[go: up one dir, main page]

TW201246578A - Transparent electrode substrate, method for producing the same, electronic device and solar cell having the transparent electrode substrate - Google Patents

Transparent electrode substrate, method for producing the same, electronic device and solar cell having the transparent electrode substrate Download PDF

Info

Publication number
TW201246578A
TW201246578A TW100149395A TW100149395A TW201246578A TW 201246578 A TW201246578 A TW 201246578A TW 100149395 A TW100149395 A TW 100149395A TW 100149395 A TW100149395 A TW 100149395A TW 201246578 A TW201246578 A TW 201246578A
Authority
TW
Taiwan
Prior art keywords
layer
transparent
transparent electrode
electrode substrate
conductive
Prior art date
Application number
TW100149395A
Other languages
Chinese (zh)
Other versions
TWI533461B (en
Inventor
yong-chun Luo
Tsuyoshi Muto
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Publication of TW201246578A publication Critical patent/TW201246578A/en
Application granted granted Critical
Publication of TWI533461B publication Critical patent/TWI533461B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This invention aims to provide a transparent electrode substrate, a method for producing the same, an electronic device and solar cell having the transparent electrode substrate. The transparent electrode can highly maintain the light transmittance, has the low surface resistivity and the excellent electric conductivity at the same time. This invention provides a method for producing a transparent electrode, an electronic device and solar cell having the transparent electrode substrate. The transparent substrate is formed by laminating a conductive metal mesh layer buried in one side of a transparent base material. The transparent electrode is characterized by forming the first transparent conductive layer on one side of the transparent base material, forming a conductive metal layer on the transparent conductive layer, forming a conductive metal mesh layer by photoresist patterning processing the conductive metal layer, forming the second transparent conductive layer on the surface of the metal mesh layer, and covering the conductive metal mesh layer by the transparent electrode substrate.

Description

.201246578 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種透明電極基板、其製造方法及具 有该透明電極基板之太陽能電池。進—步詳言之,本發 明係關於一種光線穿透率高的透明電極基板、其製造方 法、具有該透明電極基板之電子裝置及太陽能電池。 【先前技術】 近年來’在有機電致發光(有機EL)、包含有機太陽 月b電池之各種太陽能電池、觸控面板或行動電話、電子 *我等’正熱烈地捸討具有透明導電層之透明電極基板。 般而a ’在玻璃基板等之基板上已形成透明導電 層之透明電極基板係作為太陽能電池、有機等之電子 裝置的電極所使用。然而’將通常之摻雜錫的氧化銦(以 下私為IT0)等之金屬氧化物層作為透明導電層使用的 透月電極基板’除了表面電阻係數不低以外,ιτ〇本身 之體積電阻係數也高。作為有機EL、各種太陽能電池、 觸控面板、仃動電話、電子紙等之透明導電基板係要求 例如具有 5Ω/[|左右 U及右以下之表面電阻係數的透明導電基 板。 體積電阻係數較透明導 助電極使用的透明電極 對於如此5要求,已探討將 電層為極低&金屬材料層作為輔 基板。 1夕如,於專利文獻 m ,揭示一種附透明導電膜纪 土 ,其係在基板上,依序„ ^ _ 斤積層透明氧化物層、金屬層 透明氧化物層而忐。妙& …、、而’於如此之構造中,光線穿達 -4- 201246578 率低’作為薄膜裝置之透明電極基板並不實用。另外, 由於金屬層積層於透明氧化物層之整面,具有因金屬層 之劣化而使得使用該附透明導電膜的基體之薄膜裝置的 而才久性成為問題之情形。 另外’於專利文獻2中,揭示一種電致發光面板, 其係含有:在包含在基板上所形成的ΙΤ〇之第i電極上 形成包含金屬的長條狀或網目狀之輔助電極層,在其上 劃定發光區域之發光層與在其上所形成的第2電極。 還有,於專利文獻3中,揭示一種有機薄膜太陽能 電池,其係具有:透明基板、包含在該透明基板上順序 不同地積層的金屬膜的網目電極及透明電極、在該網目 電極及透明電極之上所形成的光電轉換層、與在該光電 轉換層上所形成的對向電極。 然而,於如此之構造中,具有引起因金屬腐蝕所造 成的劣化等之問題的可能性。 於專利文獻4中,揭示一種透明導電性薄膜,其係 在透明基材片中至少之一側面具有卑金屬或包含卑金屬 的η,製導電性金屬網目層、與包含導電性高分子層的 透月I電J·生層,於專利文獻5中’揭示一種透明導電膜, 〃系在透月支撐體上具有藉至少一種金屬所形成的網目 彳·導雹層之透明導電膜,且在該導電層之上設置含有遷 :二劑之透明導電層;於專利文獻6中,揭示-種色 導二=能電池用電極,其係在基板上由形成透明 ^ 成的色素增感型太陽能電池用電極中,在該 土…远明導電膜之間設置電阻值較該透明導電膜還低 -5- 201246578 然而’作為太陽能電池、有機EL元件等之電子 的電極,於透明電極基板中,要求透明性或導電性 久性之進〆步' 提高。 先前技術文獻 專利文獻 專利文獻1 曰本特開平10-241464 專利文獻2 日本特開2008-103305 專利文獻3 曰本特開201 0-1 5768 1 專利文獻4 日本特開2009-08 1 104 專利文獻5 日本特開2009-146678 專利文獻6 日本特開2004-296669 【發明内容】 [發明所欲解決之問題] 本發明係有鑒於如此之事實所完成者,本發明 的係解決如上述之問題,提供一種光線穿透率高、 越之導電性的透明電極基板、其製造方法及具有該 電極基板之電子裝置。 [解決問題之手段] 為了解決如上述之問題,本發明人等鑽研探討 果發現藉由作成如下列之層構造而能夠解決上述問 於是完成本發明。 亦即,本發明係提供如下所述: (1) 一種透明電極基板,其係由在透明基材之 面’積層埋設有導電性金屬網目層的透明導電層所才 (2) 記載於上述(1)之透明電極基板,其中該透明 層係由金屬氧化物所構成的層。 裝置 及耐 之目 具優 透明 之結 題, ~側 ^成。 導電 201246578 (3) 記載於上述(1)之透明電極基板,其中該導電性金 屬網目層的厚度為1至1〇〇 nm。 (4) 記載於上述(1)之透明電極基板,其中該導電性金 屬網目層的開口部之開口率為75%以上。 (5) 記載於上述(1)之透明電極基板,其中該透明導電 層係以氧化銦作為主要成分之層。 (6) 記載於上述(1)之透明電極基板,其中該導電性金 屬網目層係由金、銀、銅、鉑、鋁、鎳與鉻所選出的至 少一種所構成的層。 (7) —種透明電極基板之製造方法,其係藉由在透明 基材之一側面形成第1透明導電層,在該透明導電層上 形成導電性金屬層’光阻圖案化處理該導電性金屬層而 形成導電性金屬網目層,在該金屬網目層的面形成第2 透明導電層而經該透明導電層被覆該導電性金屬網目 層。 (8) 記載於上述(7)之透明電極基板之製造方法,其中 在該透明基材之一側面所形成的第1透明導電層的厚度 為 1〇 至 1000 nm。 (9) 記載於上述(7)或(8)之透明電極基板之製造方 法’其中在該金屬網目層的面所形成的第2透明導電層 的厚度為1至200 nm。 (1〇)—種電子裝置,其係具有記載於上述(1)至(6)中 任—項之透明電極基板。 (11) 一種太陽能電池,其係具有記載於上述(丨)至(6) 中任一項之透明電極基板。 201246578 [發明之效果] 發明之透明電極基板係高度維持光線穿透率, 表面電阻係數也低’具優越之導電性。另外,於使 發明之透明電極基板的太陽能電池中,可以 電轉換效率 &于151 【實施方式】 [用於贫施發明之形態] 以下’針對本發明而詳加說明。 <透明電極基板> 本發明之透明電極基板係由在透明基材之—側面, 積層埋设有導電性金屬網目層的透明導電層所構成者。 以下,針對本發明之透明電極基板之構造材料而加 以說明。 [透明基材] 以透明基材而言係從透明性之觀點,較佳為全光線 透射率為85%以上者,作為如此之透明基板而言,一般 係使用玻璃(板)或塑膠薄膜等。 例如,作為塑膠薄膜之種類而言,係可舉例包含聚 對苯二甲酸乙二酯、聚對萘二曱酸乙二酯、三乙醢基纖 維素、間規(syndiotactic)聚笨乙烯、聚苯硫醚、聚碳酸 酯、聚芳香酯、聚颯、聚酯砜、聚醚醯亞胺、環狀聚烯 烴等的塑膠薄膜。其中’作為具優越之機械強度、耐久 性、透明性、泛用性等者’較佳為包含玻璃(板)或聚對 苯二甲酸乙二酯、聚對萘二甲酸乙二酯、聚芳香酯等的 塑膠薄膜。從均衡機械強度、耐久性、及透明性之觀點, s -8 - 201246578 5 mm,更佳為 基材之厚度較 特佳為10 μιη [透明導電層] 佳為3 μηι至 至 1 mm。 5,至 3 mni, 雖然作為透明導電層 但可舉例導電性金屬氧化 之氧化物及此等之元素的 之材料並非予以特別限定者, 物’例如:銦、錫、鋅、鎵等 複合氧化物等。 更具體而言,可舉例摻雜錫之氧化銦(ιτ〇)、 (Ir〇2)、氧化銦(Ιη2〇3)、氡化錫(Sn〇2)、掺雜氟之氧化菊 (FTO)、氧化銦·氧化鋅(IZ〇)、氧化辞(Zn〇)、摻雜錄之BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent electrode substrate, a method of manufacturing the same, and a solar cell having the transparent electrode substrate. Further, the present invention relates to a transparent electrode substrate having a high light transmittance, a method for producing the same, an electronic device having the transparent electrode substrate, and a solar cell. [Prior Art] In recent years, 'organic electroluminescence (organic EL), various solar cells including organic solar cell b batteries, touch panels or mobile phones, electronic devices, etc. are eagerly begging for transparent conductive layers. Transparent electrode substrate. Generally, a transparent electrode substrate in which a transparent conductive layer is formed on a substrate such as a glass substrate is used as an electrode of an electronic device such as a solar cell or an organic device. However, 'the moon-shaped electrode substrate used as a transparent conductive layer of a metal oxide layer such as a normally doped tin-doped indium oxide (hereinafter referred to as IT0) is not limited in surface resistivity, and the volume resistivity of the itself is also high. A transparent conductive substrate such as an organic EL, various solar cells, a touch panel, a squeaking phone, or an electronic paper is required to have, for example, a transparent conductive substrate having a surface resistivity of 5 Ω/[| The transparent electrode with a smaller volume resistivity than the transparent conductive electrode For the requirements of the 5th, it has been considered to use the electrode layer as a very low & metal material layer as a secondary substrate. 1 夕如, in the patent document m, discloses a transparent conductive film smectite which is attached to a substrate, followed by a transparent oxide layer and a transparent oxide layer of a metal layer. And in such a configuration, the light penetration of -4-201246578 is low is not practical as a transparent electrode substrate of a thin film device. In addition, since the metal layer is laminated on the entire surface of the transparent oxide layer, there is a metal layer The deterioration of the film device using the substrate with the transparent conductive film is a problem. Further, in Patent Document 2, an electroluminescence panel comprising: formed on a substrate is disclosed A long strip-shaped or mesh-shaped auxiliary electrode layer containing a metal is formed on the i-th electrode of the crucible, and a light-emitting layer of the light-emitting region and a second electrode formed thereon are defined thereon. 3, an organic thin film solar cell having a transparent substrate, a mesh electrode including a metal film laminated on the transparent substrate in a different order, and a transparent electrode, at the mesh electrode And a photoelectric conversion layer formed on the transparent electrode and a counter electrode formed on the photoelectric conversion layer. However, in such a configuration, there is a possibility of causing problems such as deterioration due to metal corrosion. Patent Document 4 discloses a transparent conductive film which has a base metal or a base metal containing at least one side of a transparent base material sheet, a conductive metal mesh layer, and a conductive polymer layer. In the patent document 5, a transparent conductive film is disclosed, which has a transparent conductive film of a mesh 雹 and a conductive layer formed of at least one metal on the moon-permeable support, and A transparent conductive layer containing two agents is disposed on the conductive layer; and Patent Document 6 discloses a seed electrode for a battery, which is formed of a transparent dye-sensitized solar energy on a substrate. In the electrode for a battery, the resistance value is set to be lower than the transparent conductive film between the earth and the far-reaching conductive film -5, 2012,465,78. However, as an electrode of a solar cell or an organic EL element, it is transparent. In the electrode substrate, the progress of the transparency or the electroconductivity is required to be improved. PRIOR ART DOCUMENT Patent Document Patent Document 1 曰本特开平 10-241464 Patent Document 2 Japanese Patent Application Publication No. 2008-103305 Patent Document 3 201 0-1 5768 1 Patent Document 4 Japanese Patent Laid-Open No. 2009-08 1 104 Patent Document 5 Japanese Patent Laid-Open No. 2009-146678 Patent Document 6 Japanese Patent Application Publication No. 2004-296669 [Draft of the Invention] In view of the above-described problems, the present invention solves the above problems and provides a transparent electrode substrate having high light transmittance and conductivity, a method of manufacturing the same, and an electronic device having the electrode substrate. Means for Solving the Problem In order to solve the problems as described above, the inventors of the present invention have found that the above problems can be solved by creating a layer structure as follows. That is, the present invention provides the following: (1) A transparent electrode substrate which is described in the above description of a transparent conductive layer in which a conductive metal mesh layer is embedded in a surface of a transparent substrate (2). 1) A transparent electrode substrate, wherein the transparent layer is a layer composed of a metal oxide. The device and the resistant object have excellent transparency and are close to each other. Conductive 201246578 (3) The transparent electrode substrate according to (1) above, wherein the conductive metal mesh layer has a thickness of 1 to 1 〇〇 nm. (4) The transparent electrode substrate according to (1) above, wherein an opening ratio of the opening of the conductive metal mesh layer is 75% or more. (5) The transparent electrode substrate according to (1) above, wherein the transparent conductive layer is a layer containing indium oxide as a main component. (6) The transparent electrode substrate according to (1) above, wherein the conductive metal mesh layer is a layer composed of at least one selected from the group consisting of gold, silver, copper, platinum, aluminum, nickel, and chromium. (7) A method for producing a transparent electrode substrate, wherein a conductive metal layer is formed on one side of a transparent substrate, and a conductive metal layer is formed on the transparent conductive layer. A conductive metal mesh layer is formed on the metal layer, and a second transparent conductive layer is formed on the surface of the metal mesh layer, and the conductive metal mesh layer is coated through the transparent conductive layer. (8) The method for producing a transparent electrode substrate according to (7) above, wherein the first transparent conductive layer formed on one side surface of the transparent substrate has a thickness of from 1 Å to 1000 nm. (9) The method for producing a transparent electrode substrate according to (7) or (8) above, wherein the thickness of the second transparent conductive layer formed on the surface of the metal mesh layer is 1 to 200 nm. (1) An electronic device comprising the transparent electrode substrate described in any one of the above (1) to (6). (11) A solar cell comprising the transparent electrode substrate according to any one of (1) to (6) above. 201246578 [Effects of the Invention] The transparent electrode substrate of the invention has a high degree of light transmittance and a low surface resistivity, and has excellent conductivity. Further, in the solar cell of the transparent electrode substrate of the invention, the electric conversion efficiency can be ac 151. [Embodiment] [A form for the invention of the invention] Hereinafter, the present invention will be described in detail. <Transparent Electrode Substrate> The transparent electrode substrate of the present invention is composed of a transparent conductive layer in which a conductive metal mesh layer is embedded in a side surface of a transparent substrate. Hereinafter, the material of the transparent electrode substrate of the present invention will be described. [Transparent Substrate] The transparent substrate is preferably a total light transmittance of 85% or more from the viewpoint of transparency. As such a transparent substrate, glass (plate) or plastic film is generally used. . For example, as a kind of plastic film, polyethylene terephthalate, polyethylene terephthalate, triethyl fluorenyl cellulose, syndiotactic polystyrene, poly A plastic film such as phenyl sulfide, polycarbonate, polyarylate, polyfluorene, polyester sulfone, polyether quinone, or cyclic polyolefin. Among them, 'as a superior mechanical strength, durability, transparency, versatility, etc.' preferably comprises glass (plate) or polyethylene terephthalate, polyethylene naphthalate, poly aromatic A plastic film such as an ester. From the viewpoint of equalizing mechanical strength, durability, and transparency, s -8 - 201246578 5 mm, more preferably the thickness of the substrate is preferably 10 μηη [transparent conductive layer] preferably from 3 μηι to 1 mm. 5, to 3 mni, the material of the conductive metal oxide oxide and the elements thereof is not particularly limited as the transparent conductive layer, such as a composite oxide such as indium, tin, zinc or gallium. Wait. More specifically, tin-doped indium oxide (Ig〇2), (Ir〇2), indium oxide (Ιη2〇3), antimony telluride (Sn〇2), and fluorine-doped oxidized chrysanthemum (FTO) can be exemplified. , indium oxide, zinc oxide (IZ〇), oxidized (Zn〇), doped

^鋅(⑽換雜紹之氧化辞(Az〇)、氧化翻(M 氧化鈦(Ti02)等。 W 透明導電層之厚度較佳為20至1200 nm,進一步較 佳為30至1000 nm ’特佳為35至700 nm。 在透明基材上形成透明導電層之方法並未予以特別 限定,能夠利用習知之方法。例如,能夠利用A空基鍍、 錢鍍、離子電料之PVD(物理氣相蒸鍍);或是轨c/D、 原子層堆積(ALD)等CVD(化學氣相蒸鍍)等之乾式程序 或濕式程序的喷射法或網版印刷法等之習知方法而形成 此等之·透明導電層材料,按照透明基材或透明導電層之 材料而予以適當選擇。 透明導電層係表面電阻係數較佳為5〇 〇/□以下,進 一步較佳為10 Ω/□以下。 若表面電阻係數超過5〇 Ω/□時,例如將透明電極基 板應用於濤膜太陽能電池之情形,由於内部電阻大,因 光電轉換效率降低而不佳。^Zinc ((10) is replaced by oxidized (Az〇), oxidized (MTiO2), etc. The thickness of the W transparent conductive layer is preferably from 20 to 1200 nm, further preferably from 30 to 1000 nm. The method of forming the transparent conductive layer on the transparent substrate is not particularly limited, and a conventional method can be used. For example, PV-based plating, money plating, and ion-electric PVD (physical gas) can be utilized. Phase vapor deposition); or a conventional method such as a dry process such as CVD (chemical vapor deposition) such as rail c/D or atomic layer deposition (ALD), or a conventional method such as a wet process spray method or a screen printing method. The material of the transparent conductive layer is appropriately selected according to the material of the transparent substrate or the transparent conductive layer. The surface resistivity of the transparent conductive layer is preferably 5 Å/□ or less, and more preferably 10 Ω/□ or less. When the surface resistivity exceeds 5 〇 Ω / □, for example, when a transparent electrode substrate is applied to a solar cell solar cell, the internal resistance is large, and the photoelectric conversion efficiency is not preferable.

S -9- 201246578 於本發明之透明電極基板中,透明導電層係利用在 内部埋設有導電性金屬網目層的形狀而積層於透明基材 之一側面。 埋設有導電性金屬網目層的透明導電層係形成於透 明基材之一側面’導電性金屬網目層較佳為埋設於接近 透明導電層之透明基材側與相反侧的表面。 亦即’導電性金屬網目層係將透明導電層整體之厚 度設為10 〇 °/。之情形’較佳為埋設於距離透明導電層整體 厚度之透明基材側5 0至9 9 %之範圍的位置。 若導電性金屬網目層所埋設的位置為此範圍的話, 導電性為良好。認為此係由於藉由將導電性優異的導電 性金屬網目層埋設於接近與透明導電層之透明基材相反 側之面’能夠使透明導電層之表面電阻係數降低,並使 導電性提高。 [導電性金屬網目層] 於本發明之透明電極基板中,導電性金屬網目層係 由金屬或合金所構成,埋設於透明基材之一側面所形成 的透明導電層中。作為導電性金屬網目層而言,係可舉 例因金屬柵極圖案所導致的微細網目構造之層。 導電性金屬網目層係具有貫穿於厚度方向之開口 部。 從透明性之觀點,開口部之開口率較佳為75%以 上,更佳為80%以上,進一步較佳為90%以上。開口率 係如下方式所求得: 開口率(%) =[開口部之面積/(導電性金屬網目層之面 積+開口部之面積)]χ1〇〇%。 -10- 201246578 導電性金屬網目屉 予以特別限定。例如H形狀最好具有開口部,但並未 長方形、六角形等之*可舉例如第2圖所示之玉方形、 ρβ σ Λβ 有周期性的網目形狀等。 開口。ρ之間距較 mm。開口邻> 為Ο.1至mm,更佳為0.5至5 mm開口口P之間距低 低之情形;若超過10 _之情形,具有透明性降 〇 mm時,難以獲得導電性提高之效 果0 導電性金屬網目層 厚的線寬較佳為10 nm至10〇〇 μιη ’ 更佳為 20 nm $ Α 500 μιη。若線寬超過ι〇〇〇 μΓη時, 由於開口率變低,目丨女 支低則有透明性降低之情形;若低於10nm 時,則難以獲得導電性提高之效果。 導電性金屬網目層的厚度較佳為1至100 nm,更佳 為 2 至 5 0 n m 左太。^ ^ 1 ^ 镨由設為1 nm以上,能夠維持導電 性;藉由設為 1 〇 〇 n m -ΤΓ , At ίΑ nm以下,旎夠薄化地保持整體的厚 度,且能夠節省材料之浪費。 作為為了形成導電性金屬網目層的材料而言,可舉 例金屬或合金。例如:可舉例金、銀、銅、鋁、敎、絡 鐵、#、鎳、鋅、錫、銀、銦、鶴、銷、銘、銀、許 鈮、钽、鎢、鎂等之單體的金屬,或是以包含此等群組 的金屬中之至少一種作為主體之合金等。此等之 ^ T ’從 具有耐腐蝕性且導電性高的觀點,較佳為金、銀、鋼 鉑、鋁、鈦、鎳及鉻之金屬’更佳為金、銀、鋼、 在呂、錄及絡。 作為合金而言,能夠適當選擇不錄鋼、錄-鉻、 央向 鎮(Inconel)(商品名)、青銅、填青銅、黃鋼、硬鈀、白铜 201246578 恆範鋼(invar)、莫内爾合金(Monei)、鎳磷合金等之金屬 鱗化合物;鎳硼等之金屬硼化合物;氮化鈦等之金屬氮 化物等。尤其,因為以銅為主體之合金、以鎳為主體之 合金、以鈷為主體之合金、以鉻為主體之合金、以鋁為 主體之合金係具優越之導電性、加工性也良好而較佳被 使用。 導電性金屬網目層可以為由金屬或合金所構成的單 層,也可以為積層由至少二種以上之金屬或合金所構成 的層之多層構造。 接著,針對將導電性金屬網目層埋設於透明基材上 所設置的透明導電層之内部的方法而加以說明。 埋設導電性金屬網目層的方法並未予以特別限定, 按照導電性金屬網目層的材料、網目的形狀,能夠適當 選擇利用習知之方法。例如,可舉例使用接著劑或導電 性糊等而將所預先製作的導電性金屬網目層貼附於透明 基材上所設置的透明導電層上,進—步在其上形成透明 導電層之方法;或是利用噴墨法、網版印刷法等而在透 明基材上所設置的透明導電層上形成導電性金屬網目 層,進一步在其上形成透明導電層之方法;另外,將未 進行網目加X的導電性金屬層(以下,有單純地稱為導電 陵金屬層之情形)形成於透明基材上所設置的透明導電 層上,將此導電性金屬層加工成網目形狀,形成導電性 金屬網目層,進一步在其上形成透明導電層之方法等。 以下’針對形成導電性金屬網目層之方法而加以説 明。 201246578 首先, 明基材上所 性金屬層的 接著, 光Ί虫刻法而 械性處理或 電性金屬網 如上所 上,進一步 得在透明導 之本發明的 於本發 屬網目層, 加工之導電 透明性將提 僅直接設置 明基材上直 導電層之透 目層的透明 數更低,更 [透明電極J 接著, 以說明。 本發明 藉由上述之方法而將導電性金屬層形成於透 設置的透明導電層上。上述方法係按照導電 材料而予以適當選擇。 針對所形成的導電性金屬層,藉由實施利用 钱刻、形成網目圖案之方法等各種習'知之機 化學性處理等,加工成網目之形狀,形成導 目層。 述,藉由在所形成的導電性金屬網目層之 利用上述之方法而形成透明導電層,可以獲 電層之内部埋設有導電性金屬網目層的形態 透明電極基板。 明中,因為在透明導電層中埋設有導電性金 與如習知在透明導電層之間設置未予以網目 性金屬層的構造者作比較,透明電極基板之 鬲。另外,進一步與在如習知之透明基材上 透明導電層之構造的透明電極基板、或在透 接設置導電性金屬網目層且在其上設置透明 明電極基板(亦即,設置未埋設導電性金屬網 導電層之透明電極基板)作比較,表面電阻係 具優越之導電性。 ‘板之製造方法] 針對製造本發明之透明電極基板之方法而加 之透明電極基板之製造方法係如下所述° 201246578 其具有如下之特徵者:首先在透明基材之一側面形 成第1透明導電層’在該第1透明導電層上形成導電性 金屬層’藉由光阻圖案處理該導電性金屬層等而形成導 電性金屬網目層,在該金屬網目層的面上形成第2透明 導電層’藉由該第2透明導電層而被覆該導電性金屬網 目層後,於透明導電層中埋設導電性金屬網目層。 於此’所謂光阻圖案處理係利用光触刻法而姓刻導 電性金屬層,在導電性金屬層中形成網目圖案。 若根據此方法’能夠有效率地製造由在透明基材之 一側面積層埋設有導電性金屬網目層的透明導電層所構 成的本發明之透明電極基板。 作為用以形成導電性金屬層之材料而言,係可舉例 與形成上述之導電性金屬網目層之材料相同者,作為形 成導電性金屬層之方法而言,係可舉例與形成上述之透 明導電層之方法相同者’按照導電性金屬層之材料而予 以適*4選擇。具體而言,例如使用如銀或銅之材料,利 用真空蒸鐘、滅銀、離子電鍍等之PVD(物理氣相蒸鍍); 或*疋熱CVD、原子層堆積(ALD)等之CVD(化學氣相蒸鍍) 等之乾式程序’或是濕式程序之喷墨法或網版印刷法等 之習知方法而能夠形成導電性金屬層。 作為用以形成第1透明導電層及第2透明導電層之 材料而δ ,係可舉例與形成上述之透明導電層的材料 同者。 道在透明基材之一側面所形成的帛1透明導電層及在 電性金屬網目上所形成的第2透明導電層之材料可以 目同者也可以為不同者,但通常較佳為相同材料者。 -14- 201246578 作為形成第1透明導電層及第2透明導電層 °係可舉例與形成上述之透明導電層之方 者’按照透明導電層之材料而予以適當選擇。 .另外,通常在導電性金屬網目層上所形成的 導電層之厚度係較佳為更薄地形成在透明基材 面上所形成的第i透明導電層之厚度。 從透明性與導電性之觀點,在透明基材之一 形成的第1透明導電層之厚度通常為10至1000 佳為10至500 nm,特佳為30至300 nm。 在導電性金屬網目上所形成的第2透明導電 度通f為1至2GG nm,較佳為1()至則⑽,進 佳為20至100 nm,特佳為^至㈣。由於上 月之透明電極基板係具優越之透明性及導電性, 為電極而適用於各種之電子裝置。 <電子裝置> 本發明之電子裝置係 基板為特徵者。 以上逑本發明之透 + 此夠適用本發明之透明電極基板之電子 二可舉例電晶體、記憶體、有機 電池等之有機奘番.、六„ _ 令機4膜 有機裝置,液B曰顯示器;電子紙;薄 電色‘項不器;電化學發光裝 、 觸控面板;S5 - 轉換裝置;熱電轉換裝置. ·"不 等。 裝置,壓電轉換裝置;蓄丨 之方法 法相同 第2透 之一側 側面戶斤 nm >較 層之厚 一步較 述本發 月巨夠作 明電極 裝置而 太陽能 晶體; 器,光 1:裝置 -15- 201246578 <太陽能電池> 本發明之女 極基板為特徵:陽能電池係以具有上述本發明之透明電 而言作用t發明之透明電極基板的太陽能電池 池冑薄膜太陽能電池、薄膜矽型太陽能電 /¾ 口 i太陽能雷 々 型太陽能電池、電尸效要 太陽能電池、球狀矽 能電池等各種之太::太陽此電池、色素增感太陽 池較佳為呈古U 本發明之太陽能電 陽能電池:、4本發明之透明電極基板的有機薄膜太 Π圖:Γ機薄膜太陽能電池為例而加以說明。 第1圖係顯示構成本發明之太陽 機薄膜太陽能電池之層 ..電池之一例的有 係透明基材、2係第i透明導電層、3 ?圖中 層、4係第2透明導電層、5係光電轉換^、金屬網目 7係基材層、8係埋設有導電性金屬網二6係電極、 層、9係本發明之透明電極基板、1〇=的透明導電 電池》 有機薄膜太陽能 [光電轉換層] 光電轉換層(第1圖中之5)係進行 原料之低成本化、柔軟性、形成之容易轉換之層,從 南低、輕量化、耐撞擊性等之觀點,較佳哇、吸光係數之 光電轉換層可以由單層而成,也η為有機半導體。 成。單層之情形下,光電轉換層通常係γ以由複數層而 型半導體)所形成。 〜由本性半導體(i -16- 201246578 另外,複數層之情形,為(P型半導體層/n型丰莫 )。之積層或(P型半導體層/本性半導體層/n型半導體層) 激勵子 3 0 nm 從單層或複數層之情形且不同者為導電性、 擴散距離之_ & ^ χ 觀點’先電轉換層之厚度一般較佳為 至2 μΠ1 ’特佳為40 nm至300 nm。 明 以下,針對光電轉換層所用之有機半導體而加以說 (1)本性半導體 導體I : ί性半導體之材料而言,能夠使用所獲得之半 ㈣‘.....险半導體的方式來混合包含例如富勒烯、富 、何生物、具有半導體性之碳奈米管(cnt)及cnt 合物中至少 ^ '種的第1材料、與包含聚苯伸乙烯(PPV) 何生物或聚噻吩系高分子材料的第2材料之混合物。 _作為富勒烯衍生物而言,例如能夠使用[6,6]_苯基 1 丁駚甲酯(PCBM)等,另外,也能夠使用富勒烯之二 體或疋導入鹼金屬或鹼土金屬等之富勒烯化合物 八思另外,作為CNT而言,係能夠使用内藏富勒烯或是 主八内藏富勒烯之碳奈米管等。還有,也能夠使用將各 種刀子附加於CNT之側壁或尖端的cnt化合物等。 氧美作為聚苯伸乙烯之衍生物而言,係能夠使用聚[2_甲 土 5 (2 _乙基環己氧基)對苯伸乙烯]等;作 為聚塞=系向分子材料而言,係能夠使用聚_3•己基噻吩 (P3HT)等之聚(3_烧基噻吩)、二辛基苐-聯噻吩共聚物 (F8T2)等。 201246578 作為特佳的本性半導體而言,係可舉例以質量比j : 0.3至1 : 4混合PCBM與P3HT的混合物。 (2)p型半導體 作為p型半導體之材料而言,例如··可舉例聚烷基 塞勿及八仿生物、聚本及其衍生物、聚苯伸乙稀及其衍 生物、聚矽烷及其衍生物 '卟啉衍生物、酞青素衍生物、 有機金屬聚合物等。其中’較佳為聚烧基嚷吩及其衍生 物另外也可以為此等有機材料之混合物。作為導電 性高分子化合物而言’係較佳能夠使用聚(3,仆伸乙二氧 基°塞吩/聚笨乙烯磺酸鹽(PED〇t : PSS)。 (3)n型半導體 作為η型半導體之材 物。你丨4 < Τ叶而5 ,特佳為富勒烯衍生 σ,作為富勒稀衍生物 茉美Γ 丁祕 玍物而& ,係能夠使用[6,6]- 本丞·C61_丁酸甲酯(PCBM)等。 作為形成光電轉換層5 介蒗供·土 ^ <方法而έ ’係適當選擇真 工蒸鏟法、濺鍍法等之乾式 、田圮伴具 霧塗布、棒塗布等之各種塗布 #塗布噴 [電極] 寸 與成為對向電極之透明 極)作比較,電極(在第U之:層的材質(例如ΙΤ0電 差大者。例如,可舉例除之材料較佳為功函數之 氧化鋅等之金屬、金屬氧化二?、翻、金、鉉、絡、 述金屬、金屬氧化物或合::合金之外,還有與上 電極之厚度較佳為至…。 100 nm。 μΓη ’ 特佳為 30 nm 至 201246578 作為在光電轉換層5上 舉例真空蒸鍍、濺鍍、離子曾成電極6之方法而言,可 鍍),按照對向電極之材料^錄等之PVD(物理氣相蒸 [基材層] /(力函數等)而予以適當選擇。In the transparent electrode substrate of the present invention, the transparent conductive layer is laminated on one side of the transparent substrate by a shape in which a conductive metal mesh layer is embedded. The transparent conductive layer in which the conductive metal mesh layer is embedded is formed on one side of the transparent substrate. The conductive metal mesh layer is preferably embedded on the transparent substrate side and the opposite side of the transparent conductive layer. That is, the conductive metal mesh layer has a thickness of the entire transparent conductive layer of 10 〇 ° /. The case ‘ is preferably buried at a position ranging from 50 to 99% of the transparent substrate side of the entire thickness of the transparent conductive layer. When the position where the conductive metal mesh layer is buried is in this range, the conductivity is good. It is considered that the surface resistivity of the transparent conductive layer can be lowered and the conductivity can be improved by embedding a conductive metal mesh layer having excellent conductivity in a surface close to the side opposite to the transparent substrate of the transparent conductive layer. [Electrically conductive metal mesh layer] In the transparent electrode substrate of the present invention, the conductive metal mesh layer is made of a metal or an alloy and is embedded in a transparent conductive layer formed on one side of the transparent substrate. As the conductive metal mesh layer, a layer of a fine mesh structure due to a metal gate pattern can be exemplified. The conductive metal mesh layer has an opening penetrating through the thickness direction. The aperture ratio of the opening portion is preferably 75% or more, more preferably 80% or more, and still more preferably 90% or more from the viewpoint of transparency. The aperture ratio was determined as follows: The aperture ratio (%) = [area of the opening / (area of the conductive metal mesh layer + area of the opening)] χ 1〇〇%. -10- 201246578 Conductive metal mesh drawers are specially limited. For example, the H shape preferably has an opening, but it is not a rectangle, a hexagon or the like. For example, the jade square shown in Fig. 2 and the ρβ σ Λβ have a periodic mesh shape. Opening. The distance between ρ is smaller than mm. The opening is > is Ο1 to mm, more preferably 0.5 to 5 mm, and the distance between the openings P is low; if it exceeds 10 _, it is difficult to obtain an effect of improving conductivity when the transparency is reduced by mm. 0 The conductive metal mesh layer has a line width of preferably 10 nm to 10 〇〇 μιη ' more preferably 20 nm $ Α 500 μιη. When the line width exceeds ι 〇〇〇 μΓη, since the aperture ratio becomes low, the transparency of the target virgin is lowered, and if it is less than 10 nm, it is difficult to obtain the effect of improving the conductivity. The thickness of the conductive metal mesh layer is preferably from 1 to 100 nm, more preferably from 2 to 50 n m left too. ^ ^ 1 ^ 镨 is set to 1 nm or more to maintain conductivity; by setting it to 1 〇 〇 n m -ΤΓ , at Α Α Α nm, it is thin enough to maintain the overall thickness and save material waste. As a material for forming the conductive metal mesh layer, a metal or an alloy can be exemplified. For example: gold, silver, copper, aluminum, bismuth, coltan, #, nickel, zinc, tin, silver, indium, crane, pin, Ming, silver, Xu, 钽, tungsten, magnesium, etc. The metal is an alloy or the like mainly composed of at least one of metals including such groups. From the viewpoint of corrosion resistance and high electrical conductivity, the metal of gold, silver, steel platinum, aluminum, titanium, nickel and chromium is preferably made of gold, silver, steel, and ruthenium. Record and network. As an alloy, it is possible to appropriately select not-recorded steel, recorded-chrome, Inconel (trade name), bronze, filled bronze, yellow steel, hard palladium, white copper 201246578 constant van steel (invar), Monel a metal scale compound such as a alloy (Monei) or a nickel phosphorus alloy; a metal boron compound such as nickel boron; a metal nitride such as titanium nitride; and the like. In particular, copper-based alloys, nickel-based alloys, cobalt-based alloys, chromium-based alloys, and aluminum-based alloys have superior electrical conductivity and processability. Good is used. The conductive metal mesh layer may be a single layer composed of a metal or an alloy, or a multilayer structure in which a layer composed of at least two or more metals or alloys is laminated. Next, a method of embedding a conductive metal mesh layer in the inside of a transparent conductive layer provided on a transparent substrate will be described. The method of embedding the conductive metal mesh layer is not particularly limited, and a conventional method can be appropriately selected in accordance with the material of the conductive metal mesh layer and the mesh shape. For example, a method in which a conductive metal mesh layer prepared in advance is attached to a transparent conductive layer provided on a transparent substrate by using an adhesive or a conductive paste or the like, and a transparent conductive layer is further formed thereon can be exemplified. Or a method of forming a conductive metal mesh layer on a transparent conductive layer provided on a transparent substrate by an inkjet method, a screen printing method, or the like, and further forming a transparent conductive layer thereon; The conductive metal layer to which X is added (hereinafter, simply referred to as a conductive metal layer) is formed on a transparent conductive layer provided on a transparent substrate, and the conductive metal layer is processed into a mesh shape to form conductivity. A metal mesh layer, a method of further forming a transparent conductive layer thereon, and the like. The following description will be made on a method of forming a conductive metal mesh layer. 201246578 First, the subsequent metal layer on the substrate is bonded, and the optical mites are mechanically treated or the electrical metal mesh is as described above, and further, the transparent conductive material of the present invention is processed in the mesh layer of the present invention. The transparency will only be set directly to the transparent layer of the direct conductive layer on the substrate to have a lower transparency, and more [transparent electrode J is followed by explanation. In the present invention, a conductive metal layer is formed on the transparent conductive layer which is provided by the above method. The above method is appropriately selected in accordance with a conductive material. The conductive metal layer to be formed is processed into a mesh shape by performing various chemical processes such as a method of forming a mesh pattern by using a money, and forming a mesh layer. As described above, by forming the transparent conductive layer by the above-described method on the formed conductive metal mesh layer, it is possible to obtain a transparent electrode substrate in which a conductive metal mesh layer is buried in the inside of the electric layer. In the description, the conductive electrode is embedded in the transparent conductive layer and the structure of the transparent electrode substrate is compared with a structure in which a mesh metal layer is not provided between the transparent conductive layers. Further, a transparent electrode substrate having a structure of a transparent conductive layer on a transparent substrate as in a conventional one, or a conductive metal mesh layer is provided in a transparent manner, and a transparent electrode substrate is provided thereon (that is, a conductive layer is not embedded) For comparison, the surface resistance of the metal mesh conductive layer is superior to that of the conductive substrate. The method for producing a transparent electrode substrate according to the method for producing the transparent electrode substrate of the present invention is as follows: 2012 201278 It has the following features: First, a first transparent conductive layer is formed on one side of a transparent substrate. a layer 'forming a conductive metal layer on the first transparent conductive layer' to form a conductive metal mesh layer by treating the conductive metal layer or the like by a photoresist pattern, and forming a second transparent conductive layer on the surface of the metal mesh layer After the conductive metal mesh layer is covered by the second transparent conductive layer, a conductive metal mesh layer is buried in the transparent conductive layer. Here, the so-called photoresist pattern processing uses a photo-touching method to name a conductive metal layer, and a mesh pattern is formed in the conductive metal layer. According to this method, the transparent electrode substrate of the present invention comprising a transparent conductive layer in which a conductive metal mesh layer is embedded in an area layer on one side of a transparent substrate can be efficiently produced. The material for forming the conductive metal layer may be the same as the material for forming the conductive metal mesh layer described above. As a method of forming the conductive metal layer, the transparent conductive material may be exemplified and formed. The same method of the layer is selected according to the material of the conductive metal layer. Specifically, for example, a material such as silver or copper is used, and PVD (physical vapor deposition) such as vacuum distillation, silver elimination, ion plating, or the like; or CVD (such as thermal CVD, atomic layer deposition (ALD), or the like is used. A conductive metal layer can be formed by a conventional method such as a dry process such as chemical vapor deposition (either a wet process or an inkjet method or a screen printing method). The material δ used to form the first transparent conductive layer and the second transparent conductive layer may be the same as the material for forming the above transparent conductive layer. The material of the 帛1 transparent conductive layer formed on one side of the transparent substrate and the second transparent conductive layer formed on the electrical metal mesh may be different or different, but generally the same material is preferred. By. -14-201246578 The formation of the first transparent conductive layer and the second transparent conductive layer can be exemplified as appropriate for forming the transparent conductive layer described above in accordance with the material of the transparent conductive layer. Further, the thickness of the conductive layer which is usually formed on the conductive metal mesh layer is preferably a thickness which is formed to be thinner on the surface of the transparent conductive substrate. The thickness of the first transparent conductive layer formed on one of the transparent substrates is usually from 10 to 1,000, preferably from 10 to 500 nm, particularly preferably from 30 to 300 nm, from the viewpoints of transparency and conductivity. The second transparent conductivity f formed on the conductive metal mesh is 1 to 2 GG nm, preferably 1 () to (10), more preferably 20 to 100 nm, and particularly preferably ^ to (4). Since the transparent electrode substrate of the last month has superior transparency and conductivity, it is suitable for various electronic devices for electrodes. <Electronic device> The electronic device substrate of the present invention is characterized. The above is applicable to the transparent electrode substrate of the present invention. The electrons of the transparent electrode substrate of the present invention can be exemplified by an organic device such as a transistor, a memory, an organic battery, etc., a six _ _ _ machine 4 membrane organic device, a liquid B 曰 display ; electronic paper; thin electric color 'item; electrochemiluminescence, touch panel; S5 - conversion device; thermoelectric conversion device. · " not equal. device, piezoelectric conversion device; method of storage 2, one side of the side of the side of the household jin nm > thicker than the layer of the step than the present month is enough to make the electrode device and solar crystal; device, light 1: device -15-201246578 <Solar cell> The female electrode substrate is characterized in that the solar cell is a solar cell, a thin film solar cell, a thin film, a solar cell, a solar cell, or a solar cell, which has the transparent electrode substrate of the invention. Battery, electric corpse effect solar battery, spherical 矽 energy battery, etc.:: The solar cell, the dye-sensitized solar pool is preferably the ancient U solar energy solar cell of the invention: 4 The organic thin film of the transparent electrode substrate of the present invention is illustrated by way of example: a silicon thin film solar cell is taken as an example. Fig. 1 is a view showing a layer of a solar cell thin film solar cell constituting the present invention. 2, the second transparent conductive layer, the third layer, the fourth transparent conductive layer, the five-phase photoelectric conversion, the metal mesh 7-based substrate layer, and the eight-layer embedded conductive metal mesh two-six electrode. Layer, 9-layer transparent electrode substrate of the present invention, transparent conductive battery of 1 〇 = organic thin film solar energy [photoelectric conversion layer] photoelectric conversion layer (5 in the first figure) is a low cost, flexibility, and formation of raw materials The layer which is easy to convert, from the viewpoints of south low, light weight, impact resistance, etc., the photoelectric conversion layer of the wow and the light absorption coefficient may be formed of a single layer, and η is an organic semiconductor. The photoelectric conversion layer is usually formed of γ by a plurality of layers of a type of semiconductor. 〜Intrinsic semiconductor (i-16-201246578 In addition, in the case of a plurality of layers, (P-type semiconductor layer/n-type feng Mo). Or (P-type semiconductor layer / this Semiconductor layer/n-type semiconductor layer) Exciter 3 0 nm From the case of single layer or complex layer and the difference is conductivity and diffusion distance _ & ^ 观点 Opinion 'The thickness of the first conversion layer is generally preferably 2 μΠ1 'excellently 40 nm to 300 nm. Hereinafter, the organic semiconductor used for the photoelectric conversion layer will be described. (1) The semiconductor conductor of the present invention: the material of the semiconductor can be used. ..... a semiconductor method to mix, for example, fullerene, rich, Hebi, semiconducting carbon nanotubes (cnt) and cnt compounds of at least the first material, and poly A mixture of benzene-extended ethylene (PPV) or a second material of a polythiophene-based polymer material. _ As a fullerene derivative, for example, [6,6]-phenyl 1 butyl fluorene methyl ester (PCBM) or the like can be used, and an alkali metal or alkaline earth metal can also be introduced using a fullerene or a hydrazine. In addition, as a CNT, a carbon nanotube containing a fullerene or a fullerene fullerene can be used as the CNT. Further, a cnt compound or the like in which various types of knives are attached to the side wall or the tip end of the CNT can be used. As a derivative of polyphenylene extending ethylene, Oxygen can use poly[2_methane 5 (2-ethylcyclohexyloxy)-p-vinylene], etc.; A poly(3-carbothiophene) such as poly-3-3 hexylthiophene (P3HT), a dioctylfluorene-bithiophene copolymer (F8T2), or the like can be used. 201246578 As a special intrinsic semiconductor, a mixture of PCBM and P3HT can be exemplified by a mass ratio of j: 0.3 to 1:4. (2) p-type semiconductors As materials of p-type semiconductors, for example, polyalkylenes and eight-like organisms, polybens and derivatives thereof, polystyrene and its derivatives, polydecane and Its derivatives are 'porphyrin derivatives, anthraquinone derivatives, organometallic polymers, and the like. Wherein 'preferably polyalkyl porphin and its derivatives may additionally be a mixture of organic materials for this purpose. As the conductive polymer compound, it is preferable to use poly(3, exemplified ethylenedioxythiophene/polystyrene sulfonate (PED〇t: PSS). (3) n-type semiconductor as η A type of semiconductor material. You 丨 4 < Τ leaf and 5, especially good for fullerene-derived σ, as a full-lean derivative of the glutinous rice Γ 玍 而 而 而 而 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,丞················································································· With various coatings such as fog coating and bar coating, the coating spray [electrode] is compared with the transparent electrode that becomes the counter electrode, and the electrode (in the U: the material of the layer (for example, the ΙΤ0 electric difference is large. For example, For example, the material is preferably a metal such as a zinc oxide such as a work function, a metal oxide, a metal, a metal oxide, or a metal oxide or a metal alloy, and an upper electrode. The thickness is preferably up to... 100 nm. μΓη ' is particularly preferably 30 nm to 201246578 as an example of vacuum evaporation on the photoelectric conversion layer 5 The method of sputtering and ion-forming the electrode 6 can be suitably selected by PVD (physical vapor phase [substrate layer] / (force function, etc.) according to the material of the counter electrode.

作為基材層(在第1圖 A 戎朔膜磕胺4. ^而έ,一般可舉例玻璃(板) 或塑膠,専膜’按照電子裝 ,,h ^ ^ 之用途而予以適當選擇。例 如,作為塑膠薄膜而言,係可 選擇 聚對萘二甲酸乙二輯、四乙醢其/ “ -曱I乙二醋、 聚笨护醚^ , 乙醯基纖維素、間規聚苯乙烯、 聚本硫醚、聚碳酸酯、聚芳 Λ W 日聚硬、聚酯艰、聚鍵 醯亞胺、%狀聚烯烴等之薄冑 度、对久性等者。 較佳為具優越之機械強 [實施例] 以下’藉由參考例、實施例及比㈣而更^田地說 明本發明,但本發明並不受此等所限定。 ' - &lt;實施例1 &gt; [透明電極基板之製作] 作為在透明基材之-侧面已積層第i透明導電層之 基板而言,係準備Geomatec(股份公司)製、產品名「㈤ ITO」(作為基材而言,係在厚度0 7_玻璃之〜側面具 有250 nm之ΙΤΟ膜的基板)。 接著,在此基板之ITO膜上,於 八ιχιυ 以下之 減壓下,利用真空蒸鍍法而使厚度成為5nm的方式將銀 (Ag)製膜而形成導電性金屬層。 接著,_導電性金屬層進行光版圖案處理,之後, 進行蝕刻處理(光阻圖案處理)而作成導電性金屬網目 201246578 層’形成有正方形周期性之網目形狀(開口部之 mm、導電性金屬網目層的線寬30 μπι、開口率β矩 厚度 5 nm)。 早 94·1%、 以下 ,骏置名 第2逯明 電性金屬 中 明 接著’在導電性金屬網目層上,於lxl〇-之減壓下’利用濺鍍法(ULVAC製之濺鍍裝置 稱「卜sputter」),將厚度3〇 ηπι之ITO膜作為 導電層而形成’製得在透明導電層内埋設有導 網目層的本發明之透明電極基板。 &lt;實施例2至4 &gt; 度變更為表i 得本發明之透 除了將導電性金屬網目層(A g)的厚 記載的厚度以外’與實施例1同樣地製 電極基板。 &lt;比較例1至4 &gt; 除了將導電性金屬層(Ag)的厚度變更為表!中記 的厚度,且對導電性金屬不進行光阻圖案處理以外,與 實施例1同樣地製得比較用之透明電極基板。亦即,製 得在透明導電層内埋設有未予以網目加工之導電性金屬 層的比較用之透明電極基板。 &lt;比較例5 &gt; 除了未形成導電性金屬層(Ag)之外’進行與實施例i 同樣的方式,在作為第1透明導電層之厚度25〇 nm的 ΙΤ〇膜上,直接形成作為第2透明導電層之厚度3〇 nm 的JTO膜,製得比較用之透明電極基板。亦#,製得僅 設置透明導電層之構造的比較用之透明電極基板。As the substrate layer (in Figure 1A, the decyl amide amine 4. ^, generally can be exemplified by glass (plate) or plastic, enamel film 'according to the electronic device, h ^ ^ for the purpose of appropriate selection. For example As a plastic film, it can be selected from the group consisting of poly(p-naphthalene dicarboxylate), tetraethyl hydrazine / "-曱I ethylene diacetate, polystyrene ether ^, ethyl phthalocyanine, syndiotactic polystyrene, Polyether thioether, polycarbonate, polyaryl fluorene W, hard, polyester, poly-bonded phthalimide, % polyolefin, etc., such as thinness, durability, etc. [Embodiment] Hereinafter, the present invention will be described more hereinafter by reference to examples, examples and ratios (four), but the present invention is not limited thereto. ' - &lt;Example 1 &gt; [Transparent Electrode Substrate Manufactured as a substrate on which the ith transparent conductive layer is laminated on the side of the transparent substrate, the product name "(5) ITO" manufactured by Geomatec Co., Ltd. (as a substrate, the thickness is 0 7_) The substrate on the side of the glass has a ruthenium film of 250 nm.) Next, on the ITO film of the substrate, the reduction below the χ χ υ Next, silver (Ag) is formed into a film to form a conductive metal layer by a vacuum deposition method to have a thickness of 5 nm. Next, the conductive metal layer is subjected to a lithographic patterning process, and then an etching process (resistance pattern) is performed. The conductive metal mesh 201246578 layer is formed into a square periodic mesh shape (mm of the opening portion, line width of the conductive metal mesh layer 30 μπι, aperture ratio β moment thickness 5 nm). Early 94·1% In the following, the name of the second name of the 骏 电 电 电 电 接着 接着 接着 接着 接着 接着 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在The ITO film having a thickness of 3 〇ηπι is used as a conductive layer to form a transparent electrode substrate of the present invention in which a mesh layer is embedded in a transparent conductive layer. <Examples 2 to 4> Degrees are changed to Table i The electrode substrate of the present invention was produced in the same manner as in Example 1 except that the thickness of the conductive metal mesh layer (A g) was described. [Comparative Examples 1 to 4 &gt; In addition to the conductive metal layer (Ag) Change the thickness to the table! A transparent electrode substrate for comparison was produced in the same manner as in Example 1 except that the conductive metal was not subjected to the photoresist pattern treatment. That is, the conductivity in the transparent conductive layer was not embedded in the mesh processing. Comparative Example 5 &gt; In the same manner as Example i except that the conductive metal layer (Ag) was not formed, the thickness of the first transparent conductive layer was 25 〇 On the yttrium film of nm, a JTO film having a thickness of 3 〇 nm as a second transparent conductive layer was directly formed, and a transparent electrode substrate for comparison was obtained. Also, a comparative transparent electrode substrate having a structure in which only a transparent conductive layer was provided was obtained.

S -20- 201246578 &lt;比較例6 &gt; 在作為透明基材之玻璃板(河村久三商店公司製、鹿 度3 mm)之一側面,在與於實施例2相同之條件下形成 厚度10 nm之導電性金屬層,進行導電性金屬層之光p且 圖案處理,形成開口率94.1 %之導電性金屬網目層。接 著’在與實施例2相同之方法下,在導電性金屬網目層 的面上形成ITO膜作為厚度150nm之透明導電層而製得 比較用之透明電極基板。亦即’製得設置未埋設導電性 金屬網目層的透明導電層之比較用的透明電極基板。 &lt;比較例7 &gt; 於比較例6中’除了將導電性金屬層(Ag)的厚度變 更為20 nm以外’同樣地製得比較用之透明電極基板。 亦即,製得設置未埋設導電性金屬網目層的透明導電詹 之比較用的透明電極基板。 &lt;比較例8 &gt; 於比較例6中,除了將導電性金屬層(Ag)的厚度變 更為30 nm以外,同樣地製得比較用之透明電極基板。 亦即’製得設置未埋設導電性金屬網目層的透明導電層 之比較用的透明電極基板。 &lt;比較例9 &gt; 於比較例6中,除了將導電性金屬層(Ag)的厚度變 更為50 nm以外,同樣地製得比較用之透明電極基板。 亦即,製得設置未埋設導電性金屬網目層的透明導電層 之比較用的透明電極基板。 -2 1 -S -20-201246578 &lt;Comparative Example 6&gt; A thickness of 10 was formed under the same conditions as in Example 2 on one side of a glass plate (manufactured by Kawamura K.K., Ltd., 3 mm) as a transparent substrate. The conductive metal layer of nm was subjected to light treatment of the conductive metal layer and patterned to form a conductive metal mesh layer having an aperture ratio of 94.1%. Then, in the same manner as in Example 2, an ITO film was formed on the surface of the conductive metal mesh layer as a transparent conductive layer having a thickness of 150 nm to prepare a transparent electrode substrate for comparison. That is, a transparent electrode substrate for comparison for providing a transparent conductive layer in which a conductive metal mesh layer is not embedded is prepared. &lt;Comparative Example 7&gt; In Comparative Example 6, the transparent electrode substrate for comparison was produced in the same manner as in the case where the thickness of the conductive metal layer (Ag) was changed to 20 nm. That is, a transparent electrode substrate for comparison for the transparent conductive material in which the conductive metal mesh layer is not embedded is prepared. &lt;Comparative Example 8&gt; In Comparative Example 6, a transparent electrode substrate for comparison was obtained in the same manner except that the thickness of the conductive metal layer (Ag) was changed to 30 nm. That is, a transparent electrode substrate for comparison for providing a transparent conductive layer in which a conductive metal mesh layer is not embedded is prepared. &lt;Comparative Example 9&gt; In Comparative Example 6, a transparent electrode substrate for comparison was obtained in the same manner except that the thickness of the conductive metal layer (Ag) was changed to 50 nm. Namely, a transparent electrode substrate for comparison in which a transparent conductive layer in which a conductive metal mesh layer is not embedded is provided. -twenty one -

S 201246578 &lt;比較例1 ο &gt; 於比較例6中’未形成導電性金屬網目層(Ag),在 透明基材上直接形成厚度150 nm之作為透明導電層的 ιτ〇膜’製得比較用之透明電極基板。亦即,製得僅在S 201246578 &lt;Comparative Example 1 ο &gt; In Comparative Example 6, a comparison was made in which a conductive metal mesh layer (Ag) was not formed, and a transparent conductive layer was formed directly on a transparent substrate as a transparent conductive layer. A transparent electrode substrate is used. That is, it is made only in

透明基材上設置透明導電層之構造的比較用之透明電極 基板D &lt;比較例1 1 &gt; 除了作成透明導電層之厚度250 nm以外,進行相同 於比較例10的方式而製得比較用之透明電極基板。亦 即,製得僅設置透明導電層之構造的比較用之透明電極 基板。 將在實施例i至4所獲得之本發明的透明電極基板 及比較例!至11戶斤獲得之比較用彡日月電極基板之 彙整而記載於表1。 -22- 201246578 Ι&lt; 電阻係啟 (Ω · cm) 1.457X10·4 1.306^10-4 1.067XHT4 0.961 x IQ·4 1.243x1 O'4 0.950X10·4 1 0.844XHT4 0.639X10-4 1.471X10-4 6·06χ 10*4 4.84X10-4 2.57X10-4 2.43X10·4 7.11ΧΗΓ4 1.471x1ο·4 全部光線 透過率 (%) 85.9 85.8 84.4 83.8 81.0 72.3 58.4 25.4 88.0 82.9 79.5 80.9 81.4 89.4 89.4 表面電阻係數 (Ω/Π) 5.008 4.635 i 3.884 3.436 4.703 3.830 3.394 2.408 5.288 38.500 32.300 16.700 15.400 48.600 5.255 透明電椏基板之恐造 開口率 (%) i s: 94.1 o 〇 o o o t t i ο ο ΠΠ W. 如裘 ㈣ ε a. ο m I B 0 cn 1 B n o cn ε B B =L 〇 I 1 1 1 1 1 B n. 0 1 B n 0 1 B n 0 CO 1 ε λ ο i 1 1 層構造 玻璃/ΙΤΟ(250 nm)/Ag(5 nm)/ITO(30 mn) 玻璃/ITO(250 nm)/Ag(10 nm)/ITO(30 nm) 玻璃/ITO(250 _/Ag(15 rnn)/ITO(30 nm) 玻璃/ITO(250 nm)/Ag(20 nm)/ITO(30 nm) 玻璃/ITO(250 nm)/Ag(5 nm)/ITO(30 nm) 玻璃/ITO(250 nm)/Ag(10 nm)/ITO(30 nm) 玻璃/ITO(250 nm)/Ag(15 nm)/!T0(30 nm) 玻璃/ITO(250 nm)/Ag(20 nm)/ITO(30 nm) 玻璃/ITO(250 nm)/ ITO(30 nm) 玻璃/ Ag(10 nm)/ITO(150 nm) 1 玻璃/ Ag(20 nm)/ITO(150 nm) 玻璃/ Ag(30 nm)/ITO(150 nm) 玻璃/ Ag(50 nm)/ITO(150 nm) 玻璃/ITO(150nm) 玻璃/ ΙΤΟ(250 nm) 實施例1 實施例2 實施例3 實施例4 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 比較例7 比較例8 比較例9 比較例10 比較例11 _ε£\ι-Comparative Transparent Electrode Substrate D &lt;Comparative Example 1 1&gt; The transparent conductive layer was formed to have a transparent conductive layer having a thickness of 250 nm, and the same manner as in Comparative Example 10 was used for comparison. Transparent electrode substrate. Namely, a comparative transparent electrode substrate having a structure in which only a transparent conductive layer is provided is obtained. The transparent electrode substrate of the present invention obtained in Examples i to 4 and a comparative example! The comparison with the 11-inch jin is used in Table 1 for the comparison of the solar cell substrate. -22- 201246578 Ι&lt; Resistor Start (Ω · cm) 1.457X10·4 1.306^10-4 1.067XHT4 0.961 x IQ·4 1.243x1 O'4 0.950X10·4 1 0.844XHT4 0.639X10-4 1.471X10-4 6·06χ 10*4 4.84X10-4 2.57X10-4 2.43X10·4 7.11ΧΗΓ4 1.471x1ο·4 Total light transmittance (%) 85.9 85.8 84.4 83.8 81.0 72.3 58.4 25.4 88.0 82.9 79.5 80.9 81.4 89.4 89.4 Surface resistivity ( Ω/Π) 5.008 4.635 i 3.884 3.436 4.703 3.830 3.394 2.408 5.288 38.500 32.300 16.700 15.400 48.600 5.255 The fear opening ratio of the transparent electrode substrate (%) is: 94.1 o 〇oootti ο ο ΠΠ W. 如裘(四) ε a. ο m IB 0 cn 1 B no cn ε BB =L 〇I 1 1 1 1 1 B n. 0 1 B n 0 1 B n 0 CO 1 ε λ ο i 1 1 layer structure glass / ΙΤΟ (250 nm) / Ag (5 nm) / ITO (30 mn) Glass / ITO (250 nm) / Ag (10 nm) / ITO (30 nm) Glass / ITO (250 _ / Ag (15 rnn) / ITO (30 nm) glass / ITO (250 nm) / Ag (20 nm) / ITO (30 nm) Glass / ITO (250 nm) / Ag (5 nm) / ITO (30 nm) Glass / ITO (250 nm) / Ag (10 nm) / ITO (30 nm) Glass/ITO (250 nm) / Ag (15 nm) /! T0 (30 nm) Glass / ITO (250 nm) / Ag (20 nm) / ITO (30 nm) Glass / ITO (250 nm) / ITO (30 nm) glass / Ag (10 nm) / ITO (150 nm) 1 glass / Ag (20 nm) / ITO (150 nm) glass / Ag (30 nm) / ITO (150 nm) glass / Ag (50 Nm)/ITO (150 nm) Glass/ITO (150 nm) Glass/ΙΤΟ (250 nm) Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 Comparative Example 11 _ε£\ι-

S ,201246578 在表1記載之材料的物性及透明電極基板之特性係 進行如下的方式來測定。 (1) 厚度 透明導電層、導電性金屬網目層及導電性金屬層的 厚度係藉由探針式表面形狀測定裝置(ULVac公司製、 產品名「Dektak 150」)而測得。 (2) 表面電阻係數之測定 藉由表面電阻測定裝置(三菱化學公司製、產品名 「LORESTA GP MCP-T600」),利用四端子法而測定所 獲得之透明電極基板的透明導電層表面之表面電阻係 數。 (3) 光線穿透率 使用光線穿透率測定裝置[曰本電色工業公司製、產 品名「NDH-5000」]而依照jIS K7361-1,測得透明電極 基板之全光線透射率。 &lt;實施例5 &gt; [太陽能電池之製作] 使用在實施例3所製得的本發明之透明電極基板而 製得太陽能電池。 在透明電極基板之透明導電層表面’首先將聚噻吩 系導電性聚合物之聚(3,4-環氧乙烷噻吩)(pED〇T)與聚 苯乙烯磺酸(PSS)之混合物(ped〇T : pss、H C SUfk八 司製、產品名「AI4083」)’利用旋轉塗布法而形成厚度 50 nm之膜。接著,使用聚_3-己基噻吩(P3HT)與[6,6] $ &quot;24- 201246578 笨基- C61-丁酸曱酯(PCBM)之二種有機 (莫耳比i ·· D,利用旋轉塗布法而使厚乂的混合溶液 方式來成膜。陰極係以真空蒸鍍而使 :’、、nm的 .,文与度成為100 inn的 方式將金屬銘成膜。最後,藉由玻璃讲罢 ^ 34«皁而密封,制作 本發明之太陽能電池。 訂裝作 &lt;比較例1 2 &gt; 同於實施例 使用比較例5之透明電極基板,進行相 5之方式而製得比較用之太陽能電池。 [太陽能電池之評估] 在實施例5及比較例12所製得的太陽能電池之元件 有效面積12 cm1 2,藉由太陽能模擬器(Wak〇m電創(股份 公司)製' WXS-50S-1.5)而照射模擬太陽光光譜 (AM1.5(l〇〇mW/cm2)),測得光電轉換效率。將太陽能電 池之評估結果顯示於表2。 表2 實施例5 比較例12 姑故费、淹您由· Λ Λ··、·»2、 1 . jsi^mA/cni) 5.05 4.81 胡妨带 XT *',«/&gt;/'A ---------- 0.49 0.49 曲線因子:FF 0.31 0.28 科供幼牛· η(%) 0.77 1 0.66 由表1及2 ’確認以下之事項: -25- 1 如在表1之實施例1至4所示,確認本發明之透 明電極基板係全光線透射率高、具優越之透明性,還有, 表面電阻係數之值也低,具有優異的導電性。 2 另一方面’在透明導電層内埋設有未被網目加工 的導電性金屬層之比較例1至4的透明電極基板係全光 線透射率低且透明性較實施例1至4為差。 201246578 另外,與實施例1 5 •泰道+ a ^ , 王4作比較’在透明基材僅設置 透明導電層之構造的比較例 於主二而 / ▲- 例5、10及11之透明電極基板 係表面電阻係數咼且導電性較差。 另外,如在比較例6 $ ,,L 决 主9所不’得知直接在透明基 材上設置直接導電性金屬 ^ 厗夕沣β人上仏 屬肩目’未埋設導電性金屬網目 層之情形,全光線透射率較 ^ _ 干較實細*例1至3為低,另外袅 面電阻係數之值也高,透 力卜录 透明性及導電性較差。 如在表2之結果所千,扣 ,y、/、比較例1 2之太陽能電池作 比較,使用本發明之透 ^ u 览極基板之實施例5的太陽能 電池可以獲得轉換效率离、 双场月b 兮丄 円提鬲17 %左右之效率。此係 藉由使用本發明之透明性古 k w n f玍呵、表面電阻係數低的透明雷 極基板’因有機太陽能雷 W此電池之内部電阻的降低而有光雷 轉換效率提高之結果。 [產業上利用之可能性] 由於本發明之透明電極基板係透明性高、表面電阻 '、數低具優越均衡之透明性與導電性。本發明之透 電極基板能夠使用於有機薄膜太陽能電池等之太陽能電 池,電晶體、記惟雜 _隐體、有機EL等之有機裝置;液晶顯示 Β電子、氏,'專祺電晶體;電色顯示器;電化學發光裝 置,觸控面板;顯示器;熱電轉換裝置;壓電轉換裝置. 蓄電裝置等之電子裝置。 , 【圖式簡單說明】 第1圖係顯示使用本發明之透明電極基板之太陽能 電池之一例的有機薄膜太陽能電池剖面的示意圖。 第2圖係顯示導電性金屬網目層形狀之一例的示竟 圖。 、 -26- 201246578 【主要元件」 符 號 說 明 ] 1 透 明 基 材 2 第 1 透 明 導 電 層 3 導 電 性 金 屬 網 目層 4 第 2 透 明 導 電 層 5 光 電 轉 換 層 6 電 極 7 基 材 8 透 明 導 電 層 9 透 明 電 極 基 板 10 太 陽 能 電 池 •ς -27-S, 201246578 The physical properties of the materials described in Table 1 and the characteristics of the transparent electrode substrate were measured in the following manner. (1) Thickness The thickness of the transparent conductive layer, the conductive metal mesh layer, and the conductive metal layer was measured by a probe type surface shape measuring device (manufactured by ULVac, product name "Dektak 150"). (2) Measurement of surface resistivity The surface of the surface of the transparent conductive layer of the obtained transparent electrode substrate was measured by a four-terminal method by a surface resistance measuring device (manufactured by Mitsubishi Chemical Corporation, product name "LORESTA GP MCP-T600"). Resistance coefficient. (3) Light transmittance The total light transmittance of the transparent electrode substrate was measured in accordance with JIS K7361-1 using a light transmittance measuring device [manufactured by Sakamoto Denshoku Co., Ltd., product name "NDH-5000"). &lt;Example 5 &gt; [Production of Solar Cell] A solar cell was produced using the transparent electrode substrate of the present invention obtained in Example 3. a mixture of poly(3,4-epoxyethane thiophene) (pED〇T) and polystyrenesulfonic acid (PSS) of a polythiophene-based conductive polymer on the surface of the transparent conductive layer of the transparent electrode substrate (ped 〇T : pss, HC SUfk 八司, product name "AI4083") 'A film having a thickness of 50 nm was formed by a spin coating method. Next, using poly-3-3-hexylthiophene (P3HT) and [6,6] $ &quot;24- 201246578 stupid-C61-butyric acid decanoate (PCBM) two kinds of organic (Mo Erbi i ·· D, use The film is formed by a spin coating method in a mixed solution of a thick ruthenium. The cathode is formed by vacuum evaporation, and the metal is formed into a film by the method of ', and nm. The solar cell of the present invention was prepared by sealing with a liquid soap. [Prepared as a comparative example 1 2 &gt; Using the transparent electrode substrate of Comparative Example 5 in the same manner as in the Example, the phase 5 was used to prepare a comparative method. Solar cell. [Evaluation of solar cell] The effective area of the solar cell fabricated in Example 5 and Comparative Example 12 was 12 cm1 2 , and was made by a solar simulator (Wak〇m Electric Co., Ltd.) -50S-1.5) and the simulated solar spectrum (AM1.5 (l〇〇mW/cm2)) was measured, and the photoelectric conversion efficiency was measured. The evaluation results of the solar cell are shown in Table 2. Table 2 Example 5 Comparative Example 12 Affliction fee, drowning you · Λ Λ····»2, 1 . jsi^mA/cni) 5.05 4.81 hu with XT *',«/&gt;/'A ---- ------ 0.49 0.49 Curve factor: FF 0.31 0.28 for young cattle · η (%) 0.77 1 0.66 Confirm the following by Tables 1 and 2 ': -25- 1 as in Example 1 of Table 1 As shown in Fig. 4, it was confirmed that the transparent electrode substrate of the present invention has high total light transmittance, excellent transparency, and low surface resistivity, and has excellent conductivity. 2 On the other hand, the transparent electrode substrates of Comparative Examples 1 to 4 in which the conductive metal layers which were not mesh-processed were embedded in the transparent conductive layer had low total light transmittance and were inferior in transparency to Examples 1 to 4. 201246578 In addition, in comparison with the embodiment 1 5 • Tadao + a ^ , Wang 4 'Comparative example in which only the transparent conductive layer is provided on the transparent substrate is the main electrode 2 / ▲ - The transparent electrode substrate of Examples 5, 10 and 11 The surface resistivity is 咼 and the conductivity is poor. In addition, as in Comparative Example 6 $, L is determined that the direct conductive metal is directly disposed on the transparent substrate, and the conductive metal mesh layer is not embedded. In the case, the total light transmittance is lower than that of ^ _ dry and thin * examples 1 to 3, and the value of the surface resistivity is also high, and the transparency and conductivity are poor. As compared with the solar cells of Comparative Example 12 in the results of Table 2, the solar cell of Example 5 using the transparent substrate of the present invention can obtain conversion efficiency and double field. The monthly b is about 17% efficient. This is the result of the improvement of the light-thaw conversion efficiency by the use of the transparent transparent substrate of the present invention, which has a low surface resistivity, because of the decrease in the internal resistance of the organic solar light. [Possibility of Industrial Use] The transparent electrode substrate of the present invention has high transparency, surface resistance, and a low balance of transparency and conductivity. The transmissive substrate of the present invention can be used for a solar cell such as an organic thin film solar cell, an organic device such as a transistor, a semiconductor, or an organic EL; a liquid crystal display, an electron, a 'special transistor, and an electrochromic color; Display; electrochemical illuminating device, touch panel; display; thermoelectric conversion device; piezoelectric conversion device, electronic device such as power storage device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a cross section of an organic thin film solar cell as an example of a solar cell using the transparent electrode substrate of the present invention. Fig. 2 is a view showing an example of the shape of a conductive metal mesh layer. -26- 201246578 [Main components] Symbol description] 1 Transparent substrate 2 1st transparent conductive layer 3 Conductive metal mesh layer 4 2nd transparent conductive layer 5 Photoelectric conversion layer 6 Electrode 7 Substrate 8 Transparent conductive layer 9 Transparent electrode Substrate 10 Solar Cell • ς -27-

Claims (1)

201246578 七、申請專利範圍: 1. 種透明電極基板’其係由在透明基材之一側面 層埋設有導電性金屬、網目層白勺透明導電層所構成 2. 如申明專利範圍第1項之透明電極基板,其中該 導電層係由金屬氧化物所構成的層。 3 ·如申°月專利範圍帛1項之透明電極基板,其中該 性金屬網目層的厚度為1至10〇 nm。 4·如申請專利範圍帛1項之透明電極基板,其中該 性金屬網目層之開口部的開口率為75%以上。 5·如申請專利範圍第1項之透明電極基板,其中該 導電層係以氧化銦作為主要成分之層。 6. 如申請專利範圍第丨項之透明電極基板,其中該 性金屬網目層係由金、銀、銅、鉑、鋁、鎳與鉻 出的至少一種所構成的層。 7. —種透明電極基板之製造方法,其係藉由在透明 之一側面形成第1透明導電層,在該透明導電層 成導電性金屬層’光阻圖案化處理該導電性金屬 形成導電性金屬網目層,在該金屬網目層的面形成 透明導電層而經該透明導電層被覆該導電性金屬 層。 8. 如申請專利範圍第7項之透明電極基板之製造方 其中在該透明基材之一側面所形成的第1透明導 的厚度為1 0至1 000 nm ° ,積 〇 透明 導電 導電 透明 導電 所選 基材 上形 層而 ,第2 網目 法, 電層 -28- 201246578 9.如申請專利範圍第7或8項之透明電極基 法,其中在該金屬網目層的面所形成的第 層的厚度為1至200 nm。 1 0. —種電子裝置,其係具有如申請專利範圍 中任一項之透明電極基板。 1 1 · 一種太陽能電池,其係具有如申請專利範 項中任一項之透明電極基板。 板之製造方 2透明導電 第1至6項 圍第1至6 -29-201246578 VII. Patent application scope: 1. A transparent electrode substrate consisting of a transparent conductive layer in which a conductive metal and a mesh layer are embedded on one side of a transparent substrate. 2. As stated in claim 1 A transparent electrode substrate, wherein the conductive layer is a layer composed of a metal oxide. 3 · The transparent electrode substrate of the patent scope 帛1, wherein the thickness of the metal mesh layer is 1 to 10 〇 nm. 4. The transparent electrode substrate of claim 1, wherein the opening ratio of the opening of the metal mesh layer is 75% or more. 5. The transparent electrode substrate of claim 1, wherein the conductive layer is a layer containing indium oxide as a main component. 6. The transparent electrode substrate of claim 2, wherein the metal mesh layer is a layer composed of at least one of gold, silver, copper, platinum, aluminum, nickel and chromium. 7. A method of producing a transparent electrode substrate, wherein a conductive layer is formed by forming a first transparent conductive layer on one side of a transparent layer, and forming a conductive metal layer in the transparent conductive layer In the metal mesh layer, a transparent conductive layer is formed on the surface of the metal mesh layer, and the conductive metal layer is coated through the transparent conductive layer. 8. The manufacturer of a transparent electrode substrate according to claim 7 wherein the thickness of the first transparent guide formed on one side of the transparent substrate is from 10 to 1 000 nm, and the transparent conductive conductive transparent conductive material is accumulated. Shaped on selected substrate, second mesh method, electrical layer -28-201246578. 9. Transparent electrode base method according to claim 7 or 8, wherein the first layer formed on the surface of the metal mesh layer The thickness is from 1 to 200 nm. An electronic device having a transparent electrode substrate as claimed in any one of the claims. A solar cell having a transparent electrode substrate as claimed in any one of the patent applications. Board manufacturer 2 transparent conductive items 1 to 6 circumference 1 to 6 -29-
TW100149395A 2011-01-05 2011-12-29 Transparent electrode substrate, method of manufacturing the same, electronic device having the same, and solar cell TWI533461B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000779A JP5913809B2 (en) 2011-01-05 2011-01-05 Transparent electrode substrate, method for producing the same, electronic device having the transparent electrode substrate, and solar cell

Publications (2)

Publication Number Publication Date
TW201246578A true TW201246578A (en) 2012-11-16
TWI533461B TWI533461B (en) 2016-05-11

Family

ID=46481609

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149395A TWI533461B (en) 2011-01-05 2011-12-29 Transparent electrode substrate, method of manufacturing the same, electronic device having the same, and solar cell

Country Status (4)

Country Link
JP (1) JP5913809B2 (en)
KR (1) KR101897278B1 (en)
CN (1) CN102593194A (en)
TW (1) TWI533461B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483411B (en) * 2013-02-20 2015-05-01 Motech Ind Inc Solar cell and its module
US9576876B2 (en) 2013-08-30 2017-02-21 Basf Coatings Gmbh Organic-inorganic hybrid thin film and method for producing the same
EP4080587A1 (en) * 2021-04-21 2022-10-26 Huawei Technologies Co., Ltd. Solar cell and electronic device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328483B1 (en) * 2012-05-10 2013-11-13 전자부품연구원 Transparent electrode thin-film with metal mesh structure and method thereof
JP2014052435A (en) * 2012-09-05 2014-03-20 Nitto Denko Corp Transparent electrode substrate, method of producing the same, and image display device
KR101375781B1 (en) * 2012-10-25 2014-03-19 한국생산기술연구원 Method for fabricating solar cell with increase carrier life through sod doping and passivation lf nano and micro silicon complex structure and solar cell thereof
KR101366737B1 (en) * 2012-10-25 2014-02-26 한국생산기술연구원 Method for fabricating solar cell with increased reflection characteristic of silicon nano and micro structure through removing bundle and solar cell thereof
KR101375738B1 (en) * 2012-10-25 2014-03-26 한국생산기술연구원 Method for fabricating polycrystalline silicon thin film nano structure using ag nano particle, polycrystalline silicon nano structure fabibricated by the same and polycrystalline silicon thin film solar cell including polycrystalline silicon nano structure
KR101366740B1 (en) * 2012-10-25 2014-02-26 한국생산기술연구원 Method for fabricating nano/micro composite solar cell formed by pocl_3 doping and solar cell thereof
CN104781944B (en) * 2012-11-30 2018-06-05 乐金显示有限公司 Electrically-conductive backing plate and the method for manufacturing the electrically-conductive backing plate
CN103971787B (en) * 2013-02-04 2016-06-22 深圳欧菲光科技股份有限公司 Transparent conductive body and preparation method thereof
US9750131B2 (en) 2013-08-01 2017-08-29 Lg Chem, Ltd. Transparent conductive laminate, transparent electrode including transparent conductive laminate, and method for manufacturing transparent conductive laminate
CN103885191B (en) * 2014-03-12 2016-02-24 京东方科技集团股份有限公司 3D raster box and preparation method thereof, color membrane substrates and display device
JP2015195341A (en) * 2014-03-24 2015-11-05 三菱電機株式会社 Photoelectric conversion element and method for producing photoelectric conversion element
KR101541517B1 (en) * 2014-03-26 2015-08-03 부산대학교 산학협력단 Transparent electrode using single crystal copper with nano-netted multi-layer and fabricating method thereof
CN106575662B (en) * 2014-05-15 2020-04-07 乐金显示有限公司 Organic light emitting element
CN105702875B (en) * 2014-12-11 2018-04-27 财团法人工业技术研究院 Light-emitting element, electrode structure and manufacturing method thereof
JP2016178117A (en) * 2015-03-18 2016-10-06 積水化学工業株式会社 Transparent electrode for solar cell and electrode laminate for solar cell
JPWO2016163323A1 (en) * 2015-04-06 2018-02-01 株式会社カネカ Transparent conductive film and display device
CN104834134B (en) * 2015-05-21 2017-08-04 哈尔滨工业大学 An electrochromic glass
KR102456121B1 (en) * 2015-12-15 2022-10-17 엘지디스플레이 주식회사 Light controlling device, transparent display device including the same and method for manufacturing the same
CN105449106B (en) * 2015-12-28 2018-10-23 中国科学院重庆绿色智能技术研究院 A kind of transparent electrode and preparation method thereof based on super thin metal
ITUA20162095A1 (en) * 2016-03-30 2016-06-30 Fabrizio Chiara COATING PROCEDURE OF A PHOTOVOLTAIC SURFACE AND PHOTOVOLTAIC SURFACE REALIZED BY SUCH A PROCEDURE.
WO2018004280A1 (en) * 2016-06-30 2018-01-04 부산대학교 산학협력단 Copper oxide thin film structure using flawless single crystal copper thin film, and manufacturing method therefor
KR102391675B1 (en) * 2016-09-30 2022-04-29 닛토덴코 가부시키가이샤 A pressure-sensitive adhesive composition, a pressure-sensitive adhesive layer, a polarizing film provided with an pressure-sensitive adhesive layer, a liquid crystal panel, and an image display device
KR102035689B1 (en) * 2017-02-23 2019-10-23 동우 화인켐 주식회사 Film type antenna and display device comprising the same
CN108630818A (en) * 2017-03-15 2018-10-09 Tcl集团股份有限公司 Light emitting diode with quantum dots device and preparation method thereof with Novel anode structure
CN110797428A (en) * 2018-08-02 2020-02-14 君泰创新(北京)科技有限公司 Heterojunction solar cells
WO2020180715A1 (en) * 2019-03-01 2020-09-10 The Regents Of The University Of Michigan Ultra-thin conductor based semi-transparent electromagnetic interference shielding
US20200309995A1 (en) * 2019-03-26 2020-10-01 Facebook Technologies, Llc Anti-reflective coatings for transparent electroactive transducers
JP7336305B2 (en) * 2019-08-06 2023-08-31 日東電工株式会社 transparent conductive film
JP2021026902A (en) * 2019-08-06 2021-02-22 日東電工株式会社 Transparent conductive film
CN110886988A (en) * 2019-12-13 2020-03-17 深圳市致竑光电有限公司 a dense luminous glass
CN112908519B (en) * 2021-01-19 2022-04-12 大正(江苏)微纳科技有限公司 A kind of transparent conductive film resistant to chemical corrosion and preparation method thereof
KR102634852B1 (en) * 2021-10-27 2024-02-06 인천대학교 산학협력단 Bifacial Color-Tunable Transparent Photovoltaics and their manufacturing methods
CN114283994B (en) * 2021-11-23 2023-05-09 华中科技大学 A kind of embedded metal grid flexible electrode film and its preparation method and application
EP4518620A1 (en) * 2022-04-25 2025-03-05 Asahi Kasei Kabushiki Kaisha Photodetector element using metal grid transparent electrode and touchless user interface device using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241464A (en) 1996-12-26 1998-09-11 Asahi Glass Co Ltd Substrate with transparent conductive film and manufacture thereof
JP2004296669A (en) 2003-03-26 2004-10-21 Bridgestone Corp Dye-sensitized solar cell and electrode therefor
EP2068328B1 (en) * 2006-09-28 2014-10-22 FUJIFILM Corporation Spontaneous emission display and transparent conductive film
KR100811473B1 (en) 2006-10-17 2008-03-07 엘지전자 주식회사 Electroluminescent panel and light source device including the same
KR101352779B1 (en) * 2007-02-28 2014-01-16 주식회사 동진쎄미켐 Transparent electrode for solar cell and method for preparing the same
JP2009081104A (en) 2007-09-27 2009-04-16 Konica Minolta Holdings Inc Transparent conductive film
JP5651910B2 (en) 2007-12-13 2015-01-14 コニカミノルタ株式会社 Transparent conductive film and method for producing transparent conductive film
JP4985717B2 (en) * 2008-12-04 2012-07-25 大日本印刷株式会社 Organic thin film solar cell and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483411B (en) * 2013-02-20 2015-05-01 Motech Ind Inc Solar cell and its module
US9576876B2 (en) 2013-08-30 2017-02-21 Basf Coatings Gmbh Organic-inorganic hybrid thin film and method for producing the same
TWI606111B (en) * 2013-08-30 2017-11-21 漢陽大學校産學協力團 Substrate structure and method of manufacturing same
EP4080587A1 (en) * 2021-04-21 2022-10-26 Huawei Technologies Co., Ltd. Solar cell and electronic device
US11961923B2 (en) 2021-04-21 2024-04-16 Huawei Technologies Co., Ltd. Solar cell and electronic device

Also Published As

Publication number Publication date
JP2012142500A (en) 2012-07-26
CN102593194A (en) 2012-07-18
JP5913809B2 (en) 2016-04-27
KR101897278B1 (en) 2018-09-11
KR20120079803A (en) 2012-07-13
TWI533461B (en) 2016-05-11

Similar Documents

Publication Publication Date Title
TW201246578A (en) Transparent electrode substrate, method for producing the same, electronic device and solar cell having the transparent electrode substrate
Sun et al. Transparent conductive oxide-free perovskite solar cells with PEDOT: PSS as transparent electrode
Xue et al. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells
JPWO2012093530A1 (en) Transparent conductive laminate and organic thin film device
Jin et al. Highly durable and flexible transparent electrode for flexible optoelectronic applications
Wang et al. Modification of the highly conductive PEDOT: PSS layer for use in silver nanogrid electrodes for flexible inverted polymer solar cells
Ghosh et al. Semi-transparent metal electrode of Cu–Ni as a replacement of an ITO in organic photovoltaic cells
CN103035845B (en) The preparation method of organic (the inorganic)/metal of high conductivity/inorganic (organic) multi-layer-structure transparent conductive film
Yang et al. Organic solar cells employing electrodeposited nickel oxide nanostructures as the anode buffer layer
Meng et al. Roll-to-roll printing of meter-scale composite transparent electrodes with optimized mechanical and optical properties for photoelectronics
Lee et al. Nano-sized indium-free MTO/Ag/MTO transparent conducting electrode prepared by RF sputtering at room temperature for organic photovoltaic cells
Ji et al. Ultraflexible and high-performance multilayer transparent electrode based on ZnO/Ag/CuSCN
Zhang et al. Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide–Assisted silver nanowire transparent electrode
Zhang et al. Low-temperature all-solution-processed transparent silver nanowire-polymer/AZO nanoparticles composite electrodes for efficient ITO-free polymer solar cells
Park et al. Bifunctional graphene oxide hole-transporting and barrier layers for transparent bifacial flexible perovskite solar cells
Lim et al. Room temperature processed transparent amorphous InGaTiO cathodes for semi-transparent perovskite solar cells
Wang et al. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode
Elakshar et al. Surface passivation for efficient bifacial HTL-free perovskite solar cells with SWCNT top electrodes
Jiang et al. Water-soluble SnO2 nanoparticles as the electron collection layer for efficient and stable inverted organic tandem solar cells
Choi et al. ITO-free large-area organic solar cells
Chen et al. ITO-free flexible organic photovoltaics with multilayer MoO3/LiF/MoO3/Ag/MoO3 as the transparent electrode
KR102243003B1 (en) Composition for forming hole transport layer and semitransparent organic photovoltaics comprising the same
Rana et al. Fabrication of a highly functional TiO2/AZO bilayer electron transport layer for planar perovskite solar cells
Zhao et al. The effect of hole transfer layers and anodes on indium-free TiO2/Ag/TiO2 electrode and ITO electrode based P3HT: PCBM organic solar cells
Cho et al. Hierarchical silver network transparent conducting electrodes for thin-film solar cells