201247016 六、發明說明: 【發明所屬之技術領域】 本發明一般而言係針對用於控制複數個光源之系統及方 法。更特定而言,本文中所揭示之各種發明性方法及裝置 係關於對多個固態光源之控制以提供具有一減小之閃爍率 之光。 【先前技術】 數位照明技術(亦即,基於諸如發光二極體(LED)等半導 體光源之照明)提供對傳統螢光燈、HID及白熾燈之一可行 替代方案^ LED之功能性優點及益處包括高能量轉換及光 學效率、财久性、較低操作成本及諸多其他優點及益處。 LED技術方面之最新進展已提供了可在諸多應用中實現各 種照明效果之高效且穩健之全光譜照明源。某些體現此等 源之燈具以一照明模組為特徵,該照明模組包括能夠產生 不同色彩(例如,紅色、綠色及藍色)之一或多個LED以及 用於獨立控制該等led之輸出以產生各種色彩及變色照明 效應之一處理器,舉例而言,如第6 016 038號及第 6,2 11,626號美國專利中之所詳細論述,該等美國專利以引 用方式併入本文中。 LED之亮度及色彩點可基於若干條件而變化。舉例而 言,LED之亮度位準及光譜分佈將隨LED之溫度改變而改 變。此外,LED之通量及峰值波長將隨LED老化而改變。 一般而言,使用一脈寬調變(PWM)信號控制LED操作。已 知方法採用使用LED溫度及通量量測之控制環路,LED溫 162865.doc 201247016 度及通量量測係提供至PWM控制器以維持之期望色彩 點及亮度位準。另夕卜,某些光模組允許使用者設定該模組 之色彩點及調光位準。 然而,使用PWM控制件可造成!^ED之基於所計算之作用 時間循環之迅速切換。此等切換循環可產生__高閃爍率且 造成相關聯之電力供應單元之高峰值負冑。電力供應單元 之可變負載亦造成機電應力,產生可聽見雜訊及額外之電 磁干擾。在專用照明應用中,高閃爍率可使光之品質降格 且可造成不需要之視覺贗像。舉例而言,若將該光源用於 一相機中,則雜訊及電磁干擾可造成不期望之影像抖動。 已知方法藉由將該PWM週期除以以該系統中之LED串之 數目來安排用於該等LED串之PWM控制信號之順序。此等 系統係靜態的且不解決LED輸出中之改變。此等系統亦不 相對於彼此基於PWM控制信號之作用時間循環來調整該等 信號。 因此’在此項技術中需要提供一種照明系統及方法,該 照明系統及方法將動態可調整脈寬調變電流信號提供至光 源以降低組合峰值電流’從而造成減少之閃爍率、雜訊及 電磁干擾。 【發明内容】 本發明係針對用於自一照明源提供照明之發明性方法及 裝置。舉例而言’複數個固態光源用於發射光。控制具有 一作用時間循環之一脈寬調變信號以發射一期望色彩點及 一期望光通量之光》相移該脈寬調變信號以減小提供至該 162865.doc 201247016 複數個固態光源之一組合峰值電流。 一般而言,在一個態樣中,提供一種用於產生光之照明 系統。該照明系統包括複數個固態光源及複數個驅動器, 該複數個驅動器中之每一者分別電耦合至該複數個固態光 源中之每一者。該照明系統亦包括一控制器,該控制器經 組態以分別產生用於該複數個驅動器中之每一者具有一作 用時間循環之-脈寬調變信號,彡中每一驅動器經組態以 基於該各別脈寬調變信號來將電流供應至該複數個固態光 源中之一相關聯固態光源。該控制器進一步經組態以分別 判定用於該複數個固態光源中之每一者之該脈寬調變信號 之一第一作用時間循環以提供該複數個固態光源之一期望 色彩點及期望光通量。該控制器進一步經組態以相移該 等各別脈寬調變信號以減小提供至該複數個驅動器用於該 複數個固態光源中之每一者在各別作用時間循環下之操作 之一組合峰值電流。 在某些實施例中,該控制器包括一輸入,該輸入經組態 以自該複數個固態光源接收—溫度回饋及—光通量回饋。 在至 > 個實施例中,該照明系統亦包括經組態以將電流 提供至該複數個驅動器之一電力供應單元。 在至少一個實施例中,該控制器進一步包括一作用時間 循環楱組,該作用時間循環模組經組態以藉由判定用於該 複數個固態光源中之每一者之該脈寬調變信號之一第二作 用時間循環來對溫度及光通量中之至少一者之改變作出回 ·"控制器進一步包括一相移模組,該相移模組經組態 162865.doc 201247016 以用該第二作用時間循環自動相移該等各別脈寬調變信號 以減小該組合峰值電流。在某些實施例中,作用時間循環 模組經組態以自動對該期望色彩點及該期望光通量令之至 少一者之改變作出回應以判定一第二作用時間循環。 在各種實施例中’該控制器包括—相移模組,該相移模 組經組態以相移該等各別脈寬調變信號且按該等各別脈寬 調變k號之一總和之一平均值判定該組合峰值電流。在至 少-個實施例中’該相移模組經組態以最小化該組合峰值 電流。在某些實施例中,該相移模組經組態以最小化該照 明系統之一閃爍率。在包括耦合至該複數個固態光源中之 每一者之一電力供應器之實施例中,該相移模組經組態以 最小化由該電力供應單元之操作產生之電磁干擾。 在一個態樣中,提供一種用包括複數個固態光源之一照 明源提供照明之方法。該方法包括分別產生用於該複數個 固態光源中之每一者之具有一作用時間循環之一脈寬調變 信號之一動作。該方法亦包括分別判定用於該複數個固態 光源中之每一者之該脈寬調變信號之一第一作用時間循環 以便以一期望色彩點及一期望光通量操作該複數個固態光 源之動作。該方法進一步包括相移該等各別脈寬調變信號 以減小當在該各別作用時間循環下操作時提供至該複數個 固態光源之一組合峰值電流之動作。 在一項實施例中,該方法包括回應於該複數個固態光源 之溫度及光通量中之至少一者之一改變而判定該脈寬調變 信號之一第二作用時間循環之一動作。在另外實施例中, 162865.doc •6 201247016 該方法亦包括用該第二作用時間循環相移該等各別脈寬調 變信號以減小該組合峰值電流之一動作。 在某些實施例中’該方法包括回應於該期望色彩點及該 期望光通量中之至少一者之一改變而判定該脈寬調變信號 之一第二作.用時間循環之一動作Q在另外實施例中’該方 法亦包括用該第二作用時間循環相移該等各別脈寬調變信 號以減小該組合峰值電流之一動作。 在另外實施例中,該方法包括藉由減小該等各別脈寬調 變信號之一總和之一平均值來減小該組合峰值電流之一動 作《在各種實施例中,該方法亦可包括相移該脈寬調變信 號以最小化該組合峰值電流之一動作。在某些實施例中, 該方法可進一步包括相移該脈寬調變信號以最小化該照明 源之一閃爍率之一動作。在各種實施例中,該方法可相移 該脈寬調變信號以最小化由該照明源產生之電磁干擾。 在某些實施例中,該方法包括藉由最大化該陣列中所包 括之相鄰作用時間循環之間的作用時間循環值之一差來組201247016 VI. Description of the Invention: [Technical Field of the Invention] The present invention is generally directed to systems and methods for controlling a plurality of light sources. More particularly, the various inventive methods and apparatus disclosed herein relate to control of a plurality of solid state light sources to provide light having a reduced scintillation rate. [Prior Art] Digital lighting technology (ie, illumination based on semiconductor light sources such as light-emitting diodes (LEDs)) provides a viable alternative to conventional fluorescent, HID and incandescent lamps. ^ Functional advantages and benefits of LEDs These include high energy conversion and optical efficiency, longevity, lower operating costs, and many other benefits and benefits. Recent advances in LED technology have provided efficient and robust full-spectrum illumination sources that enable a wide range of lighting effects in a wide range of applications. Some of the lamps embodying such sources are characterized by a lighting module that includes one or more LEDs capable of producing different colors (eg, red, green, and blue) and for independently controlling the LEDs. A processor that is output to produce a variety of color and color-changing illumination effects, for example, as discussed in detail in U.S. Patent Nos. 6,016,038, issued to U.S. Pat. In this article. The brightness and color point of the LED can vary based on a number of conditions. For example, the brightness level and spectral distribution of an LED will change as the temperature of the LED changes. In addition, the flux and peak wavelength of the LED will change as the LED ages. In general, a pulse width modulation (PWM) signal is used to control LED operation. The known method uses a control loop that uses LED temperature and flux measurements. The LED temperature is provided to the PWM controller to maintain the desired color point and brightness level. In addition, some optical modules allow the user to set the color point and dimming level of the module. However, using a PWM control can cause! ^ED is based on the calculated effect of the rapid switching of the time cycle. These switching cycles can produce a high __ high flicker rate and cause a high peak negative 相关 of the associated power supply unit. The variable load of the power supply unit also causes electromechanical stresses, producing audible noise and additional electromagnetic interference. In dedicated lighting applications, high scintillation rates degrade the quality of the light and can create unwanted visual artifacts. For example, if the light source is used in a camera, noise and electromagnetic interference can cause undesirable image jitter. The known method arranges the sequence of PWM control signals for the LED strings by dividing the PWM period by the number of LED strings in the system. These systems are static and do not address changes in the LED output. These systems also do not adjust the signals relative to each other based on the duty cycle of the PWM control signals. Therefore, there is a need in the art to provide an illumination system and method that provides a dynamically adjustable pulse width modulated current signal to a source to reduce combined peak currents, thereby resulting in reduced flicker rate, noise, and electromagnetics. interference. SUMMARY OF THE INVENTION The present invention is directed to an inventive method and apparatus for providing illumination from an illumination source. For example, a plurality of solid state light sources are used to emit light. Controlling a pulse width modulated signal having a period of time to emit a desired color point and a desired light flux phase shifting the pulse width modulated signal to reduce one of the plurality of solid state light sources provided to the 162865.doc 201247016 Combine the peak current. In general, in one aspect, an illumination system for producing light is provided. The illumination system includes a plurality of solid state light sources and a plurality of drivers, each of the plurality of drivers being electrically coupled to each of the plurality of solid state light sources, respectively. The lighting system also includes a controller configured to generate a pulse width modulation signal for each of the plurality of drivers having a duty cycle, each of the drives being configured Current is supplied to one of the plurality of solid state light sources associated with the solid state light source based on the respective pulse width modulation signal. The controller is further configured to determine a first time period of the pulse width modulation signal for each of the plurality of solid state light sources to provide a desired color point and desired for the plurality of solid state light sources Luminous flux. The controller is further configured to phase shift the respective pulse width modulation signals to reduce operation provided to the plurality of drivers for each of the plurality of solid state light sources under respective action time cycles A combined peak current. In some embodiments, the controller includes an input configured to receive from the plurality of solid state light sources - temperature feedback and - luminous flux feedback. In the > embodiment, the lighting system also includes a power supply unit configured to provide current to the plurality of drivers. In at least one embodiment, the controller further includes an active time loop group configured to determine the pulse width modulation for each of the plurality of solid state light sources One of the signals is circulated for a second period of time to make a change to at least one of the temperature and the luminous flux. The controller further includes a phase shifting module configured to use 162865.doc 201247016 to The second active time cycle automatically phase shifts the respective pulse width modulation signals to reduce the combined peak current. In some embodiments, the active time loop module is configured to automatically respond to a change in at least one of the desired color point and the desired luminous flux to determine a second active time cycle. In various embodiments, the controller includes a phase shifting module configured to phase shift the respective pulse width modulation signals and to modulate one of the k numbers by the respective pulse widths. One of the sum averages determines the combined peak current. In at least one embodiment, the phase shifting module is configured to minimize the combined peak current. In some embodiments, the phase shifting module is configured to minimize one of the illumination systems' scintillation rates. In embodiments including a power supply coupled to one of the plurality of solid state light sources, the phase shifting module is configured to minimize electromagnetic interference generated by operation of the power supply unit. In one aspect, a method of providing illumination by a source comprising a plurality of solid state light sources is provided. The method includes separately generating one of a plurality of pulse width modulation signals for each of the plurality of solid state light sources having a duty cycle. The method also includes determining, for each of the plurality of solid state light sources, a first time period of the pulse width modulation signal to operate the plurality of solid state light sources with a desired color point and a desired luminous flux. . The method further includes phase shifting the respective pulse width modulation signals to reduce an action of providing a combined peak current to one of the plurality of solid state light sources when operating in the respective action time cycle. In one embodiment, the method includes determining one of the second active time periods of the pulse width modulation signal in response to a change in at least one of a temperature and a luminous flux of the plurality of solid state light sources. In still other embodiments, 162865.doc •6 201247016 The method also includes cyclically shifting the respective pulse width modulation signals with the second active time to reduce one of the combined peak currents. In some embodiments, the method includes determining one of the pulse width modulation signals in response to a change in at least one of the desired color point and the desired luminous flux. In another embodiment, the method also includes cyclically shifting the respective pulse width modulation signals by the second active time to reduce one of the combined peak currents. In still other embodiments, the method includes reducing one of the combined peak currents by reducing an average of one of the sum of the respective pulse width modulated signals. In various embodiments, the method can also A phase shifting the pulse width modulation signal is included to minimize one of the combined peak currents. In some embodiments, the method can further include phase shifting the pulse width modulation signal to minimize one of the illumination sources. In various embodiments, the method phase shifts the pulse width modulated signal to minimize electromagnetic interference generated by the illumination source. In some embodiments, the method includes grouping by maximizing a difference in the action time cycle value between adjacent action time cycles included in the array
——一 / 柯田忧碌寻谷別脈寬調變信號之 中所包括之一時槽之一開始匹配來——一 / Ketian sorrowful search for one of the pulse width modulation signals included in one of the time slots began to match
一者之一動作。 在is脈寬調變週期内定位該等各別脈寬調變信號中之每 在至少一個實施例中, 該方法包括判定是否該等各別脈One of the actions. Locating each of the respective pulse width modulation signals during an is pulse width modulation period. In at least one embodiment, the method includes determining whether the respective pulses are different
162865.doc 201247016 週期内之一共同時間處之一動作。 在-個態樣中,提供-種電腦可讀媒體。該電腦可讀媒 體編碼有用於在m上執行之n #在該處理器 上執行該程式時’該程式實施自具有複數個固態光源之一 照明源提供照明之-方法。該方法包括分別產生用於該複 數個固態光源中之每-者之具有—作用時間循環之一脈寬 調變信號之一動作或多個㈣。該方法亦包括分別判定用 於該複數個固態光源中之每一者之該脈寬調變信號之一第 一作用時間循環以便以一期望色彩點及一期望光通量操作 該複數個固態光源之一動作。該方法進一步包括相移該等 各別脈寬調變信號以減小當在該各別作用時間循環下操作 時提供至該複數個固態光源之一組合峰值電流之一動作。 在某些實施例中,該程式實施包括相移該脈寬調變信號 以最小化該組合峰值電流之一動作之一方法。在至少一個 實施例中’該程式實施包括如下動作之一方法:回應於該 複數個固態光源之溫度及光通量中之至少一者之一改變而 判定該脈寬調變信號之一第二作用時間循環;及用該第二 作用時間循環相移該等各別脈寬調變信號以減小該組合峰 值電流。 在各種實施例中’該程式實施包括如下動作之一方法: 回應於該期望色彩點及該期望光通量中之至少一者之一改 變而判定該脈寬調變信號之一第二作用時間循環;及用該 第二作用時間循環相移該等各別脈寬調變信號以減小該組 合峰值電流。 162865.doc 201247016 在至少-個實施例中’該程式實施包括如下—動作之一 方法··藉由最大化該陣列中所包括之相鄰作用時間循環之 間的作用時間循環值之—差來組織該等各別作用時間循環 之-陣列。該程式可實施包括如下動作之一方法:基於該 陣列中之成員之-數目判;^複數個時槽;及藉由使該 別脈寬調變信號之一中點與該複數個時槽中中所包括之一 時槽之-開始匹配來於一總脈寬調變週期内定位該 脈寬調變信號中之每一者。 如本文中出於本發明之目的所使用,術語「咖」應理 解為包含任-電致發光二極體或能夠回應於一電信號而產 生輕射之其他類型之基於載流子注入/接面之系統。因 此,術語LED包含(但不限於)回應於電流發射光之各種基 於半導體之結構、|光聚合物、有機發光二極體 (〇LED)、電致發光條等等。特定而言,術語LED指代可經 組態以產生在紅外線光譜、紫外線光譜及可見光譜般 包括自大約400奈米至大約7〇〇奈米之輻射波長)之各個部 分中之一或多者中之輻射之所有類型之發光二極體(包括 半導體及有機發光二極體)。LED之某些實例包括(但不限 於)各種類型之紅外線LED、紫外線LED、紅色LED、藍色 LED、綠色LED、黃色LED、號&色LED、燈色LED及白 色LED(下文進-步論述)。亦應瞭解,LED可經組態及/或 控制以產生具有一既定光譜(例如,窄頻寬、寬頻寬)之各 種頻寬(例如,半峰全寬或FWHM)及一既定通用色彩分類 内之各種各樣主波長之賴射。 162865.doc -9- 201247016 舉例而言,經組態以產生本質白色光之一LED之一項實 施方案(例如,-白色LED)可包括若干個晶粒,該等晶粒 分別發射不同電致發光光譜,該等光譜以組合方式混合以 形成本質白色光。在另-實施方案中,一白色光led可與 一磷光體材料相關聯,該磷光體材料將具有一第一光譜之 電致發光轉換成一不同第二光譜。在此實施方案之一項實 例中,具有一相對短波長及窄頻寬光譜之電致發光「抽 吸」該磷光體材料,而該磷光體材料又輻射具有一稍微較 寬光譜之較長波長輻射。 亦應理解,術語LED並不限制一LED之實體及/或電封裝 類型。舉例而言,如以上所論述,一 LED可指代具有經組 態以分別發射不同輻射光譜之多個晶粒(例如,其可係或 可不係可個別控制的)之一單個發光器件。此外,一 LED可 與被認為係該LED (例如,某些類型之白色LED)之一整體 4分之一磷光體相關聯。一般而言,術語LED可指代經封 裝LED、非經封裝LED、表面安裝LED、板上晶片lED、τ 封裝安裝LED、徑向封裝LED、功率封裝LED,包含某一 類型之外罩及/或光學元件(例如,一漫射透鏡)之led等。 術语「光源」應理解為指代各種輻射源中之任何一或多 者,其包括(但不限於):基於LED之源(包括如以上所界定 之或多個LED)、白熾源(例如,鎢絲燈、鹵素燈)、螢光 源、磷光源、高強度放電源(例如,鈉汽燈、汞汽燈及金 屬i素燈)、雷射、其他類型之電致發光源、焦發光源(例 如,火焰)、燭發光源(例如,汽燈紗罩、碳弧輻射源)、光 16286S.doc •10· 201247016 發光源(例如’氣體放電源)、使用電子飽合之陰極發光 源、電流發光源、晶體發光源、顯像管發光源(kine_ luminescent source)、熱發光源、摩擦發光源、聲發光 源、輻射發光源及發光聚合物。 一既定光源可經組態以產生在可見光譜内、可見光譜外 或兩者之一組合内之電磁輻射。因此,本文中可互換地使 用術語「光」及「輻射」。另外,一光源可包括作為一整 體組件之一或多個濾光器(例如,濾色器)、透鏡或其他光 學組件。此外,應理解,光源可經组態以用於各種應用, 包括(彳旦不限於)指示、顯示及/或照明。一「照明源」係經 特定組態以產生具有一充足強度之輻射以有效地照明一内 部或外部空間之一光源。在此上下文中,「充足強度」指 代於空間或環境中所產生的在可見光譜中之充足輻射功率 (就輻射功率或「光通量」而言,通常採用單位「流明」 來表7T、來自一光源之所有方向之總光輸出)以提供周圍照 明(亦即,可間接感知之光及(舉例而言)在被完全或部分感 知之前可被各種各樣介入表面中之一或多者反射之光)。 術語「光譜」應理解為指代由一或多個光源產生之輻射 之任何一或多種頻率(或波長)。因此,術語「光譜」指代 不僅在可見範圍中之頻率(或波長)而且在紅外區域、紫外 區域及總電磁光譜之其他區域中之頻率(或波長)。另外, 一既疋光譜可具有-相對窄頻寬(例h,具有本質上甚少 頻率或波長組分之—FWHM)或一相對寬頻寬(具有各種相 子強夂之數個頻率或波長組分卜亦應瞭解,—既定光譜 162865.doc 201247016 可係兩個或兩個以上其他光譜之一混合之結果(例如,混 合分別自多個光源發射之輻射)。 出於本發明之目的,術語「色彩」與術語「光譜」可互 換使用。然而’術語「色彩」一般用於主要指代一觀察者 可感知之輻射之一性質(但此用法不意欲限制此術語之範 脅)°因此’術語「不同色彩」暗中指代具有不同波長組 分及/或頻寬之多個光譜。應瞭解,術語「色彩」可與白 色光及非白色光結合使用。 術語「色溫」在本文中一般與白色光結合使用,但此用 法並不意欲限制此術語之範疇。色溫本質上指代白色光之 一特定顏色内容或陰影(例如,淡紅色、淺藍色)β慣例 上’根據輻射與所討論之輻射樣本本質上相同光譜的一黑 體輕射體之以開爾文度(κ)為單位之溫度來表徵一既定輻 射樣本之色溫。黑體輻射體色溫一般介於在自大約開氏 700度(通常視為人眼首先可見)至超過開氏i〇 〇〇〇度之一範 圍内;白色光一般係在高於開氏1500度至開氏2000度之色 溫下所感知的。 本文中使用術語「照明燈具」來指代呈一特定外觀尺 寸、總成或封裝之一或多個照明單元之一實施方案或配 置。本文中使用術語「照明單元」來指代包括一或多個相 同或不同類型光源之一裝置。一既定照明單元可具有用於 (該4)光源之各種各樣安裝配置、封殼/外殼配置及形狀及/ 或電及機械連接組態中之任一者。另外,一既定照明單元 可視情況而與各種與(該等)光源操作相關之其他組件(例 162865.doc •12· 201247016 如’控制電路)相關聯(例如,包括、耦合至及/或與..·封穿 在一起)。—「以基於led之照明單元」指代包括如以上所 論述之一或多個基於led之光源(其係單獨或與其他非基於 LED之光源組合)之一照明單元。一「多通道」照明單元指 代包括經組態以分別產生不同輻射光譜之至少兩個光源之 一基於LED或非基於LED之照明單元,其中每一不同源光 譜可稱作該多通道照明單元之一「通道」。 本文中使用術語「控制器」一般來闡述與一或多個光源 之操作相關之錄裝置。可以諸多方式(諸如藉助專用硬 體)實施一控制器以實施本文中所論述之各種功能。一 「處理器」係採用可使用軟體(例如,微碼)予以程式化以 實施本文中所論述之各種功能之-或多個微處理器之一控 制器之-項實例。一控制器可在採用一處理器或不採用一 處理器之情形下實施’且亦可實施為用於實施某些功能之 專用硬體與用於實施其他功能之—處理器(例如,一或多 個經程式化微處理器及相關聯電路)之-組合。可用於本 發明之各種實施例中之控制器組件之實例包括但不限於: 習用《理ϋ、專用㈣電路(ASIC)及現場可程式 列(FPGA)。 在各種實施方案中,一虚+ 處理或控制器可與一或多個傷 存媒體(一般在本文令稱作「 π ^隐體」,例如,揮發性及$ 揮發性電腦記憶體,諸 堵如 Ram、PR0M、EPR〇M 及 EEPROM、軟磁碟、壓狳戚 京此訾你方㈣ 縮磁碟、光碟、磁碟等)相關聯。在 某些負施方案中,可用者尤 ^ , 用田在一或多個處理器及/或控制器 )62865.doc •13· 201247016 上執行時實施本文中所論述之功能中之至少某些之一或多 個程式來編碼該儲存媒體。各種儲存媒體可固定於一處理 器或控制器内或可係可攜式的,使得可將儲存於其上之一 或多個程式載入至一處理器或控制器中.以便實施本文中所 論述之本發明之各種態樣。本文中使用術語「程式」或 「電腦程式」在一一般意義上指代可經採用來程式化一或 多個處理器或控制器之任一類型之電腦碼(例如,軟體或 微碼)。 本文中所用術語「網路」指代兩個或兩個以上器件(包 括控制器或處理器)之促進在任何兩個或兩個以上器件之 間及/或在耦合至該網路之多個器件之間的(例如,用於器 件控制 '資料儲存、資料交換等)資訊之運輸之任何互 連。如應容易地瞭解,適於互連多個器件之網路之各種實 施方案可包括各種網路拓撲中之任—者及採用各種通信協 定之任一者。另外,在根據本發明之各種網路中,兩個器 件之間的任一個連接可表示該兩個系統之間的專用連接或 另一選擇係表示一非專用連接。除載送既定用於該兩個器 件之資訊之外,此一非專用連接可載送未必既定用於該兩 個器件中之任一者之資訊(例如,一開放式網路連接卜此 外,應容易瞭解,本文_所論述之各種器件網路可採用一 或多個無線、有線/電纜及/或光纖連結來促進遍及該網路 之資訊運輸。 本文中所用術語「使用者介面」指代一人類使用者或操 作者與一或多個器件之間實現該使用者與該(等)器件之間 162865.doc •14· 201247016 的通信之一介面。本發明之各種實施方案中可採用之使用 者介面之實例包括但不限於:交換器、電位計、按鈕、撥 號盤、滑動器、一滑鼠、鍵盤、小鍵盤、各種類型之遊戲 控制器(例如,操縱桿)、追蹤球、顯示螢幕、各種類型之 圖形使用者介面(GUI)、觸控螢幕、麥克風及可接收某一 形式之人類所產生刺激且回應於此而產生一信號之其他類 型之感測器。 應理解,術語「基色」指代由一離散光源提供之任一色 彩,無論其係由一色彩LED、一磷光體單獨提供還是與一 濾光器、透鏡或其他光學組件組合提供。一基色包括可與 至夕種其他基色組合以形成一副色之任何色彩。應瞭 解,術語「基色」可與發射任一頻率之輻射之一離散光源 結合使用。162865.doc 201247016 One of the actions at a common time in the cycle. In one aspect, a computer readable medium is provided. The computer readable medium is encoded with n for execution on m. When the program is executed on the processor, the program is implemented by providing illumination from an illumination source having a plurality of solid state light sources. The method includes separately generating one or more (four) one of a pulse width modulation signal for each of the plurality of solid state light sources having an active time cycle. The method also includes determining, for each of the plurality of solid state light sources, a first time period of the pulse width modulation signal to operate the one of the plurality of solid state light sources with a desired color point and a desired luminous flux action. The method further includes phase shifting the respective pulse width modulation signals to reduce one of the combined peak currents provided to one of the plurality of solid state light sources when operating in the respective action time cycle. In some embodiments, the program implements a method that includes phase shifting the pulse width modulation signal to minimize one of the combined peak currents. In at least one embodiment, the program implementation includes a method of determining a second duration of the pulse width modulation signal in response to a change in at least one of a temperature and a luminous flux of the plurality of solid state light sources Looping; and cyclically shifting the respective pulse width modulation signals with the second active time to reduce the combined peak current. In various embodiments, the program implementation includes one of the following acts: determining one of the pulse width modulation signals for a second duration of time in response to a change in at least one of the desired color point and the desired luminous flux; And sequentially shifting the respective pulse width modulation signals by the second active time to reduce the combined peak current. 162865.doc 201247016 In at least one embodiment, the program implementation includes the following method: by maximizing the difference between the action time cycle values between adjacent action time cycles included in the array. Organize these arrays of individual time cycles. The program may implement a method including one of: determining a plurality of time slots based on a number of members in the array; and by making a midpoint of the other pulse width modulation signal and the plurality of time slots One of the time slots is included to begin matching to locate each of the pulse width modulation signals during a total pulse width modulation period. As used herein for the purposes of the present invention, the term "coffee" shall be taken to include any type of carrier-injection/connection that includes any-electroluminescent diode or that is capable of producing a light shot in response to an electrical signal. The system of the face. Thus, the term LED includes, but is not limited to, various semiconductor-based structures, photopolymers, organic light-emitting diodes (〇LEDs), electroluminescent strips, and the like, in response to current-emitting light. In particular, the term LED refers to one or more of the various portions that can be configured to produce a wavelength of radiation ranging from about 400 nanometers to about 7 nanometers in the infrared spectrum, the ultraviolet spectrum, and the visible spectrum. All types of light-emitting diodes (including semiconductors and organic light-emitting diodes). Some examples of LEDs include, but are not limited to, various types of infrared LEDs, ultraviolet LEDs, red LEDs, blue LEDs, green LEDs, yellow LEDs, number & color LEDs, light LEDs, and white LEDs (below) Discussion). It should also be appreciated that LEDs can be configured and/or controlled to produce various bandwidths (eg, full width at half maximum or FWHM) having a predetermined spectrum (eg, narrow bandwidth, wide bandwidth) and within a given universal color classification. The various wavelengths of the main wavelength. 162865.doc -9- 201247016 For example, an embodiment of an LED configured to produce intrinsic white light (eg, a white LED) can include a plurality of dies that respectively emit different electroluminescence Luminescence spectra that are combined in a combined manner to form essentially white light. In another embodiment, a white light LED can be associated with a phosphor material that converts electroluminescence having a first spectrum into a different second spectrum. In one embodiment of this embodiment, electroluminescence having a relatively short wavelength and narrow bandwidth spectrum "sucks" the phosphor material, and the phosphor material in turn radiates a longer wavelength having a slightly broader spectrum radiation. It should also be understood that the term LED does not limit the physical and/or electrical package type of an LED. For example, as discussed above, an LED can refer to a single light emitting device having a plurality of dies that are configured to respectively emit different radiation spectra (e.g., which may or may not be individually controllable). In addition, an LED can be associated with one-fourth of the phosphor that is believed to be one of the LEDs (e.g., certain types of white LEDs). In general, the term LED can refer to a packaged LED, a non-encapsulated LED, a surface mount LED, an on-board wafer lED, a τ package mounted LED, a radially packaged LED, a power package LED, including a certain type of cover and/or LED or the like of an optical element (for example, a diffusing lens). The term "light source" is understood to mean any one or more of a variety of radiation sources including, but not limited to, LED based sources (including as defined above or multiple LEDs), incandescent sources (eg , tungsten light, halogen lamp), fluorescent light source, phosphor light source, high-intensity discharge power source (for example, sodium vapor lamp, mercury vapor lamp and metal lamp), laser, other types of electroluminescence source, coke source (for example , flame), candle light source (for example, steam lamp cover, carbon arc radiation source), light 16286S.doc •10· 201247016 light source (such as 'gas discharge source), using electronically saturated cathodoluminescence source, current illumination source, A crystal light source, a kine_ luminescent source, a thermal light source, a rubbing light source, an acoustic light source, a radiation light source, and a light emitting polymer. A given source of light can be configured to produce electromagnetic radiation within the visible spectrum, outside the visible spectrum, or a combination of both. Therefore, the terms "light" and "radiation" are used interchangeably herein. Additionally, a light source can include one or more filters (e.g., color filters), lenses, or other optical components as an integral component. Moreover, it should be understood that the light source can be configured for a variety of applications including, but not limited to, indication, display, and/or illumination. An "illumination source" is specifically configured to produce radiation having a sufficient intensity to effectively illuminate a source of light within an interior or exterior space. In this context, "sufficient intensity" refers to sufficient radiated power in the visible spectrum produced in space or in the environment (in terms of radiated power or "luminous flux", the unit "lumen" is usually used to represent 7T, from one The total light output of all directions of the light source) to provide ambient illumination (ie, light that can be indirectly perceived and, for example, reflected by one or more of a variety of interventional surfaces before being fully or partially perceived) Light). The term "spectrum" is understood to mean any one or more frequencies (or wavelengths) of radiation produced by one or more light sources. Thus, the term "spectrum" refers to a frequency (or wavelength) that is not only in the frequency (or wavelength) in the visible range but also in the infrared region, the ultraviolet region, and other regions of the total electromagnetic spectrum. In addition, an 疋 spectrum may have a relatively narrow bandwidth (eg, h, having substantially less frequency or wavelength components - FWHM) or a relatively wide bandwidth (several frequencies or wavelength groups with various phase intensities) It should also be understood that the established spectrum 162865.doc 201247016 may be the result of mixing one of two or more other spectra (eg, mixing radiation emitted from multiple sources). For the purposes of the present invention, the term "Color" is used interchangeably with the term "spectrum." However, the term "color" is generally used to refer primarily to one of the types of radiation that an observer perceives (but this usage is not intended to limit the scope of the term). The term "different colors" refers to multiple spectra with different wavelength components and/or bandwidth. It should be understood that the term "color" can be used in combination with white light and non-white light. The term "color temperature" is generally used in this paper. White light is used in combination, but this usage is not intended to limit the scope of this term. Color temperature essentially refers to one of the white light's specific color content or shadow (eg, light red, light blue). The color temperature of a given radiation sample is characterized by the temperature in terms of Kelvin (k) based on the radiation of a black body light body of the same spectrum as the radiation sample in question. The color temperature of the black body radiator is generally between Kelvin 700 degrees (usually considered the human eye first visible) to more than one degree of Kelvin; white light is generally perceived at a color temperature higher than 1500 degrees Kelvin to 2000 degrees Kelvin The term "lighting fixture" is used herein to refer to an embodiment or configuration of one or more lighting units in a particular apparent size, assembly or package. The term "lighting unit" is used herein to refer to either one or a plurality of devices of the same or different types of light sources. A given lighting unit may have any of a variety of mounting configurations, enclosure/housing configurations and shapes, and/or electrical and mechanical connection configurations for the (4) light source. In addition, a given lighting unit may be associated with various other components related to the operation of the light source (eg, 162865.doc • 12· 201247016 such as 'control circuit') (eg, Included, coupled to, and/or enclosed with .. · "LED-based lighting unit" refers to one or more LED-based light sources as discussed above (which are separate or in other non- A lighting unit based on a combination of LEDs. A "multi-channel" lighting unit refers to an LED-based or non-LED-based lighting unit that includes one of at least two light sources configured to generate different radiation spectra, respectively. Different source spectra may be referred to as one of the "channels" of the multi-channel illumination unit. The term "controller" is used herein to generally describe a device associated with the operation of one or more light sources. There are many ways (such as with dedicated hardware) Implementing a controller to implement the various functions discussed herein. A "processor" is a program that can be programmed with software (eg, microcode) to implement the various functions discussed herein - or multiple microprocessors One of the controller's - item instances. A controller may be implemented with or without a processor and may also be implemented as a special purpose hardware for implementing certain functions and a processor for performing other functions (eg, one or A combination of a plurality of programmed microprocessors and associated circuits. Examples of controller components that may be used in various embodiments of the invention include, but are not limited to: conventional "technology, dedicated (four) circuits (ASIC), and field programmable arrays (FPGA). In various embodiments, a virtual + processing or controller may be associated with one or more injure media (generally referred to herein as "π ^crypto", eg, volatile and volatile computer memory, Such as Ram, PR0M, EPR 〇 M and EEPROM, floppy disk, 狳戚 訾 訾 訾 方 方 方 ( ( ( 四 四 四 四 四 四 四 四 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In some negative implementations, at least some of the functions discussed herein are implemented when executed on one or more processors and/or controllers) 62865.doc • 13· 201247016 One or more programs to encode the storage medium. Various storage media may be fixed in a processor or controller or may be portable such that one or more programs stored thereon may be loaded into a processor or controller for implementation herein. Various aspects of the invention are discussed. The term "program" or "computer program" as used herein refers to a computer code (e.g., software or microcode) of any type that can be employed to program one or more processors or controllers. The term "network" as used herein refers to the promotion of two or more devices (including controllers or processors) between any two or more devices and/or to multiple networks coupled to the network. Any interconnection between devices (eg, for device control 'data storage, data exchange, etc.) information transport. As should be readily appreciated, various implementations of networks suitable for interconnecting multiple devices can include any of a variety of network topologies and employ any of a variety of communication protocols. Additionally, in various networks in accordance with the present invention, either connection between two devices may represent a dedicated connection between the two systems or another selection may represent a non-dedicated connection. In addition to carrying information intended for the two devices, this non-dedicated connection can carry information that is not necessarily intended for either of the two devices (eg, an open network connection, in addition, It should be readily understood that the various device networks discussed herein may employ one or more wireless, wire/cable, and/or fiber optic connections to facilitate the transport of information throughout the network. The term "user interface" is used herein to refer to An interface between a human user or operator and one or more devices to enable communication between the user and the device, 162865.doc • 14· 201247016. Various embodiments of the invention may be employed Examples of user interfaces include, but are not limited to, switches, potentiometers, buttons, dials, sliders, a mouse, keyboard, keypad, various types of game controllers (eg, joysticks), trackballs, displays Screens, various types of graphical user interfaces (GUIs), touch screens, microphones, and other types that can receive stimulation from a form of human being and respond to this and generate a signal It should be understood that the term "primary color" refers to any color provided by a discrete source of light, whether provided by a color LED, a phosphor alone, or in combination with a filter, lens or other optical component. A primary color includes any color that can be combined with other primary colors to form a secondary color. It will be appreciated that the term "primary color" can be used in conjunction with discrete light sources that emit radiation of either frequency.
術語「脈寬調變」或PWM應理解為指代用於控制至LED 之電力之-通常使用之技術。藉由「接通」或「關斷」輸 入電力且產生固定振幅及頻率之一輸出信號之控制器來產 生一 PWM信號。輸出脈寬調變電力之平均值與輸入信號之 平均值相同。 ,應理解,術語「作用時間循環」指代與輸入電力之有規 律間隔或全循環成比例之「接通」時間之週期。以百分數 表達作用時間循環。 應瞭解,前述概念與下文更詳細地論述之額外概念之所 有組合(只要此等概念並非互相矛盾)係作為本文所揭示之 發明性標的物之-部分而被涵蓋。特定而言,出現於本發 162865.doc •15- 201247016 ㈣祕之所^標的物之所有組合㈣為本 之發明性標的物之-部分而被涵蓋。亦應瞭解,亦可= 於以引用方式併人之任-揭示内容中之本文中所明確=用 之術語應被賦予與本文所揭示之特定概念最為 【實施方式】 在圖式中’相似參考字元一般指代所有不同視圖中之相 同部分。此外,圖式未必按比例繪製,而重點—般在於圖 解說明本發明之原理。 在藉由脈寬調變(PWM)信號控制之照明系統中,高閃燦 率及相關聯電力供應單元之不需要高峰值負載仍然係一問 題。申請人已認識到且瞭解到減小至光源之脈寬調變信號 之組合電流將係有益的。鑒於前述内容,本發明之各種實 施例及實施方案係針對以一種減小組合峰值電流之方式動 態地相移PWM控制信號而因此減小光源之高閃爍率及電力 供應單兀之不需要高峰值負載之照明系統及方法。 參照圖1,在一項實施例中,一照明系統1〇〇包括一控制 器102、複數個固態光源丨04、複數個電流驅動器1 〇6及一 電力供應單元108。控制器1 〇2、光源1 〇4、電流驅動器1 〇6 係單獨地展示,然而,如應瞭解,此等元件可係併入於一 個照明單元中。控制器1〇2、光源104中之每一者及電流驅 動器106中之每一者及電力供應單元108包括一或多個輸入 及輸出。 根據圖1中所圖解說明之實施例,電力供應單元1〇8之輸 162865.doc -16· 201247016 出分別電耦合至電流驅動器i 06中之每一者之輸入。電流 驅動器106之輸出中之每一者電耦合至光源1〇4之一對應輸 入。每一電流驅動器106具有用於接收控制器1〇2之輸出之 一輸入。控制器102包括用於接收來自光源1〇4之回饋之若 干輸入以及用與接收使用者所定義之設定之若干輸入。如 所展示,照明系統100包括經產生用於(η個)電流驅動器i 〇6 之大量(η個)PWM控制信號,其中每一電流驅動器1〇6 (1_ η)對應於一各別光源1〇4 (1-η)。 電力供應單元108提供電力以驅動照明系統1〇〇之組件。 電流驅動器106之輸入中之每一者自電力供應單元1〇8接收 電力。電流驅動器106基於自控制器102接收之一各別pwM 控制信號而將電流提供至對應光源104之輸入。控制器1〇2 基於所接收之回饋及使用者所定義之設定而產生用於光源 104之PWM控制信而號以產生一期望之色彩點及期望之光 通量之光。光源104之所得操作提供期望之色彩點及光通 量之光。 每-·光源104可包括發射諸如紅色 '綠色、藍色、青 色、琥珀、寶藍色、深紅色或白色以及其他色等一基色之 光之一或多個LED。該等LED可係用穹頂囊封,或可不囊 封。在一項實施例中,每一光源1〇4包括具有複數個LED 之一串。在另一實施例中,一串令所包括之LED皆係為相 同色彩。在一項實施例中,該串令所包括之LED包括複數 個光之基色,該等基色可經混合以提供具有一期望色彩點 及色溫之經混合之白色光°在另一實施例中,led係用作 162865.doc • 17· 201247016 一背光使得來自紅色、綠色及藍色LED之光經混合以將同 質光提供至一顯示器之背表面。 在某些實施例中,照明系統〗〇〇中包括複數個光源丨〇4, 其中複數個光源1 〇4中之每一者經組態以發射一不同基色 之光。在一項實施例中,包括18 (n=18)個光源1〇4,其中 光源104包括三個紅色led串、五個琥珀色LED串、六個藍 色LED串及四個白色LED串。如應瞭解,可採用複數個光 源之其他組態。 在一項實施例中,電力供應單元1〇8電耦合至電流驅動 器106且將電力供應至光源1〇4❶電力供應單元1〇8可經組 態以接收AC線電壓且可將一經濾波、按比例變化且經調 節之DC電壓供應至電流驅動器1〇6。電力供應單元1〇8可 包括一整流器、一低通濾波器及/或經組態以將經調節之 輸出電力提供至電流驅動器1〇6之其他電路。在其他實施 例中,電力供應單元108可經組態與其他類型之輸入電源 (例如,D.C.電源)一起使用。 電流驅動器106可實施為DC/DC轉換器且調節來自電力 供應單元108之電壓以提供電流用於驅動光源丨〇4。dc/DC 轉換器可包括積體電路、電晶體及主動及/或被動組件之 任何其他組合。該DC/DC轉換器可經配置以降壓組態、升 壓組態、降壓-升壓組態或可經採用用於供應電流(舉例而 言,藉由提供一 PWM電流信號)以驅動光源1〇4之其他電路 拓撲來與基於LED之光源104 —起配置。電流驅動器1〇6可 進一步採用包括一或多個電壓至電流轉換器之驅動器電 162865.doc 201247016 路。該驅動電路可經組態使得每一光源1〇4與將一對應電 流提供至光源104之一電壓至電流轉換器相關聯。 根據一項實施例,控制器102基於一相移模組丨12、一作 用時間循環模組110且使用一PWM模組114所產生之PWM 控制信號之操作來控制光源104之操作。在一項實施例 中,作用時間循環模組11 〇、相移模組112及PWM模組114 包括一或多個輸入及輸出。作用時間循環模組110之輸出 係連接至相移模組112之輸入。相移模組112之輸出係連接 至PWM模組114之輸入。在另一實施例中,pWM模組114 之輸入係連接至作用時間循環模組丨1〇之輸出及相移模組 112之輸出兩者。 在各種實施例中,照明系統100亦可包括提供關於光源 104之資訊之一或多個偵測器或感測器。如在圖1中所展 示’照明系統100包括一光通量偵測器116、一溫度感測器 11 8及一使用者所定義之設定輸入12〇。來自光通量偵測器 11 0、溫度感測器11 8及使用者所定義之設定輸入120之輸 出連接至作用時間循環模組1 i 〇之輸入。.可使用自光通量 偵測器116、溫度感測器118及使用者所定義之設定輸入 120接收之資訊控制光源1 〇4之操作。 在一項實施例中,作用時間循環模組11〇判定用於光源 104之用於操作照明系統ι〇〇及各別光源來產生期望之色彩 點及通量(亦即,調光位準)之PWM控制信號之作用時間循 環值。在某些實施例中,作用時間循環模組i 10包括用於 自耦合至光源104之偵測器及感測器接收關於光源1 〇4之資 162865.doc •19· 201247016 訊之輸入。在另外實施例中’作用時間循環模組丨丨〇亦具 有用於接收經提供用於照明系統100之使用者所定義的設 定之輸入。根據一項實施例,亦可使用預定義系統設定來 判定作用時間循環模組110所計算之作用時間循環值,可 由照明系統100之製造商來設定該預定義系統設定。作用 時間循環模組110可使用預定義系統設定、使用者所定義 之設定及/或來自偵測器或感測器之回饋資訊中之一者或 任何組合來計算作用時間循環值。 在一項實施例中,作用時間循環模組1 10將經判定用於 光源104之作用時間循環值提供至相移模組112。相移模組 112如下文更詳細闡述接收作用時間循環值,且將經相移 作用時間循環值提供至PWM模組114。PWM模組114基於 該經相移作用時間循環值產生PWM控制信號。在某些實施 例中,PWM模組114可自作用時間循環模組11〇及相移模組 112兩者接收信號且基於此等信號令之每一者產生pwM控 制信號。根據一項實施例,作用時間循環模組110、相移 模組112及PWM模組114中之每一者係包括於一單個模組 中。The term "pulse width modulation" or PWM is understood to mean the technique used to control the power to the LED - commonly used. A PWM signal is generated by a controller that "on" or "off" the input power and produces an output signal of a fixed amplitude and frequency. The average value of the output pulse width modulation power is the same as the average value of the input signal. It should be understood that the term "action time cycle" refers to the period of the "on" time that is proportional to the regular interval of input power or the full cycle. The action time cycle is expressed as a percentage. It is understood that all combinations of the foregoing concepts and additional concepts discussed in more detail below (as long as such concepts are not inconsistent) are encompassed as part of the inventive subject matter disclosed herein. In particular, all combinations (4) of the subject matter appearing in the present invention are covered by - part of the inventive subject matter. It should also be understood that the terminology used in the context of the disclosure is the same as the specific concept disclosed in the text. The terminology should be given the most specific concepts disclosed herein. Characters generally refer to the same part of all different views. In addition, the drawings are not necessarily to scale, the In lighting systems controlled by pulse width modulation (PWM) signals, high flash rates and the need for high peak loads of associated power supply units are still a problem. Applicants have recognized and appreciated that it would be beneficial to reduce the combined current to the pulse width modulation signal of the source. In view of the foregoing, various embodiments and embodiments of the present invention are directed to dynamically phase shifting a PWM control signal in a manner that reduces the combined peak current, thereby reducing the high flicker rate of the source and the high peaks of the power supply unit. Load lighting system and method. Referring to FIG. 1, in one embodiment, a lighting system 1A includes a controller 102, a plurality of solid state light sources 丨04, a plurality of current drivers 1 〇6, and a power supply unit 108. Controller 1 〇 2, source 1 〇 4, and current driver 1 〇 6 are shown separately, however, as will be appreciated, such elements can be incorporated into a single lighting unit. Controller 1, 2, each of light sources 104 and current driver 106 and power supply unit 108 include one or more inputs and outputs. According to the embodiment illustrated in Figure 1, the input of the power supply unit 〇8 162865.doc -16· 201247016 is electrically coupled to the input of each of the current drivers i 06 , respectively. Each of the outputs of current driver 106 is electrically coupled to one of the corresponding inputs of source 1〇4. Each current driver 106 has an input for receiving the output of controller 1〇2. The controller 102 includes a number of inputs for receiving feedback from the light source 〇4 and for setting with the user defined. As shown, illumination system 100 includes a plurality (n) of PWM control signals generated for (n) current drivers i 〇 6 , wherein each current driver 1 〇 6 (1 η η) corresponds to a respective light source 1 〇 4 (1-η). The power supply unit 108 provides power to drive components of the lighting system 1〇〇. Each of the inputs of current driver 106 receives power from power supply unit 1A8. Current driver 106 provides current to the input of corresponding light source 104 based on receiving one of the respective pwM control signals from controller 102. Controller 1 产生 2 generates a PWM control signal for light source 104 based on the received feedback and user defined settings to produce a desired color point and desired light flux. The resulting operation of light source 104 provides the desired color point and light flux. Each of the light sources 104 may include one or more LEDs that emit a primary color such as red 'green, blue, cyan, amber, royal blue, magenta or white, and other colors. The LEDs may be encapsulated with a dome or may not be encapsulated. In one embodiment, each light source 1 〇 4 includes a string of a plurality of LEDs. In another embodiment, the LEDs included in a string of commands are all of the same color. In one embodiment, the LEDs included in the string include a plurality of primary colors of light that can be mixed to provide mixed white light having a desired color point and color temperature. In another embodiment, Led is used as 162865.doc • 17· 201247016 A backlight causes light from red, green and blue LEDs to be mixed to provide homogenous light to the back surface of a display. In some embodiments, the illumination system includes a plurality of light sources 丨〇4, wherein each of the plurality of light sources 1 〇4 is configured to emit light of a different primary color. In one embodiment, 18 (n = 18) light sources 1 〇 4 are included, wherein light source 104 includes three red led strings, five amber LED strings, six blue LED strings, and four white LED strings. As should be appreciated, other configurations of a plurality of light sources can be employed. In one embodiment, power supply unit 1〇8 is electrically coupled to current driver 106 and supplies power to light source 1〇4 power supply unit 1〇8 can be configured to receive AC line voltage and can be filtered, pressed The proportionally varying and regulated DC voltage is supplied to the current driver 1〇6. The power supply unit 1 8 may include a rectifier, a low pass filter, and/or other circuitry configured to provide regulated output power to the current drivers 1〇6. In other embodiments, power supply unit 108 can be configured for use with other types of input power sources (e.g., D.C. power supplies). The current driver 106 can be implemented as a DC/DC converter and regulates the voltage from the power supply unit 108 to provide current for driving the light source 丨〇4. The dc/DC converter can include integrated circuitry, transistors, and any other combination of active and/or passive components. The DC/DC converter can be configured in a buck configuration, a boost configuration, a buck-boost configuration, or can be employed to supply current (for example, by providing a PWM current signal) to drive the light source The other circuit topologies of 1〇4 are configured with the LED-based light source 104. The current driver 1 〇 6 can further employ a driver circuit including one or more voltage to current converters 162865.doc 201247016. The drive circuit can be configured such that each light source 〇4 is associated with a voltage-to-current converter that provides a corresponding current to one of the light sources 104. According to one embodiment, controller 102 controls the operation of light source 104 based on a phase shifting module 、12, a time loop module 110, and the operation of a PWM control signal generated by a PWM module 114. In one embodiment, the time loop module 11 , the phase shift module 112 , and the PWM module 114 include one or more inputs and outputs. The output of the time loop module 110 is coupled to the input of the phase shift module 112. The output of phase shifting module 112 is coupled to the input of PWM module 114. In another embodiment, the input of the pWM module 114 is coupled to both the output of the active time loop module and the output of the phase shift module 112. In various embodiments, illumination system 100 can also include one or more detectors or sensors that provide information about light source 104. As shown in Fig. 1, the illumination system 100 includes a luminous flux detector 116, a temperature sensor 118 and a user defined setting input 12A. The output from the luminous flux detector 110, the temperature sensor 118 and the user-defined setting input 120 is connected to the input of the active time cycle module 1 i. The operation of the light source 1 〇 4 can be controlled using information received from the light flux detector 116, the temperature sensor 118, and the user-defined set input 120. In one embodiment, the time loop module 11 is determined to operate the illumination system ι and the respective light sources for generating the desired color point and flux (ie, dimming level). The duty cycle value of the PWM control signal. In some embodiments, the active time loop module i 10 includes a detector for self-coupling to the light source 104 and a sensor to receive input regarding the source 162865.doc • 19· 201247016. In another embodiment, the 'active time loop module' also has input for receiving settings defined by the user provided for the illumination system 100. According to one embodiment, the predefined system settings can also be used to determine the duty cycle value calculated by the active time loop module 110, which can be set by the manufacturer of the lighting system 100. The time loop module 110 can calculate the action time cycle value using one of the predefined system settings, user defined settings, and/or feedback information from the detector or sensor. In one embodiment, the active time loop module 110 provides the active time cycle value determined for the light source 104 to the phase shifting module 112. The phase shifting module 112 illustrates the receive action time cycle value in more detail below and provides the phase shift action time cycle value to the PWM module 114. The PWM module 114 generates a PWM control signal based on the phase shifting action time cycle value. In some embodiments, the PWM module 114 can receive signals from both the time loop module 11 and the phase shift module 112 and generate a pwM control signal based on each of the signals. According to one embodiment, each of the active time loop module 110, the phase shift module 112, and the PWM module 114 is included in a single module.
在一項實施例中’ PWM模組114所產生之PWM控制信號 係在恆定電流及變化之作用時間循環下之高頻率週期性信 號。該等PWM控制信號控制電流驅動器ι〇6之操作以調節 至光源104之電流。舉例而言,pwm信號可係以1 kHz之 一頻率在Ο V與12 V之間振盪之一振盪方波形。可端視實 施例’採用具有不同振幅及頻率之PWM信號。每一 PWM 16286S.doc -20· 201247016 信號具有一作用時間循環,其係在一個週期内之振盪方波 之「作用」時間之百分數。 在該所圖解說明之實施例中,相移模組丨丨2自作用時間 循環模組110接收所計算之作用時間循環值且產生用於光 源104之經相移作用時間循環值。在某些實施例中,將作 用時間循環移位如下量之相,該等量經計算以在達成光源 104之期望輸出之同時最佳化電力供應單元1〇8之輸出。舉 例而言,本文中所闞述之方法可藉由減小或最小化提供至 光源104之組合峰值電流來最佳化電力供應輸出。在某些 實施例中,組合峰值電流係按提供至光源l〇42PWM控制 電流信號之作用時間循環值之一總和之一平均值來計算。 如上文所闡述,在某些實施例中,作用時間循環模組 110可至少部分地基於預定義系統設定來計算作用時間循 環值。預定義系統設定可包括一較低輸出臨限值及一較高 輸出臨限值。該較低臨限值及該較高臨限值可係基於製造 商之保證照明系統之可靠或能量高效操作之預設限制。在 一項實施例中’該等臨限值限制作用時間循環模組i 10產 生造成光源104所發射之光通量位準之一有限範圍及期望 色彩點值之有限範圍之作用時間循環值。在替代實施例 中’不採用預定義系統設定》 根據某些實施例,照明系統1〇〇之一使用者可藉由透過 一使用者介面調整光源之色彩點及調光位準來選擇用於照 明系統100之使用者所定義之設定。在一項實施例中,作 用時間循環模組110接收期望色彩點及期望光通量(例如色 162865.doc 201247016 彩及調光位準)之使用者輸入且計算產生期望色彩點及期 望光通量之光之作用時間循環值。 根據某些實施例’作用時間循環模組丨丨〇亦可計算作用 時間循環值以補償由光源之溫度及/或光源之老化所致的 光源104之光通量及波長改變。舉例而言,LED驅動電流 可影響光源104之溫度,此繼而影響光源1〇4之峰值輸出波 長。在一項實施例中’諸如光電二極體等一光敏偵測器感 測母一光源104之光通量。基於光源} 〇4之所感測通量資訊 及製造商所建立之通量值,作用時間循環模組丨丨〇可調整 提供至電流驅動器106之PWM控制信號之作用時間循環以 維持所建立之通量位準及針對原本將發生之通量變化進行 糾正。 在一項實施例中,一溫度感測器量測至少一個光源1〇4 之溫度且將溫度回饋提供至控制器1〇2。舉例而言,溫度 感測器可藉由在LED之一散熱器進行之溫度量測間接地量 測LED接面溫度。基於所感測之溫度回饋,控制器i 〇2可 判定光源104之峰值波長且調整提供至光源1〇4之作用時間 循環以維持期望之色彩點。在另一實施例中’將光敏偵測 is量測及溫度偵測|§量測兩者組合,從而允許控制器1 〇 2 維持期望之光通量位準及期望之色彩點且補償由溫度及老 化所致的改變。 在各種實施例中’溫度量測及通量量測可單獨地或組合 地包括溫度前饋量測及通量回饋中之任一者。此外,可單 獨地或與前述組合地採用色彩座標回馈。 162865.doc -22- 201247016 如上文所閣述’對複數個照明源之PWM控制可產生不期 望之效果’諸如’一高閃爍率及可將高峰值負載置於電力 供應單元108上。在一項實施例中,相移模組112經組態以 藉由動態地調整提供至電流驅動器106之PWM控制信號之 相位來減小或消除此等有害之副作用。 在某些實施例中,期望動態地相移PWM控制信號,此乃 因由作用時間揭環模組11〇所計算之作用時間循環值係動 態的°舉例而言,作為因老化及溫度所致的光源1 〇4之波 長及光通量位準之改變以及照明系統100之使用者定義之 色彩點及亮度位準之改變之一結果,作用時間循環值可隨 時間變化。根據一項實施例,相移模組丨12回應於由作用 時間循環模組11〇所判定之作用時間循環之改變而計算一 新相移以減小供應至光源1〇4之組合峰值電流β根據某些 實施例’針對PWM控制信號之每一週期發生相移過程以不 斷地調整個別PWM控制信號之相位。儘管由作用時間循環 模組110所判定之作用時間循環值改變,但由控制器1 〇2提 供之所得經相移作用時間循環PWM 1…(η)可不斷地最小 化組合峰值電流之紋波。另外’最小化組合峰值電流之紋 波亦最小化光源104之閃爍率且減小由電力供應單元1〇8之 操作蓋生之電磁干擾。因此,在某些實施例中,亦不斷地 最小化閃爍率及/或電磁干擾。 控制器102可係使用軟體、硬體組件或軟體與硬體之一 組合實施之一電流模式或電壓模式脈寬調變控制器。可使 用諸如現場可程式化閘陣列(FPGA)、特殊應用積體電路 162865.doc -23- 201247016 (ASIC)、微控制器、可程式化邏輯器件(pLD)或此項技術 中已知的其他此類器件等硬體器件實施該等硬體組件。 圖2至圖4以曲線圖方式圖解說明在藉助本發明之實施例 及不藉助本發明之實施例之情形下具有不同作用時間循環 組合之PWM控制電流信號之組合峰值電流輸出之一比較。 對於圖2至圖4中之每一者,x軸表示以秒為單位表達之時 間。PWM控制電流信號之y軸表示以安培為單位表達之作 用時間循環之振幅。該組合峰值電流之(圓2中展示為工· PSU)表示以安培為單位表達之電力供應輸出之振幅。In one embodiment, the PWM control signal generated by the PWM module 114 is a high frequency periodic signal at a constant current and varying active time cycle. The PWM control signals control the operation of current driver ι6 to regulate the current to source 104. For example, the pwm signal can oscillate one of the oscillation square waveforms between Ο V and 12 V at a frequency of 1 kHz. The terminal embodiment can employ PWM signals having different amplitudes and frequencies. Each PWM 16286S.doc -20· 201247016 signal has an active time cycle that is a percentage of the "action" time of the oscillating square wave over a period. In the illustrated embodiment, the phase shifting module 丨丨2 receives the calculated active time cycle value from the active time cycle module 110 and generates a phase shifted action time cycle value for the light source 104. In some embodiments, the duration of the operation is cyclically shifted by an amount that is calculated to optimize the output of the power supply unit 〇8 while achieving the desired output of the source 104. For example, the methods described herein can optimize the power supply output by reducing or minimizing the combined peak current provided to source 104. In some embodiments, the combined peak current is calculated as an average of one of the sum of the action time cycle values supplied to the source 104 electromagnetic control current signal. As set forth above, in some embodiments, the active time loop module 110 can calculate the active time cycle value based at least in part on the predefined system settings. The predefined system settings can include a lower output threshold and a higher output threshold. The lower threshold and the higher threshold may be based on a preset limit of the manufacturer's guaranteed or energy efficient operation of the illumination system. In one embodiment, the threshold limiting time loop module i 10 produces a limited time range of action light cycle values that result in a limited range of light flux levels emitted by the light source 104 and a desired color point value. In an alternative embodiment, 'pre-defined system settings are not used. According to some embodiments, one of the illumination systems 1 can be selected for use by adjusting the color point and dimming level of the light source through a user interface. The settings defined by the user of the lighting system 100. In one embodiment, the active time cycle module 110 receives user inputs of desired color points and desired luminous fluxes (eg, color 162 865.doc 201247016 color and dimming levels) and calculates the light that produces the desired color point and desired luminous flux. The action time cycle value. According to some embodiments, the time-cycle module can also calculate the duty cycle value to compensate for the light flux and wavelength change of the source 104 caused by the temperature of the source and/or the aging of the source. For example, the LED drive current can affect the temperature of the source 104, which in turn affects the peak output wavelength of the source 1〇4. In one embodiment, a photodetector such as a photodiode senses the luminous flux of the parent-light source 104. Based on the sensed flux information of the source 〇4 and the flux value established by the manufacturer, the time loop module 作用 can adjust the duty cycle of the PWM control signal provided to the current driver 106 to maintain the established pass. The level of quantity is corrected and the flux changes that would otherwise occur are corrected. In one embodiment, a temperature sensor measures the temperature of at least one of the light sources 1〇4 and provides temperature feedback to the controller 1〇2. For example, the temperature sensor can indirectly measure the junction temperature of the LED by temperature measurement performed on one of the heat sinks of the LED. Based on the sensed temperature feedback, controller i 〇 2 can determine the peak wavelength of source 104 and adjust the duty cycle provided to source 1 〇 4 to maintain the desired color point. In another embodiment, 'photosensitive detection is measurement and temperature detection|§ measurement are combined to allow controller 1 〇2 to maintain the desired luminous flux level and desired color point and compensate for temperature and aging The resulting change. In various embodiments, the temperature measurement and flux measurement can include any of temperature feed forward measurement and flux feedback, either singly or in combination. In addition, color coordinate feedback can be employed either alone or in combination with the foregoing. 162865.doc -22- 201247016 As explained above, PWM control of a plurality of illumination sources can produce undesirable effects such as 'a high flicker rate and can place a high peak load on the power supply unit 108. In one embodiment, phase shifting module 112 is configured to reduce or eliminate such deleterious side effects by dynamically adjusting the phase of the PWM control signal provided to current driver 106. In some embodiments, it is desirable to dynamically phase shift the PWM control signal due to the dynamic time of the action time cycle value calculated by the action time uncovering module 11 举例 as an example of aging and temperature. As a result of changes in the wavelength of the light source 〇4 and the change in the luminous flux level and the user-defined color point and brightness level of the illumination system 100, the duty cycle value can vary over time. According to an embodiment, the phase shifting module 丨12 calculates a new phase shift in response to a change in the active time cycle determined by the active time loop module 11A to reduce the combined peak current β supplied to the light source 1〇4. A phase shifting process occurs for each cycle of the PWM control signal to continually adjust the phase of the individual PWM control signals in accordance with certain embodiments. Although the duty cycle value determined by the active time loop module 110 changes, the resulting phase shifting duty cycle PWM 1...(n) provided by the controller 1 〇2 can continuously minimize the ripple of the combined peak current. . In addition, minimizing the ripple of the combined peak current also minimizes the flicker rate of the source 104 and reduces electromagnetic interference that is covered by the operation of the power supply unit 〇8. Thus, in some embodiments, the scintillation rate and/or electromagnetic interference is also continually minimized. Controller 102 can implement a current mode or voltage mode pulse width modulation controller using software, hardware components, or a combination of software and hardware. Can be used such as Field Programmable Gate Array (FPGA), Special Application Integrated Circuit 162865.doc -23- 201247016 (ASIC), Microcontroller, Programmable Logic Device (pLD) or others known in the art Hardware devices such as such devices implement such hardware components. Figures 2 through 4 graphically illustrate one of a combined peak current output comparison of PWM control current signals having different combinations of active time cycles in the context of embodiments of the present invention and without resort to embodiments of the present invention. For each of Figures 2 through 4, the x-axis represents the time expressed in seconds. The y-axis of the PWM control current signal represents the amplitude of the active time cycle expressed in amps. The combined peak current (shown as work PSU in circle 2) represents the amplitude of the power supply output expressed in amps.
在圖2之實例中,曲線圖2〇〇展示用於三個光源1〇4之 PWM控制信號(在圖2中展示為PWM丨、pWM 2及pwM 3) ’其中每一 PWM控制信號具有大約3〇%之一作用時間循 環。另外’展示電力供應之所得組合電流輸出(I_psu)。 曲線圖202表示未經相移模組i 12處理之pWM控制信號及電 力供應輸出信號。曲線圖204表示在相移模組112處理之後 的PWM控制信號及電力供應輸出。如在圖2中所展示,在 相移原始PWM信號之後,使所得組合峰值電流減小。對於 此實例,原始信號之組合峰值電流係大約98〇毫安,且經 相移信號之組合峰值電流係大約丨60毫安,減少大約 84% » 在圖3之實例中’曲線圖300展示具有不同作用時間循環 之PWM信號(在圖3中展示為PWM 1、PWM 2及PWM 3)。 舉例而言’圖表302中所圖解說明之作用時間循環可係由 作用時間循環模組110產生用於補償因溫度及/或一新期望 162865.doc •24· 201247016 色彩點值或一新光通量值之使用者設定所致的光通量及波 長改變。在曲線圖302中,PWM 1具有大約50%之一作用 時間循環’ PWM 2具有大約30%之一作用時間循環,且 PWM 3具有大約50%之一作用時間循環。此處同樣,曲線 圖304中所展示的作為相移PWM控制信號之結果而產生之 組合峰值電流相對於曲線圖302中所圖解說明之原始pWM 信號實質上減小。對於此實例,原始PWM信號之組合峰值 電流係大約830毫安,且經相移PWM信號之組合峰值電流 係大約300毫安,減小大約63〇/〇。 在圖4之實例中,曲線圖400展示用於三個光源1〇4之 PWM控制信號,其中每一 PWM控制信號WM丨、pWM 2 及PWM 3)具有大約25%之一作用時間循環。同樣,曲線圖 404中所展示之作為相移Pwm控制信號之結果產生之組合 峰值電流相對於曲線圖402中所圖解說明之原始PWM信號 實質上減小》對於此實例,曲線圖4〇2中之組合峰值電流 係大約700毫安,且曲線圖404中之組合峰值電流係大約 220毫安,減小大約63%。 圖5圖解說明根據一項實施例自一照明系統提供照明之 一方法500之一流程圖。在一項實施例中,該方法包括接 收η個光源之關於色彩點及/或光通量之回饋之一動作(動作 502)。舉例而言’ η表示照明系統1〇〇中之所有光源1〇4。 針對每一光源,基於所接收之回饋計算將產生期望之色彩 點及期望之光通量之一作用時間循環(動作5〇4)。所期望之 色系點及期望之光通量可基於上文所闡述之預定義系統設 162865.doc •25- 201247016 定、使用者所定義之設定'溫度量測及通量量測中之任一 者或任何組合’或單獨地或與前述中之任一者組合地基於 其他資訊。針對具有所計算之作用時間循環之PWM控制信 號判定相移以減小至η個光源之組合峰值電流(動作506)。 使用所計算之作用時間循環(動作5〇4)及最佳相移值來產生 用於每一個別光源之PWM控制信號(動作5〇8)。針對因所 接收光通量及溫度回饋(動作502)之改變或因所期望之光通 量及/或色彩點之改變所致的對作用時間循環值之每一新 計算來重複動作504至動作508。 圖ό圖解說明根據一項實施例用於自一照明系統提供照 明之一方法600之一流程圖。在一項實施例中,方法6〇〇係 包括於相移PWM控制信號之動作中(動作5〇6)。在一項實 施例中,方法600包括自步驟504接收所計算之作用時間循 環(動作602)用於表示期望之色彩點及期望之光通量之η個 光源之動作。分析該等所計算之作用時間循環以移除等於 零之光源(亦即,被關閉之一光源)之作用時間循環且提供 m個光源(動作604),其中m個光源表示剩餘光源之數目。 根據某些實施例,將剩餘作用時間循環形成為一作用時 間循環陣列’其中每-光源之每-作用時間循環係該陣列 之一成員。藉由最大化該陣列中所包括之相鄰作用時間循 環成員之間的作用時間循環值之一差來配置該陣列(動作 606)。根據一項實施例,將該陣列中之第一成員及最後— 個成員視為相鄰。在一項實施例中,可藉由求出作用時間 循環成員之所有現有組合之總差來反覆地實施動作6〇6。 162865.doc -26 - 201247016 總差表示該陣列中相鄰作用時間循環成員之間的所有差之 總和》針對相鄰作用時間循環成員之每一現有組合求出總 差且選擇具有最大總差之陣列。所得組合集可含有使作用 時間循%值之差最大化之一個以上之作用時間循環陣列。 根據另-實施例,在動作606處產生陣列,而不考量使該 陣列中鄰近者之間的差最大化…旦形成便㈣ m個光源形成總心個時槽(動作藉由將該等p職控 制信號之總週期除以作用時間循環成員之數目來形成爪個 時槽。藉由使每一作用時間循環成員之中點與一各別時槽 之開始匹配(動作610)來在該總pwM週期内定位該陣列中 之作用時間循環成員(動作608) » 在項實施例中’为析自方法6〇〇所得之經相移之作用 時間循環以判定是否兩個或兩個以上仙時間循環開始於 該總而信號週期内之-共同時間處。可藉由比較該等作 用時間循環之上升時間來判定共同開始時間。由於相鄰組 合集(動作606)可含有使作用時間循環值之差最大化之一個 以上陣列’因而-不同作用時間循環^件之陣列可作為在 PWM信號週期内尋找一共同開始時間之結果而產生。相應 地實施剩餘動作(動作6〇8至動作61〇)。 圖7展示PWM控制信號之曲線圖·,其針對包含六個光 源之一照明系統圖解說明實施方法6〇〇之一項實例。在一 毫私之PWM週期之持續時間内顯示經相移之作用時間循 環(在圖7中展示為PWnpwM_6)。將彼週期内所計算 之作用時間循環接收為PWM_1=2〇%、pwM_2=4(^、 162865.doc -27· 201247016 PWM_3=0°/〇、PWM一4=80%、PWM_5=60% 及 PWM_6 = 1〇〇/0 (舉例而言,在動作602處)。在此實例中,PWM—3作為具 有零值之光源而被移除以提供五個光源(舉例而言,在 動作604處)。藉由將該陣列中所包括之相鄰作用時間循環 值之間的作用時間時間值之一差最大化來將五個光源之所 得作用時間循環形成為一作用時間循環陣列(舉例而言, 在動作606處)。在此實例中,在該總共可能數目個陣列 中’選擇包含 PWM_6、PWM_4、PWM一 1、PWM—5 及 PWM一2之一陣列。相鄰作用時間循環值之間的總差係 220%,其中將PWM_6及PWM一2包括為鄰近者。為五個光 源形成總共m=五個時槽(舉例而言,在動作6〇8處)。此 處’藉由將一毫秒之總週期除以m來形成2〇〇微秒之五個時 槽(在圖7中展示為時槽1至時槽5)。藉由將每一 pwm信號 之中點與每一時槽之開始匹配來在該總PWM週期内定位陣 列中之作用時間循環(舉例而言,在動作61 〇處)。如所展 示,將作用時間循環PWM_6之中點定位於第一時槽(槽J) 中,後續接著將PWM—4之中點定位於第二時槽(槽2)處, 後續接著在第三時槽(槽3)處之PWM_1之中點,後續接著 在第四時槽(槽4)處之PWM一5之中點,且最後係在第五時 槽(槽5)處之PWM_2之中點。PWM_3之值在所顯示之週期 内保持零。 如在圖7之實例中所展示,光源pwm_1及PWM_5在該總 PWM週期内之一共同時間處開始(藉由上升邊緣定位)。在 某些實施例中’可作為共同開始時間之結果而產生一不同 16286S.doc •28- 201247016 作用時間循環陣列(動作606)。舉例而言,包含pwM 1、 PWM—2、PWM__6、PWM_5及 PWM一2之一陣列具有 22〇%之 相同總差值,但不包括在該PWM週期内具有共同開始時間 之光源。 雖然本文中已闡述並圖解說明瞭數個發明性實施例,但 熟習此項技術者將容易想像用於實施該本文中所闡述之功 能及/或獲得本文中所闡述之結果及/或優點中之一或多者 之各種其他構件及/或結構,且此等變化形式及/或修改形 式中之每一者皆被認為係在本文中所闡述之發明性實施例 之範疇内。更一般而言,熟習此項技術者將容易瞭解,本 文中所闡述之所有參數、尺寸、材料及組態意味著且有實 例性且實際參數、尺寸、材料及/或組態將取決於使用該 發明性教示之具體應用或若干應用。熟習此項技術者將僅 使用常規實驗即可認識或能夠確定本文中所闞述之特定發 明性實施例之諸多等效内容。因&,應理解,前述實施例 僅係以實例方式呈現,且在隨附中請專利範圍及其等效内 容之範缚内,可以不同於所具體闡述及所主張之方式來實 踐發明實施例。本發明之發明性實施例係針對本文中所閣 述之每一個別特徵、系統、物品、材料、工具及/或方 :二另外’若:b等特徵、系、统、物品、材料、工具及/或 不相互矛盾1兩個或兩個以上此等特徵、系統、物 口口、材料、工具及/或方法 明性範鳴内。 。包括於本發明之發 本文中所定義及使用之所右々暮 所有疋義應理解為控制在辭典定 162865.doc -29· 201247016 義、以引用方式併入之文件中之定義及/或所定義術語之 普遍意義以内。 本文中在說明書中及申請專利範圍中所使用之不定冠詞 「一(a)」及「一(an)」應理解為意指「至少一個」,除非 明確指示相反情形。 本文中在說明書中及申請專利範圍中所使用之片語「及/ 或」應理解為意指如此結合之元件中之「任一者戈兩 者」,亦即,在某些情形中以結合方式呈現之元件及在其 他情形中以分離方式呈現之元件。以「及/或」列出之多 個儿件應被認為係呈相同形式,亦即,如此結合之元件中 之「一或多者」。可視情況而存在除由「及/或」從句具體 識別之元件以外的其他元件,無論該等其他元件與具體識 別之彼等Α件相關還是不_。因&,作為一#限制性實 例,當結合諸如「包含」之開放式用語使用時,對「A及/ 或B」之-提及在-項實施例中可僅指A (視情況包括除b 以外之元件);在另一實施例中, 以外之元件);在又一實施例中, 其他元件);等等。 僅指B (視情況包括除a 指A及B兩者(視情況包括 如本文中在說明書中及中請專利範圍中所使用,在提及In the example of FIG. 2, a graph of FIG. 2 shows PWM control signals for three light sources 1〇4 (shown as PWM丨, pWM 2, and pwM 3 in FIG. 2). Each of the PWM control signals has approximately One of the 3〇% action time cycles. In addition, the resulting combined current output (I_psu) of the power supply is shown. The graph 202 shows the pWM control signal and the power supply output signal that have not been processed by the phase shifting module i12. Graph 204 represents the PWM control signal and power supply output after processing by phase shifting module 112. As shown in Figure 2, the resulting combined peak current is reduced after phase shifting the original PWM signal. For this example, the combined peak current of the original signal is approximately 98 mA, and the combined peak current of the phase shifted signal is approximately 毫60 mA, a reduction of approximately 84% » In the example of Figure 3, the graph 300 shows PWM signals with different time-of-flight cycles (shown as PWM 1, PWM 2, and PWM 3 in Figure 3). For example, the action time cycle illustrated in the graph 302 can be generated by the active time cycle module 110 for compensating for temperature and/or a new desired 162865.doc • 24· 201247016 color point value or a new luminous flux value. The luminous flux and wavelength change caused by the user setting. In graph 302, PWM 1 has approximately one 50% active time cycle 'PWM 2 has approximately one 30% active time cycle, and PWM 3 has approximately one 50% active time cycle. Here again, the combined peak current produced as a result of the phase shifted PWM control signal shown in graph 304 is substantially reduced relative to the original pWM signal illustrated in graph 302. For this example, the combined peak current of the original PWM signal is approximately 830 mA, and the combined peak current of the phase shifted PWM signal is approximately 300 mA, which is reduced by approximately 63 〇/〇. In the example of FIG. 4, graph 400 shows PWM control signals for three light sources 1-4, wherein each of the PWM control signals WM丨, pWM 2, and PWM 3) has approximately one-half of an active time cycle. Similarly, the combined peak current produced as a result of the phase shift Pwm control signal shown in graph 404 is substantially reduced relative to the original PWM signal illustrated in graph 402. For this example, in graph 4〇2 The combined peak current is about 700 mA, and the combined peak current in graph 404 is about 220 mA, which is about 63% less. FIG. 5 illustrates a flow diagram of a method 500 of providing illumination from a lighting system in accordance with an embodiment. In one embodiment, the method includes receiving one of the n light sources for feedback of color points and/or luminous flux (act 502). For example, 'η denotes all of the light sources 1〇4 in the illumination system 1〇〇. For each light source, based on the received feedback calculation, one of the desired color point and the desired luminous flux will be cycled (action 5〇4). The desired color point and desired luminous flux can be based on any of the predefined system settings described above, 162865.doc • 25- 201247016, user defined settings, 'temperature measurement and flux measurement. Or any combination' is based on other information, either alone or in combination with any of the foregoing. The phase shift is determined for a PWM control signal having a calculated duty cycle to reduce the combined peak current to n light sources (act 506). The calculated duty cycle (action 5〇4) and the optimum phase shift value are used to generate a PWM control signal for each individual source (action 5〇8). Act 504 to act 508 are repeated for each new calculation of the applied time cycle value due to a change in received light flux and temperature feedback (act 502) or a change in desired light flux and/or color point. Figure 1 illustrates a flow diagram of one method 600 for providing illumination from a lighting system in accordance with one embodiment. In one embodiment, method 6 is included in the action of the phase shifted PWM control signal (act 5 〇 6). In one embodiment, method 600 includes receiving, from step 504, the calculated action time cycle (act 602) for representing the desired color point and the desired light flux of the n light sources. The calculated time-of-flight cycles are analyzed to remove the active time cycle of the light source equal to zero (i.e., one of the light sources being turned off) and provide m light sources (act 604), where m light sources represent the number of remaining light sources. According to some embodiments, the remaining action time cycle is formed as an active time cycle array' wherein each per-light source per-action time cycle is a member of the array. The array is configured by maximizing a difference in the action time cycle value between adjacent active time loop members included in the array (act 606). According to an embodiment, the first member and the last member of the array are considered to be adjacent. In one embodiment, act 6-6 can be performed repeatedly by determining the total difference of all existing combinations of active time cycle members. 162865.doc -26 - 201247016 The total difference represents the sum of all differences between adjacent active time loop members in the array. The total difference is found for each existing combination of adjacent active time loop members and the largest total difference is selected. Array. The resulting combination set may contain more than one time-cycle array of action time that maximizes the difference in % of action time. According to another embodiment, the array is generated at act 606 without regard to maximizing the difference between neighbors in the array. Once formed, the four light sources form a total time slot (acting by the same p The total period of the job control signal is divided by the number of active time loop members to form a claw time slot. By matching each of the active time loop member points with the start of a respective time slot (act 610) Positioning the active time loop member in the array during the pwM cycle (act 608) » In the embodiment, the phase shift of the phase shift obtained from the method 6 is used to determine whether two or more time periods are determined. The cycle begins at a common time within the total signal period. The common start time can be determined by comparing the rise times of the active time cycles. Since the adjacent combination set (act 606) can contain the action time cycle value An array of more than one array that maximizes the difference 'and thus different time-of-function loops can be generated as a result of finding a common start time within the PWM signal period. The remaining motion is implemented accordingly 6〇8 to action 61〇). Figure 7 shows a graph of a PWM control signal, which illustrates an example of an implementation method for an illumination system comprising one of six sources. The action time cycle of the phase shift is displayed for the duration (shown as PWnpwM_6 in Figure 7.) The action time cycle calculated in the cycle is received as PWM_1=2〇%, pwM_2=4(^, 162865.doc -27 · 201247016 PWM_3 = 0° / 〇, PWM - 4 = 80%, PWM_5 = 60% and PWM_6 = 1 〇〇 / 0 (for example, at action 602). In this example, PWM_3 has zero The source of values is removed to provide five sources (for example, at act 604) by maximizing a difference in the time-to-time values between adjacent action time cycle values included in the array The resulting action time of the five light sources is cycled into an active time cycle array (for example, at act 606). In this example, the selection includes PWM_6, PWM_4, PWM one in the total possible number of arrays. 1. One of the arrays of PWM-5 and PWM-2. Adjacent action time cycle The total difference between them is 220%, where PWM_6 and PWM-2 are included as neighbors. A total of m=five time slots are formed for five light sources (for example, at action 6〇8). Five time slots of 2 〇〇 microseconds (shown as time slot 1 to time slot 5 in Figure 7) are formed by dividing the total period of one millisecond by m. By placing each pwm signal in the middle and each The start of the one-time slot is matched to locate the active time cycle in the array during the total PWM period (for example, at action 61). As shown, the midpoint of the active time cycle PWM_6 is positioned in the first time slot ( In slot J), the PWM_4 midpoint is then positioned at the second time slot (slot 2), followed by the PWM_1 midpoint at the third time slot (slot 3), followed by the fourth time. The PWM is at the midpoint of the slot 5 at slot (slot 4) and is finally at the midpoint of PWM_2 at the fifth time slot (slot 5). The value of PWM_3 remains zero for the period shown. As shown in the example of Figure 7, the sources pwm_1 and PWM_5 begin at a common time within the total PWM period (by rising edge positioning). In some embodiments, a different 16286S.doc • 28-201247016 action time loop array can be generated as a result of the common start time (act 606). For example, an array comprising pwM 1, PWM - 2, PWM__6, PWM_5, and PWM-2 has the same total difference of 22%, but does not include a source having a common start time during the PWM period. Although a number of inventive embodiments have been illustrated and described herein, it will be readily apparent to those skilled in the art that <RTI ID=0.0> </ RTI> </ RTI> <RTIgt; Each of the other components and/or structures of one or more, and each of these variations and/or modifications are considered to be within the scope of the inventive embodiments set forth herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations set forth herein are meant to be exemplary and actual parameters, dimensions, materials, and/or configurations will depend on the use. Specific applications or applications of the inventive teachings. Those skilled in the art will recognize or be able to ascertain many equivalents of the specific embodiments disclosed herein. It is to be understood that the foregoing embodiments are presented by way of example only, and in the scope of the claims . The inventive embodiments of the present invention are directed to each individual feature, system, article, material, tool, and/or aspect recited herein: two additional 'if: b, such features, systems, systems, materials, materials, tools And/or not contradicting one or two or more of these features, systems, mouths, materials, tools and/or methods within the Ming Fanming. . Included in the definition and use of the present invention in the context of the present invention is to be understood as controlling the definitions and/or in the documents incorporated by reference in the Chinese Patent Application No. 162 865. Define the general meaning of the term. The indefinite articles "a", "an" and "an" are used in the description and the meaning of the claims. The phrase "and/or" used in the specification and the scope of the claims should be understood to mean "any of the two" in the elements so combined, that is, in some cases Elements presented in a manner and elements that are presented in a separate manner in other situations. The plurality of items listed in "and/or" shall be considered to be in the same form, that is, "one or more" of the elements so combined. Elements other than those specifically identified by the "and/or" clause may be present as appropriate, regardless of whether the other elements are associated with the particular identified item or not. As a &########################################################################################## Elements other than b); in another embodiment, elements other than); in yet another embodiment, other elements); Means only B (as appropriate, except where a refers to both A and B (as appropriate, as used in this specification and in the scope of the patent, referred to herein)
162865.doc 夕者,且不排除該元件清單中之若干元件之 此定義亦允許可視情況而存在除該元件清單内 201247016 片語「至少一低], 」所提及之具體識別之元件以外之元件, 無論與具體識別之彼等元件相關還是不相關。因此,作為 一非限制性實例’「A及B中之至少-者」(或等效地,「A 或B中之至少—土 考」,或等效地,「A及/或B中之至少一 者」)可在一項實施例中指至少-個(視情況包括一個以上) 不存在B (且視情況包括除B以外之元件);在另一實 施例中,指至少-個(視情況包括-個以上)B,而不存在 A (且視情況包括除八以外之元件);在又-實施例中,指 至個(視情況包括一個以上)A及至少一個(視情況包括 一個以上)B (且視情況包括其他元件);等等。 亦應理解,除非明確指示相反情形,否則在本文中所主 張之包括一個以上步驟或動作之任何方法中該方法之步 驟或動作次序未必受限於引用該方法之步驟或動作之次 序。所提供的出現在申請專利範圍之圓刮弧之間的任何參 考編说或其他字元僅係出於方便之目的而非意欲以任何方 式限制申請專利範圍。 在申睛專利範圍中以及在以上說明書中,所有連接片語 (諸如「包含」、「包括」、「攜載」、「具有」、「含有」、「涉 及」、「容納」、「由...構成」等等)應理解為開放式,亦 即,意指包括但不限制。僅連接片語「由…組成」及「本 質上由··.組成」應分別係封閉式或半封閉式連接片語。 【圖式簡單說明】 圖1圖解說明根據一實施例之一照明系統之一方塊圖; 圖2根據一實施例圖解說明比較具有30%之一作用時間 162865.doc -31 · 201247016 循環之脈寬調變信號之組合峰值電流輸出之一曲線圖; 圖3根據一實施例圖解說明比較具有不同作用時間循環 之脈寬調變彳§號之組合峰值電流輸出之一曲線圖; 圖4根據一實施例圖解說明比較具有25。/〇之一作用時間 循環之脈寬調變信號之組合峰值電流輸出之一曲線圖; 圖5圖解說明根據一實施例自一照明系統提供照明之一 方法之一流程圖; 圖6圖解說明根據一實施例自 方法之一流程圖;及 一照明系統提供 照明之一 照明系統之脈寬調變 圖7根據一實施例圖解說明用於一 信號之一曲線圖。 【主要元件符號說明】 1(>〇 照明系統 !〇2 控制器 104 光源/固態光源 1〇6 電流驅動器 1〇8 電力供應單元 110 作用時間循環模組 相移模組 114 脈寬調變模組 116 光通量偵測器 118 溫度感測器 120 使用者所定義之設定輸入 I_PSU 組合電流輸出 162865.doc •32- 201247016 PWMl PWM2 PWM3 脈寬調變1 脈寬調變2 脈寬調變3 162865.doc -33162,865.doc, and does not exclude that the definition of several components in the list of components also allows for the presence of elements other than those identified in the 201247016 phrase "at least one low", as specified in the component list. Components, whether related to their specific identified components or not. Thus, as a non-limiting example, 'at least one of A and B' (or equivalently, "at least - of the A or B", or equivalently, "in A and / or B" "At least one of" can mean, in one embodiment, at least one (including one or more, as the case may be) absent B (and optionally includes elements other than B); in another embodiment, at least one The situation includes - more than B), and there is no A (and optionally includes elements other than eight); in the embodiment - refers to one (including one or more) A and at least one (including one case as appropriate) Above) B (and other components as appropriate); and so on. It is also understood that the steps or sequences of steps of the method, which are not limited to the steps or actions of the method, are not necessarily limited by the steps or steps of the method. Any references or other characters provided between the circular arcs of the scope of the patent application are provided for convenience only and are not intended to limit the scope of the patent application in any way. In the scope of the application of the patent and in the above description, all connected phrases (such as "including", "including", "carrying", "having", "containing", "involving", "accommodating", "by. .. constitute "and so on" should be understood to be open, that is, meant to include but not limited. Only the phrase "consisting of" and "consisting essentially of ··." should be closed or semi-closed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a block diagram of an illumination system in accordance with an embodiment; FIG. 2 illustrates a pulse width of a cycle having a duration of 162865.doc -31 · 201247016 compared to one of 30% of the action time, according to an embodiment. A graph of a combined peak current output of a modulated signal; FIG. 3 illustrates a plot of a combined peak current output comparing pulse width modulations with different periods of action, according to an embodiment; FIG. The example illustrates a comparison of 25. One of the combined peak current output curves of the pulse width modulation signal of one of the time cycles; FIG. 5 illustrates a flow chart of one of the methods of providing illumination from an illumination system in accordance with an embodiment; FIG. 6 illustrates A flow chart of one embodiment of the method; and a pulse width modulation of one of the illumination systems providing illumination. FIG. 7 illustrates a graph for a signal in accordance with an embodiment. [Main component symbol description] 1(>〇Lighting system!〇2 Controller 104 Light source/Solid light source 1〇6 Current driver 1〇8 Power supply unit 110 Function time cycle module Phase shift module 114 Pulse width modulation mode Group 116 Luminous Flux Detector 118 Temperature Sensor 120 User Defined Input I_PSU Combined Current Output 162865.doc •32- 201247016 PWMl PWM2 PWM3 Pulse Width Modulation 1 Pulse Width Modulation 2 Pulse Width Modulation 3 162865. Doc -33