[go: up one dir, main page]

TW201242084A - Chip structure for enhancing light extraction efficiency and process using the same - Google Patents

Chip structure for enhancing light extraction efficiency and process using the same Download PDF

Info

Publication number
TW201242084A
TW201242084A TW100113253A TW100113253A TW201242084A TW 201242084 A TW201242084 A TW 201242084A TW 100113253 A TW100113253 A TW 100113253A TW 100113253 A TW100113253 A TW 100113253A TW 201242084 A TW201242084 A TW 201242084A
Authority
TW
Taiwan
Prior art keywords
substrate
score
equal
wafer
depth
Prior art date
Application number
TW100113253A
Other languages
Chinese (zh)
Inventor
Der-Lin Hsia
Hsiao-Wei Wang
Wen-Fei Fong
Original Assignee
Lextar Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lextar Electronics Corp filed Critical Lextar Electronics Corp
Priority to TW100113253A priority Critical patent/TW201242084A/en
Priority to CN2011101179640A priority patent/CN102738335A/en
Publication of TW201242084A publication Critical patent/TW201242084A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A chip structure for enhancing light extraction efficiency and a process using the same are disclosed. The chip structure includes an epitaxial layer and a substrate. The substrate is disposed on the bottom of the epitaxial layer. Some surfaces of the substrate are formed with a first notch and a second notch. The depth of the first notch is equal to or not equal to that of the second notch so that some surfaces of the substrate are formed with the shape of a stepped structure.

Description

201242084201242084

TW7471PA 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種晶片結構及其製程,且特別是有 關於一種提昇光取出效率之晶片結構及其製程。 【先前技術】 發光二極體(Light-Emitting Diode,LED)晶片主 要是透過電能轉化為光能的方式發光。發光二極體晶片的 主要的組成材料是半導體,其中含有帶正電的電洞比率較 高的稱為P型半導體,含有帶負電的電子比率較高的稱為 N型半導體。p型半導體與N型半導體相接處形成PN接 面。在發光二極體晶片的正極及負極兩端施加電壓時,電 子將與電洞結合。電子與電洞結合後便以光的形式發出。 由於發光二極體晶片具有壽命長、溫度低、能源利用 率高等優點,近年來發光二極體晶片已廣泛應用於螢幕背 光源、檯燈、大型顯示看板、交通號誌、車用煞車燈、電 源指示燈等。傳統光源已逐漸被發光二極體晶片所取代。 然而’發光二極體晶片其半導體基底(substrate) 的折射係數通常大於空氣的折射係數,使得大於全反射角 之入射光線於基底/空氣介面處發生全反射的問題,因而 導致大部分的光線被侷限在基底内部而無法取出,進而導 致光取出效率不佳。 【發明内容】 本發明係有關於一種提昇光取出效率之晶片結構及 201242084 ·,TW7471PA VI. Description of the Invention: [Technical Field] The present invention relates to a wafer structure and a process thereof, and more particularly to a wafer structure and a process for improving light extraction efficiency. [Prior Art] A Light-Emitting Diode (LED) wafer mainly emits light by converting electric energy into light energy. The main constituent material of the light-emitting diode wafer is a semiconductor in which a positively charged hole ratio is called a P-type semiconductor, and a negatively charged electron ratio is called an N-type semiconductor. A p-type semiconductor is connected to the N-type semiconductor to form a PN junction. When a voltage is applied across the positive and negative terminals of the light-emitting diode chip, the electrons are combined with the holes. When the electrons are combined with the holes, they are emitted in the form of light. Light-emitting diode chips have been widely used in screen backlights, desk lamps, large display panels, traffic signs, vehicle brake lamps, and power supplies due to their long life, low temperature, and high energy efficiency. Indicator lights, etc. Conventional light sources have gradually been replaced by light-emitting diode chips. However, the refractive index of a semiconductor substrate of a light-emitting diode wafer is usually larger than the refractive index of air, so that the incident light rays larger than the total reflection angle cause total reflection at the substrate/air interface, thus causing most of the light to be It is limited to the inside of the substrate and cannot be taken out, resulting in poor light extraction efficiency. SUMMARY OF THE INVENTION The present invention relates to a wafer structure for improving light extraction efficiency and 201242084.

TW747IPA 其製程,使入射光線不會被侷限在基底内部而無法取出。 根據本發明之一方面,提出一種提昇光取出效率之晶 片結構。此晶片結構包括一磊晶層以及一基底。基底配置 於磊晶層的底部。基底的部分表面具有一第一刻痕以及一 第二刻痕。第一刻痕的深度等於或不等於第二刻痕的深 度,以使基底的部分表面形成一階梯結構。 根據本發明之一方面,提出一種提昇光取出效率之晶 片製程。此晶片製程包括下列步驟。形成一磊晶層於一基 底上;形成一第一刻痕以及一第二刻痕於基底的部分表 面’第一刻痕的深度等於或不等於第二刻痕的深度,以使 基底的部分表面形成一第一階梯結構;以及劈裂基底,以 形成一斷面’此斷面連接第一階梯結構。 為了對本發明之上述及其他方面有更佳的瞭解,下文 特舉較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 #本實施例之提昇光取出效率之晶片結構及其製程,係 猎由改變基底表面的形貌,例如形成相同或不同深度之刻 痕,以使基底的部分表面形成至少一階梯結構。因此,入 射於基底内部的光線不易於階梯結構與空氣的介面處發 生全反射的現象’進而有效地將原本被侷限於基底内部的 光線取出:=提高發光二極體晶片之光取出效率。 以下係提出各種實施例進行詳細說明 ’實施例僅用以 作為fe例說明’並_以限縮本發明欲保護之範圍。 4 201242084The TW747IPA is manufactured so that incident light is not confined inside the substrate and cannot be removed. According to an aspect of the invention, a wafer structure for improving light extraction efficiency is proposed. The wafer structure includes an epitaxial layer and a substrate. The substrate is disposed at the bottom of the epitaxial layer. A portion of the surface of the substrate has a first score and a second score. The depth of the first score is equal to or not equal to the depth of the second score so that a portion of the surface of the substrate forms a stepped structure. According to an aspect of the invention, a wafer process for improving light extraction efficiency is proposed. This wafer process includes the following steps. Forming an epitaxial layer on a substrate; forming a first indentation and a second indentation on a portion of the surface of the substrate. The depth of the first indentation is equal to or not equal to the depth of the second indentation to make a portion of the substrate The surface forms a first stepped structure; and the base is split to form a section 'this section connects the first stepped structure. In order to better understand the above and other aspects of the present invention, the following detailed description of the preferred embodiments, together with the drawings, will be described in detail as follows: [Embodiment] The wafer structure for improving the light extraction efficiency of this embodiment And its process is to change the topography of the surface of the substrate, for example to form the same or different depths of the score, so that part of the surface of the substrate forms at least one stepped structure. Therefore, the light incident on the inside of the substrate is less likely to cause total reflection at the interface between the stepped structure and the air', and the light originally confined to the inside of the substrate is effectively taken out: = the light extraction efficiency of the light-emitting diode wafer is improved. The following is a detailed description of various embodiments. The embodiments are intended to be illustrative only and to limit the scope of the invention. 4 201242084

TW7471PA 第一實施例 明參弟1A及1B圖,其繪示依照一實施例之提昇光 取出效率之晶片結構的剖面示意圖。晶片結構i〇〇包括一 從日日層120以及一基底130。基底130配置於磊晶層120 的底部。基底130的部分表面具有一第一刻痕131以及一 第二刻痕132。第一刻痕131的深度H1可等於第二刻痕 132的深度H2,以使基底130的部分表面形成一第一階梯 結構110。在另一實施例中,第一刻痕131的深度H1亦可 不等於第二刻痕132的深度H2。因此,刻痕的深度相等與 否不限。 请參照第1A圖,基底130具有一上表面i3〇a、一下 表面130b以及一侧面130c。磊晶層12〇位於上表面13〇a。 第一階梯結構lio連接於上表面13〇a與側面13〇c之間, 且第一刻痕131之底面相距於上表面13〇a的距離大致上 等於第二刻痕132之底面相距於上表面13〇a的距離,即 H1 = H2。因此’基底13〇的部分上表面13〇a以及部分侧 面130c形成一抗全反射之階梯結構,以使入射於基底13〇 内部的光線L不易於第一階梯結構11〇與空氣的介面處a 發生全反射的現象。 此外,凊參照第圖,與第1A圖不同的是,第一階 梯結構lio連接於下表面13〇b於側面13〇c之間且第一 刻痕131之底面相距於下表面13〇b的距離大致上等於第 二刻痕132之底面相距於下表面13〇b的距離,即Ηι==肚。 因此基底130的部分下表面^鳥以及部分侧面⑽。形 成一抗全反射之階梯結構,以使入射於基底13〇内部的光 5 201242084TW7471PA FIRST EMBODIMENT Referring to Figures 1A and 1B, a cross-sectional view of a wafer structure for enhancing light extraction efficiency in accordance with an embodiment is shown. The wafer structure i includes a slave day layer 120 and a substrate 130. The substrate 130 is disposed at the bottom of the epitaxial layer 120. A portion of the surface of the substrate 130 has a first score 131 and a second score 132. The depth H1 of the first score 131 may be equal to the depth H2 of the second score 132 such that a portion of the surface of the substrate 130 forms a first stepped structure 110. In another embodiment, the depth H1 of the first score 131 may not be equal to the depth H2 of the second score 132. Therefore, the depth of the score is equal or not. Referring to Figure 1A, the substrate 130 has an upper surface i3a, a lower surface 130b, and a side surface 130c. The epitaxial layer 12 is located on the upper surface 13A. The first step structure lio is connected between the upper surface 13〇a and the side surface 13〇c, and the bottom surface of the first notch 131 is spaced apart from the upper surface 13〇a by a distance substantially equal to the bottom surface of the second notch 132. The distance from the surface 13〇a, ie H1 = H2. Therefore, the partial upper surface 13〇a and the partial side surface 130c of the substrate 13 are formed with a step structure resistant to total reflection so that the light L incident on the inside of the substrate 13 is not easily at the interface of the first step structure 11 and the air. The phenomenon of total reflection occurs. Further, referring to the figure, unlike FIG. 1A, the first stepped structure lio is connected between the lower surface 13〇b between the side faces 13〇c and the bottom surface of the first notch 131 is spaced apart from the lower surface 13〇b. The distance is substantially equal to the distance of the bottom surface of the second score 132 from the lower surface 13〇b, ie Ηι== belly. Thus, a portion of the lower surface of the substrate 130 is a bird and a portion of the side (10). A step structure of primary anti-reflection is formed to make light incident on the inside of the substrate 13 5 5 201242084

l W/4/lhW 110與空氣的介面處B發生全反 線L不易於第一階梯結構 射的現象。 第二實施例 率之其繪示依照一實施例之提昇光取出效 是,晶片結構102#基底13〇的一部分表面除了且有第一 刻痕⑶以及第二刻痕132《外,另—部分表面還具有一 第二刻痕135以及一第四刻痕136。第三刻痕135的深度 H3等於或不等於第四刻痕136的深度H4,以使基底⑽ 的另一部分表面形成一第二階梯結構112。在一實施例 中,第二階梯結構11〇連接於上表面13〇a與側面i3〇c之 間,如第1A圖所示,而第二階梯結構112連接於下表面 130b與側面130c之間,第三刻痕135之底面相距於下表 面130b的距離大致上等於第四刻痕136之底面相距於下 表面130b的距離,即H3 = H4。因此,基底13〇的部分上 表面130a、部分下表面i30b以及部分側面13〇c形成多個 抗全反射之階梯結構,以使入射於基底1別内部的光線L 不易於第一、第二階梯結構11 〇、112與空氣的介面處C 發生全反射的現象。 第三實施例 請參照第3A及3B圖,其繪示依照一實施例之提昇光 取出效率之晶片結構的剖面示意圖。晶片結構2〇〇包括— 磊晶層220以及一基底230。基底230配置於磊晶層220 201242084l The phenomenon that the entire reverse line L of the W/4/lhW 110 and the interface of the air is not easy to be emitted by the first step structure. The second embodiment shows that the lift light extraction effect according to an embodiment is that a part of the surface of the wafer structure 102# substrate 13 is except for the first score (3) and the second score 132. The surface also has a second score 135 and a fourth score 136. The depth H3 of the third score 135 is equal to or not equal to the depth H4 of the fourth score 136 such that another portion of the surface of the substrate (10) forms a second stepped structure 112. In an embodiment, the second stepped structure 11 is connected between the upper surface 13a and the side surface i3〇c as shown in FIG. 1A, and the second stepped structure 112 is connected between the lower surface 130b and the side surface 130c. The bottom surface of the third score 135 is spaced from the lower surface 130b by a distance substantially equal to the distance of the bottom surface of the fourth score 136 from the lower surface 130b, that is, H3 = H4. Therefore, the partial upper surface 130a, the partial lower surface i30b, and the partial side surface 13〇c of the substrate 13A are formed with a plurality of anti-total reflection step structures, so that the light L incident on the inside of the substrate 1 is not easy for the first and second steps. Structure 11 全, 112 and air interface C is totally reflected. THIRD EMBODIMENT Referring to Figures 3A and 3B, there are shown cross-sectional views of a wafer structure for enhancing light extraction efficiency in accordance with an embodiment. The wafer structure 2 includes an epitaxial layer 220 and a substrate 230. The substrate 230 is disposed on the epitaxial layer 220 201242084

TW7471PA 的底部,基底230的部分表面具有一第一刻痕231以及一 第二刻痕232,第一刻痕231的深度H1不等於第二刻痕 232的深度H2,即H1关H2,以使基底230的部分表面形成 一第一階梯結構210。 請參照第3A圖’基底230具有一上表面230a、一下 表面230b以及一側面230c。磊晶層220位於上表面230a。 第一階梯結構210連接於上表面230a與側面230c之間’ 且第一刻痕231之底面相距於上表面230a的距離大致上 等於第二刻痕232之底面相距於上表面230a的距離,即 H1关H2。因此,基底230的部分上表面230a以及部分側 面230c形成一抗全反射之連續階梯結構,以使入射於基 底230内部的光線L不易於第一階梯結構210與空氣的介 面處A發生全反射的現象。 在一實施例中,第3A圖之基底230的下表面230b例 如為一粗化面。粗化面可避免入射於基底230内部的部分 光線L發生二次以上全反射的現象’以使光線L亦可經由 粗化後的下表面230b向外散射’提高光取出效率。 此外,請參照第3B圖’與第3A圖不同的是,第一階 梯結構210連接於下表面於側面230c之間’且第一 刻痕231之底面相距於下表面230b的距離不等於第二刻 痕232之底面相距於下表面230b的距離’即H1妾H2。因 此,基底230的部分下表面230b以及部分側面230c形成 一抗全反射之連續階梯結構,以使入射於基底230内部的 光線L不易於第一階梯結構210與空氣的介面處A發生全 反射的現象。 201242084 1 w /^/ ιγα 在一實施例中,第3B圖之基底230的上表面230a例 如為一粗化面。粗化面可避免入射於基底230内部的部分 光線L發生二次以上全反射的現象,以使光線L亦可經由 粗化後的上表面230a向外散射,提高光取出效率。 第四實施例 請參照第4圖,其繪示依照一實施例之提昇光取出效 率之晶片結構的剖面示意圖。與上述第三實施例不同的 是,晶片結構202的基底230的一部分表面除了具有第一 刻痕231以及第二刻痕232之外,另一部分表面還具有一 第三刻痕235以及一第四刻痕236。第三刻痕235的深度 H3不等於第四刻痕236的深度H4,以使基底230的另一 部分表面形成一第二階梯結構212。在一實施例中,第一 階梯結構210連接於上表面230a與侧面230c之間,如第 3A圖所示,而第二階梯結構212連接於下表面230b與側 面230c之間,第三刻痕235之底面相距於下表面230b的 距離不等於第四刻痕236之底面相距於下表面230b的距 離,即H3参H4。因此,基底230的部分上表面230a、部 分下表面230b以及部分側面230c形成多個抗全反射之連 續階梯結構,以使入射於基底230内部的光線L不易於第 一、第二階梯結構210、212與空氣的介面處C發生全反 射的現象。 以下係以第1A圖之晶片結構為範例來介紹晶片製 程,以使基底130的部分上表面130a形成一第一階梯結 構110。同理,第1B圖的第一階梯結構110亦可使用以下 201242084 & 的各個步驟,以使基底〗30的部分下表面丨鳥形成一第 一階梯結構110。當然,第3Α及3Β®中深度不同的第一 刻痕131以及第二刻痕132亦可使用以下的各個步驟,以 ^基底130的部分上表面腿或部分下表面讓形成一 I1白梯結構110 ’其差異僅在於刻痕的位置不同而已。 請參照第5Α〜5C圖,其分別繪示依照一實施例之提 昇光取出效率之晶片製程的剖面示意圖。晶片製程包括下 歹】ν驟(1 )〜(3 )。步驟⑴係形成一磊晶層⑽於一 基底130上。步驟(2)係形成一第一刻痕ΐ3ι以及二第 二刻痕132於基底130的一部分表面。第一刻痕ΐ3ι的深 度Η等於或不等於第二刻痕132的深度Η,以使基底13〇 的部分表面形成一第一階梯結構11〇。 底13〇,以形成一斷面,斷面連 構,。請參照第2β,當完成轉(2)^,“= 一第三刻痕135以及-第四刻痕136於基底⑽的另一部 分表面’第三刻痕135的深度Η3等於或不等於第四刻痕 136的深度Μ,以使基底13〇的另一部分表面形成一第二 階梯結構112。 清參照第ΙΑ ϋ,上述之斷面13〇d即為基底13〇之部 分侧面130c。因此,基底130的部分上表面_以及部 分側面130c形成-抗全反射之階梯結構,以使入射於基 底130内部的光線L不易於第一階梯結構11〇與空氣的介 面處A發生全反射的現象。 在一實施例中’基底130為藍寶石基底或碳化石夕基 底。基底130的材質不㈤,折射係數亦會隨之不同。基底 9 201242084 1 W/4/im 130的折射係數大,亦即全反射角小,因此光以相同角度 入射至基底130内部後,若其入射角大於全反射角,將愈 容易在基底130内部發生全反射的現象。舉例來說,當空 氣的折射係數與基底130的折射係數的比值為0· 5時,全 反射角約為30度。 請參照第5A圖,磊晶層120例如以氣相磊晶法(Vapor Phase Epitaxy ; VPE )、液相蠢晶法(Liquid Phase Epitaxy ; LPE)或有機金屬氣相磊晶法(Metal Organic Vapor Epitaxy ; M0VPE)形成於基底130上。常見以四元 (AlGalnP磷化鋁鎵錮)與氮化鎵(GaN)磊晶層為高亮度發 光二極體的發光材料。四元(AlGalnP)磊晶層可用在手持 電子裝置(例如手機)上,其可產生紅光、橙光或黃光, 而氮化鎵(GaN)磊晶層可產生藍光、綠光,可用在白光照 明上。 接著,請參照第5B圖,第一刻痕131與第二刻痕132 例如以濕式化學蝕刻或雷射蝕刻方法形成於基底130的部 分表面上,第三刻痕與第四刻痕亦以相同方式形成。第一 刻痕131與第二刻痕132的深度可相等或不相等。在一實 施例中’當蝕刻的時間不相同時,第一刻痕131與第二刻 痕132的深度不相等。此外,在第3A圖中,當不同深度 的第一刻痕231與第二刻痕232彼此相鄰時,將可形成一 連續階梯結構於基底230的部分表面(例如上表面230a)。 同樣’在第4圖中,當蝕刻的時間不相同時,第三刻痕235 與第四刻痕236的深度不相等。另外,當不同深度的第三 刻痕235與第四刻痕236彼此相鄰時,將可形成一連續階 201242084At the bottom of the TW7471PA, a portion of the surface of the substrate 230 has a first score 231 and a second score 232. The depth H1 of the first score 231 is not equal to the depth H2 of the second score 232, that is, H1 is off H2, so that A portion of the surface of the substrate 230 forms a first stepped structure 210. Referring to Figure 3A, the substrate 230 has an upper surface 230a, a lower surface 230b, and a side surface 230c. The epitaxial layer 220 is located on the upper surface 230a. The first stepped structure 210 is connected between the upper surface 230a and the side surface 230c' and the bottom surface of the first score 231 is spaced apart from the upper surface 230a by a distance substantially equal to the distance of the bottom surface of the second score 232 from the upper surface 230a, ie H1 turns off H2. Therefore, the partial upper surface 230a and the partial side surface 230c of the substrate 230 form a continuous step structure resistant to total reflection, so that the light L incident on the inside of the substrate 230 is not easily totally reflected at the interface A of the first step structure 210 and the air. phenomenon. In one embodiment, the lower surface 230b of the substrate 230 of Figure 3A is, for example, a roughened surface. The roughened surface prevents a phenomenon in which a part of the light L incident on the inside of the substrate 230 is totally reflected twice or more so that the light L can also be scattered outward through the roughened lower surface 230b, thereby improving the light extraction efficiency. In addition, please refer to FIG. 3B 'different from FIG. 3A , the first step structure 210 is connected between the lower surface and the side surface 230 c ′ and the bottom surface of the first scribe 231 is spaced apart from the lower surface 230 b by a distance not equal to the second The bottom surface of the score 232 is spaced from the lower surface 230b by a distance 'ie H1 妾 H2. Therefore, the partial lower surface 230b of the substrate 230 and the partial side surface 230c form a continuous step structure resistant to total reflection, so that the light L incident on the inside of the substrate 230 is not easily totally reflected at the interface A of the first step structure 210 and the air. phenomenon. 201242084 1 w /^/ ιγα In one embodiment, the upper surface 230a of the substrate 230 of Figure 3B is, for example, a roughened surface. The roughened surface prevents the partial light L incident on the inside of the substrate 230 from being totally reflected twice or more, so that the light L can also be scattered outward through the roughened upper surface 230a, thereby improving the light extraction efficiency. Fourth Embodiment Referring to Figure 4, there is shown a cross-sectional view of a wafer structure for enhancing light extraction efficiency in accordance with an embodiment. Different from the third embodiment described above, a portion of the surface of the substrate 230 of the wafer structure 202 has a third score 235 and a fourth portion in addition to the first score 231 and the second score 232. Scoring 236. The depth H3 of the third score 235 is not equal to the depth H4 of the fourth score 236 such that another portion of the surface of the substrate 230 forms a second stepped structure 212. In one embodiment, the first stepped structure 210 is coupled between the upper surface 230a and the side surface 230c, as shown in FIG. 3A, and the second stepped structure 212 is coupled between the lower surface 230b and the side surface 230c, and the third score is The bottom surface of 235 is spaced apart from the lower surface 230b by a distance not equal to the distance of the bottom surface of the fourth score 236 from the lower surface 230b, that is, H3 is referred to as H4. Therefore, the partial upper surface 230a, the partial lower surface 230b, and the partial side surface 230c of the substrate 230 form a plurality of continuous step structures resistant to total reflection, so that the light L incident on the inside of the substrate 230 is not easy for the first and second step structures 210, The phenomenon of total reflection occurs at the interface between 212 and air. The wafer process will be described by taking the wafer structure of Fig. 1A as an example to form a portion of the upper surface 130a of the substrate 130 to form a first stepped structure 110. Similarly, the first stepped structure 110 of FIG. 1B can also use the following steps of 201242084 & to make a portion of the lower surface ostrich of the substrate 30 form a first stepped structure 110. Of course, the first indentation 131 and the second indentation 132 having different depths in the third and third crucibles can also use the following steps to form an I1 white ladder structure on a part of the upper surface leg or a part of the lower surface of the substrate 130. 110 'The only difference is that the position of the score is different. Please refer to FIG. 5 to FIG. 5C for a schematic cross-sectional view showing a wafer process for improving light extraction efficiency according to an embodiment. The wafer process includes the following steps: ν (1) ~ (3). Step (1) forms an epitaxial layer (10) on a substrate 130. The step (2) forms a first score ΐ3ι and a second second score 132 on a portion of the surface of the substrate 130. The depth Η of the first score ΐ3ι is equal to or not equal to the depth Η of the second score 132 so that a part of the surface of the base 13〇 forms a first stepped structure 11〇. The bottom is 13 〇 to form a section and a section structure. Please refer to the 2β, when the completion of the rotation (2), "= a third score 135 and - the fourth score 136 on the other surface of the substrate (10), the depth 第三3 of the third score 135 is equal to or not equal to the fourth The depth of the score 136 is such that the surface of the other portion of the substrate 13 is formed into a second stepped structure 112. The above-mentioned section 13〇d is the partial side surface 130c of the substrate 13〇. The partial upper surface _ and the partial side surface 130c of the 130 form a step structure resistant to total reflection so that the light L incident on the inside of the substrate 130 is less likely to be totally reflected at the interface A of the first step structure 11 空气 and the air. In one embodiment, the substrate 130 is a sapphire substrate or a carbonized stone substrate. The material of the substrate 130 is not (5), and the refractive index is also different. The substrate 9 201242084 1 W/4/im 130 has a large refractive index, that is, total reflection. The angle is small, so that when the light is incident on the inside of the substrate 130 at the same angle, if the incident angle is larger than the total reflection angle, the phenomenon of total reflection inside the substrate 130 will become easier. For example, when the refractive index of the air is the same as that of the substrate 130 Refractive index When the ratio is 0·5, the total reflection angle is about 30. Referring to FIG. 5A, the epitaxial layer 120 is, for example, Vapor Phase Epitaxy (VPE) or Liquid Phase Epitaxy (Liquid Phase Epitaxy; LPE) or Metal Organic Vapor Epitaxy (M0VPE) is formed on the substrate 130. High-brightness illumination is generally performed by quaternary (AlGalnP aluminum phosphide) and gallium nitride (GaN) epitaxial layers. Luminescent material of the diode. The quaternary (AlGalnP) epitaxial layer can be used on a handheld electronic device (such as a mobile phone), which can generate red, orange or yellow light, and a gallium nitride (GaN) epitaxial layer can be produced. Blue light and green light can be used for white light illumination. Next, referring to FIG. 5B, the first notch 131 and the second notch 132 are formed on a part of the surface of the substrate 130 by, for example, wet chemical etching or laser etching. The third score and the fourth score are also formed in the same manner. The depths of the first score 131 and the second score 132 may be equal or unequal. In an embodiment, when the etching time is different, the first The depth of the score 131 and the second score 132 are not equal. In addition, in FIG. 3A When the first notch 231 and the second notch 232 of different depths are adjacent to each other, a continuous stepped structure may be formed on a part of the surface of the substrate 230 (for example, the upper surface 230a). Also in FIG. 4, when etching When the times are different, the depths of the third score 235 and the fourth score 236 are not equal. In addition, when the third score 235 and the fourth score 236 of different depths are adjacent to each other, a continuous step may be formed. 201242084

TW7471PA 梯、、·《構於基底230的另一部分表面(例如下表面23〇b)。 接著,請參照第5B及5C圖,基底130的下表面i30b 例如以刀具I40的尖端切割而形成各自的切割面137、 之後再沿著分割線u、L2劈裂基底13〇,以形成在 預定方向的斷面13〇d。由於基底13〇於第一刻痕131及第 二刻痕132的凹陷處的厚度較薄,故斷面以叱將與對應 之刻痕的底面連接,以形成第5C圖所示之劈裂後晶片: 構 100 〇 、口 本發明上述實施例所揭露之提昇光取出效率之晶片 結構及其製程,係藉由改變基底表面的形貌,例如形成;; :或不同深度之刻痕’以使基底的部分表面形成一階梯結 因此’入射於基底内部的光線不易於階梯結構/空氣 =面處發生全反㈣現象,進而有效地將原本被偈限於 ,底内部的光線取出,以提高發光二極體晶片之光取出效 率。此外,基底的上表面或下表面可為—粗化面,以避免 ί射的部分光線發生二次以上全反射的現 象,以使先線亦可經由粗化後的上表面或下表面向外散 射’進而提尚光取出效率。 1上所述,雖然本發明已以較佳實施例揭露如上,缺 /、並非用以限定本發明。本發明所屬技術領域 知識者,在錢離本發明之精神和範_ 料 更動與潤飾。因此,本發明之保護範 利範圍所界定者為準。 胃後附之申句專 201242084 1 w /η / ir/\ 【圖式簡單說明】 第1A及1B圖繪示依照一實施例之提昇光取出效率之 晶片結構的剖面示意圖。 第2圖繪示依照一實施例之提昇光取出效率之晶片 結構的剖面示意圖。 第3A及3B圖繪示依照一實施例之提昇光取出效率之 晶片結構.的剖面示意圖。 第4圖繪示依照一實施例之提昇光取出效率之晶片 結構的剖面示意圖。 第5A〜5C圖分別繪示依照一實施例之提昇光取出效 率之晶片製程的剖面示意圖。 【主要元件符號說明】 100、102、200、202 :晶片結構 110、210 :第一階梯結構 112、212 :第二階梯結構 120、220 :磊晶層 130、 230 :基底 131、 231 :第一刻痕 132、 232 :第二刻痕 130a、230a :上表面 130b、230b :下表面 130c、230c :側面 130d :斷面 135、 235 :第三刻痕 136、 236 :第四刻痕 137、 138 :切割面TW7471PA ladder, "is part of the surface of the substrate 230 (for example, the lower surface 23〇b). Next, referring to FIGS. 5B and 5C, the lower surface i30b of the base 130 is cut, for example, by the tip end of the cutter I40 to form a respective cut surface 137, and then the base 13〇 is split along the dividing lines u, L2 to form a predetermined The section of the direction is 13〇d. Since the thickness of the base 13 is smaller than the thickness of the recesses of the first score 131 and the second score 132, the cross section will be connected to the bottom surface of the corresponding score to form the split shown in FIG. 5C. Wafer: 100 〇 口 口 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片 晶片Part of the surface of the substrate forms a stepped junction. Therefore, the light incident on the inside of the substrate is not easy to be reversed (four) at the step structure/air=face, thereby effectively limiting the original light to the inside of the bottom to improve the light emission. The light extraction efficiency of the polar body wafer. In addition, the upper surface or the lower surface of the substrate may be a roughened surface to prevent the partial light of the illuminating portion from being totally reflected twice or more, so that the first line may also be outward through the roughened upper surface or the lower surface. Scattering' further enhances light extraction efficiency. As described above, the present invention has been disclosed in the above preferred embodiments, and the present invention is not limited thereto. Those skilled in the art to which the present invention pertains are more versatile and refinement in the spirit and scope of the present invention. Therefore, the scope of the protection scope of the present invention is defined. Postpartum Appendices 201242084 1 w /η / ir/\ [Simplified Schematic Description] Figs. 1A and 1B are schematic cross-sectional views showing a wafer structure for improving light extraction efficiency according to an embodiment. Fig. 2 is a cross-sectional view showing the structure of a wafer for improving light extraction efficiency according to an embodiment. 3A and 3B are schematic cross-sectional views showing a wafer structure for improving light extraction efficiency according to an embodiment. Fig. 4 is a cross-sectional view showing the structure of a wafer for improving light extraction efficiency according to an embodiment. 5A to 5C are schematic cross-sectional views showing a wafer process for improving light extraction efficiency according to an embodiment. [Main component symbol description] 100, 102, 200, 202: wafer structure 110, 210: first step structure 112, 212: second step structure 120, 220: epitaxial layer 130, 230: substrate 131, 231: first Scoring 132, 232: second score 130a, 230a: upper surface 130b, 230b: lower surface 130c, 230c: side 130d: section 135, 235: third score 136, 236: fourth score 137, 138 :cut surface

S 12 201242084S 12 201242084

TW7471PA 140 :刀具 A、B、C :介面處 HI、H2、H3、H4 :深度 L :光線 U、L2 :分割線 13 5TW7471PA 140 : Tool A, B, C: Interface HI, H2, H3, H4: Depth L: Light U, L2: Split line 13 5

Claims (1)

201242084 TW7471PA 1 1 七、申請專利範圍: 1. 種提幵光取出效率之晶片結構,該晶片結構包 括: 一蟲晶層;以及 基底’配置於該·層的底部’該基底的部分表面 具有一第-刻痕以及-第二刻痕,該第一刻痕的深度等於 或,等於該第二刻痕的深度,以使該基底的部分表面形成 一第一階梯結構。 2. 如申請專利範圍項所述之晶片結構,其中該 基底具有一上表面、一下表面以及一側面,該蟲晶層位於 該上表面/該第一階梯結構連接於該下表面於該側面之 ^且°亥第一刻痕之底面相距於該下表面的距離等於或不 等於该第二刻痕之底面相距於該下表面的距離。 3·如申請專利範圍第丨項所述之晶片結構,其中該 基底具有-上表面、-下表面以及一側面’該蟲晶層位於 該上表面,該第一階梯結構連接於該上表面與該側面之 ,,且該第一刻痕之底面相距於該上表面的距離等於或不 等於該第二刻痕之底面相距於該上表面的距離。 4.如申請專利範圍第1項所述之晶片結構,其中該 基底的另一部分表面還具有一第三刻痕以及一第四刻 痕’該第三刻痕的深度等於或不等於該第四刻痕的深度, 以使該基底的另一部分表面形成一第二階梯結構。 5 ‘如申請專利範圍第4項所述之晶片結構,其中該 基底具有一上表面、一下表面以及一側面,該磊晶層位於 該上表面,該第一階梯結構連接於該上表面與該側面之 201242084 TW7471PA 間,且該第-刻痕之底面相距於該上表面的距離等於或不 等於該弟一刻痕之底面相距於該上表面的距離,該第二階 梯結構連接於該下表面與該側面之間,且該第三刻痕之底 面相距於該下表面的距離等於或不等於該第四刻痕之底 面相距於該下表面的距離。 6.如申明專利範圍第1項所述之晶片結構,其中該 基底為藍寶石基底或碳化石夕基底。 7·如申請專利範圍帛1項所述之晶片結構,其中該 磊晶層包括氮化鎵(GaN)層。 8.-種提昇光取出效率之晶片製程,該晶片製程包 括: 形成一磊晶層於一基底上; 痕以及-第二刻痕於該基底的部分表 面㈣一刻痕的深度等於或不等於該第二刻痕的深产, 以使该基底的部分表面形成一第一階梯結構;以及又 結構劈裂雜底’以形成—斷面,該斷面連接該第一階梯 =·如申請專利範圍第8項所述之晶片製程,其 及該第二刻痕之方法包括濕式化學-刻 1如申請專利顧第8項_之^ :成;f三刻痕以及-第四刻痕於該基底的另 面/第三刻痕的深度等於或不等於該第四刻痕的^表 以使,的另-部分表面形成-第二階梯結構讀, .如申請專利範圍第10項所述之晶片製程,其中 15 § 201242084 ’ TW7471PA 形成該第三刻痕以及該第四刻痕之方法包括濕式化學蝕 刻或雷射茲刻方法。201242084 TW7471PA 1 1 VII. Patent Application Range: 1. A wafer structure for extracting light extraction efficiency, the wafer structure comprising: a crystal layer; and a substrate 'disposed on the bottom of the layer' a first-scratch and a second-notch having a depth equal to or equal to a depth of the second score such that a portion of the surface of the substrate forms a first stepped structure. 2. The wafer structure of claim 2, wherein the substrate has an upper surface, a lower surface, and a side surface, the crystal layer is located on the upper surface / the first step structure is connected to the lower surface And the distance from the bottom surface of the first score of the first score to the lower surface is equal to or not equal to the distance of the bottom surface of the second score from the lower surface. 3. The wafer structure of claim 2, wherein the substrate has an upper surface, a lower surface, and a side surface, wherein the crystal layer is located on the upper surface, and the first step structure is coupled to the upper surface The side surface, and the bottom surface of the first score is spaced from the upper surface by a distance equal to or not equal to the distance of the bottom surface of the second score from the upper surface. 4. The wafer structure of claim 1, wherein another portion of the surface of the substrate further has a third score and a fourth score. The depth of the third score is equal to or not equal to the fourth The depth of the score is such that a surface of another portion of the substrate forms a second stepped structure. The wafer structure of claim 4, wherein the substrate has an upper surface, a lower surface, and a side surface, the epitaxial layer is located on the upper surface, the first step structure is coupled to the upper surface and the Between the sides of 201242084 TW7471PA, and the bottom surface of the first-scratch is at a distance equal to or not equal to the distance of the bottom surface of the first score from the upper surface, the second step structure is connected to the lower surface and The distance between the sides of the third indentation and the bottom surface of the third indentation is equal to or not equal to the distance of the bottom surface of the fourth indentation from the lower surface. 6. The wafer structure of claim 1, wherein the substrate is a sapphire substrate or a carbonized stone substrate. 7. The wafer structure of claim 1, wherein the epitaxial layer comprises a gallium nitride (GaN) layer. 8. A wafer process for improving light extraction efficiency, the wafer process comprising: forming an epitaxial layer on a substrate; marking and - second scoring on a portion of the surface of the substrate (4) a depth of a score equal to or not equal to a deep production of the second indentation such that a portion of the surface of the substrate forms a first stepped structure; and a structure is configured to split the bottom of the substrate to form a section, the section connecting the first step = · as claimed The wafer process described in item 8 and the method of the second indentation include wet chemical-etching 1 such as applying for a patent, item 8 _^^: into; f three-notch and - fourth-scratch in the The depth of the other/third notch of the substrate is equal to or not equal to the surface of the fourth indentation such that the other portion of the surface is formed - the second stepped structure is read, as described in claim 10 Wafer process, where 15 § 201242084 ' TW7471PA forms the third score and the fourth score includes wet chemical etching or laser etching.
TW100113253A 2011-04-15 2011-04-15 Chip structure for enhancing light extraction efficiency and process using the same TW201242084A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100113253A TW201242084A (en) 2011-04-15 2011-04-15 Chip structure for enhancing light extraction efficiency and process using the same
CN2011101179640A CN102738335A (en) 2011-04-15 2011-05-09 Chip structure for improving light extraction efficiency and manufacturing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100113253A TW201242084A (en) 2011-04-15 2011-04-15 Chip structure for enhancing light extraction efficiency and process using the same

Publications (1)

Publication Number Publication Date
TW201242084A true TW201242084A (en) 2012-10-16

Family

ID=46993474

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100113253A TW201242084A (en) 2011-04-15 2011-04-15 Chip structure for enhancing light extraction efficiency and process using the same

Country Status (2)

Country Link
CN (1) CN102738335A (en)
TW (1) TW201242084A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI523266B (en) * 2013-10-14 2016-02-21 新世紀光電股份有限公司 Light-emitting diode structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10006738C2 (en) * 2000-02-15 2002-01-17 Osram Opto Semiconductors Gmbh Light-emitting component with improved light decoupling and method for its production
JP2009283912A (en) * 2008-04-25 2009-12-03 Sanyo Electric Co Ltd Nitride-based semiconductor device and method of manufacturing the same
KR101064006B1 (en) * 2009-03-03 2011-09-08 엘지이노텍 주식회사 Light emitting element

Also Published As

Publication number Publication date
CN102738335A (en) 2012-10-17

Similar Documents

Publication Publication Date Title
TWI470823B (en) Light-emitting element and method of manufacturing same
JP5870097B2 (en) Gallium and nitrogen containing triangle or rhombus configuration for optical devices
TWI473269B (en) Light-emitting device with uneven active layer and method of forming same
CN108447955B (en) LED chip construction and preparation method thereof
US20120171791A1 (en) Method for fabricating light emitting diode chip
TWI422064B (en) Light-emitting diode chip and manufacturing method thereof
TW201411875A (en) Method for growing III-V compound layer on substrate and semiconductor device and illumination device having the same III-V compound layer
CN105514230B (en) GaN base LED vertical chip structure and preparation method thereof
CN103515491A (en) Manufacturing method for light-emitting diode
CN102646766B (en) Light emitting diode (LED) epitaxial structure and processing procedure
CN105514225A (en) Film type flip chip light emitting diode with coarsened surface and manufacturing method thereof
TWI488334B (en) Light-emitting element and method of manufacturing same
CN103500783B (en) A kind of method for manufacturing light-emitting diode chip
TWI438933B (en) Light-emitting diode structure and manufacturing method thereof
CN103715312A (en) High-current-density and low-voltage-power light emitting diode and manufacturing method thereof
TW201822379A (en) Light-emitting diode chip
TW201340388A (en) Light-emitting diode crystal grain and manufacturing method thereof
TWI540754B (en) Light-emitting diode and method of forming same
TW201242084A (en) Chip structure for enhancing light extraction efficiency and process using the same
CN104347770A (en) Light-emitting diode and manufacturing method thereof
CN107359222A (en) A kind of inverted light-emitting diode (LED) and preparation method thereof
CN106169528A (en) A kind of light emitting diode construction and preparation method thereof
CN101635324B (en) Light emitting element and manufacturing method thereof
CN104681672A (en) Manufacturing method of light-emitting diode
TWI514622B (en) Light-emitting diode crystal grain and manufacturing method thereof