wafer (i.e., inductor 250) that would consume a significant amount of wafer area of the configurable LNA.

可配置LNA可藉由其製造商或者藉由安裝可配置LNA例如於一裝置或模組的第三方來配置;這可包含一種配置LNA的方法,其係包含將第一組一或更多控制訊號施加到LNA以將它配置在第一拓樸中,或者將第二組一或更多控制訊號施加到LNA以將它配置在第二拓樸中。一組控制訊號可例如被施加到一或更多切換電晶體。 The configurable LNA can be configured by its manufacturer or by a third party installing a configurable LNA, such as a device or module; this can include a method of configuring an LNA that includes one or more controls of the first group A signal is applied to the LNA to configure it in the first topology, or a second set of one or more control signals is applied to the LNA to configure it in the second topology. A set of control signals can be applied, for example, to one or more switching transistors.

圖4的可配置LNA可被實施於射頻半導體積體電路(RFIC)中。此一RFIC被包括在射頻模組中,其係包含置於在LNA以前之射頻前端模組中的射頻濾波器。RFIC包含輸入與輸出接腳,其係可被使用來連接外匹配元件於可配置LNA與射頻濾波器之間。RFIC可替代性地包含一或更多射頻濾波器,其係被連接到一或更多可配置LNA。 The configurable LNA of Figure 4 can be implemented in a radio frequency semiconductor integrated circuit (RFIC). The RFIC is included in the RF module and includes an RF filter placed in the RF front-end module prior to the LNA. The RFIC includes input and output pins that can be used to connect external matching components between the configurable LNA and the RF filter. The RFIC may alternatively include one or more RF filters that are connected to one or more configurable LNAs.

圖4的可配置LNA可被合併入許多不同裝置。此一裝置包含使用者設備,譬如基地台、個人數位助理或蜂巢式電話裝置等等;可配置LNA例如可被包括在此一使用者設 備的接收器中。更者,此一裝置包含欲被附加到使用者設備的數據機裝置,例如通用串列匯流排數據機。仍進一步,此一裝置包含通訊模組,譬如機械對機械(M2M)模組,其係可被插入於另一裝置內,譬如具有通訊能力的膝上型電腦或其它裝置(例如,自動販賣機)。然而仍進一步地,此一裝置包含一晶片組,其係包括射頻與基頻部份。 The configurable LNA of Figure 4 can be incorporated into many different devices. The device comprises user equipment, such as a base station, a personal digital assistant or a cellular telephone device, etc.; the configurable LNA can be included, for example, in a user setting Prepared in the receiver. Moreover, such a device includes a data machine device to be attached to the user device, such as a universal serial bus data machine. Still further, the device includes a communication module, such as a mechanical-to-mechanical (M2M) module, which can be inserted into another device, such as a laptop or other device having communication capabilities (eg, a vending machine) ). Still further, the apparatus includes a chip set that includes a radio frequency and a fundamental frequency portion.

以上實施例可被理解當作本發明的顯示性實例。本發明的進一步實施例可被想像,在此接著為其中一些實例。 The above embodiments are to be understood as illustrative examples of the invention. Further embodiments of the invention are conceivable, and here are some examples.

在第一替代性排列中,串疊電晶體210與212不被包括在圖4的可配置LNA電路中。在此一配置中,在差分放大器的+側上,輸入電晶體200的汲極端會被連接到可配置LNA的輸出端Output_p 260以及可配置負載(例如,電感器280與可變電容器270),其係會被連接到電壓供應Vdd。同樣地,在差分放大器的-側上,輸入電晶體202的汲極端會被連接到可配置LNA的輸出端Output_m 262,以及可配置負載,其係會被連接到電壓供應Vdd。省略串疊電晶體210與212可使本發明的輸入-輸出絕緣退化並且使可配置LNA的Miller效果更糟;不過,此一排列仍可從以上所說明圖4之可配置LNA的其他優點而受益。 In a first alternative arrangement, the tandem transistors 210 and 212 are not included in the configurable LNA circuit of FIG. In this configuration, on the + side of the differential amplifier, the ? terminal of the input transistor 200 is connected to the output of the configurable LNA Output_p 260 and the configurable load (eg, inductor 280 and variable capacitor 270), Its system will be connected to the voltage supply Vdd. Similarly, on the - side of the differential amplifier, the ? terminal of the input transistor 202 is connected to the output of the configurable LNA Output_m 262, and a configurable load that is connected to the voltage supply Vdd. Omitting the tandem transistors 210 and 212 can degrade the input-output insulation of the present invention and make the Miller effect of the configurable LNA worse; however, this arrangement can still benefit from the other advantages of the configurable LNA of Figure 4 described above. Benefit.

在第二替代性排列中,差分放大器中只有一側會被包括在圖4的可配置LNA電路中,例如+側或-側。在此一排列中,只有一輸入端(例如Input_p 220)以及只有一輸出端(例如Output_p)會被包括在可配置LNA電路中。此外,退化電感器250被連接於可配置LNA之輸入電晶體(例 如,200)的源極端與接地之間。最後,切換電晶體410的源極與汲極端會被連接,以致於當切換電晶體410成關閉狀態時,輸入電晶體200的源極端會被有效地連接到接地。此配置因此不會包含差分放大器且不會自差分放大器的共用模式拒斥能力得到好處;然而,此一排列仍將從以上所說明之圖4中LNA的其他優點而受益。 In a second alternative arrangement, only one of the differential amplifiers will be included in the configurable LNA circuit of Figure 4, such as the + side or the - side. In this arrangement, only one input (eg, Input_p 220) and only one output (eg, Output_p) are included in the configurable LNA circuit. In addition, the degeneration inductor 250 is connected to an input transistor of a configurable LNA (eg, For example, between 200) the source terminal and ground. Finally, the source and drain terminals of the switching transistor 410 are connected such that when the switching transistor 410 is turned off, the source terminal of the input transistor 200 is effectively connected to ground. This configuration therefore does not include a differential amplifier and does not benefit from the shared mode rejection capability of the differential amplifier; however, this arrangement will still benefit from the other advantages of the LNA of Figure 4 described above.

結合第一替代性排列以及第二排列的示範性可配置LNA電路會被顯示於圖5中,在第一替代性排列上,該串疊電晶體可被省略,且在第二排列上,只有圖4中可配置LNA電路之差分放大器的一側會被包括。此排列仍將從以上所說明之圖4中LNA的許多優點而受益。 An exemplary configurable LNA circuit incorporating a first alternative arrangement and a second arrangement will be shown in FIG. 5, in a first alternative arrangement, the tandem transistor can be omitted, and in the second arrangement, only One side of the differential amplifier of the configurable LNA circuit of Figure 4 will be included. This arrangement will still benefit from the many advantages of the LNA in Figure 4 described above.

在仍進一步替代性實施例中,切換電晶體410不會被包括在可配置LNA電路中,且電感器250仍會在可配置LNA之第一與第二拓樸兩者中的電路中。不同型態的拓樸切換構件可使用以以上所說明的任一實施例。例如,相對於n型加強型模組MOSFET,可使用p型與/或空乏型MOSFET。在另一實施例中,雙極接面電晶體可被使用。 In still further alternative embodiments, the switching transistor 410 is not included in the configurable LNA circuit, and the inductor 250 will still be in the circuit in both the first and second topologies of the configurable LNA. Different types of topology switching members can be used with any of the embodiments described above. For example, a p-type and/or a depletion MOSFET can be used with respect to an n-type reinforced module MOSFET. In another embodiment, a bipolar junction transistor can be used.

在進一步替代性實施例中,除了切換電晶體以外的拓樸切換構件可被使用,例如機械性切換器,其係可被物理性切換以將可配置的LNA配置在希望拓樸中。另一,替代地,電磁操作的中繼器可被使用當作拓樸切換構件。 In a further alternative embodiment, a topology switching member other than a switching transistor can be used, such as a mechanical switch, which can be physically switched to configure the configurable LNA in a desired topology. Alternatively, an electromagnetically operated repeater can be used as a topology switching member.

在另一進一步替代性實施例中,電感器250不是具有中心分接被連接到接地的差分電感器,但卻反而會由兩電感器所替代。在本情形中,這些電感器的第一電感器連接 於輸入電晶體200的源極端(在差分放大器的+側)與接地之間,且這些電感器的第二電感器連接於輸入電晶體202的源極端(在差分放大器的-側上)與接地之間。 In another further alternative embodiment, the inductor 250 is not a differential inductor with a center tap connected to ground, but instead is replaced by two inductors. In this case, the first inductor connections of these inductors At the source terminal of the input transistor 200 (on the + side of the differential amplifier) and ground, and the second inductor of these inductors is connected to the source terminal of the input transistor 202 (on the side of the differential amplifier) and to ground between.

去耦合的電容器240與242可從上述的任一實施例被省略。 Decoupling capacitors 240 and 242 can be omitted from any of the embodiments described above.

可配置負載(例如藉由電感器280與可變電容器270形成的共振器負載)係可從電路移除或者替代性地取代另一阻抗,譬如非共振器負載、寬頻負載、主動負載等等。 A configurable load (eg, a resonator load formed by inductor 280 and variable capacitor 270) can be removed from the circuit or alternatively replaced with another impedance, such as a non-resonator load, a broadband load, an active load, and the like.

在仍進一步替代性實施例中,被施加到配置控制端421、423、425的配置控制訊號可由包含圖4之可配置LNA的RFIC所提供。例如,一或更多拓樸切換構件可被使用來將配置控制端421、423、425連接到RFIC的適當電壓供應(例如,就一配置而言為Vdd,且就另一配置而言則為接地),以便將LNA配置在第一拓樸或第二拓樸中。在另一實例中,一或更多非揮發性記憶體裝置可被配置,以提供配置控制訊號,例如靜態隨機存取記憶體(SRAM)裝置的輸出,快閃記憶體裝置或電性可拭除可程式唯讀記憶體(EEPROM)裝置可提供配置控制訊號。此一非揮發性記憶體裝置可從外部被程式化,以儲存適當資料(例如,‘0’位元或‘1’位元),以便允許記憶體裝置提供可將LNA配置在第一拓樸或第二拓樸中的配置控制訊號。在此情形中,配置LNA的方法包括藉由適當地程式化以上非揮發性記憶體裝置而施加一組控制訊號到LNA。 In still further alternative embodiments, the configuration control signals applied to configuration control terminals 421, 423, 425 may be provided by an RFIC comprising the configurable LNA of FIG. For example, one or more topology switching components can be used to connect the configuration control terminals 421, 423, 425 to the appropriate voltage supply of the RFIC (eg, Vdd for one configuration, and for another configuration Ground) to configure the LNA in the first topology or the second topology. In another example, one or more non-volatile memory devices can be configured to provide configuration control signals, such as an output of a static random access memory (SRAM) device, a flash memory device, or an electrically erasable device. A configuration control signal is provided in addition to a programmable read only memory (EEPROM) device. The non-volatile memory device can be externally programmed to store appropriate data (eg, '0' bits or '1' bits) to allow the memory device to provide an LNA that can be configured in the first topology. Or the configuration control signal in the second topology. In this case, the method of configuring the LNA includes applying a set of control signals to the LNA by appropriately programming the above non-volatile memory device.

在仍另一替代性實施例中,除了電阻性反饋以外,在 可配置LNA電路之輸入與輸出之間的反饋迴路可應用放大級,以便提供額外的緩衝,以提高電路的整體性能。此一可配置LNA電路的實例係說明於圖6中。圖6包含與在圖4所描述那些類似的元件,除了在該電路之+側上反饋放大器600的輸入被連接到可配置LNA的輸出,且該反饋放大器的輸出係為驅動反饋電阻器300以外,其係會依次連接到輸入電晶體200的閘極;反饋放大器602則會類似連接在該電路之-側上的反饋迴路中。 In still another alternative embodiment, in addition to resistive feedback, The feedback loop between the input and output of the configurable LNA circuit can be applied with an amplification stage to provide additional buffering to improve overall circuit performance. An example of such a configurable LNA circuit is illustrated in FIG. 6 includes elements similar to those described in FIG. 4 except that the input of feedback amplifier 600 is coupled to the output of the configurable LNA on the + side of the circuit, and the output of the feedback amplifier is external to drive feedback resistor 300. The system is in turn connected to the gate of the input transistor 200; the feedback amplifier 602 is similarly connected to the feedback loop on the side of the circuit.

另一替代性實施例包含除了可配置退化電感以外,還添加可配置電容器於可配置LNA之輸入電晶體之源極端上,例如按照在圖7所示的電容器700。這允許將在源極端上的共振器頻率設定在希望頻率,並且同樣地允許調整PSRR與/或CMRR度量指標。 Another alternative embodiment includes adding a configurable capacitor to the source terminal of the input transistor of the configurable LNA in addition to the configurable degeneration inductance, such as capacitor 700 as shown in FIG. This allows the resonator frequency at the source terminal to be set at the desired frequency and likewise allows adjustment of the PSRR and/or CMRR metrics.

在實施例中,可配置低雜訊放大器電路包含一共用輸出端,在該輸出端上,可配置低雜訊放大器電路的輸出訊號可當被配置在第一拓樸或第二拓樸時被提供。兩LNA拓樸用之單一輸出端的再使用可提供用於可配置RFIC的較低成本解法。 In an embodiment, the configurable low noise amplifier circuit includes a common output at which the output signal of the configurable low noise amplifier circuit can be configured when configured in the first topology or the second topology provide. The reuse of a single output for the two LNA topologies provides a lower cost solution for configurable RFICs.

在進一步實施例中,因為可配置LNA的輸入匹配網路能夠在感應退化拓樸中產生被動增益,所以在感應退化拓樸中的電流消耗則會比在電阻性反饋拓樸中更小。這意味用於輸入電晶體尺寸或交替電晶體尺寸的不同偏壓點可被使用於不同拓樸配置中,以在電流耗損與性能之間作權衡。 In a further embodiment, since the input matching network of the configurable LNA is capable of generating passive gain in the inductive degradation topology, the current consumption in the inductive degradation topology is smaller than in the resistive feedback topology. This means that different bias points for input transistor size or alternating transistor size can be used in different topologies to trade off current consumption and performance.

應該理解的是,相關於任一實施例所說明的任一特徵 可被單獨或者結合所說明的其他特徵來使用,其係並且亦可結合任一其他實施例的一或更多特徵或者任何其他實施例的任何組合來使用。更者,沒在以上說明的等同物與改良亦可在不背離本發明的範圍內被應用,其係會被定義於附加的申請專利範圍中。 It should be understood that any of the features described in relation to any of the embodiments Other features may be used alone or in combination, and may be used in conjunction with any one or more of any other embodiments or any other combination of any of the other embodiments. Further, equivalents and modifications which are not described above may be applied without departing from the scope of the invention, which is defined in the appended claims.

100‧‧‧射頻模組 100‧‧‧RF Module

110-112‧‧‧射頻濾波器 110-112‧‧‧RF filter

120-122‧‧‧低雜訊放大器 120-122‧‧‧Low noise amplifier

130‧‧‧天線 130‧‧‧Antenna

132‧‧‧射頻前端模組 132‧‧‧RF front-end module

134‧‧‧射頻積體電路 134‧‧‧RF integrated circuit

200、202‧‧‧輸入電晶體 200, 202‧‧‧ input transistor

210、212‧‧‧串疊電晶體 210, 212‧‧‧ tandem crystal

230、232‧‧‧外匹配元件 230, 232‧‧‧ external matching components

240、242‧‧‧去耦合電容器 240, 242‧‧‧ Decoupling capacitors

220‧‧‧輸入端(Input_p) 220‧‧‧Input (Input_p)

222‧‧‧輸入端(Input_m) 222‧‧‧ input (Input_m)

250‧‧‧電感器 250‧‧‧Inductors

260‧‧‧輸出端(Output_p) 260‧‧‧output (Output_p)

262‧‧‧輸出端(Output_m) 262‧‧‧Output (Output_m)

270‧‧‧可變電容器 270‧‧‧Variable capacitor

280‧‧‧電感器 280‧‧‧Inductors

300、302‧‧‧反饋電阻器 300, 302‧‧‧ feedback resistors

400、402、410‧‧‧切換電晶體 400, 402, 410‧‧‧Switching transistor

421、423、425‧‧‧配置控制訊號端 421, 423, 425‧‧‧ configuration control signal end

430、432‧‧‧去耦合電容器 430, 432‧‧‧ decoupling capacitors

600、602‧‧‧反饋放大器 600, 602‧‧‧ feedback amplifier

700‧‧‧電容器 700‧‧‧ capacitor

圖1顯示根據先前技術所設計的射頻積體電路。 Figure 1 shows a radio frequency integrated circuit designed in accordance with the prior art.

圖2顯示根據先前技術所設計的感應退化低雜訊放大器電路。 2 shows an inductively degraded low noise amplifier circuit designed in accordance with the prior art.

圖3顯示根據先前技術所設計的電阻性反饋低雜訊放大器電路。 Figure 3 shows a resistive feedback low noise amplifier circuit designed in accordance with the prior art.

圖4顯示根據一實施例所設計之可配置低雜訊放大器。 4 shows a configurable low noise amplifier designed in accordance with an embodiment.

圖5顯示根據一實施例所設計之可配置低雜訊放大器。 Figure 5 shows a configurable low noise amplifier designed in accordance with an embodiment.

圖6顯示根據一實施例所設計之可配置低雜訊放大器。 Figure 6 shows a configurable low noise amplifier designed in accordance with an embodiment.

圖7顯示根據一實施例所設計之可配置低雜訊放大器。 Figure 7 shows a configurable low noise amplifier designed in accordance with an embodiment.

200、202‧‧‧輸入電晶體 200, 202‧‧‧ input transistor

210、212‧‧‧串疊電晶體 210, 212‧‧‧ tandem crystal

220‧‧‧輸入端(Input_p) 220‧‧‧Input (Input_p)

222‧‧‧輸入端(Input_m) 222‧‧‧ input (Input_m)

240、242‧‧‧去耦合電容器 240, 242‧‧‧ Decoupling capacitors

250‧‧‧電感器 250‧‧‧Inductors

260‧‧‧輸出端(Output_p) 260‧‧‧output (Output_p)

262‧‧‧輸出端(Output_m) 262‧‧‧Output (Output_m)

270‧‧‧可變電容器 270‧‧‧Variable capacitor

280‧‧‧電感器 280‧‧‧Inductors

300、302‧‧‧反饋電阻器 300, 302‧‧‧ feedback resistors

400、402、410‧‧‧切換電晶體 400, 402, 410‧‧‧Switching transistor

421、423、425‧‧‧配置控制訊號端 421, 423, 425‧‧‧ configuration control signal end

430、432‧‧‧去耦合電容器 430, 432‧‧‧ decoupling capacitors

Claims (24)

一種可配置低雜訊放大器電路,該低雜訊放大器電路可被配置於以下任一者之間:一第一拓樸,其中該低雜訊放大器電路包含一退化電感,藉此該低雜訊放大器電路充當一感應退化低雜訊放大器;以及一第二拓樸,其中該低雜訊放大器電路包含一反饋電阻,藉此該低雜訊放大器電路充當一電阻反饋低雜訊放大器。 A configurable low noise amplifier circuit, the low noise amplifier circuit being configurable between: a first topology, wherein the low noise amplifier circuit includes a degraded inductor, whereby the low noise The amplifier circuit acts as an inductively degraded low noise amplifier; and a second topology, wherein the low noise amplifier circuit includes a feedback resistor whereby the low noise amplifier circuit acts as a resistive feedback low noise amplifier. 如申請專利範圍第1項之可配置低雜訊放大器電路,該電路包含一切換排列,該電路可經由該切換排列而被配置於該第一拓樸與該第二拓樸中一者之間。 A configurable low noise amplifier circuit as claimed in claim 1, the circuit comprising a switching arrangement, the circuit being configurable between the first topology and the second topology via the switching arrangement . 如申請專利範圍第1項之可配置低雜訊放大器電路,其中該低雜訊放大器包含一第一輸入電晶體,且該退化電感包含被連接於該第一輸入電晶體之一第一輸出端與接地之間的一退化電感器。 The configurable low noise amplifier circuit of claim 1, wherein the low noise amplifier comprises a first input transistor, and the degraded inductor comprises a first output connected to the first input transistor A degraded inductor between ground and ground. 如申請專利範圍第1項之可配置低雜訊放大器電路,其中該低雜訊放大器包含一第一輸入電晶體,且該反饋電阻包含被連接於該第一輸入電晶體的輸入端與該電路的一第一輸出之間的一反饋電阻器。 The configurable low noise amplifier circuit of claim 1, wherein the low noise amplifier comprises a first input transistor, and the feedback resistor comprises an input connected to the first input transistor and the circuit A feedback resistor between a first output. 如申請專利範圍第3項或第4項之可配置低雜訊放大器電路,其中該切換排列包含:一第一拓樸切換構件,被連接於該第一輸入電晶體的一第一輸出端與接地之間;以及 一第二拓樸切換構件,被連接於該第一輸入電晶體的該輸入端與該反饋電阻器之間,其中該電路可藉由將該等第一與第二拓樸切換構件配置成一開啟狀態而可配置於該第一拓樸中,以及其中該電路可藉由將該等第一與第二拓樸切換構件配置成一關閉狀態而可配置於該第二拓樸中。 The configurable low noise amplifier circuit of claim 3 or 4, wherein the switching arrangement comprises: a first topology switching component coupled to a first output of the first input transistor and Between grounding; and a second topology switching component is coupled between the input end of the first input transistor and the feedback resistor, wherein the circuit can be configured to be turned on by the first and second topological switching members The state may be configured in the first topology, and wherein the circuit is configurable in the second topology by configuring the first and second topology switching members to be in a closed state. 如申請專利範圍第5項之可配置低雜訊放大器電路,其中該第一與/或該第二拓樸切換構件包含切換電晶體,其中經由將一開啟狀態配置控制訊號輸入到各別切換電晶體的輸入端,每一該切換電晶體可被配置於該開啟狀態中;以及其中經由將一關閉狀態配置控制訊號輸入到各別切換電晶體的輸入端,每一該切換電晶體可被配置於該關閉狀態中。 The configurable low noise amplifier circuit of claim 5, wherein the first and/or the second topology switching component comprises a switching transistor, wherein the switching signal is input to each of the switching states by setting an on state configuration control signal An input end of the crystal, each of the switching transistors being configurable in the open state; and wherein each of the switching transistors is configurable by inputting a closed state configuration control signal to an input of each switching transistor In the off state. 如申請專利範圍第3項之可配置低雜訊放大器電路,該電路包含被連接到該第一輸入電晶體之第二輸出端與該電路之第一輸出的第一串疊電晶體。 A configurable low noise amplifier circuit as in claim 3, the circuit comprising a first series of transistors connected to a second output of the first input transistor and a first output of the circuit. 如申請專利範圍第5項之可配置低雜訊放大器電路,該電路包含一去耦合電容器,其係被連接於該第一輸入電晶體的該輸入端與該第二拓樸切換構件之間。 A configurable low noise amplifier circuit as in claim 5, the circuit comprising a decoupling capacitor coupled between the input of the first input transistor and the second topology switching member. 如申請專利範圍第4項之可配置低雜訊放大器電路,該電路包含一去耦合電容器,其係被連接於該反饋電阻器與該電路的一輸出之間。 A configurable low noise amplifier circuit as in claim 4, the circuit comprising a decoupling capacitor coupled between the feedback resistor and an output of the circuit. 如申請專利範圍第4項之可配置低雜訊放大器電 路,該電路包含一反饋放大器,其係被連接於該反饋電阻與該電路的一輸出之間。 Configurable low noise amplifier power according to item 4 of the patent application scope The circuit includes a feedback amplifier coupled between the feedback resistor and an output of the circuit. 如申請專利範圍第3項之可配置低雜訊放大器電路,其中該第一拓樸包含被連接於該第一輸入電晶體的一第一輸出端與接地之間的一電容器。 A configurable low noise amplifier circuit as in claim 3, wherein the first topology comprises a capacitor coupled between a first output of the first input transistor and ground. 如申請專利範圍第1項之可配置低雜訊放大器電路,該電路包含一可配置負載,其係被連接到該電路的一第一輸出。 A configurable low noise amplifier circuit as in claim 1 of the patent application, the circuit comprising a configurable load coupled to a first output of the circuit. 如申請專利範圍第1項之可配置低雜訊放大器電路,其中當該低雜訊放大器電路可被配置在該第二拓樸中時,該退化電感適於提供一電源供應雜訊拒斥阻抗。 The configurable low noise amplifier circuit of claim 1, wherein the degraded inductor is adapted to provide a power supply noise rejection impedance when the low noise amplifier circuit is configurable in the second topology . 如申請專利範圍第1項之可配置低雜訊放大器電路,該電路包含一第二輸入電晶體,藉此該低雜訊放大器電路包含一差分低雜訊放大器電路。 For example, the configurable low noise amplifier circuit of claim 1 includes a second input transistor, whereby the low noise amplifier circuit includes a differential low noise amplifier circuit. 如申請專利範圍第14項之可配置低雜訊放大器電路,其中該退化電感器包含一中心分接差分退化電感器,其係被連接到第一輸入電晶體的一第一輸出端、第二輸入電晶體的一第一輸出端與接地。 A configurable low noise amplifier circuit as in claim 14 wherein the degraded inductor comprises a center tap differential degeneration inductor coupled to a first output of the first input transistor, the second A first output of the input transistor is coupled to ground. 如申請專利範圍第14項之可配置低雜訊放大器電路,其中該反饋電阻包含一另一反饋電阻器,其係連接於第二輸入電晶體的輸入端與該電路的一第二輸出之間。 A configurable low noise amplifier circuit as claimed in claim 14 wherein the feedback resistor includes a further feedback resistor coupled between the input of the second input transistor and a second output of the circuit . 如申請專利範圍第5項與第14項之可配置低雜訊放大器電路,其中該第一拓樸切換構件係被連接於該第一輸入電晶體的該第一輸出端與該第二輸入電晶體的該第一輸 出端之間,該電路包含:一第三拓樸切換構件,其係被連接於該第二輸入電晶體的該輸入端與該另一反饋電阻器之間,其中藉由配置該等第一、第二與第三拓樸切換構件成一開啟狀態,該電路係可被配置於該第一拓樸中,以及其中藉由配置該等第一、第二與第三拓樸切換構件成一關閉狀態,該電路可被配置在該第二拓樸中。 The configurable low noise amplifier circuit of claim 5, wherein the first topology switching component is connected to the first output terminal of the first input transistor and the second input power The first loss of the crystal Between the outputs, the circuit includes: a third topology switching component coupled between the input end of the second input transistor and the other feedback resistor, wherein the first And the second and third topological switching members are in an open state, the circuit can be configured in the first topology, and wherein the first, second, and third topological switching members are configured to be in a closed state The circuit can be configured in the second topology. 如申請專利範圍第14項之可配置低雜訊放大器電路,其中當該低雜訊放大器電路被配置於該第二拓樸中時,該退化電感則適於提供一共用模式的訊號拒斥阻抗,其係與該等第一以及第二輸入訊號所共用之訊號有關。 The configurable low noise amplifier circuit of claim 14 wherein the degraded inductor is adapted to provide a common mode signal rejection impedance when the low noise amplifier circuit is configured in the second topology. It is related to the signals shared by the first and second input signals. 一種射頻半導體積體電路,其包含如申請專利範圍第1項之一或更多個可配置低雜訊放大器電路。 A radio frequency semiconductor integrated circuit comprising one or more configurable low noise amplifier circuits as in claim 1 of the patent application. 一種射頻模組,其包含如申請專利範圍第1項之耦合到一或更多可配置低雜訊放大器電路之一或更多射頻濾波器電路。 An RF module comprising one or more RF filter circuits coupled to one or more configurable low noise amplifier circuits as in claim 1 of the patent application. 一種裝置,其包含如申請專利範圍第1項之一可配置低雜訊放大器電路。 A device comprising a configurable low noise amplifier circuit as in item 1 of the patent application. 一種配置低雜訊放大器電路的方法,其包含以下其中一者:將第一組一或更多控制訊號施加到該電路,以配置該電路於一第一拓樸中,其中該低雜訊放大器電路包含一退化電感,藉此該低雜訊放大器電路充當一感應退化低雜訊放大器;或 將第二組一或更多控制訊號施加到該電路,以配置該電路於一第二拓樸中,其中該低雜訊放大器電路包含一反饋電阻,藉此該低雜訊放大器電路充當一電阻性反饋低雜訊放大器。 A method of configuring a low noise amplifier circuit, comprising: one of: applying a first set of one or more control signals to the circuit to configure the circuit in a first topology, wherein the low noise amplifier The circuit includes a degraded inductor whereby the low noise amplifier circuit acts as an inductively degraded low noise amplifier; or Applying a second set of one or more control signals to the circuit to configure the circuit in a second topology, wherein the low noise amplifier circuit includes a feedback resistor, whereby the low noise amplifier circuit acts as a resistor Sexual feedback low noise amplifier. 一種可配置低雜訊放大器電路,該低雜訊放大器電路可被配置於以下之間:一內輸入阻抗匹配拓樸,其中該低雜訊放大器電路包含適於將低雜訊放大器之輸入阻抗匹配到一已知輸入的一或更多內輸入阻抗匹配元件,該一或更多內輸入阻抗匹配元件係置於低雜訊放大器電路內;以及一拓樸,其係不同於該內輸入阻抗匹配拓樸。 A configurable low noise amplifier circuit configurable between: an internal input impedance matching topology, wherein the low noise amplifier circuit includes an input impedance suitable for matching a low noise amplifier Inputting an impedance matching component to one or more input inputs of a known input, the one or more internal input impedance matching components being disposed within the low noise amplifier circuit; and a topology different from the internal input impedance matching Topology. 如申請專利範圍第23項之可配置低雜訊放大器電路,其中與該內輸入阻抗匹配不同的該拓樸與該內輸入阻抗匹配拓樸不同,其中不同於該內輸入阻抗匹配拓樸的該拓樸在於不包括該內輸入阻抗匹配拓樸的該一或更多個內輸入阻抗匹配元件。 The configurable low noise amplifier circuit of claim 23, wherein the topology different from the internal input impedance matching is different from the internal input impedance matching topology, wherein the internal input impedance matching topology is different from The topology consists in the one or more internal input impedance matching elements that do not include the internal input impedance matching topology.
TW101117327A 2011-05-19 2012-05-16 Amplifier TW201301749A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/111,423 US8378748B2 (en) 2011-05-19 2011-05-19 Amplifier
GB1108444.9A GB2481487B (en) 2011-05-19 2011-05-19 Amplifier
US13/308,772 US8319555B1 (en) 2011-05-19 2011-12-01 Amplifier

Publications (1)

Publication Number Publication Date
TW201301749A true TW201301749A (en) 2013-01-01

Family

ID=45091920

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101117327A TW201301749A (en) 2011-05-19 2012-05-16 Amplifier

Country Status (5)

Country Link
EP (1) EP2710729A1 (en)
CN (1) CN103563250A (en)
GB (2) GB2487998B (en)
TW (1) TW201301749A (en)
WO (1) WO2012156945A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105138957B (en) 2015-07-24 2017-04-19 深圳市汇顶科技股份有限公司 Fingerprint detection circuit and fingerprint identification system
CN106656078B (en) * 2016-09-23 2021-04-06 西安电子科技大学 Operational Amplifier and Analog-to-Digital Converter with Inductive Dual Supply
US9941849B1 (en) 2017-02-10 2018-04-10 Psemi Corporation Programmable optimized band switching LNA for operation in multiple narrow-band frequency ranges
CN106953604B (en) * 2017-02-23 2021-01-08 维沃移动通信有限公司 Low-noise amplifier and mobile terminal
US11881828B2 (en) 2017-04-04 2024-01-23 Psemi Corporation Tunable effective inductance for multi-gain LNA with inductive source degeneration
US10038418B1 (en) 2017-04-04 2018-07-31 Psemi Corporation Optimized multi gain LNA enabling low current and high linearity including highly linear active bypass
CN108336976B (en) * 2018-02-07 2023-08-01 广州慧智微电子股份有限公司 Multi-band low-noise amplifier and amplifying method
CN111969961B (en) * 2020-10-22 2021-03-02 深圳市南方硅谷半导体有限公司 Amplifier with feedback structure
CN112702022B (en) * 2020-12-28 2021-11-23 北京力通通信有限公司 Low-noise large-bandwidth signal processing device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973557A (en) * 1996-10-18 1999-10-26 Matsushita Electric Industrial Co., Ltd. High efficiency linear power amplifier of plural frequency bands and high efficiency power amplifier
US6198352B1 (en) * 1997-11-20 2001-03-06 Applied Micro Circuits Corporation Radio frequency low noise amplifier fabricated in complementary metal oxide semiconductor technology
DE10132800C1 (en) * 2001-07-06 2003-01-30 Infineon Technologies Ag Low noise amplifier circuit
US6549077B1 (en) * 2002-02-20 2003-04-15 United Microelectronics Corp. Integrated inductor for RF transistor
KR100704568B1 (en) * 2002-08-05 2007-04-06 인티그런트 테크놀로지즈(주) Variable gain low noise amplifier
CN1252912C (en) * 2003-10-17 2006-04-19 清华大学 Low-Volage high-linearity radio-frequency amplifier for on-chip impedance match
US7167044B2 (en) * 2004-05-10 2007-01-23 University Of Florida Research Foundation, Inc. Dual-band CMOS front-end with two gain modes
US7382189B2 (en) * 2006-09-25 2008-06-03 Agere Systems Inc. Multi-gain amplifier with input impedance control
TWI327416B (en) * 2006-10-27 2010-07-11 Nat Univ Tsing Hua Cascode low noise amplifier with a source coupled active inductor
JP4689586B2 (en) * 2006-12-06 2011-05-25 太陽誘電株式会社 Low distortion variable frequency amplifier
US7622989B2 (en) * 2007-04-30 2009-11-24 The Regents Of The University Of California Multi-band, inductor re-use low noise amplifier
US7705682B2 (en) * 2007-09-27 2010-04-27 Nanoamp Mobile, Inc. Inductor sharing in radio frequency communications
CN100542012C (en) * 2007-11-07 2009-09-16 北京航空航天大学 A low noise amplifier for wireless communication and navigation receiver and its realization method
US7936217B2 (en) * 2007-11-29 2011-05-03 Qualcomm, Incorporated High-linearity complementary amplifier
CN101431316A (en) * 2008-07-25 2009-05-13 华东师范大学 Double-frequency band inductor multiplexing radio frequency CMOS low-noise amplifier
US8102213B2 (en) * 2009-07-23 2012-01-24 Qualcomm, Incorporated Multi-mode low noise amplifier with transformer source degeneration
CN101820251A (en) * 2010-05-17 2010-09-01 北京大学 Ultra-low power consumption low-noise amplifier structure and preparation method thereof

Also Published As

Publication number Publication date
GB201117608D0 (en) 2011-11-23
GB2487998A (en) 2012-08-15
WO2012156945A1 (en) 2012-11-22
GB2487998B (en) 2013-03-20
EP2710729A1 (en) 2014-03-26
CN103563250A (en) 2014-02-05
GB2493045A (en) 2013-01-23
GB201207237D0 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US8378748B2 (en) Amplifier
TW201301749A (en) Amplifier
US8319555B1 (en) Amplifier
US8264282B1 (en) Amplifier
US8514021B2 (en) Radio frequency integrated circuit
US7202740B2 (en) Gain boosting for tuned differential LC circuits
US9077290B2 (en) Low-noise amplifier with impedance boosting circuit
US7697915B2 (en) Gain boosting RF gain stage with cross-coupled capacitors
US8294515B1 (en) Amplifier
US8432217B2 (en) Amplifier
Shouxian et al. A modified architecture used for input matching in CMOS low-noise amplifiers
US9246438B2 (en) Receiver architecture for a compact and low power receiver
TWI874917B (en) Low-noise amplifier having programmable-phase gain stage
WO2012156946A1 (en) Radio frequency integrated circuit
WO2012156947A1 (en) Amplifier
TWI591959B (en) Active circuit
US9160285B2 (en) Signal amplifier having inverted topology
US7071799B2 (en) High performance switch for switched inductor tuned RF circuit
CN107302377B (en) Ultra-low power RF receiver front-end with tunable matching network
CN112436810A (en) Low noise amplifier, receiver and electronic equipment based on inverter
GB2490977A (en) A configurable LNA with inductive degeneration or with an impedance-matching stage in parallel with the principal gain stage
US10911007B2 (en) High-frequency amplifier circuitry and semiconductor device
GB2490979A (en) A low-noise-amplifier with selectable internal or external impedance matching
Liu et al. An LNA with optimally mismatched antenna interface for energy harvesting sensor nodes
Barraza et al. High-gain differential-output CMOS LNA for the 700 MHz LTE band