[go: up one dir, main page]

TW201251065A - Solar cell module, method for producing solar cell module, and tab wire - Google Patents

Solar cell module, method for producing solar cell module, and tab wire Download PDF

Info

Publication number
TW201251065A
TW201251065A TW101110501A TW101110501A TW201251065A TW 201251065 A TW201251065 A TW 201251065A TW 101110501 A TW101110501 A TW 101110501A TW 101110501 A TW101110501 A TW 101110501A TW 201251065 A TW201251065 A TW 201251065A
Authority
TW
Taiwan
Prior art keywords
solar cell
marking line
electrode
adhesive layer
cell module
Prior art date
Application number
TW101110501A
Other languages
Chinese (zh)
Inventor
Yasuhiro Suga
Original Assignee
Sony Chem & Inf Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chem & Inf Device Corp filed Critical Sony Chem & Inf Device Corp
Publication of TW201251065A publication Critical patent/TW201251065A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • H10F19/906Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells characterised by the materials of the structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Provided is tab wire that is easily produced and capable of reducing shadow loss. A solar cell module is provided with a plurality of solar cells (2), and tab wire (3) that connects the plurality of solar cells (2) to one another by being adhered to electrodes (11, 13) formed respectively on the front surface of a solar cell (2) and on the rear surface of a neighboring solar cell (2). Therein, the tab wire (3) is adhered to the electrodes (11, 13) by a linear adhesive layer (16) that covers an outer surface that includes the adhesion sections with the electrodes (11, 13).

Description

201251065 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種藉由標記線而連接有複數個太陽電 池單元之太陽電池模組,特別是關於一種線狀之標記線、 使用有該標記線之太陽電池模組、及太陽電池模組之製造 方法。 本申請案係以2011年3月25曰於曰本申請之曰本專利 申請編號特願2G1 1 - 68685為基礎而主張優先權者,且該申 凊案係以參照之形式引用於本申請案令。 【先前技術】 例如於結晶矽系太陽電池模組,複數個鄰接之太陽電 池單元藉由成為内部連接線(int⑽職⑽)之標記線而 連接。標記線係將其-端側連接於—太陽電池單元之表面 電極,將另一端側連接於鄰接之太陽電池單元之背面電 極,藉此將各太陽電池單元串連。此時,標記線之一端側 之-面側接著於-太陽電池單元之表面電極…端側之 另—面側則接著於鄰接之太陽電池單元之背面電極。 具體而言,太陽電池單元藉由銀膏之網版印刷而於受 光面形成匯流排電極,於太陽電池單元之背面連接部形成201251065 VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell module in which a plurality of solar cells are connected by a marking line, and more particularly to a linear marking line using the marking The solar cell module of the line and the manufacturing method of the solar cell module. This application claims priority on the basis of the priority of the patent application No. 2G1 1 - 68685, which is hereby incorporated by reference. make. [Prior Art] For example, in a crystalline lanthanide solar cell module, a plurality of adjacent solar cell units are connected by being marked lines of internal connection lines (int(10) jobs (10)). The marking line has its end side connected to the surface electrode of the solar cell unit and the other end side connected to the back electrode of the adjacent solar cell unit, whereby the solar cell units are connected in series. At this time, the one side of the end side of the marking line is followed by the other side of the surface electrode of the solar cell, and the other side is followed by the back electrode of the adjacent solar cell. Specifically, the solar cell unit forms a bus bar electrode on the light receiving surface by screen printing of the silver paste, and forms a connection portion on the back surface of the solar cell unit.

Ag電極。再者,除太陽電池單元f面之連接部以外之區域 形成有A1電極或Ag電極。 又,如圖η所示,標記線50係藉由在帶狀銅猪51之 兩面設置有烊料塗層52而形成。具體而言,標記線係藉由 如下方式形成:對壓延為厚度_2 mm左右之銅羯進 3 201251065 行分割,或者對將銅導線壓延成平板狀等而獲得之寬度為工 〜3 mm的平角銅線實施鍍焊料或浸潰焊接等。 一 太陽電池單元與標記線之連接係藉由如下方式進行. 將標記線配置於太陽電池單元之各電極上,並藉由加叙接 合機進行熱加壓,藉此對形成㈣記線表面之焊料進行溶 融、冷卻(專利文獻1 )。 然而,焊接時由於會進行利 ]不』用、·勺阿達2 6 0 C之溫度的連 接處理’故擔心會因太陽電池單 早70之翹曲、或產生於標記 線與表面電極及背面電極之連桩 、逆筏邛的内部應力、進而焊劑 之殘渣等,而導致太陽電池置;+主^ & 早几之表面電極及背面電極與 標記線之間的連接可靠性下降。 一 因此’先前,太陽電池罩开 a 早70之表面電極及背面電極與 標記線之連接,係使用可藉由 稽田相對較低溫度之熱壓接處理 進行連接的導電性接著膜〔直4|丨—& 、 ^ 、(專利文獻2 h作為此種導電性 接著膜,使用有如下者:技正 _ 字平均粒徑為數// m級之球狀或 鱗片狀導電性粒子分勒·协& 散於熱硬化型黏合劑樹脂組成物並膜 使導電性接著膜介於表面 間後,自標記線之上方受到加 合劑樹脂表現出流動性而自電 電性粒子貫現電極與標記線間 劑樹脂熱硬化。藉此,形成藉 電池單元之串線。 電極及背面電極與標記線之 熱接合機的熱加壓,藉此黏 極、標記線間流出,並且導 之導通,於該狀態下使黏合 由標記線而串連複數個太陽 將使用導電性接著膜連接標 記線與表面電極及背面電 201251065 極之複數個太陽電池單元,藉由乙稀乙酸乙婦醋(ethyiene vinylacetate )树脂(EvA )等具有透光性之密封材料密封於 玻璃、透光性塑膠等具有透光性之表面保護材料、與由ρΕΤ (Poly Ethylene TerephthaUte )等膜所構成之背面保護材料 之間。 [專利文獻1]日本特開2004— 356349號公報 [專利文獻2]日本特開2008— 135654號公報 【發明内容】 然而,如上所述,標記線需要對壓延為厚度〇〇5〜〇2 mm左右之銅箔進行分割、或者將銅導線壓延成平板狀等, 形成平角銅線,從而使製造工時增加。 又,由平角導線所構成之標記線具有寬度為2〜3 mm 左右之寬度,於將該標記線接著於太陽電池單元之受光面 之情形時,會產生與標記線之寬度對應的陰影損失(仏以。… loss)。 因此,本發明之目的在於提供一種製造容易、又可實 現陰影損失之降低之標記線,使用有該標記線之太陽電池 單元及太陽電池模組之製造方法。 為了解決上述課題,本發明之太陽電池模組包括複數 個太陽電池單元及標記線,該標記線接著於分別形成於上 述太陽電池單元之表面及鄰接之太陽電池單元之背面的電 極上,將複數個上述太陽電池單元彼此連接;且上述標記 線呈線狀,藉由接著劑層而與上述電極接著,其中該接著 劑層覆蓋包含與上述電極之接著部的外周面。 201251065 又,本發明之太陽電池模組之製造方法,使用線狀之 標記線,且具有下述步驟:將上述標記線之一端側配置於 太陽電池單元之表面電極,將上述標記線之另一端側配置 於與上述太陽電池單元鄰接之太陽電池單元之背面電極的 步驟;及將上述標記線向上述表面電極及上述背面電極熱 加壓,藉由在上述表面電極及上述背面電極與上述標記線 之間流動的接著劑層,將上述標記線向上述表面電極及上 述背面電極接著的步驟。 又’本發明之標記線接著於分別形成於太陽電池單元 之表面及鄰接之太陽電池單元之背面的電極上,將複數個 上述太陽電池單元彼此連接’該標記線呈線狀,跨及長邊 方向至少外周面之50%被接著劑層覆蓋,從而藉由上述接 著劑層與上述電極接著。 根據本發明,藉由使用線狀標記線,無需形成壓延銅 名並進行分割之步驟、或將銅線壓延成平板狀之步驟從 而可貫現製造設備或工時之減少,又,亦可抑制製造成本。 又’根據本發明,藉由使用線狀標記線,與使用平板狀標 記線之情形相比,可將載置於太陽電池單元之受光面之面 積窄小化,從而可抑制因陰影損失引起之光電轉換效應之 降低。 【實施方式】 以下’一面參照圖式’一面詳細地說明應用本發明之 標記線、使用有該標記線之太陽電池模組、及太陽電池模 組之製造方法。再者,本發明並不僅僅限定於以下之實施 201251065 形態’當然可於不脫離本發明之主旨範圍内作各種變更。 [太陽電池模組] 々圖1圓3所不,應用本發明之太陽電池模組1具備 排列有複數條串線4之矩陣5,該串線4係藉由成為内部連 接線之標記線3將複數個太陽電池單元2串連而成。而且, 太陽電池模組1係藉由如下方式形成··該矩陣5由密封接 著劑之薄片6夹持,而連同設置於受光面側之表面蓋罩7 及設置於背面側之背片8—起受到層積,最後於周圍安裝 鋁等之金屬框架9。 密封接著劑可使用例如乙烯乙酸乙烯醋樹脂(EVA)等 透先性密封材料。又,表面蓋罩7可使用例如玻璃或透光 性塑勝專透光性之材料。又,背片8可使用以樹脂膜夹持 玻璃或鋁箔之積層體等。 太陽電池模組之各太陽電池單元2具有光電轉換元件 /電轉換元件10可使用下述各種光電轉換元件ι〇:使 電轉換元件、多晶型光電轉換元件之結晶石夕 曰、石夕錄^,或使用有將非晶石夕構成之單元與微晶石夕或非 :夕錯構成之單元積層之光電轉換元件的薄膜石夕系太陽電 池,所谓之化合物薄膜系;有機系;量子點型等。 又’光電轉換元件10於受光面側設置有對内部所產生 ==進行集電的指狀電極12、及對指狀電極12之電氣進 匯流排電極U。匯流排電極U及指狀電極12係 塗佈“膏後,進行锻燒,::::’利用網版印刷等 几猎此而形成。又,指狀電極12 201251065 跨及受光面之整個面,且每隔例士 母知例如2_之特定間隔而大致 平行地形成有複數條具有例如約 υ 200 β m左右之寬度 之線。匯流排電極11以與指肤蛩 ?日狀電極12大致正交之方式形 成,又,根據太陽電池單元2之面積而形成有複數個。 又’光電轉換元件1〇於與受光面相反之背面側,設置 有由鋁或銀構成之背面電極13β背面電極13如圖2及圖3 所示,例如利用網版印刷或_等將紹或銀構成之電極形 成於太陽電池單元2之背面。背面電極13具有連接有後述 標記線3之標記線連接部14。 而且,太陽電池單元2中,藉由標記線3將形成於表 面之各匯流排電極U與鄰接之太陽電池單元2之背面電極 13電連接,藉此構成串連之串線4。標記線3肖匯流排電 極11及背面電極13係藉由設置於標記線3之外周面的接著 劑層16連接。 [標έ己線] 如圖2所示’標記線3將鄰接之太陽電池單元2Χ、2γ、 2Ζ各個之間加以電連接,且如圖4所示,例如具備直徑為 〇·2 mm〜2.0 mm之線材15,於線材15之外周面設置有 貫現與太陽電池單元2之匯流排電極丨丨或背面電極13之接 著的接著劑層16。 線材15係由線狀之導電材構成,可使用例如銅導線或 金導線、銘導線等具有導電性之材料。太陽電池模組1中, 使用由線狀之導電性導線構成的線材15作為標記線3,藉 此無需形成壓延銅箔並進行分割之步驟、或將鋼線壓延成 8 201251065 仗而了貫現製造設備或工 可抑制製造成本。又,女φ ^之为丨減,又亦 太1w電池模組1係使用飨从κ从或 標記線3,藉此盘使用古使用線材15作為 使用有十板狀之標記 載置於太陽電池單丨2 ”丄 ㈣相比,可將 又光面的面積窄小化,;%矸抑 制因陰影損失引起之光雷链换〇 «而可抑 尤冤轉換效應之降低。 [剖面積] 線材15使用剖面積為〇 ^〜^ λ 2 ^ 檟马〇.5〜13.〇 mm之範圍者。其原 因在於,太陽電池模組〖由 _ 、你厶由钻5己線3將各太陽電 池早兀2電連接,故芒绐从 材15之剖面積小於0.5 mm2,則 台有才承s己線3之導通電阻變古,而括止带姑 电丨見支间,而使先電轉換效應降低之 又太陽電池模組丄由於標記線3接著於太陽電池單 兀k受光面’故若線材15之剖面積大於13 〇丽2,則會 有標記線3之陰影損失之影響變大之虞。 [橢圓形] 又’線材15可使用剖面為圓形或橢圓形者。於該情形 時,如圖5所示’線材15於將通過構成剖面之圓(擴圓) 之中心之正交座標的以(長軸)之半徑設為b、# y轴(短 軸)之半桎设為a之情形時,滿足以下之關係。 〇.4$ag2 (單位 mm) a$b$2 (單位 mm) 藉此,標記線3滿足上述剖面積之範圍,從而可抑 導通電阻之上升或陰影損失之影響。 ' [接著劑層] 接著劑層16係藉由覆蓋線材15之外周面,而使襟纪 201251065 線3接著於太陽電池單元2之匯流排電極u或背面電極η 者。如圖6A及圖6B所示,接著㈣16可形成為膏狀並預 先包覆標記線3之線材15 <外周面,或者亦可形成為臈 狀,於使標記線3接著於太陽電池單元2之各電極^、η 時:配置於電極…^’並於將線材⑴己置於該接著膜 上後,藉由加熱接合機20進行加熱擠磨,藉此包覆線材Η 之外周面(圖4)。又,亦可使用使未硬化之接著劑層16、 密封材料積層於太陽電池單元2,從而於層積步驟中使接著 劑層16硬化之總括連接方法。 如圖7所示,接著劑層16係高密度地含有導電性粒子 23之熱硬化性黏合劑樹脂層。χ,接著劑層16就壓入性之 觀點而言,黏合劑樹脂之最低熔融黏度較佳為1〇〇〜1〇〇〇⑼ Pa· s。若最低熔融黏度過低,則接著劑層16於自低壓接至 正式硬化之過程中樹脂會流動,從而易於產生連接不良戋 向單元受光面滲出,且亦成為受光率下降之原因。又,即 便最低熔融黏度過高,亦存在如下情形:於膜貼合時易於 產生不良,從而對連接可靠性造成不良影響。再者,對於 最低熔融黏度,可將特定量之樣品裝填至旋轉式黏度計, 一邊以特定之升溫速度使其上升,一邊進行測定。 作為使用於接著劑層丨6之導電性粒子23,並無特別限 制,例如可列舉鎳、金、銀、銅等金屬粒子、對樹脂粒子 實施鍍金等者、在經對樹脂粒子實施鍍金之粒子的最外層 實施絕緣包覆者等。再者,藉由含有扁平之片狀金屬粒子 作為導電性粒子23,可使相互重疊之導電性粒子23之數量 10 201251065 增加,從而確保良好之導通可靠性。 又’接者劑層16中,常溫附近之黏度較佳為ι〇〜】〇〇〇〇 kPa.s’更佳為1〇〜5〇〇〇kpa.s。藉由使接著劑層w之黏 度為1〇 10000 kPa · S之範目’而於將接著劑層16設為帶 狀之捲筒捲的情形時,可防止所謂之滲出,又,可維持特 疋之黏著力(tack force )。 接著h丨層1 6之黏合劑樹脂層的組成只要不有害上述特 徵’則無特別限制,更佳為令_右睹加士、扭+ t 又住马3有膜形成树脂、液狀環氧樹 脂、潛伏性硬化劑、及矽烷偶合劑。 一膜形成樹脂相當於平均分子量為10000以上之高分子 量樹脂,就膜形成性之觀點而言,較佳為1〇〇〇〇〜8〇〇〇〇左 / =刀子置作為臈形成樹脂,可使用環氧樹脂、改 質%氧樹脂、胺酯(urethan〇樹脂、苯氧樹脂等各種樹脂, 其中’就膜形成狀態、連接可靠性等觀點而言,可較佳地 使用笨氧樹脂。 作為液狀環氧樹脂,若於常溫下具有流動性,則無特 別:艮制,可使用所有市售之環氧樹脂。具體而t,此種環 :樹月曰可使用奈型環氧樹脂、聯苯型環氧樹脂、苯酚酚醛 /月】=(phenol n〇v〇lae )型環氧樹脂 '雙㈣環氧樹脂、笑 =衣氧祕月曰、二苯酚甲烷型環氧樹脂、笨酚芳烷型環氧樹 ,仰$酚型%氧樹脂、二環戊二烯型環氧樹脂、三苯甲烷 型環氧樹脂等。該等可單獨使用,亦可組合2種以上使用。 又’ t可與丙烯酸樹月旨等其他錢樹脂適當組合使用。 ’曰伏性硬化劑可使用加熱硬化型、硬化型等各種硬 201251065 化劑。潛伏性硬化劑通常不會反鹿, 〜 疋藉由某種觸發而 活化,從而開始反應。於觸發中,有 力…、、光、加壓等,可 根據用途選擇使用。於使用液狀環氧樹脂之情形時。 用由,唾類、胺類、疏鹽、鏽鹽等構成之潛:性:化:使 石夕烧偶合劑可使料氧系、絲系、料―硫化 脲基系等。該等中’於本實施形態中,較佳為使用環氧系 矽烷偶合劑。藉此,可提高有機材料與無機材料的 接著性。 又,作為其他添加組成物,較佳為含有無機填料。藉 由含有無機填料,可調整壓接時之樹脂層的流動性,從; 提高粒子捕獲率。無機填料可使用矽土、滑石、氧化鈦、 碳酸弼、氧化鎮等,無機填料之種類並無特別限定。 圖8係示意性地表示接著劑層16之製品形態—例之 圖。該接著劑層16係於剝離基材24上積層有黏合劑樹脂 層而成形為帶狀。該帶狀之導電性接著膜係以剝離基材Μ 成為外周側之方式捲繞積層於捲筒25。剝離基材24並無特 別限制’可使用 PET (Poly Ethylene Terephthalate)、:pp (Oriented Polypropylene) ^ PMP ( Poly - 4 - methlpentene 1 )、PTFE ( p〇iytetraflu〇r〇ethylene)等。又,接著劑層 16亦可構成為黏合劑樹脂層上具有透明之覆蓋膜。 於上述内容中,作為接著劑層16,對具有膜形狀之導 電性接著膜進行了說明,但即便為膏狀亦無問題。又,接 著劑層16亦可為於黏著劑樹脂層不含導電性粒子之絕緣性 接著劑。於使用有絕緣性接著劑之情形時,標記線3係線 12 201251065 材直接與匯流排電極u或背面電極i3 .通,接著劑層Μ係藉由密封其周圍而接 :而貫現導 •㈣含有導電性粒子Μ之膜狀或膏狀的導;令, ,含導電性粒子23之膜狀或膏狀的絕緣性接著劑:義及 「接著劑層16」。 者Μ疋義為 再者’接著劑層16並不限定於捲筒形狀 «。如圖8所示,於以經捲取之捲筒製品的形能::條 二劑層16的情形時,將接著劑層16之點度設為〜1〇〇〇接 特^之範圍’藉此可防止接著劑層16之變形,從而維持 疋之尺寸。又,接著劑層16以短條形狀積層2片 情形時,亦可相同地防止變形,從而維持特定之尺^上之 狀J =著_ 16係使導電性粒子23、膜形成樹脂、液 容2^日、潛伏性硬化劑、及㈣偶合劑溶解於溶劑中。 :甲苯、乙酸乙酿等、或該等之混合溶劑。 岭解而獲得之樹脂生成用溶液係於塗佈在線材Η後, :乾燥而使溶劑揮發,藉此獲得接著劑層Μ預先設置於 u Μ之外周面的標記線3。於將標記線3接著至各電極 、13時,標記線3配置於匯流排電極u上及背面電極13 之=記線連接部14上,從而藉由加熱接合機,自標記線3 層方以特定之溫度、壓力受到熱加壓。藉此,使接著劑 :久6之黏合劑樹脂於線材15的外周面流動,而於標記線3 。電極11、13接觸之接著部之間硬化,導電性粒子23 此持於,記線3與匯流排電極U或背面電極13之間。藉 接著Λ丨層1 6可使標記線3接著至各電極上,並且導通 13 201251065 連接。 另-方面’於將接著劑層16形成為膜狀之情形時,將 :揮之樹脂生成用溶液塗佈至剝離薄片i,並使溶 及北“又付接者#帛者膜係於為了匯流排電極用 =電極用而被切割成特定長度,並將剝離薄片剝離 :接著劑層16預黏貼至太陽電池單元2之正背面的各 "、U上。相同地,將切割成特定長度之線材15重疊 3接著劑層16上。’然後’藉由加熱接合機,自標記線 之上方以特定溫度、壓力對接著劑層16進行熱加壓。藉 此’標記線3於覆蓋包含黏合劑樹脂流動而與線材15之: 電極η、η接觸之接著部的外周面後硬化,導電性粒子23 夾持於標記線3與匯流排電極u或背面電極13之間。藉 此’接著劑層16可使標記線3接著至各電極上,並且心 連接。 [接著劑層16之包覆率] 接著劑層16至少覆蓋線材15之外周面的5〇%,較佳 ^覆蓋50〜8G%。其原因在於,若利用接著劑層16之線材 15之外周面的包覆率低於5〇%’貝丨1有無法確保線材15與各 電極11、13之接著所必需之量,從而導致接著強度不足之 虞。又,若利用接著劑層16之線材15之外周面的包覆率 為80。/◦左右為止,則可充分確保接著強度其原因在於, 若高於90%,則有如下之虞:於線材15之熱加壓時勒合 劑樹脂自匯流排電極丨丨上向太陽電池單元2之受光面滲 出’從而使受光效率下降。 201251065 先在::Γ著劑層16之線材15之外周面的包覆率係於預 ,15之外周面設置接著劑層16的標記線 =二之表面積中被接著劑…覆之面積與線材r5 路出之面積之比求出。 15的又包各電極U、U上之膜狀接著劑層16之線材 ^的包覆率於已對線材15進行過熱加壓時,藉由線材μ =:被接著劑層16包覆之面積與線材。露出之面 檟之比求出。 再者,於上述實施形態中,作為太陽電池單元2,係以 排電極U者為例進行說明,但本發明亦可應用於 流排電極"而將標記線3直接接著至指狀電極12 上之所謂無匯流排構造之太陽電池單元2。再者,於無匯流 排構造中’亦包含如下構造:例如,於太陽電池單元2 2 中央:具有不設置匯流排電極U之間斷部,並且僅於太陽 電池單兀之外側緣部,局部性地具備匯流排電極11。 [實施例] 接著’與比較例一併對本發明之實施例進行說明。圖9 係說明實施例之立體圖,圖1G係說明比較例之立體圖。實 施例比例均使用預先以接著劑層} 6包覆之長度為$⑽ 的標記線,-次將2根標記線熱加塵接著至表面整個面上 形成有Ag電極30之玻璃基板31的該々電極%。鼓加昼 條件均設4 i 8(TC、15 sec、〇.5 MPa。於樣品作成後,測定 標記線之接著強度(以咖)'2條標記線間之初始電阻值 (γπΩ)、及熱衝擊試驗(85。〇、85%RH、5〇〇hr)後之電阻 15 201251065 值(γπΩ )。 作為接著強度、電阻值測定之1辦士_ ,、趙方法,接著強度系 進行將各標記線自接著於Ag電極3〇夕扯— ” 钱者劑層16於90。 方向剝離的90°剝離試驗(jis K6854 - 1、, 厂從而測定接著強 度(N/ mm )。又,電阻值係藉由自2 條圮線上分別連接 電流端子及電壓端子之4端子法而測定雷 J心电阻值(ιηΩ )。 實施例1係使用圓柱狀之銅導線作 平水邗馮線材丨5。線材i 5 之剖面係半徑為1 ·0 mm之圓形,且剖面 J两積為3 · 1 4 mm2。又, 以含有導電性粒子之接著劑㉟16 &覆線# i51外周面, 使包覆率為50%。又,接著劑層16之厚度為1〇 "爪。 實施例2除將接著黯16之包覆率設為6〇%外,其餘 皆設為與實施例1相同之條件。 實施例3除將接著劑層16之包覆率設為8〇%外其餘 皆設為與實施例1相同之條件。 實施例4除將接著劑層16之包覆率設為9〇%外,其餘 皆設為與實施例1相同之條件。 實施例5除線材15之剖面為半徑為〇 45 mm之圓形, 剖面積為0.64 mm2,且將利用接著劑層i6之線材i5之外 周面的包覆率設為80%外,其餘皆設為與實施例i相同之 條件。 實施例6除線材15之剖面為半徑為2.00 mm之圓形, 剖面積為12.56 mm2,且將利用接著劑層16之線材15之外 周面的包覆率設為80%外’其餘皆設為與實施例1相同之 條件。 16 201251065 實施例7係使用剖面為橢圓形之銅導線作為線材丨$。 線材15之刮面係長軸b為〇.70 mm、短軸3為〇6〇随之 橢圓形’且剖面積為K32 mm2。又,以含有導電性粒子之 接著劑層包覆線材15之外周面,且包覆率設為δ〇%。 又’接著劑層16之厚度為 子之接著劑層1 6包覆 80%外’其餘皆設為與 實施例8除藉由未含有導電性粒 ,材15之外周面,並將包覆率設為 實施例1相同之條件。 比較例1係使用平角形狀之。㈣之寬度為2 厚度為50 ’且剖面積為1.26mm2。X,以含有導 :::子之接著劑層16包覆鋼猪之兩面。又,接著劑層Μ 用以I者Μ ^劑層16係換合環氧樹脂及潛伏性硬化劑、 等之有機溶劑(甲苯)而製成接著劑溶液。於 二有導電性之接著劑層16,進一步捧合有重量比為5%之2 周面二:臬粒。子。於實施例1〜8中,以覆蓋線材15之外 又, G%的方式塗佈該接著劑溶液,並使之乾燥。 之鋼t :例1,在將該接著劑溶液塗佈至厚度為50 旬;亡並乾燥後’切割成寬度為21_、長度為 挪定結果示於表1。 17 201251065 比較例1 曝 iffl: 0.025 | (50 /im 厚) 1 (2 mm 寬) 1.26 \ VO 無法檢測 實施例8 I 圓柱 1.00 1.00 1 3.14 J § 〇 cs 卜 〇 實施例7 轉圓柱 0.60 0.70 1.32 — g 〇 0.75 ο ΓΟ 實施例6 | 塚 圓柱 2.00 2.00 | 12.56 1 g 〇 o CN 00 實施例5 圓柱 0.45 0.45 0.64 g 〇 v〇 o Ο m 實施例4 圓柱 1.00 1.00 1 3.14 | 〇 卜 〇 實施例3 圓柱 丨 1.00 1.00 3.14 | § 〇 CN 卜 〇 |實施例2 1 圓柱 1.00 1.00 1 3.14 1 s 〇 o 卜 〇 實施例1 瑕 回柱 1 1.00 1.00 3.14 1 ο *"Η σ\ d 卜 〇 材質 形狀 a (mm) b (mm) /"N ΓΝ s ε 無 vB 接著劑中有無導電性粒子 接著劑層相對於標記線之表面積之包覆率(%) 接著劑層中之厚度(em) 接著強度(N/mm) 導通電阻值(ιώΩ)(初始) /-N 〇 p* Ο 1 ? is 00 Sw/ 標記線 201251065 如表1所示,可知於實施例丨〜 等之低壓力下之擠壓,接著強中、’即便為G.5 MPa _’為可堪實際使用者。又,於;,成為Ο.6〜2.0 N/ 通電阻值均為5〜10⑽,又,、施例1〜8中,初始之導 13 藉此,於實施例卜、·、、、衝擊試驗後,亦為8〜 及熱衝擊試驗後之電阻值上升,*亦幾乎不會發現初始值 另一大而^ 光電轉換效應沒有降低。 为方面,於比較例1中,接荖強电1 νθ , ^ 尺為1 ·ό N/ mm呈良好, 但初始之導通電阻高達5〇mQ 民子 ^ , At ^ , 熱衝擊試驗後由於導通不 艮而未此檢測電阻值。 【圖式簡單說明】 圖1係表示太陽電池模組之分 ^ 刀解立體圖。 圖2係表示太陽電池單元 ^ 夂弔線之剖面圖。 圖3係表示太陽電池單 〈背面電極及連接部之俯視 SJ 〇 圖4係表示標記線之接著狀態之剖面圖。 圖5係用以說明線材之剖面尺寸之圖。 圖6係表示線材預先藉由^ 精田接者劑層包覆之標記線之 圖,圖6A係剖面圖,圖6B係立體圖。 圖7係表示導電性接著膜之剖面圖。 圖8係表示捲繞成捲筒狀之導電性接著膜之圖。 圖9係表示實施例之立體圖。 圖10係表示比較例之立體圖。 圖11係表示先前之標記線之立體圖。 【主要元件符號說明】 19 201251065 1 太陽電池模組 2 太陽電池單元 2X 太陽電池單元 2Y 太陽電池單元 2Z 太陽電池單元 3 標記線 4 串線 5 矩陣 6 薄片 7 表面蓋罩 8 背片 9 金屬框架 10 光電轉換元件 11 匯流排電極 12 指狀電極 13 背面電極 14 標記線連接部 15 線材 16 接著劑層 20 加熱接合機 23 導電性粒子 24 剝離基材 25 捲筒 30 Ag電極 20 201251065 31 玻璃基板 50 標記線 51 帶狀銅箔 52 焊料塗層 a 半徑 b 半徑Ag electrode. Further, an A1 electrode or an Ag electrode is formed in a region other than the connection portion of the surface of the solar cell unit f. Further, as shown in Fig. 7, the marking line 50 is formed by providing the coating layer 52 on both sides of the strip-shaped copper pig 51. Specifically, the marking line is formed by dividing a row of copper bumps 3 201251065 which is rolled to a thickness of about 2 mm, or a width of about 3 mm for rolling a copper wire into a flat shape or the like. The flat-angle copper wire is subjected to solder plating or dipping soldering. The connection between a solar cell and the marking line is performed by arranging the marking line on each electrode of the solar cell unit and performing thermal pressing by means of a refilling bonding machine, thereby forming a (four) marking surface. The solder is melted and cooled (Patent Document 1). However, during the soldering process, the connection processing of the temperature of the Ada 260 C is performed. Therefore, there is a fear that the solar cell will warp 70 times or be generated on the mark line and the surface electrode and the back electrode. The internal stress of the pile, the internal stress of the reverse, and the residue of the flux, etc., cause the solar cell to be placed; the reliability of the connection between the surface electrode and the back electrode and the mark line of the early main + & Therefore, 'previously, the solar cell cover opened a 70 front surface electrode and the back electrode connected to the marking line, using a conductive adhesive film which can be connected by the relatively low temperature thermocompression bonding process of the field.丨 & & 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利The synergistic & is dispersed in the thermosetting adhesive resin composition and the film is placed between the surfaces after the conductive adhesive film is interposed between the surfaces, and the additive resin exhibits fluidity from above the mark line and the electrode and the mark line are self-electrolytic particles. The intervening resin is thermally hardened, thereby forming a string by the battery unit. The electrode and the back electrode are thermally pressurized by the thermal bonding machine of the marking line, whereby the adhesive pole and the marking line flow out, and the conduction is conducted. In the state, the bonding is carried out by the marking line and the plurality of suns will be connected using the conductive adhesive film to connect the marking line with the surface electrode and the back surface of the electricity. 201251065 A plurality of solar cells, by Ethylene Ethylacetate (ethyiene) A translucent sealing material such as vinylacetate (EvA) is sealed between a translucent surface protective material such as glass or translucent plastic, and a back protective material composed of a film such as Poly Ethylene Terephtha Ute. [Patent Document 1] JP-A-2004-356349 [Patent Document 2] JP-A-2008-135654 SUMMARY OF THE INVENTION However, as described above, the marking line needs to be rolled to a thickness of 〇〇5 to 〇2. The copper foil of about mm is divided, or the copper wire is rolled into a flat shape, etc., and a rectangular copper wire is formed, thereby increasing manufacturing man-hours. Further, the marking line composed of the rectangular wire has a width of about 2 to 3 mm. When the marking line is followed by the light receiving surface of the solar cell unit, a shadow loss corresponding to the width of the marking line is generated. Therefore, the object of the present invention is to provide an easy manufacturing method. A marking line for reducing shadow loss, a solar cell unit having the marking line, and a method for manufacturing a solar cell module. The solar cell module of the invention includes a plurality of solar cell units and marking lines, and the marking lines are respectively formed on electrodes on the surface of the solar cell unit and the back surface of the adjacent solar cell unit, and the plurality of the solar cell units are connected to each other. And the marking line is linear, and is followed by the electrode layer by an adhesive layer covering the outer peripheral surface including the electrode and the electrode. 201251065 Further, the manufacturing of the solar cell module of the present invention The method uses a linear marking line and has a step of disposing one end side of the marking line on a surface electrode of a solar cell unit, and arranging the other end side of the marking line on a solar cell adjacent to the solar cell unit. a step of the back electrode of the cell; and thermally pressing the mark line to the front surface electrode and the back surface electrode, and applying the mark line by an adhesive layer flowing between the surface electrode and the back surface electrode and the mark line a step of following the surface electrode and the back surface electrode. Further, the marking line of the present invention is followed by electrodes formed on the surface of the solar cell unit and the back surface of the adjacent solar cell unit, and the plurality of solar cell units are connected to each other. The marking line is linear, spanning the long side. At least 50% of the outer peripheral surface is covered by the adhesive layer so as to be followed by the above-mentioned electrode layer by the above-mentioned adhesive layer. According to the present invention, by using the linear marking line, the step of forming the rolled copper name and performing the dividing step, or the step of rolling the copper wire into a flat shape can be achieved, thereby realizing reduction in manufacturing equipment or man-hours, and also suppressing manufacturing cost. Further, according to the present invention, by using a linear marking line, the area of the light receiving surface placed on the solar battery unit can be narrowed compared to the case of using the flat marking line, thereby suppressing the shadow loss. The reduction in photoelectric conversion effect. [Embodiment] Hereinafter, a marking line to which the present invention is applied, a solar battery module using the marking, and a method of manufacturing a solar battery module will be described in detail with reference to the drawings. It is to be understood that the invention is not limited thereto, and various modifications may be made without departing from the spirit and scope of the invention. [Solar Cell Module] The solar cell module 1 to which the present invention is applied is provided with a matrix 5 in which a plurality of strings 4 are arranged, and the string 4 is a mark line 3 which becomes an internal connecting line. A plurality of solar battery cells 2 are connected in series. Further, the solar battery module 1 is formed by sandwiching the sheet 6 of the sealing adhesive, together with the surface cover 7 provided on the light receiving surface side and the back sheet 8 provided on the back side. The laminate is subjected to lamination, and finally a metal frame 9 of aluminum or the like is attached to the periphery. As the sealing adhesive, a transparent sealing material such as ethylene vinyl acetate resin (EVA) can be used. Further, the surface cover 7 may be made of, for example, glass or a light transmissive plastic material. Further, as the back sheet 8, a laminate in which a glass or an aluminum foil is sandwiched by a resin film can be used. Each of the solar battery cells 2 of the solar battery module has the photoelectric conversion element/electric conversion element 10, and various photoelectric conversion elements ι can be used: the crystal conversion element of the electric conversion element and the polycrystalline photoelectric conversion element, Shi Xilu ^, or a thin-film solar cell using a photoelectric conversion element composed of a unit composed of amorphous austenite and a microcrystalline or non-integrated unit, a so-called compound thin film system; an organic system; a quantum dot Type and so on. Further, the photoelectric conversion element 10 is provided on the light-receiving surface side with a finger electrode 12 for collecting current == and an electric contact bus electrode U for the finger electrode 12. The bus bar electrode U and the finger electrode 12 are coated with "paste, and then calcined, and:::" is formed by screen printing, etc. Further, the finger electrode 12 201251065 spans the entire surface of the light receiving surface. And a plurality of lines having a width of, for example, about β 200 β m are formed substantially parallel to each other at a specific interval of, for example, 2_. The bus bar electrode 11 is substantially the same as the finger skin? The plurality of electrodes are formed in an orthogonal manner, and a plurality of electrodes are formed according to the area of the solar cell 2. The photoelectric conversion element 1 is disposed on the back side opposite to the light receiving surface, and is provided with a back electrode 13β made of aluminum or silver. As shown in Fig. 2 and Fig. 3, for example, an electrode made of stencil or silver is formed on the back surface of the solar battery cell 2 by screen printing or the like, and the back surface electrode 13 has a marking line connecting portion 14 to which a marking line 3 to be described later is connected. Further, in the solar battery cell 2, each of the bus bar electrodes U formed on the surface is electrically connected to the back surface electrode 13 of the adjacent solar battery cell 2 by the marking line 3, thereby constituting the serially connected string 4. 3 Xiaohui flow row electrode 11 And the back electrode 13 is connected by the adhesive layer 16 provided on the outer peripheral surface of the marking line 3. [Standard line] As shown in Fig. 2, the mark line 3 will be adjacent to the solar cell units 2, 2, and 2 As shown in FIG. 4, for example, a wire 15 having a diameter of 〇·2 mm to 2.0 mm is provided, and a bus bar electrode or a back surface of the solar cell 2 is disposed on the outer peripheral surface of the wire 15 The adhesive layer 16 of the electrode 13. The wire 15 is made of a linear conductive material, and a conductive material such as a copper wire, a gold wire, or a wire can be used. In the solar battery module 1, the wire is used. The wire 15 composed of the conductive wire serves as the marking line 3, whereby the step of dividing the rolled copper foil and the step of dividing the steel wire into 8 201251065 are required, and the manufacturing equipment or work can be suppressed to suppress the manufacturing cost. Female φ ^ is reduced, and too 1w battery module 1 is used from κ or mark line 3, whereby the disk uses the ancient wire 15 as a use of a ten-plate mark placed on the solar cell unit 2 丄 (4) compared to the glossy area Narrowing; % 矸 制 制 制 制 制 制 制 制 制 制 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影 阴影[Sectional Area] The wire 15 is used in a range of 〇 ^~^ λ 2 ^ 槚马〇.5 to 13. 〇 mm. The reason is that the solar cell module is connected to each solar cell by _, and you have drilled 5 wires 3, so the cross-sectional area of the awning material 15 is less than 0.5 mm2, then the platform has a talent. The on-resistance of the line 3 becomes old, and the shackles are seen in the branch, and the solar cell module is reduced due to the effect of the first electric conversion, because the marking line 3 is followed by the solar cell unit 兀k receiving surface. If the sectional area of 15 is larger than 13 brilliant 2, the influence of the shadow loss of the marking line 3 becomes larger. [Oval shape] Further, the wire 15 can be a circular or elliptical cross section. In this case, as shown in FIG. 5, the radius of the (long axis) of the wire 15 passing through the orthogonal coordinates of the center of the circle (expanded) constituting the cross section is set to b, #y axis (short axis). When the half is set to a, the following relationship is satisfied. 〇.4$ag2 (in mm) a$b$2 (in mm) Thereby, the marking line 3 satisfies the above-mentioned sectional area, thereby suppressing the influence of the increase in the on-resistance or the shadow loss. '[Adhesive layer] The adhesive layer 16 is formed by covering the outer peripheral surface of the wire 15, and the line 5 of the 201251065 is followed by the bus electrode u or the back electrode η of the solar cell 2. As shown in FIG. 6A and FIG. 6B, the (four) 16 may be formed into a paste and pre-coated with the wire 15 < outer peripheral surface of the marking line 3, or may be formed in a meander shape so that the marking line 3 is followed by the solar battery unit 2. For each of the electrodes ^, η: disposed on the electrode ... and after the wire (1) has been placed on the adhesive film, the heat is squeezed by the heat bonding machine 20, thereby covering the outer surface of the wire Η (Fig. 4). Further, a collective connection method in which the uncured adhesive layer 16 and the sealing material are laminated on the solar cell 2 to cure the adhesive layer 16 in the laminating step may be used. As shown in Fig. 7, the adhesive layer 16 is a thermosetting adhesive resin layer containing conductive particles 23 at a high density. χ, the adhesive layer of the adhesive layer is preferably 1 〇〇 1 〇〇〇 (9) Pa· s from the viewpoint of press-fitting property. If the lowest melt viscosity is too low, the resin layer will flow during the process from the low pressure to the final hardening of the adhesive layer 16, which tends to cause poor connection and bleed out to the light-receiving surface of the unit, and also causes a decrease in the light-receiving rate. Further, even if the minimum melt viscosity is too high, there is a case where it is liable to cause defects when the film is bonded, which adversely affects the connection reliability. Further, for the lowest melt viscosity, a specific amount of the sample can be loaded into a rotary viscometer and measured while being raised at a specific temperature increase rate. The conductive particles 23 to be used in the adhesive layer layer 6 are not particularly limited, and examples thereof include metal particles such as nickel, gold, silver, and copper, and gold plating of the resin particles. The outermost layer is insulated and coated. Further, by including the flat sheet-like metal particles as the conductive particles 23, the number 10 201251065 of the conductive particles 23 which overlap each other can be increased, thereby ensuring good conduction reliability. Further, in the carrier layer 16, the viscosity near the normal temperature is preferably ι 〇 〇〇〇〇 kPa kPa.s' is preferably 1 〇 5 〇〇〇 kpa.s. When the adhesive layer w has a viscosity of 1 〇 10000 kPa · S, and the adhesive layer 16 is used as a strip-shaped roll, the so-called bleed can be prevented, and the swell can be maintained. Tack force. Then, the composition of the adhesive resin layer of the layer H 16 is not particularly limited as long as it does not detrimental to the above characteristics, and it is more preferable to make the film of the film forming resin or the liquid epoxy. Resin, latent hardener, and decane coupling agent. The film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more. From the viewpoint of film formability, it is preferably 1 〇〇〇〇 to 8 〇〇〇〇 left / = a knife is formed as a ruthenium-forming resin. Various resins such as an epoxy resin, a modified % oxygen resin, an amine ester (urethan® resin, a phenoxy resin, etc.) are used, and in view of the film formation state, connection reliability, etc., a stupid resin can be preferably used. Liquid epoxy resin, if it has fluidity at normal temperature, it is not special: it can be used, and all commercially available epoxy resins can be used. Specifically, t, this ring: tree moon enamel can use nematic epoxy resin, Biphenyl type epoxy resin, phenol novolac / month] = (phenol n〇v〇lae) type epoxy resin 'double (four) epoxy resin, laughing = clothing oxygen moon, diphenol methane type epoxy resin, stupid phenol An aralkyl type epoxy tree, which is a phenol type % oxygen resin, a dicyclopentadiene type epoxy resin, a triphenylmethane type epoxy resin, etc. These may be used alone or in combination of two or more. t can be used in combination with other money resins such as Acrylic Tree. As the chemical agent, various hardening agents such as heat-hardening type and hardening type can be used. The latent hardening agent is usually not anti-deer, and 〜 is activated by a certain trigger to start the reaction. In the trigger, strong..., light , pressurization, etc., can be used according to the application. When using liquid epoxy resin, use the saliva, amines, salt, rust salt, etc. Potential: Sex: Make Shi Xihua The mixture may be an oxygen-based material, a silk-based material, a material-sulfurized urea-based system, etc. In the present embodiment, it is preferred to use an epoxy-based decane coupling agent, whereby the organic material and the inorganic material can be improved. Further, as another additive composition, it is preferable to contain an inorganic filler. By containing an inorganic filler, the fluidity of the resin layer at the time of pressure bonding can be adjusted, and the particle trapping rate can be improved. The type of the inorganic filler is not particularly limited as the talc, the titanium oxide, the cerium carbonate, the oxidized town, etc. Fig. 8 is a view schematically showing the form of the product of the adhesive layer 16. The adhesive layer 16 is attached to the release substrate. There are 24 layers The strip-shaped conductive adhesive film is wound and laminated on the roll 25 so that the release substrate Μ is formed on the outer peripheral side. The release substrate 24 is not particularly limited to use PET (Poly Ethylene Terephthalate), pp (Oriented Polypropylene) ^ PMP (Poly - 4 - methlpentene 1 ), PTFE ( p〇iytetraflu〇r〇ethylene), etc. Further, the adhesive layer 16 may also be formed to be transparent on the adhesive resin layer. In the above, the conductive adhesive film having a film shape has been described as the adhesive layer 16, but there is no problem even in the form of a paste. Further, the adhesive layer 16 may be an insulating adhesive agent which does not contain conductive particles in the adhesive resin layer. In the case where an insulating adhesive is used, the marking line 3 is a wire 12 201251065 which is directly connected to the bus bar electrode u or the back electrode i3. The adhesive layer is connected by sealing the periphery thereof: (4) A film-like or paste-like conductive layer containing conductive particles ;; a film-like or paste-like insulating adhesive containing conductive particles 23: "Binder layer 16". The latter is no longer limited to the roll shape «. As shown in Fig. 8, in the case of the shape energy of the rolled product: the two-layer layer 16, the dot of the adhesive layer 16 is set to a range of ~1〇〇〇 Thereby, deformation of the adhesive layer 16 can be prevented, thereby maintaining the size of the crucible. Further, when the adhesive layer 16 is laminated in a short strip shape, deformation can be prevented in the same manner, and the shape of the specific layer can be maintained. J = _ 16 is used to form the conductive particles 23, the film forming resin, and the liquid container. 2^ day, latent hardener, and (iv) coupling agent are dissolved in the solvent. : toluene, acetic acid, etc., or a mixed solvent of these. The resin-forming solution obtained by disintegration is applied to the wire material after drying, and the solvent is volatilized, whereby the mark line 3 in which the adhesive layer is previously set on the outer peripheral surface of u Μ is obtained. When the marking line 3 is followed to the respective electrodes 13 , the marking line 3 is disposed on the bus bar electrode u and the = line connecting portion 14 of the back surface electrode 13 , thereby heating the bonding machine from the marking line 3 layer The specific temperature and pressure are subjected to hot pressing. Thereby, the adhesive agent of the adhesive agent 6 is flowed on the outer peripheral surface of the wire 15 to the mark line 3. The contact portions where the electrodes 11 and 13 are in contact are hardened, and the conductive particles 23 are held between the line 3 and the bus bar electrode U or the back surface electrode 13. The subsequent layer 16 can be used to connect the marking line 3 to the electrodes and to connect 13 201251065. On the other hand, when the adhesive layer 16 is formed into a film shape, the resin-forming solution is applied to the release sheet i, and the solution is dissolved in the north. The discharge electrode is cut into a specific length for use with the electrode, and the release sheet is peeled off: the adhesive layer 16 is pre-adhered to each ", U on the front side of the solar cell unit 2. Similarly, it is cut to a specific length. The wire 15 is overlaid on the 3 adhesive layer 16. 'And then' the adhesive layer 16 is thermally pressurized from above the marking line at a specific temperature and pressure by means of a heat bonding machine. The marking line 3 is covered with a binder. The resin flows and the outer peripheral surface of the contact portion where the electrodes η and η are in contact with each other is hardened, and the conductive particles 23 are interposed between the mark line 3 and the bus bar electrode u or the back surface electrode 13. 16, the marking line 3 can be applied to each of the electrodes, and the core is joined. [The coverage of the adhesive layer 16] The coating layer 16 at least covers 5 % of the outer peripheral surface of the wire 15 , preferably 50 to 8 G % The reason is that if the wire 15 of the adhesive layer 16 is used The coverage ratio of the surface is less than 5%. The shellfish 1 cannot ensure the amount necessary for the subsequent connection of the wire 15 and the respective electrodes 11, 13. Therefore, the strength of the adhesive is insufficient. Further, if the wire of the adhesive layer 16 is used. When the coating ratio of the outer peripheral surface of 15 is about 80 ° / ◦, the bonding strength can be sufficiently ensured because, if it is higher than 90%, there is the following: when the wire 15 is hot pressed, the resin is self-pressing. The busbar electrode 渗 oozes out to the light-receiving surface of the solar cell unit 2 to reduce the light-receiving efficiency. 201251065 First, the coverage of the outer peripheral surface of the wire 15 of the squeegee layer 16 is pre-, 15 outer circumferential surface The ratio of the area of the adhesive layer of the adhesive layer 16 to the surface area of the adhesive layer 16 and the area of the wire r5 is set. The film-like adhesive layer 16 on each of the electrodes U and U is further provided. When the wire material 15 is overheated and pressurized, the wire μ =: the area covered by the adhesive layer 16 and the ratio of the exposed surface area of the wire material are obtained. In the embodiment, the solar battery unit 2 is described by taking the electrode U as an example, but The invention can also be applied to the flow-discharge electrode " and the marker line 3 is directly followed by the so-called busbarless structure solar cell unit 2 on the finger electrode 12. Further, in the busbarless structure, the following configuration is also included: For example, in the center of the solar battery unit 2 2, there is a busbar electrode U that is not provided with a discontinuity portion, and only the side edge portion of the solar cell unit is provided, and the bus bar electrode 11 is partially provided. [Embodiment] The embodiment of the present invention will be described with reference to Embodiment 1. Fig. 9 is a perspective view showing an embodiment, and Fig. 1G is a perspective view showing a comparative example. The ratios of the examples are all marked with a length of $(10) pre-coated with an adhesive layer}6. The wire, the second of the mark lines, is thermally dusted to the 々 electrode % of the glass substrate 31 on which the Ag electrode 30 is formed on the entire surface. The conditions for drum addition are 4 i 8 (TC, 15 sec, 〇.5 MPa. After the sample is prepared, the subsequent resistance of the marking line (by coffee) is measured. 'The initial resistance value (γπΩ) between the two marking lines, and After the thermal shock test (85.〇, 85% RH, 5〇〇hr), the resistance 15 201251065 (γπΩ). As a measure of the strength and resistance, the _, ZH, and Zhao methods are followed by the strength system. The mark line is pulled from the Ag electrode 3 - "the agent layer 16 at 90. The 90° peel test of the direction peeling (jis K6854 - 1, the factory measures the joint strength (N / mm). Again, the resistance value The lightning core resistance value (ιηΩ) is measured by a 4-terminal method in which a current terminal and a voltage terminal are respectively connected from two turns. In the first embodiment, a cylindrical copper wire is used as a flat water 邗 线 wire 丨 5. Wire i The profile of 5 is a circle with a radius of 1 · 0 mm, and the product of the profile J is 3 · 14 mm 2 . Further, the outer peripheral surface of the adhesive 3516 & covered wire # i51 with conductive particles is used to make the coverage ratio. 50%. Further, the thickness of the adhesive layer 16 is 1 〇 " claw. In addition to the coating ratio of the 黯16 The same conditions as in Example 1 were carried out except for 6% by weight. Example 3 was set to the same conditions as in Example 1 except that the coverage of the adhesive layer 16 was set to 8% by weight. 4, except that the coverage ratio of the adhesive layer 16 was set to 9% by weight, the other conditions were the same as those of the embodiment 1. The cross section of the embodiment 15 except the wire 15 was a circle having a radius of 〇45 mm, and the sectional area. The ratio of the outer peripheral surface of the wire i5 of the adhesive layer i6 was set to 80%, and the other conditions were the same as those of the example i. Example 6 except that the cross section of the wire 15 has a radius of 0.64 mm 2 . A circular shape of 2.00 mm, a sectional area of 12.56 mm2, and a coating ratio of the outer peripheral surface of the wire 15 using the adhesive layer 16 is set to 80%. The rest are set to the same conditions as in the first embodiment. 16 201251065 Implementation In Example 7, a copper wire having an elliptical cross section is used as the wire 丨$. The long axis b of the scraping surface of the wire 15 is 〇.70 mm, and the short axis 3 is 〇6〇 followed by an elliptical shape and the sectional area is K32 mm2. The outer peripheral surface of the wire 15 is covered with an adhesive layer containing conductive particles, and the coverage is set to δ 〇 %. The thickness of 16 is a sub-layer of an adhesive layer of 16%, and the rest is set to be the same as that of Example 8 except that the outer surface of the material 15 is not contained by the conductive particles, and the coating ratio is set to Example 1. The same conditions were used. Comparative Example 1 used a flat-angled shape. (4) The width was 2, the thickness was 50', and the cross-sectional area was 1.26 mm2. X, the two sides of the steel pig were covered with an adhesive layer 16 containing a guide:::. Further, the adhesive layer 用以 is used to form an adhesive solution by mixing an epoxy resin, a latent curing agent, or the like with an organic solvent (toluene). The second conductive layer 16 having a conductivity is further added to have a weight ratio of 5% of 2 weeks of surface: bismuth grains. child. In Examples 1 to 8, the adhesive solution was applied to cover the wire 15 and G%, and dried. Steel t: Example 1, the adhesive solution was applied to a thickness of 50 Å; after dying and drying, the thickness was cut to 21 Å, and the length was shown in Table 1. 17 201251065 Comparative Example 1 Exposure of iffl: 0.025 | (50 / im thick) 1 (2 mm wide) 1.26 \ VO Undetectable Example 8 I Cylinder 1.00 1.00 1 3.14 J § 〇cs Divination Example 7 Rotating cylinder 0.60 0.70 1.32 —g 〇0.75 ο 实施 Example 6 | 冢Cylinder 2.00 2.00 | 12.56 1 g 〇o CN 00 Example 5 Cylinder 0.45 0.45 0.64 g 〇v〇o Ο m Example 4 Cylinder 1.00 1.00 1 3.14 | 3 Cylinder 丨 1.00 1.00 3.14 | § 〇CN 〇 〇 | Example 2 1 Cylinder 1.00 1.00 1 3.14 1 s 〇 o Diphth Example 1 瑕 Back column 1 1.00 1.00 3.14 1 ο *"Η σ\ d Bud material Shape a (mm) b (mm) /"N ΓΝ s ε without vB The presence or absence of the conductive particles in the adhesive agent. The coverage of the surface area of the adhesive layer with respect to the marking line (%) The thickness in the adhesive layer (em) Then, the strength (N/mm) on-resistance value (ιώΩ) (initial) /-N 〇p* Ο 1 ? is 00 Sw/ mark line 201251065 As shown in Table 1, it can be seen that under the low pressure of the embodiment 丨~ Squeeze, then strong, 'even if G.5 MPa _' for practical use By. Moreover, it becomes Ο.6~2.0 N/the resistance value is 5~10(10), and, in the examples 1~8, the initial guide 13 is thereby used in the embodiment, the impact test After that, it was also 8~ and the resistance value after the thermal shock test increased, * and almost no initial value was found to be large and the photoelectric conversion effect was not lowered. For the aspect, in Comparative Example 1, the junction is 1 ό θ, and the ruler is 1 · ό N / mm is good, but the initial on-resistance is as high as 5 〇 mQ Min ^ , At ^ , after the thermal shock test is not turned on The resistance value is not detected here. [Simple description of the drawing] Fig. 1 is a perspective view showing the division of the solar cell module. Figure 2 is a cross-sectional view showing the solar cell unit 夂 hanging wire. Fig. 3 is a plan view showing a state in which a solar cell is in a state in which the marking electrode is in a state in which the back surface electrode and the connecting portion are viewed in a plan view. Fig. 5 is a view for explaining the sectional dimensions of the wire. Fig. 6 is a view showing a marking line in which a wire is previously covered by a layer of a fine agent, Fig. 6A is a sectional view, and Fig. 6B is a perspective view. Fig. 7 is a cross-sectional view showing a conductive adhesive film. Fig. 8 is a view showing a conductive adhesive film wound into a roll shape. Fig. 9 is a perspective view showing an embodiment. Fig. 10 is a perspective view showing a comparative example. Figure 11 is a perspective view showing a prior marking line. [Main component symbol description] 19 201251065 1 Solar battery module 2 Solar battery unit 2X Solar battery unit 2Y Solar battery unit 2Z Solar battery unit 3 Marking line 4 String 5 Matrix 6 Sheet 7 Surface cover 8 Back sheet 9 Metal frame 10 Photoelectric conversion element 11 bus bar electrode 12 finger electrode 13 back electrode 14 mark line connection portion 15 wire 16 subsequent layer 20 heat bonding machine 23 conductive particles 24 peeling substrate 25 roll 30 Ag electrode 20 201251065 31 glass substrate 50 mark Line 51 strip copper foil 52 solder coating a radius b radius

Claims (1)

201251065 七、申請專利範圍: 1. 一種太陽電池模組,其具備: 複數個太陽電池單元及標記線,該標記線接著於分別 形成在該太陽電池單元<表面及鄰接之太陽電池單元:背 面的電極上,將複數個該太陽電池單元彼此連接;且 該標記線呈線狀,藉由接著劑層而與該電極接著,其 中該接著劑層覆蓋包含與該電極之接著部的外周面。 2. 如申請專利範圍第1項之太陽電池模組,其中該接著 劑層跨及長邊方向而形成,藉此使該標記線外周面之至少 50%被該接著劑層覆蓋。 3·如申請專利範圍第2項之太陽電池模組,其中該標記 線外周面之50%〜80%被該接著劑層覆蓋。 4. 如申請專利範圍第1項之太陽電池模組,其中該標記 線之剖面呈圓形或橢圓形, 於將剖面長軸方向之半徑設為b,將剖面短軸方向之半 徑設為a時,滿足下述式: 〇.4$a$2 (單位 mm ) a$b$2 (單位 mm )。 5. 如申請專利範圍第1至4項中任一項之太陽電池模 組’其中該標記線之剖面積為〇.5〜13.〇 (mm2)。 6· —種太陽電池模組之製造方法,其使用線狀之標記 線,且具有如下之步驟: 將該標記線之一端側配置於太陽電池單元之表面電 極,將該標記線之另一端側配置於與該太陽電池單元鄰接 22 201251065 之太陽電池單元之背面電極的步驟;及 將該標記線向該表面電極及該背面電極熱加壓,藉由 在該表面電極及該背面電極與該標記線之間流動的接^ 層,而將該標記線向該表面電極及該背面電極接著的步驟。 7.如申凊專利範圍帛6㊆之太帛電池模組之製造方 法’其中該標記線外周面之5〇〜8〇%被預先設置於外周面 之該接著劑層覆蓋。 8.如申請專利範圍f 6 ^太陽電池模組之製造方 法’其中該標記線外周面之5〇〜8〇%被配置於該表面電極 及該背面電極之接著劑層覆蓋。 9·如申請專利範圍第6至8項中任—項之太陽電池模組 之製造方法,其中該標記線之剖面呈圓形或橢圓形, 於將剖面長軸方向之半徑設為b,將剖面短軸方向之半 徑設為a時,滿足下述式: 〇.4^a$2 (單位 mm ) a$b$2 (單位 mm )。 10.如申請專利範圍第6 1 8項中任一項之太陽電池模 組之衣ie方法,其中該標記線之剖面積為〇·5〜丨3 〇( )。 11.一種標記線,其接著於分別形成在太陽電池單元之 表面及鄰接之太陽電池單元之背面的電極上,將複數個該 太陽電池單元彼此連接, 该標記線呈線狀,跨及長邊方向至少外周面之被 接著劑層覆蓋,而藉由該接著劑層與該電極接著。 12_如申請專利範圍第u項之標記線,其外周面之% 23 201251065 〜80%被該接著劑層覆蓋。 13. 如申請專利範圍第11或12項之標記線,其剖面呈 圓形或備圓形, 於將剖面長軸方向之半徑設為b,將剖面短軸方向之半 徑設為a時,滿足下述式: 0.4$a$2 (單位 mm ) a$b$2 (單位 mm )。 14. 如申請專利範圍第11或12項之標記線,其剖面積 為 0_5 〜13.0 ( mm2)。 24201251065 VII. Patent application scope: 1. A solar cell module, comprising: a plurality of solar cell units and marking lines, which are respectively formed on the surface of the solar cell unit and the adjacent solar cell unit: On the electrode, a plurality of the solar cell units are connected to each other; and the mark line is in a line shape, and is followed by the electrode layer, wherein the adhesive layer covers an outer peripheral surface including a portion adjacent to the electrode. 2. The solar cell module of claim 1, wherein the adhesive layer is formed across the longitudinal direction, whereby at least 50% of the outer peripheral surface of the marking line is covered by the adhesive layer. 3. The solar cell module of claim 2, wherein 50% to 80% of the outer peripheral surface of the marking line is covered by the adhesive layer. 4. The solar cell module of claim 1, wherein the marking line has a circular or elliptical cross section, and the radius of the major axis of the section is set to b, and the radius of the short axis direction of the section is set to a. When the following formula is satisfied: 〇.4$a$2 (in mm) a$b$2 (in mm). 5. The solar cell module of any one of claims 1 to 4 wherein the cross-sectional area of the marking line is 〇.5~13.〇 (mm2). 6. A method of manufacturing a solar cell module, which uses a linear marking line and has the following steps: arranging one end side of the marking line on a surface electrode of a solar cell unit, and the other end side of the marking line a step of arranging the back electrode of the solar cell unit adjacent to the solar cell unit 22 201251065; and thermally pressing the mark line to the surface electrode and the back surface electrode, wherein the surface electrode and the back surface electrode and the mark are The step of flowing the layer between the lines and the marking line to the surface electrode and the back electrode. 7. The method of manufacturing a solar cell module according to the scope of application of the invention, wherein the outer peripheral surface of the marking line is 5 〇 to 8 〇% covered by the adhesive layer previously provided on the outer peripheral surface. 8. The method of manufacturing a solar cell module of the invention, wherein the outer peripheral surface of the marking line is 5 〇 to 8 〇% is disposed on the surface electrode and the adhesive layer of the back surface electrode. 9. The method of manufacturing a solar cell module according to any one of claims 6 to 8, wherein the marking line has a circular or elliptical cross section, and the radius of the longitudinal axis of the cross section is set to b, When the radius of the short axis direction of the section is set to a, the following formula is satisfied: 〇.4^a$2 (unit: mm) a$b$2 (unit: mm). 10. The method of fabricating a solar cell module according to any one of claims 601, wherein the cross-sectional area of the marking line is 〇·5~丨3 〇( ). 11. A marking line followed by electrodes respectively formed on a surface of a solar cell unit and a rear surface of an adjacent solar cell unit, wherein the plurality of solar cell units are connected to each other, the marking line being linear, spanning the long side At least the outer peripheral surface is covered by the adhesive layer, and the adhesive layer is followed by the electrode. 12_ As indicated in the marking line of item u of the patent application, % 23 201251065 to 80% of the outer peripheral surface is covered by the adhesive layer. 13. For the marking line of the 11th or 12th patent application, the cross section is circular or round, and the radius in the direction of the major axis of the section is b, and the radius in the direction of the minor axis of the section is set to a. The following formula: 0.4$a$2 (in mm) a$b$2 (in mm). 14. If the marking line of claim 11 or 12 is applied, the sectional area is 0_5 to 13.0 (mm2). twenty four
TW101110501A 2011-03-25 2012-03-26 Solar cell module, method for producing solar cell module, and tab wire TW201251065A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068685A JP5798772B2 (en) 2011-03-25 2011-03-25 Solar cell module, method for manufacturing solar cell module, tab wire

Publications (1)

Publication Number Publication Date
TW201251065A true TW201251065A (en) 2012-12-16

Family

ID=46931055

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101110501A TW201251065A (en) 2011-03-25 2012-03-26 Solar cell module, method for producing solar cell module, and tab wire

Country Status (3)

Country Link
JP (1) JP5798772B2 (en)
TW (1) TW201251065A (en)
WO (1) WO2012133338A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656650B (en) * 2016-12-01 2019-04-11 日商信越化學工業股份有限公司 Solar cell and manufacturing method thereof, solar cell module and manufacturing method thereof, and solar power generation system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800671B1 (en) * 2014-06-26 2022-03-16 LG Electronics Inc. Solar cell module
EP2966693B1 (en) * 2014-07-07 2023-05-03 Shangrao Jinko solar Technology Development Co., LTD Solar cell module
KR20160038694A (en) * 2014-09-30 2016-04-07 엘지전자 주식회사 Solar cell and solar cell panel including the same
KR20170017776A (en) * 2015-08-05 2017-02-15 엘지전자 주식회사 Ribbon for solar cell panel and method for manufacturing the same, and solar cell panel
JP6877897B2 (en) * 2016-06-22 2021-05-26 シャープ株式会社 Solar cell module
JP2019117860A (en) * 2017-12-27 2019-07-18 シャープ株式会社 Double-sided light-receiving solar cell module
FR3136589B1 (en) * 2022-06-14 2024-06-21 Commissariat Energie Atomique INTERCONNECTION ELEMENT, PHOTOVOLTAIC CHAIN AND ASSOCIATED METHODS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036867A (en) * 1989-06-05 1991-01-14 Mitsubishi Electric Corp Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
JP2992638B2 (en) * 1995-06-28 1999-12-20 キヤノン株式会社 Electrode structure and manufacturing method of photovoltaic element and solar cell
DE10239845C1 (en) * 2002-08-29 2003-12-24 Day4 Energy Inc Electrode for photovoltaic cells, photovoltaic cell and photovoltaic module
JP5036157B2 (en) * 2005-09-30 2012-09-26 三洋電機株式会社 Solar cell module
JP5384004B2 (en) * 2007-03-19 2014-01-08 三洋電機株式会社 Solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656650B (en) * 2016-12-01 2019-04-11 日商信越化學工業股份有限公司 Solar cell and manufacturing method thereof, solar cell module and manufacturing method thereof, and solar power generation system
US10700223B2 (en) 2016-12-01 2020-06-30 Shin-Etsu Chemical Co., Ltd. High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell

Also Published As

Publication number Publication date
WO2012133338A1 (en) 2012-10-04
JP2012204666A (en) 2012-10-22
JP5798772B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
TW201251065A (en) Solar cell module, method for producing solar cell module, and tab wire
TWI536590B (en) A solar cell module, a method for manufacturing a solar cell module, a reel winding wound with a mark line
TWI495137B (en) Manufacture method of solar cell module and solar cell module
TWI542025B (en) Solar cell module and solar cell module manufacturing method
TWI495122B (en) Method for manufacturing solar cell module, solar cell module, connection method of solar cell and mark line
TWI462312B (en) Solar cell module, solar cell module manufacturing method
JP5892584B2 (en) Solar cell module and method for manufacturing solar cell module
JP5676944B2 (en) Solar cell module and method for manufacturing solar cell module
JP5828582B2 (en) Solar cell module, method for manufacturing solar cell module, conductive adhesive
JP6021138B2 (en) Solar cell module, method for manufacturing solar cell module, and tab wire for thin film solar cell
TW201316525A (en) Solar battery module and solar battery module manufacturing method
TW201251074A (en) Solar cell module and method of manufacturing solar cell module
TW201304161A (en) Solar battery module, solar battery module manufacturing method
JP2013048201A (en) Solar cell module, and method for manufacturing solar cell module
JP2016021577A (en) Solar cell module, manufacturing method of solar cell module, conductive adhesive
JP2014107356A (en) Method of manufacturing solar cell module, and solar cell module
JP6061417B2 (en) Manufacturing method of solar cell module
JP2016167641A (en) Solar battery module and manufacturing method for the same
JP2013165193A (en) Method of manufacturing solar cell module, connection method of tab line
JP2016001765A (en) Solar cell module and manufacturing method of the solar cell module