TW201301511A - Metal gate and fabrication method thereof - Google Patents
Metal gate and fabrication method thereof Download PDFInfo
- Publication number
- TW201301511A TW201301511A TW100121026A TW100121026A TW201301511A TW 201301511 A TW201301511 A TW 201301511A TW 100121026 A TW100121026 A TW 100121026A TW 100121026 A TW100121026 A TW 100121026A TW 201301511 A TW201301511 A TW 201301511A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- gate
- metal
- work function
- dielectric layer
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 170
- 239000002184 metal Substances 0.000 title claims abstract description 170
- 238000000034 method Methods 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000000758 substrate Substances 0.000 claims abstract description 25
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 13
- 230000004888 barrier function Effects 0.000 claims description 62
- 230000008569 process Effects 0.000 claims description 40
- 238000011065 in-situ storage Methods 0.000 claims description 17
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 16
- OQPDWFJSZHWILH-UHFFFAOYSA-N [Al].[Al].[Al].[Ti] Chemical compound [Al].[Al].[Al].[Ti] OQPDWFJSZHWILH-UHFFFAOYSA-N 0.000 claims description 14
- 229910021324 titanium aluminide Inorganic materials 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 266
- 239000000463 material Substances 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- VQYHBXLHGKQYOY-UHFFFAOYSA-N aluminum oxygen(2-) titanium(4+) Chemical group [O-2].[Al+3].[Ti+4] VQYHBXLHGKQYOY-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000951 Aluminide Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 229910020684 PbZr Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- VNSWULZVUKFJHK-UHFFFAOYSA-N [Sr].[Bi] Chemical compound [Sr].[Bi] VNSWULZVUKFJHK-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical compound [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 description 1
- KQHQLIAOAVMAOW-UHFFFAOYSA-N hafnium(4+) oxygen(2-) zirconium(4+) Chemical compound [O--].[O--].[O--].[O--].[Zr+4].[Hf+4] KQHQLIAOAVMAOW-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000035936 sexual power Effects 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本發明係關於一種金屬閘極及其製造方法,特別係關於一種原位(in-situ)形成位於功函數金屬層上的阻擋層,進而製成的金屬閘極結構及其製造方法。The present invention relates to a metal gate and a method of fabricating the same, and more particularly to a metal gate structure in which a barrier layer on a work function metal layer is formed in-situ, and a metal gate structure and a method of fabricating the same.
在習知半導體產業中,多晶矽係廣泛地應用於半導體元件如金氧半導體(metal-oxide-semiconductor,MOS)電晶體中,作為標準的閘極材料選擇。然而,隨著MOS電晶體尺寸持續地微縮,傳統多晶矽閘極因硼穿透(boron penetration)效應導致元件效能降低,及其難以避免的空乏效應(depletion effect)等問題,使得等效的閘極介電層厚度增加、閘極電容值下降,進而導致元件驅動能力的衰退等困境。因此,半導體業界更嘗試以新的閘極材料,例如利用具有一功函數(work function)金屬層的金屬電極來取代傳統的多晶矽閘極,用以作為匹配高介電常數(High-K)閘極介電層的控制電極。In the conventional semiconductor industry, polycrystalline lanthanide is widely used in semiconductor components such as metal-oxide-semiconductor (MOS) transistors as a standard gate material. However, as the size of the MOS transistor continues to shrink, the conventional polysilicon gate causes a decrease in component efficiency due to boron penetration effects, and an unavoidable depletion effect, etc., resulting in an equivalent gate. The thickness of the dielectric layer increases, and the value of the gate capacitance decreases, which leads to the dilemma of the deterioration of the component driving capability. Therefore, the semiconductor industry is trying to replace the traditional polysilicon gate with a new gate material, such as a metal electrode with a work function metal layer, as a matching high dielectric constant (High-K) gate. The control electrode of the pole dielectric layer.
在目前的製程中,於形成功函數金屬層之後會直接破真空甚至進行通入氧等製程,然後才再形成一氮化鈦層於功函數金屬層上以阻擋其上的金屬,例如鋁,向下擴散。然而,此製程將使功函數金屬層遭氧化而形成一氧化層,其將促使功函數金屬層退化,如此便嚴重影響功函數金屬層應用於MOS電晶體等裝置的電性品質。舉例而言,在此種製程的環境下所製造出的NMOS電晶體,一般其功函數值高達約為4.81eV,因而如何降低此功函數值實為當今重要課題。In the current process, after the metal layer of the success function, the vacuum is directly broken or even a process such as oxygen is introduced, and then a titanium nitride layer is formed on the work function metal layer to block the metal thereon, such as aluminum. Spread down. However, this process will oxidize the work function metal layer to form an oxide layer, which will promote the degradation of the work function metal layer, thus seriously affecting the electrical quality of the work function metal layer applied to devices such as MOS transistors. For example, an NMOS transistor fabricated in such a process environment generally has a work function value of about 4.81 eV, so how to reduce the work function value is an important issue today.
本發明提出一種金屬閘極及其製造方法,用以減少功函數金屬層遭氧化而在其上方形成的氧化層厚度,以改變功函數金屬層的功函數值,進而改良功函數金屬層應用於MOS電晶體等裝置的電性品質。The invention provides a metal gate and a manufacturing method thereof, which are used for reducing the thickness of an oxide layer formed on a work function metal layer by oxidation, thereby changing a work function value of a work function metal layer, thereby improving a work function metal layer. Electrical quality of devices such as MOS transistors.
本發明提供一種金屬閘極,包含一基底、一閘極介電層、一功函數金屬層、一氮化鋁層以及一阻擋層。閘極介電層位於基底上。功函數金屬層位於閘極介電層上。氮化鋁層位於功函數金屬層上。阻擋層位於氮化鋁層上。The invention provides a metal gate comprising a substrate, a gate dielectric layer, a work function metal layer, an aluminum nitride layer and a barrier layer. The gate dielectric layer is on the substrate. The work function metal layer is on the gate dielectric layer. The aluminum nitride layer is on the work function metal layer. The barrier layer is on the aluminum nitride layer.
本發明提供一種金屬閘極的製造方法。首先,形成一閘極介電層於一基底上。接著,形成一功函數金屬層於閘極介電層上。接續,原位(in-situ)形成一阻擋層於功函數金屬層上。The invention provides a method of manufacturing a metal gate. First, a gate dielectric layer is formed on a substrate. Next, a work function metal layer is formed on the gate dielectric layer. Successively, a barrier layer is formed in-situ on the work function metal layer.
本發明提供一種金屬閘極的製造方法。首先,形成一閘極結構於一基底上,其中閘極結構包含一閘極介電層以及位於閘極介電層上之犧牲閘極。接著,進行一蝕刻製程以移除犧牲閘極。其後,形成一功函數金屬層以取代犧牲閘極。最後,原位(in-situ)形成一阻障層於功函數金屬層上。The invention provides a method of manufacturing a metal gate. First, a gate structure is formed on a substrate, wherein the gate structure comprises a gate dielectric layer and a sacrificial gate on the gate dielectric layer. Next, an etching process is performed to remove the sacrificial gate. Thereafter, a work function metal layer is formed to replace the sacrificial gate. Finally, a barrier layer is formed in-situ on the work function metal layer.
基於上述,本發明提出一種金屬閘極及其製造方法,其係以原位(in-situ)形成阻擋層於功函數金屬層上,故位於功函數金屬層與阻擋層之間的功函數金屬層之原生氧化層的厚度可盡可能地減小。具體而言,本發明之功函數金屬層的氧化層的厚度係小於功函數金屬層厚度的30%,甚至在一較佳的實施環境下其厚度可達到近乎為零。如此,本發明之金屬閘極製程所形成之金屬閘極結構,較習知之金屬閘極結構功函數值更低,因而可提高金屬閘極的電性品質。Based on the above, the present invention provides a metal gate and a method of fabricating the same, which is formed by in-situ forming a barrier layer on a work function metal layer, so that a work function metal between the work function metal layer and the barrier layer The thickness of the native oxide layer of the layer can be reduced as much as possible. Specifically, the thickness of the oxide layer of the work function metal layer of the present invention is less than 30% of the thickness of the work function metal layer, and even in a preferred embodiment, the thickness can be nearly zero. Thus, the metal gate structure formed by the metal gate process of the present invention has a lower work function value than the conventional metal gate structure, thereby improving the electrical quality of the metal gate.
第1A-1B圖為依據本發明第一實施例之金屬閘極製程之剖面示意圖。請參考第1A-1B圖,首先,如第1A圖所示,提供一基底110,並於基底110上形成一閘極介電層120,其中基底110例如是一矽基底、含矽基底或矽覆絕緣(silicon-on-insulator,SOI)基底等之半導體基底,而閘極介電層120可為一單層或複合層之堆疊結構層。再者,在形成閘極介電層120之前可先形成一緩衝介面層(未繪示)作為連接基底110與閘極介電層120緩衝之用,其材料例如為二氧化矽。在本實施例中,閘極介電層120為一高介電常數閘極介電層,但本發明不以此為限,而高介電常數閘極介電層可為鉿(Hafnium)氧化物、鋯(Zirconium)氧化物等。具體而言,高介電常數閘極介電層係可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。1A-1B is a schematic cross-sectional view showing a metal gate process in accordance with a first embodiment of the present invention. Please refer to FIG. 1A-1B. First, as shown in FIG. 1A, a substrate 110 is provided, and a gate dielectric layer 120 is formed on the substrate 110. The substrate 110 is, for example, a germanium substrate, a germanium-containing substrate or germanium. The semiconductor substrate of a silicon-on-insulator (SOI) substrate or the like, and the gate dielectric layer 120 may be a stacked layer of a single layer or a composite layer. Furthermore, a buffer interface layer (not shown) may be formed as a buffer for the connection substrate 110 and the gate dielectric layer 120 before the formation of the gate dielectric layer 120, and the material thereof is, for example, hafnium oxide. In the present embodiment, the gate dielectric layer 120 is a high dielectric constant gate dielectric layer, but the invention is not limited thereto, and the high dielectric constant gate dielectric layer may be Hafnium oxide. , Zirconium oxide, etc. Specifically, the high dielectric constant gate dielectric layer may be selected from the group consisting of hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), and hafnium silicon (hafnium silicon). Oxynitride, HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 ) 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ) , strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate , a group consisting of Ba x Sr 1-x TiO 3 , BST).
接著,於閘極介電層120上形成一功函數金屬層130。本實施例係為用以作為NMOS電晶體之金屬閘極100,故本實施例之功函數金屬層130係為一鋁化鈦金屬層,但本發明不此為限,其中鋁化鈦金屬層可由物理氣相沈積法(Physical Vapor Deposition,PVD)或原子層沉積法(Atomic Layer Deposition,ALD)形成。具體而言,以物理氣相沈積法形成鋁化鈦金屬層為例,可將鋁及鈦依所需比例,分別濺鍍於閘極介電層120上後,再以高溫回火充分混和形成鋁鈦合金,或者可直接將調配好比例的鋁及鈦合金濺鍍於閘極介電層120上。當然,在形成閘極介電層120之後,本實施例亦可先選擇性地形成一阻障層(未繪示)而後再形成功函數金屬層130,使阻障層(未繪示)位於閘極介電層120與功函數金屬層130之間,以進一步防止功函數金屬層130中的成分,例如鋁,擴散至閘極介電層120,而降低金屬閘極100的電性品質。在一實施例中,阻障層(未繪示)可包含氮化鈦層、氮化鉭層等,但本發明不以此為限。Next, a work function metal layer 130 is formed on the gate dielectric layer 120. The present embodiment is used as the metal gate 100 of the NMOS transistor. Therefore, the work function metal layer 130 of the present embodiment is a titanium aluminide metal layer, but the invention is not limited thereto, wherein the titanium aluminide metal layer It can be formed by Physical Vapor Deposition (PVD) or Atomic Layer Deposition (ALD). Specifically, by forming a titanium aluminide metal layer by physical vapor deposition, aluminum and titanium may be sputtered on the gate dielectric layer 120 in a desired ratio, and then fully mixed by high temperature tempering. Aluminum-titanium alloy, or directly blended with a good proportion of aluminum and titanium alloy on the gate dielectric layer 120. Of course, after forming the gate dielectric layer 120, the present embodiment may also selectively form a barrier layer (not shown) and then shape the success function metal layer 130 so that the barrier layer (not shown) is located. Between the gate dielectric layer 120 and the work function metal layer 130 to further prevent components in the work function metal layer 130, such as aluminum, from diffusing to the gate dielectric layer 120, thereby reducing the electrical quality of the metal gate 100. In an embodiment, the barrier layer (not shown) may include a titanium nitride layer, a tantalum nitride layer, or the like, but the invention is not limited thereto.
接著,如第1B圖所示,原位(in-situ)形成一阻擋層140於功函數金屬層130上。在本實施例中,阻擋層140為氮化鈦層,但本發明不以此為限,視當時製程的需要,凡可阻擋上層金屬等不必要之成分向下擴散的材質皆可。換言之,本發明相較於習知之慣用製程,本發明係改以不破真空以及不再進行任何通入氧等製程,例如氧退火製程。如此,可使功函數金屬層130盡可能減少接觸到氧氣,因此在功函數金屬層130與阻擋層140之間,功函數金屬層130因遭氧化而形成的氧化層的厚度將盡可能減少。在本實施例中功函數金屬層130為鋁化鈦金屬層,故其氧化層為鈦鋁氧化層,而鈦鋁氧化層所生成之厚度可至少小於鋁化鈦金屬層厚度的30%,較佳者幾乎為0,亦即功函數金屬層130表面完全不生成氧化層。Next, as shown in FIG. 1B, a barrier layer 140 is formed in-situ on the work function metal layer 130. In the present embodiment, the barrier layer 140 is a titanium nitride layer. However, the present invention is not limited thereto, and any material that can block unnecessary components such as the upper metal from being diffused downward may be used depending on the needs of the process at that time. In other words, the present invention is modified to not break the vacuum and to perform any process such as oxygenation, such as an oxygen annealing process, as compared to conventional processes. In this way, the work function metal layer 130 can be made to reduce contact with oxygen as much as possible, so that between the work function metal layer 130 and the barrier layer 140, the thickness of the oxide layer formed by the work function metal layer 130 due to oxidation will be reduced as much as possible. In the embodiment, the work function metal layer 130 is a titanium aluminide metal layer, so the oxide layer is a titanium aluminum oxide layer, and the titanium aluminum oxide layer is formed to have a thickness at least 30% less than the thickness of the aluminized titanium metal layer. The best is almost zero, that is, the surface of the work function metal layer 130 does not form an oxide layer at all.
值得強調的是,申請人注意到,如果在形成完鋁化鈦金屬層之後破真空而導入一含氧環境或實施熱處理等含氧製程,鋁化鈦金屬層表面會生成氧化層,而且即使是因破真空而導入的含氧環境都會氧化鋁化鈦金屬層,此原生的鈦鋁氧化層所生成之厚度都幾約為鋁化鈦金屬層厚度的35%以上。氧化層會捕捉功函數金屬層130的金屬,例如鋁,並抑制其向下遷移擴散,而使金屬閘極100的功函數值偏高。本發明以原位(in-situ)形成阻擋層140,進而使功函數金屬層130與氧反應所形成之氧化層厚度減少,如此便可有效降低金屬閘極100的功函數,而改善金屬閘極100應用於MOS電晶體(特別是NMOS電晶體)等裝置的電性品質。It is worth emphasizing that the applicant has noticed that if an oxygen-containing environment is introduced after vacuuming the aluminum aluminide metal layer, or an oxygen-containing process such as heat treatment is performed, an oxide layer is formed on the surface of the titanium aluminide metal layer, and even The oxygen-containing environment introduced by the vacuum is aluminized titanium metal layer, and the thickness of the primary titanium aluminum oxide layer is about 35% or more of the thickness of the titanium aluminide metal layer. The oxide layer captures the metal of the work function metal layer 130, such as aluminum, and inhibits its downward migration and diffusion, while making the metal gate 100 have a higher work function value. The present invention forms the barrier layer 140 in-situ, thereby reducing the thickness of the oxide layer formed by reacting the work function metal layer 130 with oxygen, thereby effectively reducing the work function of the metal gate 100 and improving the metal gate. The pole 100 is applied to the electrical quality of devices such as MOS transistors (especially NMOS transistors).
舉例而言,在一NMOS實施態樣中,可如第4圖所示,其經由穿透式電子顯微鏡(transmission electron microscope)等方法檢測,(右圖)在採用原位(in-situ)形成阻擋層140的方法後,亦即不破真空或不含氧環境的條件下,氧化層的厚度可實質上接近為零,且此時的金屬閘極100之功函數約可達到3.9至.4.5eV。相較於習知之製程方法,(左圖)破真空後而導入一含氧環境時,其原生的氧化層的厚度即高達24埃(angstrom),約為功函數金屬層厚度64埃(angstrom)的37%,而所測得之功函數為4.81eV。因此藉由此實際量測實驗可知,本發明確實可藉由降低氧化層的厚度,達到降低金屬閘極100之功函數值,進而提升N型金屬閘極100電性品質。此外,如第4圖所示,在阻擋層140為氮化鈦層及功函數金屬層130為鋁化鈦金屬層的實施態樣下,在原位(in-situ)直接形成氮化鈦層時,會通入氮氣,而將鋁化鈦金屬層的表面氮化,形成一氮化鋁層150。For example, in an NMOS implementation, as shown in FIG. 4, it is detected by a transmission electron microscope or the like, and (right) is formed by in-situ (in-situ). After the method of blocking layer 140, that is, under vacuum or oxygen-free environment, the thickness of the oxide layer may be substantially close to zero, and the work function of metal gate 100 at this time may be about 3.9 to 4.5. . Compared with the conventional process method, (left), when the vacuum is introduced and introduced into an oxygen-containing environment, the thickness of the native oxide layer is as high as 24 angstroms, which is about 64 angstroms of the work function metal layer. 37%, and the measured work function is 4.81 eV. Therefore, it can be seen from the actual measurement experiments that the present invention can reduce the work function value of the metal gate 100 by reducing the thickness of the oxide layer, thereby improving the electrical quality of the N-type metal gate 100. Further, as shown in FIG. 4, in the embodiment in which the barrier layer 140 is a titanium nitride layer and the work function metal layer 130 is a titanium aluminide metal layer, a titanium nitride layer is directly formed in-situ. At the same time, nitrogen gas is introduced to nitride the surface of the titanium aluminide metal layer to form an aluminum nitride layer 150.
第2A-2E圖為依據本發明第二實施例之金屬閘極製程之剖面示意圖,其中此實施例將上述之金屬閘極及其製造方法應用於一前置高介電常數介電層之後閘極(gate last for high-k first)製程中。當然,本發明之金屬閘極及其製造方法亦可適用於其他半導體製程中,本發明不以此為限。請參考第2A-2E圖,首先如第2A圖所示,可先選擇性地於基底210上形成一介面層222,當作緩衝層,再於其上形成一閘極介電層224,其中所提及之材質與第一實施例(第1A-1B圖)之金屬閘極相同,例如本實施例中之介面層222可為二氧化矽層,閘極介電層224可為高介電常數介電層,故不再多加贅述。接著,可選擇性地於閘極介電層224上形成一第一阻障層226,而第一阻障層226可包含氮化鈦層、氮化鉭層之至少一者。而後,再於第一阻障層226上形成一犧牲閘極228。如此一來,即可形成一至少具有一閘極介電層224以及犧牲閘極228的閘極結構220。上述之介面222、閘極介電層224、第一阻障層226以及犧牲閘極228皆已圖案化而形成為圖中之閘極結構220。當然,在一實施例中,其製程方式可為先選擇性地於犧牲閘極層(未繪示)上形成一蓋層(未繪示),再利用一黃光暨蝕刻製程(PEP)圖案化蓋層以依序形成一已圖案化的蓋層230,進而再利用此圖案化的蓋層230當作蝕刻遮罩來蝕刻犧牲閘極228、第一阻障層226、閘極介電層224以及介面層222。接續,於閘極結構220的側邊形成一間隙壁240,其中間隙壁240可為一單層或多層之複合層。在一實施例中,可使閘極結構220與間隙壁240作為遮罩,自動對準地進行例如離子佈植製程、接面活化回火等製程而於間隙壁240的側邊形成一源/汲極區250。此外,本實施例亦可選擇性搭配應變矽製程,並在源/汲極區域250上再形成金屬矽化物、接觸洞蝕刻停止層(CESL)等其他製程。其後,形成一介電層260覆蓋基底210、蓋層230以及間隙壁240(如第2A圖)。2A-2E is a cross-sectional view showing a metal gate process according to a second embodiment of the present invention, wherein the metal gate and the method of fabricating the same are applied to a gate of a front high-k dielectric layer In the gate last for high-k first process. Of course, the metal gate of the present invention and the method of manufacturing the same can be applied to other semiconductor processes, and the invention is not limited thereto. Please refer to FIG. 2A-2E. First, as shown in FIG. 2A, an interface layer 222 may be selectively formed on the substrate 210 as a buffer layer, and then a gate dielectric layer 224 is formed thereon. The material mentioned is the same as the metal gate of the first embodiment (Fig. 1A-1B). For example, the interface layer 222 in the embodiment may be a ceria layer, and the gate dielectric layer 224 may be a high dielectric. Constant dielectric layer, so no more details are given. Then, a first barrier layer 226 is selectively formed on the gate dielectric layer 224, and the first barrier layer 226 may include at least one of a titanium nitride layer and a tantalum nitride layer. Then, a sacrificial gate 228 is formed on the first barrier layer 226. In this way, a gate structure 220 having at least one gate dielectric layer 224 and a sacrificial gate 228 can be formed. The interface 222, the gate dielectric layer 224, the first barrier layer 226, and the sacrificial gate 228 are patterned to form the gate structure 220 in the figure. Of course, in an embodiment, the process may be first to selectively form a cap layer (not shown) on the sacrificial gate layer (not shown), and then use a yellow light etch process (PEP) pattern. The cap layer sequentially forms a patterned cap layer 230, and then the patterned cap layer 230 is used as an etch mask to etch the sacrificial gate 228, the first barrier layer 226, and the gate dielectric layer. 224 and interface layer 222. Continuing, a spacer 240 is formed on a side of the gate structure 220, wherein the spacer 240 can be a single layer or a plurality of layers. In one embodiment, the gate structure 220 and the spacer 240 can be used as a mask, and the processes such as the ion implantation process, the junction activation tempering, and the like can be automatically aligned to form a source on the side of the spacer 240. Bungee area 250. In addition, in this embodiment, the strain enthalpy process can be selectively matched, and other processes such as metal germanide, contact hole etch stop layer (CESL) are formed on the source/drain region 250. Thereafter, a dielectric layer 260 is formed to cover the substrate 210, the cap layer 230, and the spacers 240 (as in FIG. 2A).
然後,如第2B圖所示,例如以化學機械研磨(chemical mechanical polishing process)等之平坦化方法,移除部份之介電層260與蓋層230並露出犧牲閘極228。其後,例如以乾蝕刻或濕蝕刻製程,移除犧牲閘極228而形成凹槽R並露出第一阻障層226。在本實施例中,犧牲閘極228可由一多晶矽材質所組成,但亦可為其他材質;而第一阻障層226為一氮化鈦層,用以在製程中作為蝕刻停止層進而防止蝕刻製程損害到其下方的閘極介電層224,且亦能避免後續形成於其上方之材料成分向下擴散至閘極介電層224,但本發明不以此為限,凡具有前述功能的材質皆可適用。Then, as shown in FIG. 2B, a portion of the dielectric layer 260 and the cap layer 230 are removed and the sacrificial gate 228 is exposed, for example, by a planarization method such as a chemical mechanical polishing process. Thereafter, the sacrificial gate 228 is removed, for example, by a dry or wet etch process to form the recess R and expose the first barrier layer 226. In this embodiment, the sacrificial gate 228 may be composed of a polysilicon material, but may be other materials; and the first barrier layer 226 is a titanium nitride layer for use as an etch stop layer in the process to prevent etching. The process damages the gate dielectric layer 224 underneath, and can also prevent the material component formed subsequently thereon from diffusing down to the gate dielectric layer 224, but the invention is not limited thereto, and the foregoing functions are Materials are available.
接著,如第2C圖所示,於凹槽R中的第一阻障層226上選擇性地形成一第二阻障層270,在本實施例中可為一氮化鉭層,但在其他實施例中亦可為其他材質。繼之,再於凹槽R中的第二阻障層270上形成一功函數金屬層280,本實施例中之功函數金屬層280為一鋁化鈦金屬層且其係一般用作為形成NMOS電晶體的閘極電極的功函數金屬層,但在其他實施例功函數金屬層280亦可為其他材質的金屬層,用以作為形成PMOS電晶體等其他結構,本發明不以此為限。Next, as shown in FIG. 2C, a second barrier layer 270 is selectively formed on the first barrier layer 226 in the recess R, which may be a tantalum nitride layer in this embodiment, but in other Other materials may be used in the embodiment. Then, a work function metal layer 280 is formed on the second barrier layer 270 in the recess R. The work function metal layer 280 in this embodiment is a titanium aluminide metal layer and is generally used as an NMOS. The work function metal layer of the gate electrode of the transistor, but in other embodiments, the work function metal layer 280 may also be a metal layer of other materials, and is used as a structure for forming a PMOS transistor, and the invention is not limited thereto.
續之,如第2D圖所示,在不破真空或不含氧環境的條件下,於凹槽R中的功函數金屬層280上原位(in-situ)形成一阻擋層290。最後,如第2E圖所示,再於阻擋層290上,搭配利用一平坦化製程形成主要金屬電極295。如此,完成本實施例之前置高介電常數介電層之後閘極(gate last for high-k first)製程,形成第二實施例之電晶體200。當然,本實施例為NMOS電晶體,在其他實施例亦可為PMOS電晶體或整合於CMOS電晶體等半導體元件製程。再者,本實施例中之主要金屬電極295為鋁金屬電極,且阻擋層290為一氮化鈦層,用以阻擋其上的主要金屬電極295中的鋁向下擴散,污染下層的閘極結構,特別是閘極介電層224,而使電晶體200的電性品質退化。此外,本實施例亦可選擇性去除介電層260與接觸洞蝕刻停止層(CESL)等,然後再重新形成接觸洞蝕刻停止層(CESL)與介電層,以有效提升MOS電晶體的電性表現。Continuing, as shown in FIG. 2D, a barrier layer 290 is formed in-situ on the work function metal layer 280 in the recess R without breaking the vacuum or oxygen-free environment. Finally, as shown in FIG. 2E, on the barrier layer 290, a main metal electrode 295 is formed by using a planarization process. Thus, the gate last for high-k first process is performed before the present embodiment is completed to form the transistor 200 of the second embodiment. Of course, this embodiment is an NMOS transistor, and in other embodiments, it may be a PMOS transistor or a semiconductor device integrated in a CMOS transistor. Furthermore, the main metal electrode 295 in this embodiment is an aluminum metal electrode, and the barrier layer 290 is a titanium nitride layer for blocking the downward diffusion of aluminum in the main metal electrode 295 thereon, contaminating the lower gate. The structure, particularly the gate dielectric layer 224, degrades the electrical quality of the transistor 200. In addition, in this embodiment, the dielectric layer 260 and the contact hole etch stop layer (CESL) are selectively removed, and then the contact hole etch stop layer (CESL) and the dielectric layer are newly formed to effectively improve the power of the MOS transistor. Sexual performance.
由於阻擋層290是原位(in-situ)直接形成於功函數金屬層280上,易言之,不在形成功函數金屬層280後,採用習知破真空或通入氧等製程,才再形成阻擋層290於功函數金屬層280上,故本發明之功函數金屬層280遭到氧化反應所形成之氧化層之厚度可小於功函數金屬層280厚度的30%。在一較佳實施環境下,本發明之氧化層的厚度可實質上接近於零。Since the barrier layer 290 is directly formed on the work function metal layer 280 in-situ, it is easy to say that it is not formed after the successful function metal layer 280, and is formed by a conventional vacuum or oxygen process. The barrier layer 290 is on the work function metal layer 280. Therefore, the thickness of the oxide layer formed by the oxidation reaction of the work function metal layer 280 of the present invention may be less than 30% of the thickness of the work function metal layer 280. In a preferred embodiment, the thickness of the oxide layer of the present invention can be substantially close to zero.
此外,如第2D圖所示,在阻擋層290為氮化鈦層及功函數金屬層280為鋁化鈦金屬層的實施態樣下,在原位(in-situ)直接形成氮化鈦層時,會通入氮氣,而將鋁化鈦金屬層的表面氮化,形成一氮化鋁層285。Further, as shown in FIG. 2D, in the embodiment in which the barrier layer 290 is a titanium nitride layer and the work function metal layer 280 is a titanium aluminide metal layer, a titanium nitride layer is directly formed in-situ. At the same time, nitrogen gas is introduced to nitride the surface of the titanium aluminide metal layer to form an aluminum nitride layer 285.
如此,可降低電晶體200的功函數,增加電晶體200的電性品質。在一較佳的實施態樣下,本實施例之電晶體200的功函數可達到3.9至4.5eV。As such, the work function of the transistor 200 can be lowered, and the electrical quality of the transistor 200 can be increased. In a preferred embodiment, the work function of the transistor 200 of the present embodiment can reach 3.9 to 4.5 eV.
第3A-3B圖為依據本發明第三實施例之金屬閘極製程之剖面示意圖,其中此實施例將第一實施例之金屬閘極及其製造方法應用於一後置高介電常數介電層之後閘極(gate last for high-k last)製程中。為簡化及更能明確且清晰的說明本實施例,第三實施例仍延用第二實施例之相同符號以表示相同元件。3A-3B is a cross-sectional view showing a metal gate process according to a third embodiment of the present invention, wherein the metal gate of the first embodiment and the method of fabricating the same are applied to a post-high dielectric constant dielectric. In the gate last for high-k last process. The third embodiment still uses the same reference numerals in the second embodiment to denote the same elements for the sake of simplicity and clarity of the present embodiment.
本實施例之前段製程如第2A圖所示與第二實施例相同,唯其不同之處在於:第二實施例係直接沉積一具有高介電常數之閘極介電層224,但本實施例中則是在形成完介面層222之後,便改以任一材質先形成一犧牲閘極介電層224,其具有低成本、容易蝕刻、易沉積等特性。而後,先選擇性地形成第一阻障層226,再依序形成犧牲閘極228、形成間隙壁240,形成源/汲極區域250,於基底210、蓋層230、間隙壁240上形成介電層260。其後,如第3A圖所示,平坦化移除蓋層230並露出犧牲閘極228後再進行蝕刻製程,依序蝕除犧牲閘極228、第一阻障層226及閘極介電層224而形成凹槽R’,剩下位於基底210上之作為蝕刻停止層之介面層222。The previous stage process of this embodiment is the same as that of the second embodiment as shown in FIG. 2A except that the second embodiment directly deposits a gate dielectric layer 224 having a high dielectric constant, but the present embodiment In the example, after the interface layer 222 is formed, a sacrificial gate dielectric layer 224 is formed by any material, which has the characteristics of low cost, easy etching, and easy deposition. Then, the first barrier layer 226 is selectively formed, the sacrificial gate 228 is formed in sequence, the spacer 240 is formed, and the source/drain region 250 is formed, and the substrate 210, the cap layer 230, and the spacer 240 are formed on the substrate 210, the cap layer 230, and the spacer 240. Electrical layer 260. Thereafter, as shown in FIG. 3A, the capping layer 230 is removed by planarization and the sacrificial gate 228 is exposed, and then an etching process is performed to sequentially etch away the sacrificial gate 228, the first barrier layer 226, and the gate dielectric layer. A recess R' is formed 224, leaving an interface layer 222 on the substrate 210 as an etch stop layer.
繼之,如第3B圖所示,再依序重新回填一閘極介電層324、一第一阻障層326、一第二阻障層370、一功函數金屬層380。其後,在不破真空或不含氧環境的條件下,以原位(in-situ)的方式於功函數金屬層380表面形成一阻擋層390,最後再形成一主要金屬電極395並加以平坦化。閘極介電層324例如為高介電常數閘極介電層、第一阻障層326例如為氮化鈦層、第二阻障層370例如為氮化鉭層、功函數金屬層380例如為用於NMOS電晶體之鋁化鈦金屬層,阻擋層390例如為氮化鈦層、主要金屬電極395例如為鋁電極,但本發明不以此為限。目前例示阻障層為第一阻障層326及第二阻障層370之多層結構,但阻障層亦可為單層結構。Then, as shown in FIG. 3B, a gate dielectric layer 324, a first barrier layer 326, a second barrier layer 370, and a work function metal layer 380 are sequentially refilled. Thereafter, a barrier layer 390 is formed on the surface of the work function metal layer 380 in an in-situ manner without breaking the vacuum or an oxygen-free environment, and finally a main metal electrode 395 is formed and planarized. . The gate dielectric layer 324 is, for example, a high dielectric constant gate dielectric layer, the first barrier layer 326 is, for example, a titanium nitride layer, and the second barrier layer 370 is, for example, a tantalum nitride layer or a work function metal layer 380. For the aluminized titanium metal layer of the NMOS transistor, the barrier layer 390 is, for example, a titanium nitride layer, and the main metal electrode 395 is, for example, an aluminum electrode, but the invention is not limited thereto. The barrier layer is exemplified as a multilayer structure of the first barrier layer 326 and the second barrier layer 370, but the barrier layer may also have a single layer structure.
相較於第二實施例,本實施例之閘極介電層324、第一阻障層326、第二阻障層370、功函數金屬層380、與阻擋層390便具有一U形的剖面結構。同樣地,本實施例亦可選擇性搭配應變矽製程,並在源/汲極區域上再形成金屬矽化物、接觸洞蝕刻停止層(CESL)等其他製程。如此一來,即完成本發明第三實施例之後置高介電常數介電層之後閘極(gate last for high-k last)製程,形成第三實施例之電晶體300。由於本實施例也是以原位(in-situ)直接於功函數金屬層380上形成阻擋層390,故本實施例同樣可有效避免功函數金屬層380表面發生氧化的現象,而使所形成之氧化層的厚度小於功函數金屬層380厚度的30%,且在一較佳實施例中,氧化層的厚度可實質上接近為零,而本發明之電晶體300之功函數可達到3.9至4.5eV。Compared with the second embodiment, the gate dielectric layer 324, the first barrier layer 326, the second barrier layer 370, the work function metal layer 380, and the barrier layer 390 of the present embodiment have a U-shaped cross section. structure. Similarly, this embodiment can also be selectively matched with the strain 矽 process, and further metal oxide, contact hole etch stop layer (CESL) and other processes are formed on the source/drain regions. In this way, the gate last for high-k last process is performed after the third embodiment of the present invention is completed to form the transistor 300 of the third embodiment. Since the present embodiment also forms the barrier layer 390 directly on the work function metal layer 380 in the in-situ manner, the present embodiment can also effectively prevent the oxidation of the surface of the work function metal layer 380, thereby forming the formed The thickness of the oxide layer is less than 30% of the thickness of the work function metal layer 380, and in a preferred embodiment, the thickness of the oxide layer can be substantially close to zero, while the work function of the transistor 300 of the present invention can reach 3.9 to 4.5. eV.
此外,如第3B圖所示,在阻擋層390為氮化鈦層及功函數金屬層380為鋁化鈦金屬層的實施態樣下,在原位(in-situ)直接形成氮化鈦層時,會通入氮氣,而將鋁化鈦金屬層的表面氮化,形成一氮化鋁層385。Further, as shown in FIG. 3B, in the embodiment in which the barrier layer 390 is a titanium nitride layer and the work function metal layer 380 is a titanium aluminide metal layer, a titanium nitride layer is directly formed in-situ. At the same time, nitrogen gas is introduced to nitride the surface of the titanium aluminide metal layer to form an aluminum nitride layer 385.
綜上所述,由於本發明係以原位(in-situ)形成阻擋層於功函數金屬層上,亦即在不破真空或不含氧環境的條件下製備,故在功函數金屬層遭氧化所形成位於阻擋層與功函數金屬層之間的氧化層的厚度可減小。具體而言,本發明之氧化層的厚度係小於功函數金屬層厚度的30%,甚至在一較佳的實施環境下氧化層的厚度可達到近乎為零。相較於習知之功函數金屬層,其氧化所形成之氧化層的厚度皆高於功函數金屬層厚度的35%,本發明之金屬閘極製程所形成之金屬閘極結構,其功函數可達到3.9至4.5eV,較習知之功函數值更低,因而可提高金屬閘極的電性品質。In summary, since the present invention is formed by in-situ formation of a barrier layer on a work function metal layer, that is, under a vacuum-free or oxygen-free environment, the work function metal layer is oxidized. The thickness of the oxide layer formed between the barrier layer and the work function metal layer can be reduced. Specifically, the thickness of the oxide layer of the present invention is less than 30% of the thickness of the work function metal layer, and even in a preferred embodiment, the thickness of the oxide layer can be nearly zero. Compared with the conventional work function metal layer, the thickness of the oxide layer formed by oxidation is higher than 35% of the thickness of the work function metal layer. The metal gate structure formed by the metal gate process of the present invention has a work function. Achieving 3.9 to 4.5 eV, which is lower than the conventional work function value, can improve the electrical quality of the metal gate.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
100...金屬閘極100. . . Metal gate
110、210...基底110, 210. . . Base
120、224、324...閘極介電層120, 224, 324. . . Gate dielectric layer
130...功函數金屬層130. . . Work function metal layer
140...阻擋層140. . . Barrier layer
150、285、385...氮化鋁層150, 285, 385. . . Aluminum nitride layer
220...閘極結構220. . . Gate structure
222...介面層222. . . Interface layer
226、326...第一阻障層226, 326. . . First barrier layer
228...犧牲閘極228. . . Sacrificial gate
230...蓋層230. . . Cover
240...間隙壁240. . . Clearance wall
250...源/汲極區250. . . Source/bungee area
260...介電層260. . . Dielectric layer
270、370...第二阻障層270, 370. . . Second barrier layer
280、380...功函數金屬層280, 380. . . Work function metal layer
290、390...阻擋層290, 390. . . Barrier layer
295、395...主要金屬電極295, 395. . . Main metal electrode
R、R’...凹槽R, R’. . . Groove
第1A-1B圖為依據本發明第一實施例之金屬閘極製程之剖面示意圖。1A-1B is a schematic cross-sectional view showing a metal gate process in accordance with a first embodiment of the present invention.
第2A-2E圖為依據本發明第二實施例之金屬閘極製程之剖面示意圖。2A-2E is a schematic cross-sectional view showing a metal gate process in accordance with a second embodiment of the present invention.
第3A-3B圖為依據本發明第三實施例之金屬閘極製程之剖面示意圖。3A-3B is a schematic cross-sectional view showing a metal gate process in accordance with a third embodiment of the present invention.
第4圖為依據本發明一較佳實施例之金屬閘極結構在穿透式電子顯微鏡下的截面圖。4 is a cross-sectional view of a metal gate structure under a transmission electron microscope in accordance with a preferred embodiment of the present invention.
100...金屬閘極100. . . Metal gate
110...基底110. . . Base
120...閘極介電層120. . . Gate dielectric layer
130...功函數金屬層130. . . Work function metal layer
140...阻擋層140. . . Barrier layer
150...氮化鋁層150. . . Aluminum nitride layer
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100121026A TW201301511A (en) | 2011-06-16 | 2011-06-16 | Metal gate and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100121026A TW201301511A (en) | 2011-06-16 | 2011-06-16 | Metal gate and fabrication method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201301511A true TW201301511A (en) | 2013-01-01 |
Family
ID=48137619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100121026A TW201301511A (en) | 2011-06-16 | 2011-06-16 | Metal gate and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201301511A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110459468A (en) * | 2019-08-29 | 2019-11-15 | 上海华力集成电路制造有限公司 | The lithographic method of TiAlN thin film |
TWI794274B (en) * | 2017-08-18 | 2023-03-01 | 美商應用材料股份有限公司 | Methods and apparatus for doping engineering and threshold voltage tuning by integrated deposition of titanium nitride and aluminum films |
-
2011
- 2011-06-16 TW TW100121026A patent/TW201301511A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI794274B (en) * | 2017-08-18 | 2023-03-01 | 美商應用材料股份有限公司 | Methods and apparatus for doping engineering and threshold voltage tuning by integrated deposition of titanium nitride and aluminum films |
CN110459468A (en) * | 2019-08-29 | 2019-11-15 | 上海华力集成电路制造有限公司 | The lithographic method of TiAlN thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI406414B (en) | Semiconductor device and method of manufacturing same | |
US9166020B2 (en) | Metal gate structure and manufacturing method thereof | |
US8987096B2 (en) | Semiconductor process | |
US20120319179A1 (en) | Metal gate and fabrication method thereof | |
US9105623B2 (en) | Semiconductor device having metal gate and manufacturing method thereof | |
US9006092B2 (en) | Semiconductor structure having fluoride metal layer and process thereof | |
CN112864009B (en) | Method for manufacturing semiconductor device, high-K dielectric structure and method for manufacturing high-K dielectric structure | |
TWI663656B (en) | Semiconductor device having metal gate and fabrication method thereof | |
TWI632617B (en) | Semiconductor component and manufacturing method thereof | |
CN102956460A (en) | Method for manufacturing semiconductor element with metal gate | |
TW201601202A (en) | Semiconductor component and manufacturing method thereof | |
US20130093064A1 (en) | Semiconductor structure and fabrication method thereof | |
CN102683397B (en) | Metal gate structure and fabrication method thereof | |
US8735269B1 (en) | Method for forming semiconductor structure having TiN layer | |
TW201301511A (en) | Metal gate and fabrication method thereof | |
TWI517379B (en) | Metal gate structure and manufacturing method thereof | |
TWI567801B (en) | Semiconductor structure and process theoeof | |
TWI529803B (en) | Semiconductor process | |
US12191377B2 (en) | Method for forming a semiconductor structure | |
CN103117297B (en) | Semiconductor structure and manufacturing process thereof | |
TWI534894B (en) | Semiconductor structure and fabrication method thereof | |
TWI544551B (en) | Semiconductor device having metal gate and fabricating method thereof | |
TW201347183A (en) | Semiconductor structure and process thereof | |
TWI552209B (en) | Method of fabricating semiconductor device | |
TWI473172B (en) | Metal gate with zirconium |