201248206 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種液晶透鏡,特別是指一種用於成 像的液晶透鏡模組。 【先前技術】 像差(Aberration)與對應的解析度(res〇iuti〇n)是選擇透 鏡時的重點參數。當透鏡焦點f上光料細腻程度小於預設 值,那麼感應出來的成像將會犀利、銳利,解析度也就愈 南。 參閱圖i ’以-般光學透鏡i為例,主要具有形成在反 向的二側面且曲率半徑較的—曲面Un據該透W 的折射原理可知,該透鏡1有二個焦點fi、f2 ’當平行光 Μ或未通過焦點fl的光線)人射該透鏡i,經折射^會相交 於一光轴X上的一點,即焦點D,相反的,當通過焦點〇 的光:入射該凸透鏡i ’經折射後會形成平行光射向遠方。 當前述料透鏡1制在攝影系統(圖未沖卜會移動 該光學透鏡i使焦距改變,藉此,放大或縮小物體。惟, 不同位置的光雖然會在該焦點f2 &匯,卻會因為該等曲面 11、12的曲率半徑㈣而無法變化,使做為解析度指標的 調製傳遞函數(MTF)也就固定無法調變。 另外,由於多色光的波長不同’會產生光程差(〇pD), 同樣會對做為解析度指標的調製傳遞函數(MTF)造成影 【發明内容】 〜 因此,本發明之主要目的,即在提供一種能夠調整調 201248206 製傳遞函數(MTF)的液晶透鏡模組。 ’包含二光學透鏡,及201248206 VI. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal lens, and more particularly to a liquid crystal lens module for imaging. [Prior Art] Aberration and corresponding resolution (res〇iuti〇n) are key parameters when selecting a lens. When the brightness of the lens focus f is less than the preset value, the induced image will be sharp and sharp, and the resolution will be more. Referring to FIG. 1 ', taking the general optical lens i as an example, the main surface has two curved sides and the radius of curvature is relatively curved. According to the refractive principle of the transparent W, the lens 1 has two focal points fi, f2 ' When a parallel pupil or a light that does not pass through the focus fl) strikes the lens i, the refraction will intersect at a point on the optical axis X, that is, the focus D, and conversely, when passing through the focus :: incident on the convex lens i 'After refraction, parallel light will be formed to the far side. When the aforementioned material lens 1 is made in the photographic system (the figure will not move, the optical lens i will change the focal length, thereby amplifying or reducing the object. However, the light at different positions will be at the focus f2 & Because the curvature radius (four) of the curved surfaces 11 and 12 cannot be changed, the modulation transfer function (MTF) which is a resolution index is fixed and cannot be modulated. In addition, since the wavelengths of the polychromatic lights are different, an optical path difference is generated ( 〇pD), also affects the modulation transfer function (MTF) as a resolution index. [The present invention] Therefore, the main object of the present invention is to provide a liquid crystal capable of adjusting the transfer function of the 201248206 system (MTF). Lens module. 'Includes two optical lenses, and
、第二電極層間的一液晶層,使該液晶層 於是’本發明的液晶透鏡模組 一液晶單元。該箄来璺读锫厶 隨著電場變化’產生折射率之梯度變化。 本發明的液晶透鏡模組,包含二光學透鏡,及一液晶 單元。該等光學透鏡分別具有形成在反向的一側且曲率半 徑固定的一曲面,及形成在另一側且相互面對的一平面。 該液晶單元具有分別形成在該等平面的一第一電極層與一 第二電極層,及形成在該第一 '第二電極層間的一液晶層 ’該第一電極層與該第二電極層分別以間隔方式形成有排 列的數區段’使該液晶層隨著電場變化,產生折射率之梯 度變化。 本發明的功效是在不改變曲率半徑的情形下,以折射 率的變化,達到調整調製傳遞函數(MTF)的目的。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖2、圖3,本發明液晶透鏡模組的一第一較佳實 施例包含二光學透鏡2’及一液晶單元3。 4 201248206 $ -亥等光學透鏡2分別具有形成在一側且相互面對而相 隔一間距20的-曲面⑹21,及形成在另一側且反向於該曲 面21的—平面(1^)22。該等曲面21的曲率半徑固定,且分 别朝相互遠離的方向凹陷而擴延該間距20。 該液晶單元3具有分別形成在該等曲面21的一第一電 極層31與一第二電極層32,及形成在該第一、第二電極層 間的液晶層33。該液晶| 33在本較佳實施例為垂直配向 液晶’在不通電時,液晶分子會與該第―、第二電極層Μ 32表面呈垂直狀態,在本較佳實施例,僅以中間位置的 液晶分子表示。 使用時,只需對該第一電極層31 '該第二電極層”施 加一電麗訊號,就能夠使該液晶層33中的液晶分子順著電 場方向偏轉,且前述液晶分子會因為與該第一電極層Η、 該第一電極層32距離不同,而有不同的偏轉角度使光線 通月!述液日日为子偏轉角度的不同,產生折射率之梯度變化 公式(1) 肌’·焦距 «:透鏡折射率 π2:透鏡曲率半徑 ’·透鏡厚度〜:液晶層折射率心:液晶層厚度 依據公式(1),可以知道,在該等光學透鏡2的曲率半 徑1Ί、q固定的情形下,若液晶層33折射率〜改變,會使 焦距產生微小的變化,且隨著該液晶層33内液晶分子 與該第一電極層31、該第二電極層32距離不同,有不同的 折射率〜,藉此’光線通過該液晶單元3且聚焦於一焦點 201248206 的光點量會有明顯的改善 (MTF)。 進而能夠改變調製傳遞函數 公式(2) 〇PD(光程差)=nxcj.......... n :折射率 d :厚度 依據公式⑺,可以知道,厚度d與光程差0PD成正比 關係若厚度d愈大’則隨著折射率”改變,會使光程差 ⑽的可調變幅度變大,藉此,能夠調整光程差,再進— 步改變調製傳遞函數(MTF)。 參閱圖4、ffi 5,分別是本發明一第二較佳實施例與― 第三較佳實施例,其與該第—較佳實施例大致相同,不同 處在於: 該等光學透鏡2分別具有形成在另一側且反向於該曲 面21的另-曲面23。該等曲面23的曲率半役时,且如 圖4所示,可以分別朝該曲面21的方向凹陷,或如圖5所 示’朝達離該曲面21的方向突出。 ,藉此,同樣可以在該等曲面21、23曲率半徑固定的情 形下,利用液晶層33 4斤射率”ic的改變,使焦距飢產生微 小的變化,進而改變調製傳遞函數(MTF),且同樣能夠調整 光程差。 值得一提的是,該第二、第三較佳實施例可與前述第 -較佳實施例具有相同的焦距聊,惟,該等較佳實施例的 差異在於前述液晶分子角度的變化,會造成像差不同。 參閱圖6、圖7,是本發明一第四較佳實施例,其與該 第一較佳實施例大致相同,不同處在於: 201248206 —該等光學透鏡2分別具有形成在一側面且曲率半徑固 疋的曲面24,及形成在另一側面的一平面25。 該液晶單元3具有分別形成在該等平面25的―第—電 極層31與-第二電極層32,及形成在該第_、第二電極層 間的-液晶層33。該第一電極層31與該第二電極層μ分 別以間隔方式形成有排列的數區段311、312。 Η 刀 參閱圖8,使用時,同樣只需對該第一電極層η、該 第—電極層32施加一電壓訊號,就能夠使該液晶層幻中 相對該等區段311、312的液晶分子順著電場方向偏轉’而 位於相鄰區段311、312間的液晶分子則維持不動,使部份 光線不可穿透’部份光線可穿透,且隨前述液晶分子偏轉 角度的不同’產生折射率之梯度變化,並達到光柵的效果 藉此,同樣能夠在該等光學透鏡2的曲率半徑固定的 情形下,利用液晶層33折射率〜的改變,使焦距肌產生 微小的變化,進而提升焦點上光點的細腻程度。 參閱圖9、® 10,及圖u,分別是本發明一第五較佳 實施例、-第六較佳實施例,及一第七較佳實施例,其與 該第一較佳實施例大致相同,不同處在於: ' 該等光學透鏡2分別具有形成在一側且相互面對而相 隔-間距20的-曲面⑹26,及形成在另—側且如圖9所示 的-平面⑹27’或如圖10所示呈凹陷的另一曲面⑹以, 或如圖11所示呈突出的另一曲面(Γ2)29。 藉此,不管該等光學魏2的造形如何變化同樣可 201248206 以淨]用液aB層33折射率%的改變,使焦距五產生微小的 變化’進而改變調製傳遞函數(MTF)。 據上所述可知,本發明之液晶透鏡模組具有下列優點 及功效: 本發明旎夠在不改變曲率半徑或移動位置的情形下, 利用液晶分子與該第一電極層31、該第二電極層32相對位 置的變化,產生不同的折射率,不但能夠調整光程差⑴pD) ,且能夠改變調製傳遞函數(MTF),使成像的解析度可以依 據需求變化,進而提升使用上的實用性。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一示意圖,說明一般的光學透鏡; 圖2是一剖視圖,制本發明一液晶透鏡模組的一第 一較佳實施例; 圖3是該第-較佳實施例調整折射率的—剖視圖; 圖4是一剖視圖,說明本發明一液晶透鏡模組的―第 二較佳實施例; 圖5是一剖視圖,說明本發明一液晶透鏡模組的一第 三較佳實施例; 圖6是-剖視圖,說明本發明一液晶透鏡模組的一第 8 201248206 四較佳實施例; 圖7是該第四較佳實施例中—光學透鏡的—正視圖; 圖8是該第四較佳實施例調整折射率的—剖視圖; 圖9疋-剖視圖,說明本發明一液晶透鏡模組的一 五較佳實施例; 圖10是-剖視圖,說明本發明一液晶透鏡模組的一 六較佳實施例;及 圖11是-剖視圖’說明本發明一液晶透鏡模組的— 七較佳實施例。 201248206 【主要元件符號說明】 2 ..........光學透鏡 20 .........間距 21 .........曲面 22 .........平面 23 .........曲面 24 .........曲面 25 .........平面 26 .........曲面 27 .........平面 28 .........曲面 29 .........曲面 3 ..........液晶單元 31 .........第一電極層 311 .......區段 32 .........第二電極層 321 .......區段 33 .........液晶層 10And a liquid crystal layer between the second electrode layers, such that the liquid crystal layer is a liquid crystal cell of the liquid crystal lens module of the present invention. The 箄 璺 reading 锫厶 as the electric field changes 'produces a gradient change in refractive index. The liquid crystal lens module of the present invention comprises two optical lenses and a liquid crystal cell. The optical lenses each have a curved surface formed on the opposite side and having a fixed radius of curvature, and a plane formed on the other side and facing each other. The liquid crystal cell has a first electrode layer and a second electrode layer respectively formed on the planes, and a liquid crystal layer formed between the first 'second electrode layer'. The first electrode layer and the second electrode layer The aligned number segments are formed in a spaced manner, respectively, such that the liquid crystal layer changes with an electric field, resulting in a gradient change in refractive index. The effect of the present invention is to achieve the purpose of adjusting the modulation transfer function (MTF) by changing the refractive index without changing the radius of curvature. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to Figures 2 and 3, a first preferred embodiment of the liquid crystal lens module of the present invention comprises two optical lenses 2' and a liquid crystal cell 3. 4 201248206 $-Hay optical lens 2 has a curved surface (6) 21 formed on one side and facing each other with a spacing 20, and a plane (1^) 22 formed on the other side and opposite to the curved surface 21 . The curved surfaces 21 have a fixed radius of curvature and are recessed toward each other to extend the pitch 20. The liquid crystal cell 3 has a first electrode layer 31 and a second electrode layer 32 respectively formed on the curved surface 21, and a liquid crystal layer 33 formed between the first and second electrode layers. The liquid crystal | 33 in the preferred embodiment is a vertical alignment liquid crystal. When the power is not applied, the liquid crystal molecules are perpendicular to the surfaces of the first and second electrode layers 32. In the preferred embodiment, only the intermediate position is present. The liquid crystal molecule is represented. In use, it is only necessary to apply a galvanic signal to the first electrode layer 31 'the second electrode layer ”, so that the liquid crystal molecules in the liquid crystal layer 33 can be deflected in the direction of the electric field, and the liquid crystal molecules are The first electrode layer Η, the first electrode layer 32 have different distances, and different deflection angles allow the light to pass through the moon! The liquid daily is the difference of the sub-deflection angle, and the gradient of the refractive index is generated (1) The muscle '· Focal length «: lens refractive index π2: lens curvature radius '·lens thickness 〜: liquid crystal layer refractive index center: liquid crystal layer thickness according to formula (1), it can be known that the curvature radius of the optical lens 2 is fixed, 1 Ί, q If the refractive index of the liquid crystal layer 33 is changed, the focal length will be slightly changed, and the liquid crystal molecules in the liquid crystal layer 33 have different refractions from the first electrode layer 31 and the second electrode layer 32. Rate ~, whereby the amount of light passing through the liquid crystal cell 3 and focusing on a focus 201248206 will be significantly improved (MTF). Further, the modulation transfer function formula (2) 〇 PD (optical path difference) = nxcj can be changed. .......... n: refractive index d: thickness According to formula (7), it can be known that the thickness d is proportional to the optical path difference 0PD. If the thickness d is larger, the change in the optical path difference (10) will be changed as the refractive index changes. Large, by which the optical path difference can be adjusted and the modulation transfer function (MTF) is further changed. Referring to FIG. 4 and FIG. 5, respectively, a second preferred embodiment and a third preferred embodiment of the present invention are substantially the same as the first preferred embodiment, except that the optical lenses 2 have A further curved surface 23 is formed on the other side and opposite to the curved surface 21. The curvature of the curved surface 23 is semi-duplicate, and as shown in Fig. 4, it may be recessed toward the curved surface 21, respectively, or as shown in Fig. 5 toward the direction of the curved surface 21. Therefore, in the case where the curvature surfaces of the curved surfaces 21 and 23 are fixed, the liquid crystal layer can be changed by the change of the MIC, so that the focal length hunger changes slightly, and the modulation transfer function (MTF) is changed. And the optical path difference can also be adjusted. It is worth mentioning that the second and third preferred embodiments can have the same focal length chatter as the foregoing preferred embodiment, but the difference between the preferred embodiments is that The change of the angle of the liquid crystal molecules causes different aberrations. Referring to FIG. 6 and FIG. 7, a fourth preferred embodiment of the present invention is substantially the same as the first preferred embodiment, and the difference lies in: 201248206 - The optical lens 2 has a curved surface 24 formed on one side and having a radius of curvature fixed, and a flat surface 25 formed on the other side. The liquid crystal cell 3 has a first electrode layer 31 formed on the plane 25 and a second electrode layer 32, and a liquid crystal layer 33 formed between the first and second electrode layers. The first electrode layer 31 and the second electrode layer μ are formed with a plurality of arrays 311 in a spaced manner, 312. 刀 Knife see Figure 8, using Similarly, only a voltage signal is applied to the first electrode layer η and the first electrode layer 32, so that the liquid crystal layer of the liquid crystal layer is deflected relative to the electric field direction of the segments 311 and 312. The liquid crystal molecules between the adjacent segments 311 and 312 are kept stationary, so that some of the light is impenetrable, and part of the light is transparent, and the gradient of the refractive index changes with the angle of deflection of the liquid crystal molecules, and reaches the grating. According to the same effect, in the case where the radius of curvature of the optical lens 2 is fixed, the change in the refractive index of the liquid crystal layer 33 can be used to cause a slight change in the focal length muscle, thereby improving the fineness of the spot on the focus. Referring to FIG. 9, FIG. 10, and FIG. 9 respectively, a fifth preferred embodiment, a sixth preferred embodiment, and a seventh preferred embodiment of the present invention are substantially similar to the first preferred embodiment. The same, the difference is: 'The optical lenses 2 respectively have a curved surface (6) 26 formed on one side and facing each other with a spacing of 20, and a - plane (6) 27' formed on the other side and as shown in FIG. As shown in Figure 10, the depression The other curved surface (6) is, or has another curved surface (Γ2) 29 protruding as shown in Fig. 11. Thereby, regardless of how the shape of the optical Wei 2 changes, the same can be used for the liquid layer ab layer 33 refractive index % The change causes the focal length five to produce a slight change' and then changes the modulation transfer function (MTF). According to the above, the liquid crystal lens module of the present invention has the following advantages and effects: The present invention is sufficient to not change the radius of curvature or move In the case of position, a change in the relative position of the liquid crystal molecules with the first electrode layer 31 and the second electrode layer 32 produces a different refractive index, which not only adjusts the optical path difference (1) pD), but also changes the modulation transfer function (MTF). ), so that the resolution of the image can be changed according to the demand, thereby improving the practicality of use. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a general optical lens; FIG. 2 is a cross-sectional view showing a first preferred embodiment of a liquid crystal lens module of the present invention; FIG. 3 is a first preferred embodiment. FIG. 4 is a cross-sectional view showing a second preferred embodiment of a liquid crystal lens module of the present invention; FIG. 5 is a cross-sectional view showing a third comparison of a liquid crystal lens module of the present invention. Figure 6 is a cross-sectional view showing an eighth embodiment of a liquid crystal lens module of the present invention; Figure 7 is a front view of the optical lens in the fourth preferred embodiment; Figure 4 is a cross-sectional view showing a preferred embodiment of a liquid crystal lens module of the present invention; and Figure 10 is a cross-sectional view showing a liquid crystal lens module of the present invention. A preferred embodiment of the present invention; and FIG. 11 is a cross-sectional view showing a preferred embodiment of a liquid crystal lens module of the present invention. 201248206 [Description of main component symbols] 2 .......... Optical lens 20 ......... Spacing 21 ......... Curve 22 .... .. plane 23 ......... surface 24 ... ... surface 25 ... ... plane 26 ... ... surface 27 .. .......plane 28 ......... curved surface 29 ......... curved surface 3 .......... liquid crystal unit 31 ... ...first electrode layer 311 .... section 32 .... second electrode layer 321 .... section 33 ........ Liquid crystal layer 10