TW201242003A - Method for producing semiconductor device and semiconductor device - Google Patents
Method for producing semiconductor device and semiconductor device Download PDFInfo
- Publication number
- TW201242003A TW201242003A TW101107287A TW101107287A TW201242003A TW 201242003 A TW201242003 A TW 201242003A TW 101107287 A TW101107287 A TW 101107287A TW 101107287 A TW101107287 A TW 101107287A TW 201242003 A TW201242003 A TW 201242003A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- semiconductor
- forming
- region
- insulating layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/016—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6728—Vertical TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0195—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/026—Wafer-level processing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/803—Pixels having integrated switching, control, storage or amplification elements
- H10F39/8033—Photosensitive area
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
201242003 六、發明說明: 【發明所屬之技術領域】 本發明係關於半導體裝置的製造方法及半導體裝置, 尤其係關於具備有在具有柱狀構造的半導體内形成有通道 (channel)區域之電晶體(transi s tor)之半導體裝.置的製 造方法及半導體裝置。 【先前技術】 CCD及CMOS型等之固態影像感測裝置係廣為用於視訊 φ 攝影機(video camera)、斯脫攝影機(stere camera)等。 旅且’係要求有固態影像感測裝置的高解析度化、高速動 作化、及高靈敏度化等之性能提升。 如第17圖所示,已知有一個晝素構成於一個柱狀半導 體110内之固態影像感測裝置(例如,參照專利文獻丨)。 在此晝素構造中’係在半導體基板上形成有作為固態 影像感測裝置的訊號線發揮功能之矿型矽(silic〇n)層 51 ^再者,於N+型矽層51係連接有柱狀半導體11〇。於該 枉狀半導體110係形成有由P型矽層52、絕緣膜53a、53b、 閘極導體層54a、54b所構成之用以去除儲存電荷之M〇s 電晶體。再者,於柱狀半導體11〇係形成有連接於此M〇s 電晶體,並儲存藉由光束(電磁能量波)照射而產生之電荷 之光電一極體(photodiode)。此光電二極體係由p型矽層 52、及N型石夕層58a、58b所構成。再者,係形成有將以此 光電一極體所圍繞之P型半導體52設為通、 將光電一極體設為閘極(gate)、以及將形成於光電二極體 323818 4 201242003 上且連接於晝素選擇線57a、57b之P+型石夕層56,及N+型 矽層51附近之p型矽層52分別設為源極&⑽π幻、汲極 (drain)之接面電場效果電晶體(接面電晶體)。201242003 VI. [Technical Field] The present invention relates to a method of manufacturing a semiconductor device and a semiconductor device, and more particularly to a transistor having a channel region formed in a semiconductor having a columnar structure ( Transi s tor) semiconductor device mounting method and semiconductor device. [Prior Art] A solid-state image sensing device such as a CCD or a CMOS type is widely used for a video camera, a stereo camera, and the like. Brigade's requirements for high-resolution, high-speed operation, and high sensitivity of solid-state image sensing devices are required. As shown in Fig. 17, a solid-state image sensing device in which a halogen is formed in one columnar semiconductor 110 is known (for example, refer to the patent document). In this halogen structure, a silicium layer 51 which functions as a signal line of a solid-state image sensing device is formed on a semiconductor substrate. Further, a column is connected to the N+ type germanium layer 51. The semiconductor is 11 〇. The germanium-shaped semiconductor 110 is formed with a M?s transistor formed of a p-type germanium layer 52, insulating films 53a and 53b, and gate conductor layers 54a and 54b for removing stored charges. Further, a photodiode which is connected to the M?s transistor and stores a charge generated by irradiation of a light beam (electromagnetic energy wave) is formed on the columnar semiconductor 11 system. This photodiode system is composed of a p-type germanium layer 52 and an N-type litmus layer 58a, 58b. Furthermore, a P-type semiconductor 52 surrounded by the photo-electric body is turned on, a photo-electric body is set as a gate, and a photodiode 323818 4 201242003 is formed. The P+ type 石 layer 56 connected to the halogen selection lines 57a and 57b and the p type 矽 layer 52 near the N+ type 矽 layer 51 are respectively set as the source electric field effect of the source & (10) π illusion and drain. Transistor (junction transistor).
此固態影像感測裝置的基本動作係構成有:將由光束 照射所產生之訊號電荷(此時係為電子)儲存於光電二極體 之訊號電荷儲存動作;將流動於N+型石夕層51附近之p型 石夕^ 52與P+型石夕層56之間之源極/沒極電流,藉由由因 應前述之儲存訊號電荷之光電二極體電壓而來之問極電壓 進行調變,並將該者作為訊號電流讀出之訊號讀出動作; 以及在此喊讀出動作結綠,施加導通⑽)f壓於M0S 電晶體的閘極導體層54a、54b,而將儲存於光電二極體之 訊號電何去除於N+_層51之重設(reset)動作。 在二維固態影像感測裝置中,第17圖所 維狀地排顺感缝域。並且,# 4係一 經由_層51傳達至設於感 電路之電性傳送而進行纽動作。並且, 感測裝置的晝素數,或者每單位時間之讀出 係須要訊號讀出動作之高速動作化。因此,S加, 屬於訊號線之N+型矽層51的電阻。 ,、要求有減低 為了實現如此之N+型石夕層51之低電阻化 圖所示,可考慮使在石夕基板6〇上形成之' _石夕層㈣背面之構造嘯此,訊號線^^合於 金屬層59所決定,故可實現前述訊號讀出動乎由 323818 速動作 201242003 化。然而’就金屬材料與矽材料接 係難以形成接合於r型…丨之金屬=的觀點來肴,The basic operation of the solid-state image sensing device is: storing the signal charge generated by the beam irradiation (in this case, electrons) in the signal charge storage operation of the photodiode; flowing near the N+ type Shixi layer 51 The source/no-pole current between the p-type shixi^52 and the p+-type shihua layer 56 is modulated by the polarity of the photodiode corresponding to the stored photodiode voltage of the signal charge, and The signal readout operation is performed as the signal current reading; and the readout operation is green, and the conduction (10)) is applied to the gate conductor layers 54a and 54b of the MOS transistor, and is stored in the photodiode. The signal signal of the body is removed from the reset action of the N+_ layer 51. In the two-dimensional solid-state image sensing device, Fig. 17 is arranged in a smooth shape. Further, the #4 system is transmitted to the electrical transmission provided in the sensing circuit via the _ layer 51, and the button operation is performed. Further, the number of primes of the sensing device or the reading per unit time requires high-speed operation of the signal reading operation. Therefore, S plus is the resistance of the N+ type germanium layer 51 belonging to the signal line. In order to achieve such a low-resistance diagram of the N+-type sapphire layer 51, it is conceivable to make the structure of the back surface of the _shi shi layer (four) formed on the 夕夕 substrate 6〇, the signal line ^ ^ is determined by the metal layer 59, so that the above-mentioned signal reading can be realized by the 323818 speed action 201242003. However, it is difficult to form a joint with the metal of the r-type...
為了將金屬層59形成”基板⑽上,可考廣 亦即,如第则所示,於半導體基板上形i 62’並於該氧化㈣62上形成金屬層⑽。並且, ㈣=金屬層59之半導體基板61與半導體基板以接 :之在半導體基板64中’將畫素形成於第⑽圖中 虛線所示之部分。第⑽圖所示之一點鍵線㈣,係顯示 導體基板64之研磨、_、或者其他分離方法,而 將半導體基板64成形為預定的高度之狀態。 …、而就如此的製造方法而言,金屬層59與半導體義 ^ 64係直接接著,故由於金屬層59與半導體基板64的二 膨脹係數不同,而會在半導體基板61、64產生彎曲、裂^ (⑽ck)、或者剝離。如第應圖所示,為了訊號讀出動作 之南速動作化,在開發不產生彎曲、裂縫、或者剝離而將 金屬層59直接貼合在Ν+型石夕層51的背面之方法上係 大的技術性的意義。 *並且,係強烈的要求有藉由解決如此之課題,以實現 固態影像感測裝置以外之半導體裝置,或者設於半導體裝 置之電路7G件之高集積化、高性能化。In order to form the metal layer 59 on the substrate (10), it is possible to form a metal layer (10) on the semiconductor substrate and form a metal layer (10) on the oxide substrate (4) as shown in the figure. The semiconductor substrate 61 is connected to the semiconductor substrate: 'the pixel is formed in a portion indicated by a broken line in the (10) figure in the semiconductor substrate 64. The one-point key line (4) shown in the (10) figure shows the polishing of the conductor substrate 64, _, or other separation method, the semiconductor substrate 64 is formed into a state of a predetermined height. ... And in the case of such a manufacturing method, the metal layer 59 is directly connected to the semiconductor layer, so the metal layer 59 and the semiconductor The two expansion coefficients of the substrate 64 are different, and the semiconductor substrates 61 and 64 are bent, cracked, or peeled off. As shown in the first drawing, in order to operate the south speed of the signal reading operation, development does not occur. The method of directly bonding the metal layer 59 to the back surface of the Ν+-type slab layer 51 by bending, cracking, or peeling is of a technical significance. * And, there is a strong demand for solving such a problem. To achieve The semiconductor device other than state image sensing apparatus, or provided in a semiconductor circuit device of high integration member 7G product of higher performance.
再者為了訊號讀出動作之高速動作化,係有將具有 狀構k之柱狀半導體的側面設為通道區域,並具有閘極 電極圍繞該通道區域的構造之屬於縱型M0S電晶體之SGT (Surrounding Gate Transistor,環繞式閘極電晶體)(於 323818 201242003 下述係簡單省略為「SGT」)(例如,參昭番 就如此之SGT而言,係如第19圖所、示利文獻2)。 基板66上形成有平面狀矽膜67,且轉由在埋入氧化臈 柱狀石夕層68而形成柱狀構造。於平面狀發面狀石夕膜67及 作為沒極發揮功能之P+型石夕擴散層6 係形成有 ° 於柱狀石夕層ίΛ 上部係形成有料祕發揮功能之ρ+_擴散層Μ,且於 柱狀石夕層68的外周部係形成有閘極絕緣層7卜此間極絶 緣層71的外周部係形成有閘極電極72。藉此,係形成將 P+型石夕擴散層69與F卿擴散層7〇之間之柱狀㈣⑽作 為通道之P型通道SGT。 再者,係以圍繞閘極電極72、P+型矽擴散層7〇、以及 P石夕擴散層69之方式,而形成有氮化發(^ν)膜73及氧化 石夕(Si〇2)膜74。於氧化矽膜74内係形成有接觸孔(c〇ntact hole)75,且P型石夕擴散層70經由此接觸孔75而連接於 源極金屬配線76。藉此形成一個p型通道sgt。 第19圖所示之P+梨矽擴散層69係在平面狀矽膜67 延長在同一平面上的預定部位與未圖示之金屬配線連接。 在具有SGT之半導體裝置中’為了實現更進一步之訊號讀 出動作之高速動作化’此P+型矽擴散層69與上述金屬配 線之連接係被要求以P+型矽擴散層70之方式,在較短的 距離下進行。 然而’就第19圖所示之SGT而言,在上述金屬配線與 P+型矽擴散層69之間,或者在P+型矽擴散層69之中會存 在有相當於到SGT通道的没極端為止的距離之電阻。因 323818 7 201242003 此’即便在具有SGT之半導體裝置中,亦與固態影像感測 裝置同樣地為了實現訊號讀出動作之高速動作化,而必須 將金屬層直接地接合於P+型矽擴散層69的背面以謀求電 阻的下降。 (先前技術文獻) (專利文獻) 專利文獻1 :國際公開第2009/034623號 專利文獻2:美國專利申請公開第2010/0213539(A1) ®號說明書 (非專利文獻)Further, in order to realize high-speed operation of the signal reading operation, there is a SGT belonging to a vertical MOS transistor having a side surface of a columnar semiconductor having a k-shaped structure as a channel region and having a gate electrode surrounding the channel region. (Surrounding Gate Transistor, wraparound gate transistor) (Simplified as "SGT" in 323818 201242003) (for example, in the case of SGT, such as SGT, it is shown in Figure 19, and the document 2 is shown. ). A planar ruthenium film 67 is formed on the substrate 66, and a columnar structure is formed by embedding the yttrium oxide columnar layer 68. In the planar surface-like smectic film 67 and the P+-type sap diffusion layer 6 which functions as a immersive function, a ρ+_diffusion layer 形成 which functions as a material secret is formed in the upper part of the columnar layer. A gate insulating layer 7 is formed on the outer peripheral portion of the columnar layer 68, and a gate electrode 72 is formed on the outer peripheral portion of the inter-electrode insulating layer 71. Thereby, a P-type channel SGT in which a columnar shape (4) (10) between the P + -type schist material diffusion layer 69 and the F-clear diffusion layer 7 作 is used as a channel is formed. Further, a nitrided (^ν) film 73 and an oxidized stone (Si〇2) are formed around the gate electrode 72, the P+ type germanium diffusion layer 7〇, and the P-wave diffusion layer 69. Membrane 74. A contact hole 75 is formed in the ruthenium oxide film 74, and the P-type shi-diffusion layer 70 is connected to the source metal wiring 76 via the contact hole 75. Thereby a p-type channel sgt is formed. The P+ pear-dip diffusion layer 69 shown in Fig. 19 is connected to a metal wiring (not shown) at a predetermined portion in which the planar ruthenium film 67 is extended on the same plane. In the semiconductor device having the SGT, 'the high-speed operation for realizing further signal reading operation' is required to connect the P+ type germanium diffusion layer 69 to the metal wiring in the manner of the P+ type germanium diffusion layer 70. Performed at short distances. However, in the case of the SGT shown in Fig. 19, between the metal wiring and the P+ type germanium diffusion layer 69 or the P+ type germanium diffusion layer 69, there is a limit corresponding to the SGT channel. Distance resistance. In the semiconductor device having the SGT, in the same manner as the solid-state image sensing device, in order to realize high-speed operation of the signal reading operation, the metal layer must be directly bonded to the P+ type germanium diffusion layer 69. The back side seeks to reduce the resistance. (Prior Art Document) (Patent Document) Patent Document 1: International Publication No. 2009/034623 Patent Document 2: US Patent Application Publication No. 2010/0213539 (A1) No. (Non-Patent Document)
非專利文獻 1 : Hidekazu Takahashi, Masakuni Kinosita, Kazumichi Morita, Takahiro Shirai, Tosiaki Sato, Takayuki Kimura, Hiroshi Yuzurihara, Shunsuke Inoue, Member, IEEE, and Shigeyuki Matsumoto: MA 3. 9-//m Pixel Pitch VGA Format 10-b Digital Output CMOS Image Sensor With 1. 5 Transistor/Pixel”, IEEE Journal of Solid-State Circuits, Vol.39, No.12, pp.2417-2425(December 2004) 非專利文獻 2 : M.Bruel : “Silicon on Insulator material tecnology” , Electronics Letters Vol. 31, No. 14, pp. 1201-1202(6th July, 1995) 非專利文獻 3:Takao Yonehara, Kiyofumi Sakaguchi, and Nobuhiko Sato : “Epitaxial layer transfer by bond and etch back of porous Si”,Appl· Phys. Lett. Vol. 64, 323818 8 201242003Non-Patent Document 1: Hidekazu Takahashi, Masakuni Kinosita, Kazumichi Morita, Takahiro Shirai, Tosiaki Sato, Takayuki Kimura, Hiroshi Yuzurihara, Shunsuke Inoue, Member, IEEE, and Shigeyuki Matsumoto: MA 3. 9-//m Pixel Pitch VGA Format 10 -b Digital Output CMOS Image Sensor With 1. 5 Transistor/Pixel", IEEE Journal of Solid-State Circuits, Vol. 39, No. 12, pp. 2417-2425 (December 2004) Non-Patent Document 2: M. Bruel: "Silicon on Insulator material tecnology", Electronics Letters Vol. 31, No. 14, pp. 1201-1202 (6th July, 1995) Non-Patent Document 3: Takao Yonehara, Kiyofumi Sakaguchi, and Nobuhiko Sato : "Epitaxial layer transfer by bond And etch back of porous Si”, Appl· Phys. Lett. Vol. 64, 323818 8 201242003
No.16, pp.2108-2110(18 April, 1994) 【發明内容】 (發明所欲解決之課題) 在二維固態影像感測裝置中,係如上述,藉由晝素訊 號(訊號電流)經由作為訊號線發揮功能的N+型矽層51傳 達至設於感光區域周邊之外部電路而進行訊號讀出動作。 再者,重設動作亦經由畫素與感光區域的外部電路之電性 傳送而進行。此電性傳送之回應性係極為受到連接畫素及 周邊電路間之配線的電阻及寄生電容之影響。為了增加固 ‘4影像感測裝置的晝素數,或者每單位時間之讀出晝面 數’係要求有減低該配線的電阻。 (w)、鎳(nickel)(Ni)等使用於一 阻值更小。因此,就第17圖所 言’與藉由金眉酡綠推耔愈丢叙 第17圖所示之固態影像感測裝置中,該電阻係幾乎由 N+型矽層51的電阻而決定。N+型矽層51係藉由將磷(?)或 砷素(As)等施體(donor)雜質離子摻雜(ion doping)(離子 注入)至於矽(si)半導體而予以形成,故無法使此N+型矽 層51的電阻值比紹(3ΐι1ιηίιηιιη)(Αυ、鋼(Cu)、鶴(恤找㈣ 於一般半導體裝置之金屬的電No. 16, pp. 2108-2110 (18 April, 1994) [Problem to be Solved by the Invention] In a two-dimensional solid-state image sensing device, as described above, by a halogen signal (signal current) The N+ type germanium layer 51 functioning as a signal line is transmitted to an external circuit provided around the photosensitive area to perform a signal reading operation. Furthermore, the resetting operation is also performed by electrical transfer of pixels and external circuits of the photosensitive area. The responsiveness of this electrical transmission is greatly affected by the resistance and parasitic capacitance of the wiring between the connected pixels and the peripheral circuits. In order to increase the number of primes of the solid image sensing device, or the number of readouts per unit time, it is required to reduce the resistance of the wiring. (w), nickel (Ni), etc. are used for a smaller resistance value. Therefore, in the solid-state image sensing device shown in Fig. 17 and in the solid-state image sensing device shown in Fig. 17, the resistance is almost determined by the resistance of the N+ type germanium layer 51. The N+ type germanium layer 51 is formed by ion doping (ion implantation) of a donor impurity such as phosphorus (?) or arsenic (As) to a germanium (si) semiconductor, so that it cannot be made. The resistance value of the N+ type bismuth layer 51 is higher than that of the metal of the general semiconductor device (3ΐι1ιηίιηιιη) (Αυ, steel (Cu), crane (four)
323818 9 201242003 低晝素的積體度。 再者,如同上述,於第19圖所示之SGT中,P+型矽擴 散層69亦在平面狀矽膜67之延長部位與金屬配線連接。 就如此之由P+型矽擴散層69與金屬配線連接而來之手段 而言,係無法以P+型矽擴散層70之方式以較短的距離與 金屬配線連接,故會存在有相當於至與金屬配線及SGT的 通道最接近之P+型石夕擴散層69的端部為止之電阻。因此, 為了實現在具有SGT之半導體裝置中更進一步之高速動作 ® 化,係必須減低此電阻。 本發明為有鑑於上述情事而完成者,目的係為提供實 現高積體、高速動作之半導體裝置。 (解決課題之手段) 為了達成上述目的,本發明之第1觀點之半導體裝置 的製造方法之特徵在於:將第一絕緣層形成於半導體基板 上之預定區域,並藉由去除前述預定區域上之第一絕緣層 φ 從而形成絕緣層去除區域之第一絕緣層形成/去除步驟, 或於前述預定區域之周邊朝厚度方向去除前述半導體基板 之一部份,而於去除該半導體基板之半導體基板去除區域 形成第一絕緣層之第二絕緣層形成/去除步驟;第一半導 體層形成步驟,係以至少覆蓋前述預定區域的方式,於前 述半導體基板上形成包含施體雜質或受體雜質之第一半導 體層;導體層形成步驟,係於前述第一半導體層上形成導 體層;成形步驟,將前述導體層以及前述第一半導體層成 形為預定形狀;第二絕緣層形成步驟,以覆蓋形成為前述 323818 10 201242003 預定形狀之導體層以及第一半導體層的方式,形成第二絕 緣層,平坦化步驟,係將前述第二絕緣層之表面予以平坦 化;接著步驟,係於前述經平坦化之前述第二絕緣層.之表 面接著基板;薄膜化步驟,係將前述半導體基板薄化至預 定之厚度;柱狀半導體形成步驟,係於前述第一半導體層 上,自前述半導體基板形成具有柱狀構造之柱狀半導體; 以及電路元件形成步驟,係於前述柱狀半導體形成前述電 路70件,且,復具備:第一半導體區域形成步驟,係至少 :七述第半導體層形成步驟之後’自包含前述施體雜質 或又體雜質之前述第—半導體層使該雜質擴散,從而於前 述柱狀半導體形成第一半導體區域。 前述電路元件形成步驟較佳係包含:在前述柱狀半導 二:周部形成第三絕緣層’並於前述第三絕緣層之外周 十閘極導體層之步驟;於前述閘極導體層之上方部位 二述柱狀半導體之表層部,形成與前 電型之第四半導體區域之步驟;以及於前』 一半導心沖在則述第三絕緣層之上方部位形成與前述第 -域為相反導電型之第三半導體區域之步驟。 體之二=形成步驟較佳係包含:在前述柱狀半導 部形成間極導2三絕緣層’並於前述第三絕緣層之外周 第,d:成半導體之前述 導電,4=:第―半導體區域為相同 323818 月w電路元件形成步驟較佳係包含:於前述挺狀半導 201242003 體之上方 之第六辛導-心成與别述第一半導體區域為相反導電型 T等體區域之步驟。 一半::第—半導體層形成步驟較佳係包含:在與前述第 之步驟。之同層,形成作為電阻發揮功能之第二半導體層 人,下述步驟為佳··前述第—半導體層形成步驟係 ;作為電容電極發揮功能之前述第一半導體層上^ 疋區域形成作為電容絕緣膜發揮功能之絕緣膜之步驟一 =:層形成步驟係包含,於前述絕緣膜上形成與前述; +導體層-同作為電容電極發揮功能之導體層之步驟 人係以下述步驟為佳:前述第-絕緣層形成步驟係包 厂,述半導體基板上與第—絕緣層—同形成第四二 層的厚度為薄,並作為電容絕緣膜發揮功能之第$ t步辣;前述導體層形成步驟係包含,於前述第五絕= $成作為電容電極發揮功能之導體層之步驟;前述2 =第二絕緣層形成/絲步驟係包含,於前述電容 域形成具有施體雜質或受體雜質並作‘成& 之雜質層之電容形成步驟。 為電谷電極發揮功能 係讀具備下述步驟為佳:於前料導體基板上設定 驟· f準標記形成區域之遮罩對準標記形成區域設定步 =於前賴料準触職區細成鮮料孔,產使 =絕緣層去除區域、前述第—絕緣層以及前述導體廣其 中至-者露出之步驟;透過前迷遮罩對準孔,而形成由 323818 12 201242003 前述絕緣層去除區域、前述第一絕緣層以及前述導電層中 之至少一者所構成之遮罩對準標記之遮罩對準標記形成步 驟;以及以前述遮罩對準標記為基準進行光罩之遮罩對準 之遮罩對準步驟。 係以下述方式為佳:復具備於前述遮罩對準孔埋入透 明絕緣體之步驟;且於前述遮罩對準標記形成步驟中,係 透過前述透明絕緣體而形成由前述絕緣層去除區域、前述 第一之絕緣層以及前述導體層中之至少一者所構成之遮罩 • 對準標記;於前述遮罩對準步驟中,係以前述遮罩對準標 記為基準進行光罩之遮罩對準。 係復具備下述步驟為佳:於前述第一或第二絕緣層形 成/去除步驟與前述第一半導體層形成步驟之間,以覆蓋 前述絕緣層去除區域之方式形成未摻雜有施體雜質及受體 雜質之第二半導體層之步驟。 前述第二絕緣層形成/去除步驟較佳係包含:將形成 Φ 前述柱狀半導體之區域之周邊的前述半導體基板進行蝕刻 之半導體基板蝕刻步驟;在經過前述蝕刻之區域之前述半 導體基板上形成前述第一絕緣層之步驟;以及在由於前述 蝕刻而露出之前述半導體基板與位於該露出之半導體基板 周邊的前述第一絕緣層上,形成前述第一半導體層之步驟。 前述第2絕緣層形成/去除步驟較佳係包含:將形成 前述柱狀半導體之區域之前述半導體基板之周邊的區域選 擇性氧化而形成作為前述第一絕緣層的選擇氧化層之步 323818 13 201242003 分離的、前述第〜=步驟為佳.將形成至少兩個以上之互相 區域之前述半導、’象層之區域’於形成前述柱狀半導體之 互相分離的區域夕基板上形成之步驟;以及形成:由前述 述半導體基板^剛述第一絕緣層所園繞,且在露出之前 數個前述第-丰道面上互相分離並捧雜有施體或受體之複 前述半導體層<步=層以及連接於前述第—半導體層之 本發明之第_ ^ 第-觀點之半^觀點之半導體裝置,係為依據本發明之 其特徵在於置的製造方法所製造之半導體裝置, 半導體區域上的狀半導體係具備,由形成於前述第-體或本徵半導體^帛半導體區域為相反導電型之半導 導體區域與前迷塗構成之第一半導體區域;由前述第二半 磁能量波而產生^四》半導體區域形成用以儲存藉由照射電 果電晶體,其係、^號電祷之一極體;形成有接面電場效 述第-半導體區:前述二極體作為間極發揮功能,並以前 極,另一方作^與前述第三半導體區域之任一方作為源 出手段取出流能,且設成可藉由 應儲存於前述二極體半導體區域之通道並因 成訊號電荷去除手段,。二電流;以及形 ,、系藉由以别述閘極導體層作為閘 極發揮功此,並以前述第一半導體區域以及前述第四半導 體區域之-方作為源極發揮功能而另一方作為汲極發揮功 能之腦電晶體,於前述開極導體層施加323818 9 201242003 The low degree of low body. Further, as described above, in the SGT shown in Fig. 19, the P + -type germanium diffusion layer 69 is also connected to the metal wiring at the extended portion of the planar germanium film 67. As a result of the connection between the P + -type germanium diffusion layer 69 and the metal wiring, the metal wiring can not be connected by the P + -type germanium diffusion layer 70 at a short distance, so that there is an equivalent to The resistance of the metal wiring and the channel of the SGT closest to the end of the P+ type Schiffon diffusion layer 69. Therefore, in order to achieve further high-speed operation in a semiconductor device having an SGT, it is necessary to reduce this resistance. The present invention has been made in view of the above circumstances, and it is an object of the invention to provide a semiconductor device which realizes high-volume operation and high-speed operation. In order to achieve the above object, a method of manufacturing a semiconductor device according to a first aspect of the present invention is characterized in that a first insulating layer is formed on a predetermined region on a semiconductor substrate by removing the predetermined region a first insulating layer φ to form a first insulating layer forming/removing step of the insulating layer removing region, or removing a portion of the semiconductor substrate in a thickness direction from a periphery of the predetermined region, and removing the semiconductor substrate from the semiconductor substrate a second insulating layer forming/removing step of forming a first insulating layer; the first semiconductor layer forming step of forming a first containing donor impurity or acceptor impurity on the semiconductor substrate in such a manner as to cover at least the predetermined region a semiconductor layer; a conductor layer forming step of forming a conductor layer on the first semiconductor layer; a forming step of forming the conductor layer and the first semiconductor layer into a predetermined shape; and a second insulating layer forming step of forming the foregoing 323818 10 201242003 a conductor layer of a predetermined shape and a first semiconductor layer a method of forming a second insulating layer, the planarizing step of planarizing the surface of the second insulating layer; and subsequently, the step of bonding the surface of the planarized second insulating layer to the substrate; the thinning step, Thinning the semiconductor substrate to a predetermined thickness; forming a columnar semiconductor on the first semiconductor layer, forming a columnar semiconductor having a columnar structure from the semiconductor substrate; and forming a circuit element in the foregoing The columnar semiconductor is formed of the above-mentioned circuit 70, and further includes: a first semiconductor region forming step of at least: after the seventh semiconductor layer forming step, the first semiconductor layer including the donor impurity or the bulk impurity is used The impurities are diffused to form the first semiconductor region in the columnar semiconductor. Preferably, the step of forming the circuit component comprises: forming a third insulating layer in the peripheral portion of the columnar semiconductor: and forming a third insulating layer on the periphery of the third insulating layer; and the step of the gate conductor layer; The upper portion is a step of forming a surface portion of the columnar semiconductor to form a fourth semiconductor region of a front type; and a portion of the front portion of the third insulating layer is formed opposite to the first region. The step of conducting a third semiconductor region. Preferably, the forming step comprises: forming a mutual conductance 2 three-insulating layer in the columnar semi-conductive portion and forming an outer circumference of the third insulating layer, d: forming the semiconductor into the conductive, 4=: Preferably, the semiconductor region is the same 323818 month circuit component forming step, comprising: a sixth symmetry-centering above the body of the stiff semi-conducting semiconductor 201242003 and an opposite conductivity type T region of the first semiconductor region The steps. The half::first-semiconductor layer forming step preferably comprises: in the foregoing step. In the same layer, a second semiconductor layer functioning as a resistor is formed, and the following step is preferably the first semiconductor layer forming step; the first semiconductor layer functioning as a capacitor electrode is formed as a capacitor Step 1 of the insulating film functioning as the insulating film =: The layer forming step includes forming the above-mentioned insulating film and the step of forming the conductor layer functioning as a capacitor electrode as follows: The first-insulating layer forming step is a package factory, wherein the thickness of the fourth and second layers on the semiconductor substrate and the first insulating layer are thin, and the first step is performed as a capacitor insulating film; the conductor layer is formed. The step includes: the step of forming a conductor layer functioning as a capacitor electrode; and the step of forming a second insulating layer/wire step comprising forming a donor impurity or a receptor impurity in the capacitor region And the capacitance forming step of the impurity layer of 'forming & It is better to read the function of the electric valley electrode. The following steps are preferred: setting the mask alignment mark forming area on the front conductor substrate to set the area of the mask mark formation area = step by step a fresh hole, a production-removal layer, an insulating layer, and a step of exposing the above-mentioned conductor to the exposed portion; the hole is etched through the front mask to form an insulating layer removal region by 323818 12 201242003, a mask alignment mark forming step of the mask alignment mark formed by at least one of the first insulating layer and the conductive layer; and mask aligning of the mask with the mask alignment mark as a reference Mask alignment steps. Preferably, the step of embedding the transparent insulator in the mask alignment hole is performed; and in the mask alignment mark forming step, the insulating layer is removed through the transparent insulator, and the foregoing a mask/alignment mark formed by at least one of the first insulating layer and the conductor layer; in the mask alignment step, the mask pair of the mask is performed based on the mask alignment mark quasi. Preferably, the step of: forming the undoped donor impurity between the first or second insulating layer forming/removing step and the foregoing first semiconductor layer forming step to cover the insulating layer removing region And the step of the second semiconductor layer of the acceptor impurity. Preferably, the second insulating layer forming/removing step includes: a semiconductor substrate etching step of etching the semiconductor substrate forming a periphery of the region of the columnar semiconductor; and forming the foregoing on the semiconductor substrate passing through the etched region a step of forming the first insulating layer on the first semiconductor layer exposed on the etching and the first insulating layer on the periphery of the exposed semiconductor substrate; Preferably, the second insulating layer forming/removing step includes: selectively oxidizing a region around the semiconductor substrate in a region where the columnar semiconductor is formed to form a selective oxide layer as the first insulating layer. 323818 13 201242003 Preferably, the separated first step == step is formed by forming at least two or more mutually adjacent regions of the semiconducting, "image layer region" on the mutually separated regions forming the columnar semiconductor; and Forming: the semiconductor layer of the semiconductor substrate described above is surrounded by the first insulating layer, and the plurality of semiconductor layers separated from each other on the first-first channel before exposure and mixed with the donor or the acceptor a semiconductor device which is a layer and a semiconductor device which is connected to the first semiconductor layer and which is connected to the first semiconductor layer, is a semiconductor device manufactured according to the present invention, which is characterized by the manufacturing method of the present invention, on a semiconductor region The semiconductor system includes a semiconducting conductor region formed in the opposite body type of the first body or the intrinsic semiconductor region, and a front conductor layer. a first semiconductor region; a semiconductor region formed by the second magnetic field wave is formed for storing an electric crystal by irradiating an electric fruit crystal, and a plurality of electric poles are formed; The first-semiconductor region: the diode functions as an interpole, and the former electrode and the other of the third semiconductor regions are used as source means to extract the flow energy, and are configured to be stored by The channel of the aforementioned diode semiconductor region is used as a signal charge removing means. The two currents and the shape function by using the gate conductor layer as a gate, and the first semiconductor region and the fourth semiconductor region function as a source and the other as a 汲Extremely functional brain cell, applied to the aforementioned open conductor layer
存於前述二_之減電荷自㈣第_半料^去此^錯 32381S 14 201242003 本發明之第三觀點之半導體裝置,係為依據本發明之 第一觀點之半導體裝置的製造方法所製造之半導體裝置, 其特徵在於:前述柱狀半導體係具備,由形成在前述第一 半導體區域上的與該第一半導體區域為相反導電型或本徵 半導體所構成之第二半導體區域;且形成有M0S電晶體, 其係以前述閘極導體層作為閘極發揮功能,並以前述第一 半導體區域以及前述第五半導體區域之/方作為源極發揮 功能,而另—方作為汲極發揮功能。 本發明之第四觀點之半導體裝置,係為依據本發明之 第觀點之半導體裝置的製造方法所製造之半導體裝置’ 其特徵在於:前述柱狀半導體係於前述第一半導體區域與 第’、半導體區域之間具備有,由與前述第_半導體區域為 導電型或本徵半導體所構成之第三半導體區域;且由 則述第—半導體區域與前述第六半導體區域形成有二極 本發明之第五觀點之半導财置,係為依據本發明之 結ί點之半導體裝置的製造方法所製造之半導體褒置, 狀半導:於且述第—半導體層上形成有複數個前述柱 體區_ j述複數個柱狀半導體係由在前述第一半導 前==雜質之複數個第-柱狀半導體,以及在 導體所構成。A域摻雜有施體雜質之複數個第二柱狀半 之 第-觀點之之半導體裝置,係為依據本發明 323818 又置的製造方法所製造之半導體裝置 15 201242003 其特徵在於:於箭银 狀半導體半導體層上形成有複數個前述柱 一本莫㈣β 、、述後數個柱狀半導體中,複數個前述第 區域以及複數個前述導電層内之兩方或一方係互 相連接。 ' 2發明之第七觀點之半導體裝置,係為依據本發明之 Ϊ杜」之半導體裝置的製造方法所製造之半導體裝置, . ^、述第一半導體層上形成有複數個前述柱 則述各柱狀半導體係具備:第二半導體區域, =道/述第—半導體區域上的與該第—半導體區域為 目型之半導體或本徵半導體所構成;第五半導體區 域=成於别述第二半導體區域上;第三絕緣層’係形 成第〜半導體的外周部;以及閘極導體詹,係形成 於則二二絕緣層之外周部;^係形成有MGS電晶體,其 係以:述體層作為閘極發揮功能,並以前述第一半 =體區域X及别述第五半導體區域之—方作為源極發揮功 月匕而另方作為沒極發揮功能;而前述第-半導體層係 以遍及前述複數個柱狀半導體而連續連接的方式形成,並 且前述以連接之方式所形成的前述第—半導體層係經由形 成於絕緣層之接觀,來連結於用以賴至外部電路之配 線層。 本發明之第八觀點之半導體裝置,係為依據本發明之 第-觀點之半導體裝置的製造方法所製造之半導體裳置, 其特徵在於:於前述第—半導體層上形成有複數個前述柱 狀半導體;前述純狀半㈣係具備··第二半導體區域, 323818 16 201242003 由形成在前述第一半導體區域上的與該第一半導體區域為 相反導電型之半導體或本徵半導體所構成;第五半導體區 域,係形成於前述第二半導體區域上;第三絕緣層,係形 成於前述第二半導體區域之外周部;以及,閘極導體層, 係形成於前述第三絕緣層之外周部;且係形成有M0S電晶 體,其係以前述閘極導體層作為閘極發揮功能,並以前述 第一半導體區域以及前述第五半導體區域之一方作為源極 發揮功能,而以另一方作為汲極發揮功能;而前述第一半 • 導體層係以遍及前述複數個柱狀半導體而連續連接的方式 形成,並且前述第一半導體層係經由形成於絕緣層之接觸 孔來連接於用以連接至預定電晶體的閘極之配線層。 (發明之效果) 依據本發明,可提供實現高積體化、高速動作化之半 導體裝置。 【實施方式】 φ 於下述,係針對本發明實施形態之半導體裝置的製造 方法,一面參照第1圖至第16圖一面進行說明。 (第1實施形態) 於第1A圖至第1L圖係顯示本發明第1實施形態之固 態影像感測裝置的製造方法。 於本實施形態之固態影像感測裝置的製造方法中,如 第1A圖所示,藉由將高濃度氫離子(H+)離子摻雜至由P型 矽所構成之第一半導體基板1的預定深度,從而形成用以 將第一半導體基板1分離為上下二個部分之分離層2(參照 323818 17 201242003 非專利文獻2)。再者,於第一半導體基板1上,藉由熱氧 化或者 CVD(Chemical Vapor Deposition ’ 化學氣相沉積) 法而形成屬於絕緣膜之第一氧化矽層3。並且,第一半導 體基板1係可以實質上不含有雜質之本徵半導體(i型矽) 來替代P型矽。 接著,如第1B圖所示,於第一氧化矽層3中,係藉由 去除相當於形成固態影像感測裝置的訊號線用汲極之部分 之氧化矽(SiCh) ’而形成屬於氧化矽去除區域48(參照第 _ 11A圖、第13A圖)之孔4。 接著’如第1B圖所示’以覆蓋此孔4之方式,藉由 CVD法將多結晶矽層5形成於第一氧化矽層3及第一半導 體基板1之上。 接著,如第1C圖所示,藉由將鱗(P)或者畔(As)等施 體雜質離子摻雜至此多結晶矽層5,而於第一半導體基板1 及第一氧化矽層3上形成成為固態影像感測裴置的訊號線 之N多結晶妙層5a。 接著’如第1D圖所示,於N+多結晶石夕層53上藉由氣 相/儿積法或者CVD法,而形成由鶴(W)、石夕化(Siiicide) 鎢(WSi)、錄(Ni)、石夕化鎳⑽υ等所構成之單層,或者積 層複數此等層所構成之金屬層了。 #如第1E圖所示,藉由使用遮罩(mask)之蚀刻 (etChing)處理,以於N+多結晶㈣5a及金屬層7中殘存 有、,4之朽之方式,而將N+多結晶石夕層5a及金屬 層7成形為預定之形狀。在此N+多結晶石夕層^上係形成 323818 201242003 有固態影像感測裝置的晝素之接面電場效果電晶體的源極 或者汲極。 接著,如第1F圖所示,以覆蓋N+多結晶矽層5a、金 屬層7及第一氧化矽層3之方式,藉由CVD法形成屬於絕 緣膜之第二氧化矽層8。並且,將該第二氧化矽層8的表 面藉由 CMP(Chemical Mechanical Polishing;化學機械 研磨)予以平坦化。 接著,如第1G圖所示,準備由矽(Si)所構成且表面經 # 過平坦化之第二半導體基板9,並將該第二半導體基板9 的經過平坦化之表面與第二氧化矽層8的經過平坦化之表 面彼此藉由壓接予以接著。就此接著處理而言,彼此的熱 膨脹率的差異較小,且第二半導體基板9之矽層與第二氧 化矽層8之矽層係互相接著,故可得到不容易因兩接著構 件的熱膨脹係數不同而導致產生彎曲、裂缝、剝離之積層 構造。 φ 接著,如第1H圖所示,藉由400°C至600°C之熱處理, 於第一半導體基板1中,去除以分離層2為邊界之下方部 分而將第一半導體基板1薄化至預定的厚度(就第1H圖而 言,係將第1A圖至第1G圖之圖式的上下關係反轉顯示。)。 於此,N+多結晶矽層5a係為對應於第14圖所示之N+型矽 層51者,就本實施形態而言,於N+多結晶矽層5a係遍及 其全部的形成區域而接合有金屬層7。 接著,如第II圖所示,於第一半導體基板1中,係以 N+多結晶矽層5a的正上方區域之矽層會殘留之方式,而藉 323818 19 201242003The semiconductor device of the third aspect of the present invention is manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention. The semiconductor device of the third aspect of the present invention is manufactured by the method of manufacturing the semiconductor device according to the first aspect of the present invention. In the semiconductor device, the columnar semiconductor system includes a second semiconductor region formed of the opposite conductivity type or intrinsic semiconductor formed on the first semiconductor region, and formed with MOS The transistor functions as the gate by the gate conductor layer, and functions as a source of the first semiconductor region and the fifth semiconductor region, and functions as a drain. A semiconductor device according to a fourth aspect of the present invention is the semiconductor device manufactured by the method for manufacturing a semiconductor device according to the first aspect of the present invention, characterized in that the columnar semiconductor is in the first semiconductor region and the first semiconductor Between the regions, the third semiconductor region formed of the conductive or intrinsic semiconductor is formed by the first semiconductor region; and the second semiconductor region and the sixth semiconductor region are formed with the second electrode of the present invention. The semiconductor device of the fifth aspect of the invention is a semiconductor device manufactured by the method for fabricating a semiconductor device according to the present invention. The semiconductor semiconductor layer is formed on the first semiconductor layer. The plurality of columnar semiconductors are composed of a plurality of first columnar semiconductors which are == impurities before the first semiconductor, and are formed of conductors. A semiconductor device in which the A-domain is doped with a plurality of second column-shaped half-phases of the donor impurity is a semiconductor device manufactured according to the manufacturing method of the present invention 323818. 201242003 is characterized in that: In the semiconductor semiconductor layer, a plurality of the pillars, a plurality of pillars, and a plurality of columnar semiconductors are formed, and a plurality of the first region and a plurality of the conductive layers are connected to each other. The semiconductor device according to the seventh aspect of the invention is the semiconductor device manufactured by the method for manufacturing a semiconductor device according to the present invention, wherein a plurality of the pillars are formed on the first semiconductor layer. The columnar semiconductor system includes: a second semiconductor region, a semiconductor or an intrinsic semiconductor having a target semiconductor region on the = or the first semiconductor region; and a fifth semiconductor region = second In the semiconductor region; the third insulating layer 'is formed on the outer peripheral portion of the first semiconductor; and the gate conductor is formed on the outer periphery of the second insulating layer; the system is formed with an MGS transistor, which is: a body layer The gate functions as a gate, and the first half body region X and the other fifth semiconductor region function as a source to function as a source, and the other function as a poleless electrode; and the first semiconductor layer The plurality of columnar semiconductors are continuously connected to each other, and the first semiconductor layer formed by the connection is connected to each other via an interface formed on the insulating layer. Lai wiring layer to the external circuits. The semiconductor device according to the eighth aspect of the present invention is the semiconductor device of the method for manufacturing a semiconductor device according to the first aspect of the present invention, characterized in that the plurality of columns are formed on the first semiconductor layer a semiconductor; the pure half (four) system includes a second semiconductor region, and 323818 16 201242003 is composed of a semiconductor or an intrinsic semiconductor formed on the first semiconductor region and having a conductivity opposite to the first semiconductor region; a semiconductor region formed on the second semiconductor region; a third insulating layer formed on an outer peripheral portion of the second semiconductor region; and a gate conductor layer formed on an outer peripheral portion of the third insulating layer; An MOS transistor is formed, wherein the gate conductor layer functions as a gate, and one of the first semiconductor region and the fifth semiconductor region functions as a source, and the other serves as a gate. The first half of the conductor layer is formed by continuously connecting the plurality of columnar semiconductors And the first semiconductor layer via contact holes formed based insulating layers are connected to an interconnection layer for connecting the gate of the transistor to a predetermined. (Effects of the Invention) According to the present invention, it is possible to provide a semiconductor device which realizes high integration and high-speed operation. [Embodiment] φ is described below with reference to Figs. 1 to 16 for a method of manufacturing a semiconductor device according to an embodiment of the present invention. (First Embodiment) A method of manufacturing a solid-state image sensing device according to a first embodiment of the present invention is shown in Figs. 1A to 1L. In the method of manufacturing the solid-state image sensing device of the present embodiment, as shown in FIG. 1A, the doping of the high-concentration hydrogen ion (H+) ions to the first semiconductor substrate 1 composed of the P-type germanium is predetermined. The depth is such that the separation layer 2 for separating the first semiconductor substrate 1 into the upper and lower portions is formed (refer to 323818 17 201242003 Non-Patent Document 2). Further, on the first semiconductor substrate 1, a first hafnium oxide layer 3 belonging to an insulating film is formed by a thermal oxidation or a CVD (Chemical Vapor Deposition) chemical vapor deposition method. Further, the first semiconductor substrate 1 can replace the P-type germanium with an intrinsic semiconductor (i-type germanium) which does not substantially contain impurities. Next, as shown in FIG. 1B, in the first yttria layer 3, yttrium oxide is formed by removing yttrium oxide (SiCh) which is equivalent to a portion of the drain line for forming a solid-state image sensing device. The hole 4 of the region 48 (see Fig. 11A, Fig. 13A) is removed. Next, as shown in Fig. 1B, the polycrystalline germanium layer 5 is formed on the first hafnium oxide layer 3 and the first semiconductor substrate 1 by a CVD method so as to cover the holes 4. Next, as shown in FIG. 1C, on the first semiconductor substrate 1 and the first ruthenium oxide layer 3, doping impurity ions such as scales (P) or banks (As) are doped to the polycrystalline germanium layer 5. The N polycrystal layer 5a which becomes the signal line of the solid-state image sensing device is formed. Then, as shown in FIG. 1D, a gas (he) or a CVD method is used on the N+ polycrystalline slab layer 53 to form a crane (W) and a Siiiicide tungsten (WSi). A single layer composed of (Ni), Shihwa nickel (10), or the like, or a metal layer composed of a plurality of such layers. #图1E, by using a mask etching (etChing) process, N+ polycrystalline (4) 5a and metal layer 7 are left, 4, and the N+ polycrystalline stone The layer 5a and the metal layer 7 are formed into a predetermined shape. On the N+ polycrystalline stellite layer, 323818 201242003 has a solid-state image sensing device for the source or the drain of the electric field effect transistor of the junction. Next, as shown in Fig. 1F, a second hafnium oxide layer 8 belonging to an insulating film is formed by a CVD method so as to cover the N+ polycrystalline germanium layer 5a, the metal layer 7, and the first hafnium oxide layer 3. Further, the surface of the second hafnium oxide layer 8 is planarized by CMP (Chemical Mechanical Polishing). Next, as shown in FIG. 1G, a second semiconductor substrate 9 composed of germanium (Si) and having a surface that has been flattened is prepared, and the planarized surface of the second semiconductor substrate 9 and the second tantalum oxide are prepared. The planarized surfaces of layer 8 are followed by crimping. In this subsequent processing, the difference in thermal expansion coefficient between each other is small, and the ruthenium layer of the second semiconductor substrate 9 and the ruthenium layer of the second ruthenium oxide layer 8 are mutually connected, so that the thermal expansion coefficient of the two subsequent members is not easily obtained. A laminate structure that causes bending, cracking, and peeling. φ Next, as shown in FIG. 1H, the first semiconductor substrate 1 is thinned to the lower portion of the first semiconductor substrate 1 by the heat treatment at 400 ° C to 600 ° C with the separation layer 2 as a boundary. The predetermined thickness (in the case of the 1Hth diagram, the vertical relationship of the patterns of the 1Ath to 1Gth drawings is reversed and displayed). Here, the N+ polycrystalline germanium layer 5a is the N+ type germanium layer 51 shown in Fig. 14. In the present embodiment, the N+ polycrystalline germanium layer 5a is bonded to all of the formation regions of the N+ polycrystalline germanium layer 5a. Metal layer 7. Next, as shown in FIG. 2, in the first semiconductor substrate 1, the layer of the layer directly above the N+ polycrystalline germanium layer 5a remains, and 323818 19 201242003
由钱刻去除該正上方區域切層㈣的區域 形成具有柱狀構造之彻Wla。此雜 HThe area of the upper layer cut layer (4) is removed by money to form a complete Wla having a columnar structure. This miscellaneous H
圖、第1L圖等所示之P型矽層3〇。 〒、攻為第1K 接著’如第1J圖所示,係推 承進仃熱處理而使施 矿多結晶⑦層5a歸散至外〗、, _雜質從 柱1a,並於矽柱la下方邻分 形成N+擴散層6a。 卜方口P刀The P-type germanium layer 3 shown in Fig., Fig. 1L and the like. 〒, attack is the 1K and then 'as shown in Fig. 1J, the heat treatment is carried out to make the 7-layer 5a of the polycrystalline layer of the mineralization to the outside, and the _ impurity is from the column 1a, and is adjacent to the column below the column An N+ diffusion layer 6a is formed. Bufangkou P knife
接著,如第1K圖所示,進行熱氧化而於石夕柱la之外 周部形成屬於絕緣體n化㈣1Ga、iGb。再者,藉 由氣相沉積法或CVD法而於第三氧切層1Qa、i()b之外^ 部形成閘極導體層11a、lib。 接著,如第ικ圖所示,藉由將磷⑻或坤(As)等施體 雜質離子摻雜至閘極導體層lla、Ub0ij上方部位且為石夕柱 la的表層部,而形成N型矽層12a、12b。由此N型矽層 12a、12b、及矽枉la的P型矽層3〇 ,係形成光電二極體 作為儲存因應入射光之訊號電荷(此時係為電子)之訊號電Next, as shown in Fig. 1K, thermal oxidation is performed to form an insulator n-type (1), 1Ga, and iGb in the outer periphery of the stone slab. Further, the gate conductor layers 11a and 11b are formed outside the third oxygen-cut layers 1Qa and i()b by a vapor deposition method or a CVD method. Next, as shown in the first ικ图, an N-type is formed by doping a donor impurity ion such as phosphorus (8) or Kun (As) to a portion above the gate conductor layers 11a and Ub0ij and forming a surface portion of the Shi Xizhu la. Layers 12a, 12b. The N-type germanium layers 12a, 12b, and the P-type germanium layer 3矽枉 of the 矽枉la form a photodiode as a signal for storing a signal charge (in this case, an electron) in response to incident light.
荷儲存手段二號電荷係儲存於N+擴散層6a與p+型石夕層 13a之間之矽柱ia(p型矽層3〇)。 接著,如第ικ圖所示,於矽柱la中,藉由將硼(boron) (B)等受體(acceptor)雜質離子摻雜至第3氧化矽層iOa、 l〇b的上方部位,而形成p+型矽層13a。並且,將此?+型 矽層13a電性連接於畫素選擇金屬配線14a、14b。 再者,如第1L圖所示,係鄰接於構成固態影像感測裝 置的晝素之矽柱la ’且於構成另外的畫素之矽柱lb的外 周部’藉由熱氧化而形成屬於絕緣體之第三氧化矽層1〇c、 323818 20 201242003 1〇d°此抑1、與雜^同樣地為藉由第1A圖至第IK 圖所示之步驟所形成者。 接者/如第1L圖所*,於第3氧化石夕層1〇c、1〇d的 外周部’藉由氣相沉積法或⑽法而形成閘極導體層Uc、The charge device No. 2 is stored in the column ia (p-type layer 3〇) between the N+ diffusion layer 6a and the p+ type layer 13a. Next, as shown in the first yoke diagram, in the column lala, by doping boron (B) and other acceptor impurity ions to the upper portion of the third yttria layer iOa, l〇b, The p+ type germanium layer 13a is formed. And, this? The + type germanium layer 13a is electrically connected to the pixel selection metal wirings 14a and 14b. Further, as shown in FIG. 1L, the outer peripheral portion ' of the column lb constituting the solid-state image sensing device and the outer peripheral portion ' of the column lb constituting the other pixel is formed by thermal oxidation. The third yttrium oxide layer 1 〇 c, 323818 20 201242003 1 〇 d ° 抑 1 , similar to the hybrid ^ is formed by the steps shown in the first A to IK diagram. The gate/conductor layer Uc is formed by the vapor deposition method or the (10) method in the outer peripheral portion of the third oxidized oxide layer 1〇c, 1〇d, as shown in Fig. 1L.
接著如苐1L圖所示,藉由將磷(p)或砷(As)等施體 雜質離子摻雜至閘極導體層Uc、lld的上方部位且為石夕柱 la的表層部’而形成N型石夕層12c、12d。由此N型石夕層 c 1 及石夕柱lb,开>成光電二極體作為儲存因應入射 光之訊號電荷(此時係為電子)之訊號電荷儲存手段。訊號 電荷係儲存於N+擴散層6ab與P+型石夕層i3b之間之石夕柱 lb(P型矽層30)。 接著,如第1L圖所示,於矽柱la中,於第3氧化矽 層l〇c、l〇d的上方部位,藉由將硼(b)等受體雜質離子摻 雜至矽柱lb而形成P+型矽層13b。 並且,將此P+型矽層13a、13b電性連接於晝素選擇 金屬配線14c、14d。藉由以上步驟而形成固態影像感測裝 置之複數個畫素。 並且,就本實施形態而言,於第1J圖所示之步驟中, 藉由熱處理使施體雜質從N+多結晶層5a熱擴散至石夕柱la 而形成矽柱la内之N+擴散層6a。不限於此,亦可藉由在 形成第1C圖所示之N+多結晶矽層5a後之任意的階段之熱 處理’使施體雜質從N+多結晶矽層5a擴散至第一半導體 基板1内而形成N+擴散層6a。亦即,亦可於第ic圖所示 323818 21 201242003 之形成N+多結晶矽層5a之步驟以後,藉由從含有施體雜 質之N+多結晶矽層5a使該雜質擴散而於矽柱形成N+擴 散層6a。例如,亦可在第ιΚ圖所示之階段中,在步成石= 柱la(P型矽層30)之後形成Ν+擴散層6a。再者,用以形 成如此之N+擴散層6a之熱處理係可僅進行一次,亦可乂 為複數次進行。 , ^ 依據上述第1A圖至第1L圖所示之步驟,而形成本實 施形態之固態影像感測裝置。再者,於夂功一 tNext, as shown in FIG. 1L, a donor impurity ion such as phosphorus (p) or arsenic (As) is doped to the upper portion of the gate conductor layers Uc and 11d and is formed as a surface portion of the stone pillar la. N type stone layer 12c, 12d. Thus, the N-type sap layer c 1 and the Shi Xi column lb open the photodiode as a signal charge storage means for storing the signal charge (in this case, electrons) in response to the incident light. The signal charge is stored in the Shi Xizhu lb (P-type ruthenium layer 30) between the N+ diffusion layer 6ab and the P+ type shoal layer i3b. Next, as shown in FIG. 1L, in the top of the third yttria layer l〇c, l〇d, the dopant impurity ions such as boron (b) are doped to the column lb. The P+ type germanium layer 13b is formed. Further, the P + -type germanium layers 13a and 13b are electrically connected to the halogen-selective metal wirings 14c and 14d. The plurality of pixels of the solid-state image sensing device are formed by the above steps. Further, in the present embodiment, in the step shown in Fig. 1J, the donor impurity is thermally diffused from the N+ polycrystalline layer 5a to the Shih-kil la by heat treatment to form the N+ diffusion layer 6a in the column la. . The present invention is not limited thereto, and the donor impurities may be diffused from the N+ polycrystalline germanium layer 5a into the first semiconductor substrate 1 by heat treatment at any stage after the formation of the N+ polycrystalline germanium layer 5a shown in FIG. 1C. An N+ diffusion layer 6a is formed. That is, after the step of forming the N+ polycrystalline germanium layer 5a in 323818 21 201242003 shown in the ic diagram, the impurity is diffused from the N+ polycrystalline germanium layer 5a containing the donor impurity to form N+ in the column. Diffusion layer 6a. For example, the Ν+diffusion layer 6a may be formed after the step stone = pillar la (P-type ruthenium layer 30) in the stage shown in Fig. Further, the heat treatment for forming such an N+ diffusion layer 6a may be performed only once or may be carried out plural times. , ^ The solid-state image sensing device of the present embodiment is formed in accordance with the steps shown in Figs. 1A to 1L. Furthermore, Yu Gonggong
丹有π各矽柱la、lb係形 成有固態影像感測裝置的晝素。 就枣貫鉍形態而㊂,係參照第^圖,形成於矽柱Η、 lb之下方,且互相接合之^多結晶石夕層5&及金屬層7係 構成固態影像感測裝置的訊號線,並將二個矽柱&、^ 之N+擴散層6a、6ab互相電性連接。據此,由n+多=晶 層5a及金屬層7所構成之訊號線被予以低電阻化,= 固態影像感測裝置之高速驅動化。 就本實施形態,於石夕柱la、lb内之中,係形成有接 面電場效果電晶體。就此接面電場效果電晶體而言,由N 型石夕層12a、12b(12c、12d)以及P型石夕層3〇所構成之光 電二極體係作為閘極,且p+型矽層13&、丨%作為汲極, 而N+擴散層6a、6b作為源極分別發揮功能。並且,於矽 柱la、lb内,係形成有此接面電場效果電晶體之通道、。 再者,就本實施形態而言,係設有將藉由接面電場效 果電晶體而流動於矽柱la、lb内的通道,並因應儲存於上 述光電二極體之訊號電荷量而變化之電流作為電訊號取出 323818 22 201242003 之外部電路’而作為訊號取出手段。 上述ί二圖:示之石夕柱1a、lb係形成有將儲存於 上迮元電一極體之訊號電荷於咖 之腿電晶體,而作為訊號電荷去除手段。“予以去除 就此MO S電晶體而言,係以圍繞特} a 而形成於第3氧化石々s 1Π lnu 1Π 極導B M 1(M的外周面之閘 lb、11C、lld作為閘極,N+擴散層如、 == 及極:且_層心、12卜以、咖作為源極 並且,於p型石夕層30内係形成有此_ 就本實施形態而言,係如第1G圖所示,第2半導體 基板9的石夕層與第1半導體基板1上的第2氧化# 8将 在經過平坦化之彼此的表面之間予以接著。就如此之本實 施形態而言’係在第一半導體基板1及第二半導體基板9 的全面中,接著親和性較高之Si(矽)面與Si〇2(氧化矽) •面之間進行第一半導體基板1(第二氧化矽層8)與第二半 導體基板9的接著,故可得到不容易產生彎曲、裂缝、剝 離之積層構造。 再者,就本實施形態而言,於固態影像感測裝置的晝 素中構成訊號線之N+多結晶矽層5a係接合有金屬層7。此 N+多結晶矽層5a與金屬層7亦可藉由在到達第ικ圖之步 驟之熱處理或者追加的熱處理,而藉由Ν+多結晶矽層5a 與金屬層7之反應形成矽化層。不論此等之任意情形,n+ 夕、、曰曰發層5a及金屬層7、或者此等之碎化層皆被予以低 323818 23 201242003 電阻化’故可降低晝素與該畫素的周邊電路之間之電阻。 據此,與以往例之固態影像感測裝置比較,即便於晝素數 增加、或者於每單位時間之讀出晝面數增加時,亦可實現 固態影像感測裝置之高速動作化。 再者,就本實施形態而言,係參照第1K圖,由p型 矽層30與N型矽層12a、12b所構成之㈣接合部(光電二 極體)、及由P型矽層30與矿擴散層6a所構成之叩接合 部,皆形成於由單結晶矽所構成之矽柱1&内。由於叩接 口邛係以此方式於單結晶矽内形成,故可構成洩漏(leak) 電流較低之固態攝影感測裝置的晝素。 再者,就本實施形態而言,從構成晝素之矽柱la、 lb(參照第il圖)的上方部射入之光束係到達屬於光電變 換區域之石夕柱la ’且被金屬層7所反射,故矽柱la内之 光路徑長係增加’而實現固態影像感測裝置之靈敏度提 升。再者’就本實施形態而言,即便降低矽柱la、lb之高 度’亦可得到與以往例相同之靈敏度,故可得到一面獲致 與以往例相同之靈敏度一面使固態影像感測裝置的製造變 得容易之功效。 並且’於本實施形態中,如第1B圖所示,係以填埋(覆 蓋)孔4之方式,藉由CVD法而在第一氧化矽層3及第一半 導體基板1上形成成為N+多結晶矽層5a之多結晶矽層5。 亦可藉由磊晶(e P i t a X i a 1)成長形成單結晶矽層來替代如 此之藉由CVD法形成多結晶矽層5。於使用磊晶成長之情 形時’亦可於第一氧化矽層3上形成單結晶矽層,故可於 323818 24 201242003 之後與第1C圖至第1K圖所示之步驟同樣地形成固態影像 感測裝置。 再者,於第1H圖中,於第—半導體基板i中,係以 分離層2為邊界,藉φ 400至6〇『c之熱處理將下方部分 予以去除’而藉此將第—半導體基板1薄化至預定的厚 度。係不限於此,亦可將使用㈣型基板及於此p+型基板 藉由遙晶成長而形成之P型石夕層所構成之基板作為第一半 導體基板1,並藉由钱刻及CMP來進行第一半導體丄的薄 ®膜化。 (第2實施形態) 於下述’係參照第2圖說明本發明之第2實施形態之 具有 SGT(Surrounding Gate Transistor)之半導體裝置的 製造方法。 就本實施形態而言,於第1實施形態之第1A圖至第 1L圖所示之步驟中’至第1A圖至第1J圖所示之步驟為 % 止,係設為將於第1J圖中構成訊號線之N+多結晶矽層5a 置換為於SGT中作為汲極發揮功能之N+多結晶矽層55a 者。與第1實施形態(參照第lj圖)相同地,於N+多結晶 矽層55a係接合有金屬層7,且藉由來自n+多結晶矽層55a 的施體雜質之熱擴散而於矽枉la内形成有N+擴散層6a。 就本實施形態而言,係接著第1J圖,於第2圖所示之 步驟中,藉由氧化法或者CVD法而於矽柱la的外周部形成 閘棰絕緣層15a、15b,並於閘極絕緣層15a、15b的外周 部形成作為SGT的閘極發揮功能之閘極導體層16a、16b。 323818 25 201242003 接著’於矽柱la中,係藉由將磷(P)或砷(As)等施體 雜質藉由離子摻雜’而在閘極導體層16a,16b的上方部位 形成作為SGT的源極發揮功能之圹型矽層i7a。 接著,於該N+型矽層17a上係藉由氣相沉積法及圖案 蝕刻(pattern etching)而形成金屬配線層18a。 依據上述,N通道型SGT係形成於第二半導體基板9 上。於此’N+擴散層6a、N+多結晶矽層55a係於n通道型 SGT中作為源極或者沒極發揮功能。 ® 依據本實施形態,於SGT(N通道型SGT)中,金屬層7 係接合於作為汲極發揮功能之N +多結晶矽層5 5 a的背面整 體。藉由此構成,係減低從金屬層7至N+擴散層6a為止 之電阻,故可得到實現南速動作化之SGT。 (第3實施形態) 於下述,係參照第3A圖、第3B圖說明本發明之第3 實施形態之具有SGT之半導體裝置的製造方法。就本實施 •形態而言,係將N通道型SGT及P通道型SGT形成於同一 個半導體基板上。本實施形態及其變形例之半導體裝置的 製造步驟’除了於下述特別說明之情形以外,係與第1實 施形態相同。 就本實施形態而言,係參照第3A圖、第3B圖,於第 1半導體基板1上,係將N通道型SGT、p通道型SGT分別 形成於N通道型SGT形成區域ln、p通道型SGT形成區域 lp 0 係與第1實施形態之第1A圖至第U圖、第2實施形 323818 26 201242003 態之第2圖所示之步驟同樣地形成N通道型SGT形成區域 In之N通道型SGT。 另一方面’係與第1實施形態之第1A圖至第1J圖、 第2實施形態之第2圖所示之步驟大致相同地形成p通道 型SGT形成區域lp之P通道型SGT。然而,就對應於第1 c 圖之步驟而言’係藉由離子摻雜棚(B)等受體雜質,而於p 通道型SGT形成區域lp之多結晶層5形成作為p通道型 SGT的源極發揮功能之P+擴散層ga、P+多結晶石夕層55b, 來替代形成作為N通道型SGT的汲極發揮功能之N+多結晶 梦層55a。 接著,經過對應於第1D圖至第u圖之步驟、對應於 第2圖之步驟,係如第3B圖所示,形成有由矽柱&所構 成之N通道型SGT、及由矽柱15所構成之p通道型SGT。 並且’就矽柱lb而言,於p通道型SGT之矽柱lb(p型矽), 係藉由離子摻雜雜)騎(As)等施體雜質而形成n型石夕 層 30a。 於此,就對應於第1J圖之步驟而言,係藉由熱處理而 從N多結晶石夕層55a十多結晶層分別使施體雜質、 ,體雜質熱擴散至雜la、lb中,而形成擴散層^、 P擴散層6b。 再者,就對應於第2圖之步驟而言,係藉由熱氧化或 者CVD法而在石夕柱la、lb的外周部形成開極絕緣層⑸、 15b 15C、15d ’ 並在閉極絕緣層 15a、15b、15c、15d 的 外周藉由CVD法形成間極導體層16&、16卜16。、16(1(參 323818 27 201242003 照第3B圖)。 t pit mB圖所示之步驟而言,於石夕柱h、ib中, 離子摻雜施體雜質 由刀別Dan has π each column la, lb is formed into a solid image sensing device. In the form of a solid-state image sensing device, the pattern of the solid-state image sensing device is formed by referring to the first figure, which is formed under the 矽 column Η, lb, and joined to each other by the polycrystalline shi layer 5& and the metal layer 7 And electrically connecting the N+ diffusion layers 6a and 6ab of the two columns & Accordingly, the signal line composed of the n+ multi-layer 5a and the metal layer 7 is reduced in resistance, and the solid-state image sensing device is driven at a high speed. In the present embodiment, a contact electric field effect transistor is formed in the inner layers of the XI XI column and the lb. In the case of the junction electric field effect transistor, a photodiode system composed of N-type layer 12a, 12b (12c, 12d) and a P-type layer 3 作为 is used as a gate, and a p+ type 矽 layer 13 &丨% is used as the drain, and the N+ diffusion layers 6a and 6b function as the source. Further, in the columns la and lb, the channel of the electric field effect transistor of the junction is formed. Further, in the present embodiment, a channel through which the electric field effect transistor is caused to flow in the columns 1a and 1b is provided, and is changed in accordance with the amount of signal charge stored in the photodiode. The current is taken as a signal to take out the external circuit '323818 22 201242003' as a signal extraction means. The above-mentioned ί 二图: shows that the Shi Xizhu 1a and lb are formed with a signal transistor for storing the signal charge stored in the upper electrode of the upper electrode as a signal charge removing means. "To remove this MO S transistor, it is formed around the third oxide 々 s 1Π lnu 1 极 pole guide BM 1 (the gates lb, 11C, lld of the outer peripheral surface of M as the gate, N+) The diffusion layer is, for example, == and the pole: and _ layer core, 12 Bu, and coffee are used as the source, and the p-type layer is formed in the p-type layer 30. In this embodiment, it is as shown in FIG. 1G. It is to be noted that the second oxide layer of the second semiconductor substrate 9 and the second oxide # 8 on the first semiconductor substrate 1 are connected between the planarized surfaces of the second semiconductor substrate 1. Thus, in the present embodiment, In the entire semiconductor substrate 1 and the second semiconductor substrate 9, the first semiconductor substrate 1 is formed between the Si (矽) plane and the Si〇 2 (yttria) surface having high affinity (the second hafnium oxide layer 8). With the second semiconductor substrate 9, the laminated structure which is less likely to be bent, cracked, or peeled off is obtained. Further, in the present embodiment, the signal line N+ is formed in the pixel of the solid-state image sensing device. The polycrystalline germanium layer 5a is bonded to the metal layer 7. The N+ polycrystalline germanium layer 5a and the metal layer 7 can also be reached by The heat treatment of the step of the ικ diagram or the additional heat treatment, and the formation of the bismuth layer by the reaction of the Ν+ polycrystalline ruthenium layer 5a with the metal layer 7. In any case, n+ 夕, the burst layer 5a and the metal layer 7. Or such a shredded layer is reduced by 323818 23 201242003, which reduces the resistance between the element and the peripheral circuit of the pixel. Accordingly, compared with the solid-state image sensing device of the prior art, That is, in order to increase the number of pixels, or to increase the number of readouts per unit time, the high-speed operation of the solid-state image sensing device can be realized. Further, in the present embodiment, reference is made to FIG. 1K. The (four) junction (photodiode) composed of the p-type germanium layer 30 and the n-type germanium layers 12a and 12b, and the tantalum joint portion composed of the p-type germanium layer 30 and the ore diffusion layer 6a are formed by In the column 1& which is composed of a single crystal crucible, since the crucible interface is formed in a single crystal crucible in this manner, it can constitute a solid element of a solid-state photo sensing device having a low leakage current. In this embodiment, from the pillars la, which constitute the element The beam incident from the upper portion of lb (refer to the il diagram) reaches the stone ridge column la' belonging to the photoelectric conversion region and is reflected by the metal layer 7, so that the optical path length in the column la is increased, and the solid-state image is realized. The sensitivity of the sensing device is improved. Further, in the present embodiment, even if the heights of the columns la and lb are lowered, the sensitivity similar to that of the conventional example can be obtained, so that the same sensitivity as in the conventional example can be obtained. The manufacturing of the solid-state image sensing device is easy to use. In the present embodiment, as shown in FIG. 1B, the first yttrium oxide is formed by CVD by filling (covering) the holes 4. On the layer 3 and the first semiconductor substrate 1, a polycrystalline germanium layer 5 serving as an N+ polycrystalline germanium layer 5a is formed. Instead of forming the polycrystalline germanium layer 5 by the CVD method, it is also possible to form a single crystal germanium layer by epitaxial growth (e P i t a X i a 1). When the epitaxial growth is used, a single crystal germanium layer can be formed on the first hafnium oxide layer 3, so that a solid image can be formed in the same manner as the steps shown in FIGS. 1C to 1K after 323818 24 201242003. Measuring device. Further, in the first embodiment, in the first semiconductor substrate i, the lower portion is removed by the heat treatment of φ 400 to 6 〇 "c", whereby the first semiconductor substrate 1 is removed. Thinned to a predetermined thickness. The substrate is not limited thereto, and a substrate made of a (four) type substrate and a p-type layer formed by the growth of the p+ type substrate may be used as the first semiconductor substrate 1 by means of money etching and CMP. A thin film formation of the first semiconductor germanium is performed. (Second Embodiment) A method of manufacturing a semiconductor device having an SGT (Surrounding Gate Transistor) according to a second embodiment of the present invention will be described below with reference to Fig. 2 . In the first embodiment to the first embodiment, the steps shown in the first embodiment to the first embodiment are shown in the first embodiment to the first embodiment, and the steps shown in FIGS. 1A to 1J are %. The N+ polycrystalline germanium layer 5a constituting the signal line is replaced by the N+ polycrystalline germanium layer 55a which functions as a drain in the SGT. In the same manner as in the first embodiment (see the ljth diagram), the metal layer 7 is bonded to the N+ polycrystalline germanium layer 55a, and is thermally diffused by the donor impurity from the n+ polycrystalline germanium layer 55a. An N+ diffusion layer 6a is formed inside. In the present embodiment, in the step shown in FIG. 2, in the step shown in FIG. 2, the gate insulating layers 15a and 15b are formed on the outer peripheral portion of the column la by an oxidation method or a CVD method. The outer peripheral portions of the pole insulating layers 15a and 15b form gate conductor layers 16a and 16b that function as gates of the SGT. 323818 25 201242003 Next, in the column "La", an upper portion of the gate conductor layers 16a, 16b is formed as an SGT by ion doping of a donor impurity such as phosphorus (P) or arsenic (As). The source layer is the function of the 矽 type i7a. Next, a metal wiring layer 18a is formed on the N+ type germanium layer 17a by vapor deposition and pattern etching. According to the above, the N-channel type SGT is formed on the second semiconductor substrate 9. Here, the 'N+ diffusion layer 6a' and the N+ polycrystalline germanium layer 55a function as a source or a poleless in the n-channel type SGT. According to the present embodiment, in the SGT (N-channel type SGT), the metal layer 7 is bonded to the back surface of the N + polycrystalline germanium layer 5 5 a functioning as a drain. According to this configuration, the resistance from the metal layer 7 to the N+ diffusion layer 6a is reduced, so that the SGT which realizes the south speed operation can be obtained. (Third Embodiment) A method of manufacturing a semiconductor device having an SGT according to a third embodiment of the present invention will be described below with reference to Figs. 3A and 3B. In the present embodiment, the N-channel type SGT and the P-channel type SGT are formed on the same semiconductor substrate. The manufacturing steps of the semiconductor device of the present embodiment and its modifications are the same as those of the first embodiment except for the case described below. In the present embodiment, the N-channel type SGT and the p-channel type SGT are formed in the N-channel type SGT formation region ln and the p-channel type, respectively, on the first semiconductor substrate 1 with reference to FIGS. 3A and 3B. The SGT formation region lp 0 is an N-channel type in which the N-channel SGT formation region In is formed in the same manner as the steps shown in FIG. 1A to the second embodiment and the second embodiment 323818 26 201242003. SGT. On the other hand, the P-channel type SGT of the p-channel type SGT formation region lp is formed in substantially the same manner as the steps shown in Figs. 1A to 1J of the first embodiment and the second embodiment of the second embodiment. However, in the step corresponding to the 1st c diagram, the acceptor impurity such as ion-doped shed (B) is formed, and the polycrystalline layer 5 of the p-channel type SGT forming region lp is formed as a p-channel type SGT. Instead of forming the N+ polycrystalline dream layer 55a functioning as a barrier of the N-channel type SGT, the P+ diffusion layer ga and the P+ polycrystalline layer 55b functioning as a source. Then, as shown in FIG. 3B, the N-channel type SGT composed of the masts & and the masts are formed by the steps corresponding to the steps 1D to 5 and corresponding to the second graph. 15 p-channel type SGT. Further, in the case of the column lb, the n-type layer 30a is formed by the donor impurity such as ion-doping (As) in the column lb (p-type 矽) of the p-channel type SGT. Here, in the step corresponding to FIG. 1J, the donor impurities and the bulk impurities are thermally diffused into the impurities la, lb from the N-polycrystalline layer 55a, respectively, by heat treatment. A diffusion layer and a P diffusion layer 6b are formed. Further, in the step corresponding to the second drawing, the opening insulating layers (5), 15b 15C, 15d ' are formed in the outer peripheral portion of the stone ridges la, lb by thermal oxidation or CVD, and are insulated at the closed end. The outer circumferences of the layers 15a, 15b, 15c, and 15d are formed by the CVD method to form the interlayer conductor layers 16 & 16 16 . , 16 (1 (see 323818 27 201242003 according to Figure 3B). In the step shown in the t pit mB diagram, in Shi Xizhu h, ib, ion doping donor impurities by knife
的源極化 質’而形成作^通道型SGT 型SGT的、、/及極發揮功能之N+型碎層173、及作為P通道 Λ、極或者汲極發揮功能之P+型矽層17b。The source polarization property forms a N+ type fragment 173 which functions as a channel type SGT type SGT, and/or functions as a P+ type 矽 layer 17b which functions as a P channel Λ, a pole or a drain.
通於第3B圖所示之步驟中,係以電性連接於N 通gsgt之r型石夕層17a、p通道型SGT之p+型石夕層爪 1 方:藉由例如氣相沉積法及蝕刻而形成金屬酉:線層 及P通道型SGT形成於 依據上述,係將N通道型SGT 第二半導體基板9上。 夕就本實施形態而言,N通道型SGT之矽柱la内之r 多結晶矽層55a及N+擴散層6a、與r型矽層17&係若有一 方為没極’則另-方會作為源極發揮功能。再者,p通道 型SGT之石夕柱lb内之p+多結晶石夕層55b&p+擴散層6b、 與P+型石夕層17b係若有-方為沒極,則另一方會作為源極 發揮功能。 依據本實施形態,可容易地於第二半導體基板9上形 成N通道型SGT及P通道型SGT。 就本實施形態而言,於形成N通道型SGT的矽柱la(p 型矽層30)之後,係於P通道型SGT的矽柱ib(P型矽柱), 藉由離子摻雜磷(P)或砷(As)等施體雜質而形成N型矽層 3〇a。係不限於此,可將第1A圖之第一半導體基板1設為 323818 28 201242003 屬於未摻雜質之本徵半導體之丨㈣來取代p 且 於對應於第II圖之步驟中,於N通道型SGT之錄 離子摻雜硼⑻等受_質㈣成?_層3(),並於P通 道型SGT之石夕柱la’藉由離子摻雜磷⑺或石申⑽等施體 雜質而形成^_層_來作為本實施形態之變形例。 再者,就本實施形態而言,亦可對石夕柱la、lb兩者皆 使用本徵半導體’並將抑la、lb㈣之本徵半導體設為 N通道型、P通道型SGT之通道。 (第4實施形態)In the step shown in FIG. 3B, it is electrically connected to the r-type layer 17a of the N-pass gsgt and the p+-type layer of the p-type SGT: by, for example, vapor deposition and Metal iridium is formed by etching: the line layer and the P-channel type SGT are formed on the N-channel type SGT second semiconductor substrate 9 in accordance with the above. In the present embodiment, the r polycrystalline germanium layer 55a and the n+ diffusing layer 6a and the r-type germanium layer 17& in the N-channel type SGT are not fused to each other. Functions as a source. Furthermore, if the p+ polycrystalline slab layer 55b & p+ diffusion layer 6b and the P+ type sap layer 17b in the p-channel SGT are in the absence of the pole, the other will serve as the source. Play the function. According to this embodiment, the N-channel type SGT and the P-channel type SGT can be easily formed on the second semiconductor substrate 9. In the present embodiment, after forming the column la (p-type layer 30) of the N-channel type SGT, it is attached to the column ib (P-type column) of the P channel type SGT by ion-doping phosphorus ( P) or arsenic (As) and other donor impurities form an N-type germanium layer 3〇a. The first semiconductor substrate 1 of FIG. 1A is set to 323818 28 201242003, which belongs to the undoped intrinsic semiconductor (4) instead of p and in the step corresponding to the second figure, in the N channel. Is the type SGT recorded by ion doping boron (8), etc. by _ mass (four) into? The layer 3 () is formed as a modification of the present embodiment by ion-doping a donor impurity such as phosphorus (7) or Shishen (10) in an ion channel P' of the P channel type SGT. Further, in the present embodiment, the intrinsic semiconductor can be used for both Shi Xizhu and lb, and the intrinsic semiconductors of the lb and lb (four) can be used as the channels of the N-channel type and the P-channel type SGT. (Fourth embodiment)
於下述’係參照第4圖說明本發明之第4實施形態之 具有複數個SGT之半導體裝置的製造方法。 就本實施形態而言’係與第3實施形態相同地將N通 道型SGT、P通道型SGT分別形成於N通道型SGT形成區域 In、P通道型SGT形成區域ιρ(參照第3A圖、第3B圖)。 就本實施形態而言’係與第1及第3實施形態大致相 同地將N通道型SGT及P通道型SGT形成於屬於同一個半 導體基板之第2半導體基板9上(參照第1A至第1J圖、第 3A圖、第3B圖)。然而,就對應於第以圖之步驟而言, 係如第4圖所示,於複數個n通道型sGT、P通道型SGT 中’將作為源極發揮功能之N+多結晶石夕層55a、作為汲極 發揮功此之P多結晶石夕層55b彼此藉由延長金屬層7aa、 7bb而電性連接。 亦即,就本實施形態而言,於對應於第1D圖之步驟 中’以覆蓋會成為N+多結晶矽層55a、P+多結晶矽層55b 323818 29 201242003 的石夕層之方式’藉由氣相沉積法及独刻而形成金屬層7。 並且’係藉由㈣而將金屬層7、r多結晶石夕層⑽、及 P多結晶矽層55b成形為預定之形狀。藉此,係如第4圖 所示,分別形g多結晶妙層55a、p+多結晶石夕層娜、及 第一連接用金屬層7a、7b。 就本實施形態而言 糸接者對應於第3B圖之步驟,且 參照苐4圖,而於第一連 %接用金屬層7a上形成氡化矽層 20,並在該軋化矽層2〇彤A method of manufacturing a semiconductor device having a plurality of SGTs according to a fourth embodiment of the present invention will be described with reference to FIG. In the same manner as the third embodiment, the N-channel SGT and the P-channel SGT are formed in the N-channel SGT formation region In and the P-channel SGT formation region ιρ (see FIG. 3A and FIG. 3B picture). In the present embodiment, the N-channel SGT and the P-channel SGT are formed on the second semiconductor substrate 9 belonging to the same semiconductor substrate in substantially the same manner as in the first and third embodiments (see FIGS. 1A to 1J). Figure, Figure 3A, Figure 3B). However, as shown in FIG. 4, as shown in FIG. 4, in a plurality of n-channel type sGTs and P-channel type SGTs, 'N+ polycrystalline slab layer 55a functioning as a source, The P polycrystalline slab layer 55b, which functions as a ruthenium, is electrically connected to each other by the elongated metal layers 7aa and 7bb. That is, in the present embodiment, in the step corresponding to the first DD, the method of 'covering the N-polycrystalline germanium layer 55a, the P+ polycrystalline germanium layer 55b 323818 29 201242003 The metal layer 7 is formed by a phase deposition method and a unique method. Further, the metal layer 7, the r polycrystalline layer (10), and the P polycrystalline layer 55b are formed into a predetermined shape by (4). Thereby, as shown in Fig. 4, the polycrystalline layer 55a, the p+ polycrystalline layer, and the first connecting metal layers 7a and 7b are respectively formed. In this embodiment, the splicer corresponds to the step of FIG. 3B, and referring to FIG. 4, the bismuth telluride layer 20 is formed on the first continuation metal layer 7a, and the ruthenium layer 2 is formed on the ruthenium layer 2 〇彤
丨91 夕成接觸孔21c。接著,係經由接 觸孔21c及第一連接用伞 P+户纯曰坊既 屬層7a ’將N多結晶石夕層55a及 P夕',、〇日日石夕層55b與形成从每 線層22c連接。 ;氣化層2〇的上部之外部金屬配 之實施形態的第4圖而言,於N通道型财 之此層fa、P通道型SGTm結晶石夕層55b 月 ,係分別接合有金屬層77aa、77bb。並且,於 作la ' lb中’ N+擴散層h、6b以及複數個金屬 層7aa、7bb係互相連接。 M f且,於本實施形態中,就第4圖而言,N+擴散層6a、 +多、、,°晶_層55a係作為N通道型SGT的源極或者沒極, P+多結晶石夕層55b係作為P通道型SGT的源極或者汲極而 分別發揮功能。 如上述,依據本實施形態,於複數個SGT中,由n+多 結晶石夕層55a、r多結晶石夕層55b所構成之源極、沒極彼 此係並非於在氧切層2G的上表Μ形成有金屬配線 a、22b、22c之區域經由接觸孔等而被拉出之狀態下互 323818 30 201242003 相連接,而為藉由延長第一連接用金屬層7a而互相電性連 接。據此,可提高具有SGT之電路元件之積體度。 再者,本實施形態之半導體裝置的製造方法係可適用 於固態影像感測裝置的製造方法。此時,在例如非專利文 獻1所記載之將複數個晝素訊號藉由一個放大用M0S電晶 體而讀出之構成之固態影像感測裝置中,係將各晝素之汲 極彼此互相藉由第一連接用金屬層7a予以連接。此時,各 晝素之汲極、源極係無須在經由接觸孔等而與上層部的其 • 他金屬配線連接之狀態下互相連接。因此,可實現固態攝 影裝置的畫素之更進一步之高積體化。 (第5實施形態) 於下述,係參照第5A圖至第5C圖說明本發明之第5 實施形態之於半導體裝置形成電阻之方法。本實施形態及 其變形例之半導體裝置的製造步驟,除了於下述特別說明 之情形以外,係與第1實施形態相同。 φ 就本實施形態而言,係藉由使用第1B圖所示之在第一 半導體基板1上所形成之多結晶矽層5,來形成屬於半導 體裝置的電路元件之電阻。 就本實施形態而言,就第1A圖所示之步驟而言,於第 一半導體基板1的預定之深度,係形成用以將此第一半導 體基板1分離為上下二個部分之分離層2,並於第一半導 體基板1上形成屬於絕緣體之第一氧化矽層3。 接著,就第1B圖所示之步驟而言,係於該第一氧化矽 層3上形成多結晶石夕層5,且就第1C圖所示之步驟而言, 323818 31 201242003 於此多結Μ層5’係藉由離子摻雜椒 雜質而形成N+多結晶矽層5a。 〜專施體 就本實施形態而言,於第1B圖、第1C圖所示之步驟 中,係如第5A圖所示’於第—氧化矽層3上之多結晶矽層丨91 夕 into contact hole 21c. Next, through the contact hole 21c and the first connection umbrella P+ household pure Weifang prefecture layer 7a 'the N polycrystalline Shiya layer 55a and P Xi', and the day Rishi layer 55b and the formation from each line layer 22c connection. The external metal of the upper part of the gasification layer is arranged in the fourth figure of the embodiment, and the metal layer 77aa is bonded to the layer fa of the N-channel type and the P-channel type SGTm crystal layer 55b. , 77bb. Further, the 'N+ diffusion layers h, 6b and the plurality of metal layers 7aa and 7bb are connected to each other in the la ' lb . In the fourth embodiment, in the fourth embodiment, the N+ diffusion layer 6a, +, and the crystal layer 55a are used as the source or the infinite pole of the N-channel type SGT, and P+ polycrystalline stone The layer 55b functions as a source or a drain of the P channel type SGT. As described above, according to the present embodiment, in the plurality of SGTs, the source and the non-polar phase composed of the n + polycrystalline slab layer 55a and the r polycrystalline slab layer 55b are not in the upper surface of the oxygen-cut layer 2G. The region in which the metal wirings a, 22b, and 22c are formed is connected to each other via a contact hole or the like, and is connected to each other by 323818 30 201242003, and is electrically connected to each other by extending the first connection metal layer 7a. According to this, the degree of integration of the circuit elements having the SGT can be improved. Further, the method of manufacturing the semiconductor device of the present embodiment is applicable to a method of manufacturing a solid-state image sensing device. In this case, for example, in the solid-state image sensing device in which a plurality of halogen signals are read by a magnifying MOS transistor described in Non-Patent Document 1, the bungee of each element is borrowed from each other. It is connected by the first connection metal layer 7a. At this time, the drain and source of each of the pixels are not necessarily connected to each other in a state of being connected to the other metal wires of the upper portion via the contact holes or the like. Therefore, it is possible to achieve further integration of the pixels of the solid-state imaging device. (Fifth Embodiment) A method of forming a resistor in a semiconductor device according to a fifth embodiment of the present invention will be described below with reference to Figs. 5A to 5C. The manufacturing steps of the semiconductor device according to the present embodiment and its modifications are the same as those in the first embodiment except for the case of the following description. φ In the present embodiment, the resistance of the circuit element belonging to the semiconductor device is formed by using the polycrystalline germanium layer 5 formed on the first semiconductor substrate 1 as shown in Fig. 1B. In the present embodiment, in the step shown in FIG. 1A, a separation layer 2 for separating the first semiconductor substrate 1 into upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1. And forming the first hafnium oxide layer 3 belonging to the insulator on the first semiconductor substrate 1. Next, in the step shown in FIG. 1B, a polycrystalline layer 5 is formed on the first hafnium oxide layer 3, and in the step shown in FIG. 1C, 323818 31 201242003 is multi-knotted here. The ruthenium layer 5' forms an N+ polycrystalline ruthenium layer 5a by ion doping the pepper impurities. ~Special application body In the present embodiment, in the steps shown in FIG. 1B and FIG. 1C, the polycrystalline germanium layer on the first yttria layer 3 is as shown in FIG. 5A.
5的預定區域,藉由以預定之濃度離子摻雜磷(p)或砷(As) 等施體雜質而形成N多結晶石夕層2如、2北。藉由此N+多結 晶矽層23a、23b、未離子摻雜有施體雜質之多結 晶矽層 23、或者推雜有預疋之雜質之多結晶石夕層23,多姑晶梦廣 5的預定區域(多結晶碎層23)之電阻值係下降,從而形成 電阻》如此,N+多結晶矽層23a、23b、及多結晶矽層23 係與N+多結晶矽層5a(參照第ic圖)相同地由多結晶石夕唐 5(參照第1B圖)而形成,故位於與N+多結晶矽層5a同層 之位置。 接著,就第1D圖所示之步驟而言,係將位於與金篇層 7同層之金屬配線層24a、24b與金屬層7相同地形成於N 多結晶矽層23a、23b上。 依據本實施形態,係於多結晶矽層5的預定區域’形 成藉由離子掺雜預定濃度之施體雜質而具有預定電卩且值之 N+多結晶矽層23a、23b、及多結晶矽層23。再者’ N+多結 晶矽層23a、23b、及多結晶矽層23係形成於與N+多錄晶 矽層5a同層。據此,於同一個半導體基板上,係不僅<與 固態影像感測裝置、SGT等半導體裝置一起製作電阻·(電路 元件),亦可將製造步驟簡略化。 再者,就本實施形態而言’係參照第圖’藉由第 323818 32 201242003 1B圖所示之步驟形成多結晶矽層25,且藉由蝕刻形成為預 定之形狀後,藉由氣相沉積法或CVD法而形成連接於該多 結晶矽層25之金屬配線層26a、26b。以如此方式,亦可 藉由多結晶矽層25形成半導體裝置之電阻。 再者,就本實施形態之變形例而言,係參照第5C圖, 於第二半導體基板9上形成第二氧化矽層8,且在該第二 氧化矽層8上,藉由上述方法形成N+多結晶矽層23a、23b 及多結晶矽層23。之後,亦可於N+多結晶矽層23a、23b • 及多結晶矽層23上形成第一氧化矽層3,且於該第一氧化 矽層3上形成氧化矽層20(參照第4圖)。並且,就第5C 圖而言,係由N+多結晶矽層23a、23b及多結晶矽層23形 成第5A圖所示之電阻。 再者,就本實施形態及第5C圖所示之變形例而言,係 參照第4圖,於第一氧化矽層3上係形成有具有SGT之電 路元件或者金屬配線。 φ 再者,就第5C圖所示之變形例而言,構成電阻之多結 晶矽層23係形成於屬於絕緣體之第一氧化矽層3的下方。 依據本變形例,如第5C圖所示,於Si〇2層(第一氧化 矽層3)之上下,可以與構成電阻之多結晶矽層23重疊之 方式,而形成第4圖所示之電路元件的金屬配線層22a、 22b、22c。據此,可實現具有電阻之半導體裝置(電路元件) 之更進一步的高積體化。 (第6實施形態) 於下述,係參照第6A圖至第6C圖,說明本發明第6 323818 33 201242003 實施形態之將電容形成於半導體裝置之方法。本實施形態 之半導體裝置的製造步驟除了於下述特別說明之情形以 外,係與第1實施形態相同。 就本實施形態而言,係藉由使用第1B圖所示之形成於 第一半導體基板1上之多結晶矽層5,而形成屬於半導體 裝置的電路元件之電容。 於本實施形態中,就第1A圖所示之步驟而言,係於第 一半導體基板1的預定深度,形成用以將此第一半導體基 • 板1分離為上下二個部分之分離層2,並在第一半導體基 板1上形成屬於絕緣體之第一氧化矽層3。 接著,就第1B圖所示之步驟而言,係在該第一氧化矽 層3上形成多結晶矽層5,且就第1C圖所示之步驟而言, 係於此多結晶矽層5,藉由離子摻雜磷(P)或者砷(As)等施 體雜質而形成N+多結晶矽層5a。 於此,接著第1C圖所示之步驟,係參照第6A圖,藉 φ 由熱氧化法或者CVD法而於N+多結晶矽層5a的表層部形 成電容氧化矽層27。 接著,參照第6B圖,藉由使用遮罩(mask)之敍刻,而 於形成電容之電容區域中,將作為電容絕緣膜發揮功能之 電容氧化矽層27成形為預定之形狀。 並且,就第1D圖所示之步驟而言,係藉由氣相沉積法 或者CVD法,而於成形為預定形狀之電容氧化矽層27上形 成作為電容電極發揮功能之金屬層28。此金屬層28係形 成於與第1實施形態之金屬層7同層。 323818 34 201242003 接著,藉由經過第1E圖至第1H圖、第4圖所示之各 步驟,從而形成如第6C圖所示之積層構造。亦即,第二氧 化矽層8形成於第二半導體基板9上,且於此第二氧化矽 層8之内部中,在形成電容之電容區域係積層有做為電容 電極發揮功能之金屬層28、及積層於金屬層28作為電容 絕緣膜發揮功能之電容氧化矽層27。並且,於電容氧化矽 層27及第二氧化矽層8上,可得到依序積層有N+多結晶 矽層5a、第一氧化矽層3及氧化矽層29(氧化矽層20)之 Φ 構造。就此構造而言,係形成金屬層28及N+多結晶矽層 5a作為電容電極發揮功能,並且電容氧化矽層27係作為 電容絕緣膜發揮功能之電容。 就本實施形態而言,係於第1實施形態之固態影像感 測裝置的製造方法之第1D圖至第1H圖所示之步驟中,追 加於N+多結晶矽層5a的表層形成絕緣層27之步驟(第6A 圖)、及形成電容氧化矽層27、金屬層28之步驟(參照第 φ 6B圖)。據此,係不僅於同一個半導體基板上形成固態影 像感測裝置的晝素、SGT等半導體裝置並形成電容(電路元 件),亦會將製造步驟簡略化。 (第7實施形態) 於下述,係參照第7A圖、第7B圖說明本發明第7實 施形態之將電容形成於半導體裝置之方法。本實施形態之 半導體裝置的製造步驟除了於下述特別說明之情形以外, 係與第1實施形態相同。 就本實施形態而言,係藉由使用第1B圖所示之形成於 323818 35 201242003 第一半導體基板1上之多結晶矽層5,而形成屬於半導體 裝置的電路元件之電容。 於本實施形態中,就第1A圖所示之步驟而言,係於第 一半導體基板1的預定深度,形成用以將此第一半導體基 板1分離為上下二個部分之分離層2,並在第一半導體基 板1上形成屬於絕緣體之第一氧化矽層3。 接著,就第1B圖所示之步驟而言,在形成多結晶矽層 5之前,係於第一氧化矽層3上設定第7A圖所示之電容形 # 成區域100,並藉由蝕刻將此電容形成區域100之氧化矽 予以去除,而藉此形成凹形狀之氧化矽層去除區域。亦即, 就第1B圖所示之步驟而言,如第7A圖所示,係使氧化矽 層101a、101b殘留於該氧化矽層去除區域的周圍,並使比 氧化矽層101a、101b厚度更薄之氧化矽層103殘留於此氧 化矽層去除區域。並且,將此氧化矽層101a、101b作為遮 罩使用,且藉由將硼(B)等受體雜質予以離子摻雜或者熱擴 φ 散,而通過氧化矽層103將P+擴散層102形成於電容形成 區域100之第一半導體基板1的表層。並且,係參照第1B 圖,於該第一氧化矽層3上以填埋氧化矽層去除區域之方 式形成多結晶矽層5。 接著,就第1C圖所示之步驟而言,於此多結晶石夕層5, 藉由離子摻雜磷(P)或者砷素(As)等之施體雜質而形成N+ 多結晶矽層104(參照第7A圖)。 接著,就第1D圖所示之步驟而言,係藉由氣相沉積法 或者CVD法於N+多結晶矽層104上形成金屬層105(參照第 323818 36 201242003 7八圖)°此金屬層1G5係形成於與第1實施形態之金屬層7 同層。 接著係、與第1E圖所示之步驟同樣地,於形成電容之 夕^成區域⑽巾’將N+多結晶石夕層1G4、及形成於N+ 石夕層1〇4上且作為電容電極發揮功能之金屬層ι〇5 成形為預定之形狀。 之牛’於經過第1實施形態之第W圖至第II圖所示 乂後,係參照第7B圖,使p+擴散層1〇2殘留於石夕柱 之方七Γ覆蓋該p+擴散層102及氧化石夕層l〇la、101b 之方式形成氧化矽層1〇7。 108 i係參照* 7B圖’於氧化石夕層107形成接觸孔 居1〇9 ΓΡ觸孔1〇8,將氧化石夕層107上之金屬配線 昭依據上述,係如第7B圖所示,於電容形成區域100(參 =7A圖)形成有N+多結晶石夕層1〇4、金屬層1〇5、及p+ /政層1〇2係作為電容電極發揮功能,且氧化矽層l〇la、 办b間之氧化石夕層係作為電容絕緣膜發揮功能之電 就本實施形態而言,係藉由將氧化矽層l〇la、1〇lb 2遮罩使用,而將硼⑻等受體雜質予以離子摻雜或者熱 此散至第—半導體基板1而形成P+擴散層102。係不限於 声,亦可在形成氧化矽層1〇la、1〇lb之前,藉由從均勻厚 :之第-氧切層3(參照第㈣)上進行來自高加 〃、,而於電容形成區域100以外之預定區域内 323818 乂 37 201242003 成P+擴散層102。 依據本實施形態,根據第7B圖所示之構造,藉由接觸 孔108,而可從半導體裝置的任意場所進行各電容間之連 接及取出往外部電路之電訊號。據此,可實現電路元件之 更進一步之高積體化。 (第8實施形態) 於下述,係參照第8A圖至第8C圖說明本發明第8實 施形態之將二極體形成於半導體裝置之方法。本實施形態 ® 及其變形例之半導體裝置的製造步驟除了於下述特別說明 之情形以外,係與第1實施形態相同。 就本實施形態而言,係藉由使用第1B圖所示之形成於 第一半導體基板1上之多結晶矽層5,而形成屬於半導體 裝置的電路元件之二極體。 就本實施形態而言,藉由經過第1實施形態第1A圖至 第II圖所示之步驟,而如第8A圖所示於第二半導體基板 φ 9上形成第二氧化矽層8,並於二極體形成區域100a從下 方依序形成有金屬層7、N+多結晶矽層5a、矽柱la。再者, 於第二氧化矽層8上,在N+多結晶矽層5a之周圍形成有 第一氧化矽層3。 接著,在第8A圖所示之構造中,於藉由本徵矽形成矽 柱la之情形時,係藉由離子摻雜硼(B)等受體雜質,而形 成第8B圖所示之P型矽層30。並且,於矽柱la以第1實 施形態之方式而形成為P型時,係不需要受體雜質之離子 摻雜。 323818 38 201242003 接著,係參照帛8B ffl,進行熱處理使施體雜質從n+ 多結晶矽層5a熱擴散至P型矽層30中’而將N+擴散層h 形成於P型矽層30(矽柱la)之下方部。 接著,係參照第8B圖,於P型矽層3〇(矽柱1&)之上 方部位藉由離子摻雜硼(B)等受體雜質,而形成p+型矽層 31 ’並藉由氣相沉積法及鞋刻而於p+型石夕層Μ上形成金 屬層32。 接著,係參照第肋圖,以覆蓋P型矽層30及金屬層 攀32之方式形成氧化石夕層33,且於該氧化石夕層33中在金屬 層32上依序形成接觸孔34、金屬配線層35。據此,係經 由接觸孔34電性連接金屬配線層35與金屬層犯。 就本實施形態而言,係藉由P+型矽層31及p型矽層 30形成pn接合二極體。 依據本實施形態,於同一個半導體基板上,係不僅可 形成固態景:> 像感測裝置的晝素〜即丁等半導體裝置並形成 • 二極體(電路元件),亦可將製造步驟簡略化。 於第8C圖’係顯示於矽柱la形成piN光電二極體之 本實施形態之變形例。就此變形例而言,於第8實施形態 所示之石夕柱la形成有屬於本徵半導體之丨型矽層3〇b以替 代P型石夕層30 °並且’於i型矽層30b上係形成有p+型矽 層31。並且,係藉由i型矽層3〇b&p+型矽層31形成plN 光電二極體。 於此PIN光電二極體中,係參照第8C圖,光束係從 P+型矽層31的上部射入。因此,係以不妨礙該光束射入之 323818 39 201242003 方式,於P+型矽層31的外周區域形成用以連接P型矽層 31與外部電路之金屬層32。 依據本變形例之PIN光電二極體,係於i型矽層3〇b 之整體或者廣範圍之區域形成空乏層,故可碟保較廣之光 電變換區域,並由於相當於電容形成區域的厚度之空乏層 的厚度係變得較大,故可謀求低電容化。並且’此PIN光 電二極體係作為光束連接(connection)檢光器’而形成於 與半導體裝置的電路元件同一個半導體基板上。 • 由於本變形例之PIN光電二極體係作為光束開關 (switch)發揮功能,故無輸入電路配線的電阻/電谷所導 致之RC延遲,而可實現電路輸入部之高速化、及電路整體 之高速化。 依據本變形例,於同一個半導體基板上,係不僅可形 成固態影像感測裝置的畫素、SGT等半導體裝置且能形成 PIN二極體(電路元件),亦可將製造步驟簡略化。 φ (第9實施形態) 於下述,係參照第9A圖至第9C圖’說明關於本發明 第9實施形態之使用SGT之CMOS反相器(invertor)電路。 於第9A圖係顯示本實施形態之使用SGT之CMOS反相 器電路。如第9A圖所示,P通道型M0S電晶體37a與N通 道型M0S電晶體37b係串聯連接。P通道型M0S電晶體37a 與N通道梨電晶體37b的閘極彼此係經由閘極連接配 線38而速接’且閘極連接配線38係連接於輸入端子配線 Vi。p通道型M0S電晶體37a的源極係連接於電源端子配 323818 40 201242003 線Vdd°P通道型M0S電晶體37a的汲極及N通道型電晶體 37b的汲極係經由汲極連接配線39而連接於輸出端子配線 Vo ’並連接於N通道型M0S電晶體37b之源極成為接地 (ground)電位之接地端子配線Vss。 於第9B圖係顯示使用此SGT之CMOS反相器電路之$ 面配置圖。 如第9B圖所示,以直線狀排列配置有接觸孔4le、_ 柱40a、接觸孔41a、接觸孔41b、以及接觸孔4ld。 • 輸入端子配線Vi係為用以從接觸孔41c輪入電訊號 (閘極電壓)者。電源端子配線Vdd係為用以從接觸孔4la 供給電源電壓者。接地端子配線Vss係為用以經由接觸孔 41b而進行接地連接者。輸出端子配線ν〇係為用以從連接 孔41d輸出電訊號者。 接觸孔41c係形成於將P通道型M0S電晶體37a與N 通道型M0S電晶體37b之閘極彼此連接之閘極連接配線38 φ 上。石夕柱4〇a係構成p通道型M0S電晶體37a。接觸孔 係形成於矽柱40a上。矽柱40b係構成N通道型M0S電晶 體37b。接觸孔41b係形成於矽柱4〇b上。接觸孔4ld係 形成於將P通道型M0S電晶體37a的汲極與N通道型M〇s 電晶體37b的汲極互相連接之汲極連接配線39上。 並且,以朝向與此接觸孔41b及接觸孔41d的行方向 正交之列方向而延伸之方式,分別配置有輸人端子配The predetermined region of 5 is formed by ion-doping a donor impurity such as phosphorus (p) or arsenic (As) at a predetermined concentration to form an N-polycrystalline layer 2 such as 2 north. By means of the N+ polycrystalline germanium layer 23a, 23b, the polycrystalline germanium layer 23 doped with the donor impurity, or the polycrystalline litmus layer 23 doped with the impurity of the pre-tanning, The resistance value of the predetermined region (polycrystalline fragment 23) is decreased to form a resistor. Thus, the N+ polycrystalline germanium layer 23a, 23b, and the polycrystalline germanium layer 23 and the N+ polycrystalline germanium layer 5a (see the ic diagram) Similarly, it is formed of polycrystalline stone Xitang 5 (refer to FIG. 1B), and is located at the same layer as the N+ polycrystalline germanium layer 5a. Next, in the step shown in Fig. 1D, the metal wiring layers 24a and 24b located in the same layer as the gold layer 7 are formed on the N polycrystalline germanium layers 23a and 23b in the same manner as the metal layer 7. According to the present embodiment, the N+ polycrystalline germanium layer 23a, 23b and the polycrystalline germanium layer having a predetermined electric enthalpy and having a predetermined electric concentration doped by a predetermined concentration of the donor impurity in the polycrystalline germanium layer 5 are formed. twenty three. Further, the 'N+ polycrystalline germanium layers 23a and 23b and the polycrystalline germanium layer 23 are formed in the same layer as the N+ multiple crystal germanium layer 5a. According to this, it is possible to manufacture a resistor (circuit element) together with a semiconductor device such as a solid-state image sensing device or an SGT on the same semiconductor substrate, and the manufacturing steps can be simplified. Furthermore, in the present embodiment, the polycrystalline germanium layer 25 is formed by the steps shown in FIG. 323818 32 201242003 1B, and is formed into a predetermined shape by etching, and then deposited by vapor deposition. The metal wiring layers 26a and 26b connected to the polycrystalline germanium layer 25 are formed by a method or a CVD method. In this manner, the resistance of the semiconductor device can also be formed by the polycrystalline germanium layer 25. Further, in a modification of the embodiment, referring to FIG. 5C, a second hafnium oxide layer 8 is formed on the second semiconductor substrate 9, and the second hafnium oxide layer 8 is formed by the above method. N+ polycrystalline germanium layers 23a, 23b and polycrystalline germanium layer 23. Thereafter, a first hafnium oxide layer 3 may be formed on the N+ polycrystalline germanium layer 23a, 23b and the polycrystalline germanium layer 23, and a hafnium oxide layer 20 may be formed on the first hafnium oxide layer 3 (see FIG. 4). . Further, in the fifth graph, the resistors shown in Fig. 5A are formed of the N+ polycrystalline germanium layers 23a and 23b and the polycrystalline germanium layer 23. Further, in the present embodiment and the modification shown in Fig. 5C, a circuit element having a SGT or a metal wiring is formed on the first tantalum oxide layer 3 with reference to Fig. 4 . φ Further, in the modification shown in Fig. 5C, the multi-junction layer 23 constituting the resistor is formed below the first hafnium oxide layer 3 belonging to the insulator. According to the present modification, as shown in FIG. 5C, the Si 〇 2 layer (the first yttria layer 3) can be formed on the Si 〇 2 layer (the first ruthenium oxide layer 3) so as to overlap the polycrystalline ruthenium layer 23 constituting the resistor. Metal wiring layers 22a, 22b, 22c of circuit elements. According to this, it is possible to achieve further high integration of the semiconductor device (circuit element) having resistance. (Sixth Embodiment) A method of forming a capacitor in a semiconductor device according to an embodiment of the present invention will be described with reference to Figs. 6A to 6C. The manufacturing steps of the semiconductor device of the present embodiment are the same as those of the first embodiment except for the cases described below. In the present embodiment, the capacitance of the circuit element belonging to the semiconductor device is formed by using the polycrystalline germanium layer 5 formed on the first semiconductor substrate 1 as shown in Fig. 1B. In the present embodiment, in the step shown in FIG. 1A, a separation layer 2 for separating the first semiconductor substrate 1 into upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1. And forming the first hafnium oxide layer 3 belonging to the insulator on the first semiconductor substrate 1. Next, in the step shown in FIG. 1B, a polycrystalline germanium layer 5 is formed on the first hafnium oxide layer 3, and in the step shown in FIG. 1C, the polycrystalline germanium layer 5 is The N+ polycrystalline germanium layer 5a is formed by ion doping a donor impurity such as phosphorus (P) or arsenic (As). Here, in the step shown in Fig. 1C, referring to Fig. 6A, a capacitor yttria layer 27 is formed on the surface layer portion of the N+ polycrystalline ruthenium layer 5a by thermal oxidation or CVD. Next, referring to Fig. 6B, a capacitor yttria layer 27 functioning as a capacitor insulating film is formed into a predetermined shape by using a mask to form a capacitance region of the capacitor. Further, in the step shown in Fig. 1D, the metal layer 28 functioning as a capacitor electrode is formed on the capacitor yttria layer 27 formed into a predetermined shape by a vapor deposition method or a CVD method. This metal layer 28 is formed in the same layer as the metal layer 7 of the first embodiment. 323818 34 201242003 Next, by the steps shown in Figs. 1E to 1H and 4, a laminated structure as shown in Fig. 6C is formed. That is, the second hafnium oxide layer 8 is formed on the second semiconductor substrate 9, and in the inside of the second hafnium oxide layer 8, a metal layer 28 functioning as a capacitor electrode is provided in the capacitance region where the capacitance is formed. And a capacitor yttria layer 27 which is laminated on the metal layer 28 to function as a capacitor insulating film. Further, on the capacitor yttria layer 27 and the second yttria layer 8, a Φ structure in which an N+ polycrystalline ruthenium layer 5a, a first ruthenium oxide layer 3, and a ruthenium oxide layer 29 (ruthenium oxide layer 20) are sequentially laminated is obtained. . With this configuration, the metal layer 28 and the N+ polycrystalline germanium layer 5a function as capacitor electrodes, and the capacitor oxide layer 27 functions as a capacitance of the capacitor insulating film. In the first embodiment to the first embodiment of the method for manufacturing a solid-state image sensing device according to the first embodiment, the surface layer is formed of an insulating layer 27 added to the surface layer of the N+ polycrystalline germanium layer 5a. The step (Fig. 6A) and the step of forming the capacitor yttrium oxide layer 27 and the metal layer 28 (refer to Fig. 6B). According to this, a semiconductor device such as a halogen or SGT of a solid-state image sensing device is formed on the same semiconductor substrate to form a capacitor (circuit element), and the manufacturing steps are also simplified. (Seventh Embodiment) A method of forming a capacitor in a semiconductor device according to a seventh embodiment of the present invention will be described with reference to Figs. 7A and 7B. The manufacturing steps of the semiconductor device of the present embodiment are the same as those of the first embodiment except for the case described below. In the present embodiment, the capacitance of the circuit element belonging to the semiconductor device is formed by using the polycrystalline germanium layer 5 formed on the first semiconductor substrate 1 of 323818 35 201242003 as shown in Fig. 1B. In the present embodiment, in the step shown in FIG. 1A, a separation layer 2 for separating the first semiconductor substrate 1 into upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1, and A first ruthenium oxide layer 3 belonging to an insulator is formed on the first semiconductor substrate 1. Next, in the step shown in FIG. 1B, before forming the polycrystalline germanium layer 5, the capacitance-shaped region 100 shown in FIG. 7A is set on the first hafnium oxide layer 3, and is etched by etching. The yttrium oxide of this capacitance forming region 100 is removed, thereby forming a concave-shaped yttrium oxide layer removing region. That is, as shown in Fig. 1B, as shown in Fig. 7A, the yttrium oxide layers 101a, 101b remain around the yttrium oxide layer removal region, and the specific thickness of the yttrium oxide layers 101a, 101b is made. The thinner ruthenium oxide layer 103 remains in the yttrium oxide layer removal region. Further, the yttrium oxide layers 101a and 101b are used as a mask, and the P+ diffusion layer 102 is formed by the yttrium oxide layer 103 by ion doping or thermally diffusing the acceptor impurities such as boron (B). The capacitor forms the surface layer of the first semiconductor substrate 1 of the region 100. Further, referring to Fig. 1B, a polycrystalline germanium layer 5 is formed on the first hafnium oxide layer 3 by filling a region in which the hafnium oxide layer is removed. Next, in the step shown in FIG. 1C, the polycrystalline layer 5 is formed by ion doping with a donor impurity such as phosphorus (P) or arsenic (As) to form an N+ polycrystalline germanium layer 104. (Refer to Figure 7A). Next, in the step shown in FIG. 1D, the metal layer 105 is formed on the N+ polycrystalline germanium layer 104 by vapor deposition or CVD (refer to 323818 36 201242003 7 8). It is formed in the same layer as the metal layer 7 of the first embodiment. Then, in the same manner as the step shown in FIG. 1E, the N+ polycrystalline litchi layer 1G4 and the N+ Asahi layer 1〇4 are formed on the N+ polycrystalline layer 1〇4 in the formation of the capacitor, and are used as capacitor electrodes. The functional metal layer ι〇5 is formed into a predetermined shape. After passing through the first to fourth embodiments of the first embodiment, referring to FIG. 7B, the p+ diffusion layer 1〇2 remains on the side of the stone pillar to cover the p+ diffusion layer 102. The ruthenium oxide layer 1〇7 is formed in the same manner as the oxidized stone layer l〇la, 101b. 108 i is referred to as * 7B, 'the formation of contact holes in the oxidized stone layer 107 is 1〇9 ΓΡ contact holes 1〇8, and the metal wiring on the oxidized stone layer 107 is as described above, as shown in Fig. 7B. In the capacitor formation region 100 (see Fig. 7A), an N+ polycrystalline schist layer 1〇4, a metal layer 1〇5, and a p+/political layer 1〇2 are formed as capacitor electrodes, and the yttrium oxide layer is formed. La, the oxidized stone layer between the b layers functions as a capacitor insulating film. In the present embodiment, boron (8) or the like is used by masking the yttrium oxide layers 10a and 1b 2 The acceptor impurity is ion-doped or thermally dispersed to the first semiconductor substrate 1 to form the P+ diffusion layer 102. It is not limited to sound, and may be derived from a high-twisting layer from a uniform thickness: the first oxygen-cut layer 3 (refer to the fourth layer) before forming the yttrium oxide layer 1〇1, 1〇1b. In a predetermined area other than the region 100, 323818 乂37 201242003 is formed into the P+ diffusion layer 102. According to the present embodiment, according to the structure shown in Fig. 7B, the connection between the capacitors and the extraction of the electric signals to the external circuit can be performed from any place of the semiconductor device by the contact holes 108. According to this, it is possible to further integrate the circuit elements. (Eighth Embodiment) A method of forming a diode in a semiconductor device according to an eighth embodiment of the present invention will be described below with reference to Figs. 8A to 8C. The manufacturing steps of the semiconductor device of the embodiment ® and its modifications are the same as those of the first embodiment except for the case described below. In the present embodiment, the diode of the circuit element belonging to the semiconductor device is formed by using the polycrystalline germanium layer 5 formed on the first semiconductor substrate 1 as shown in Fig. 1B. In the present embodiment, the second ruthenium oxide layer 8 is formed on the second semiconductor substrate φ 9 as shown in FIG. 8A by the steps shown in FIGS. 1A to II of the first embodiment, and A metal layer 7, an N+ polycrystalline germanium layer 5a, and a column la are sequentially formed in the diode forming region 100a from below. Further, on the second hafnium oxide layer 8, a first hafnium oxide layer 3 is formed around the N+ polycrystalline hafnium layer 5a. Next, in the structure shown in FIG. 8A, in the case where the pillars la are formed by the intrinsic enthalpy, the P-type shown in FIG. 8B is formed by ion-doping the acceptor impurities such as boron (B). Layer 30. Further, when the column column la is formed into a P type as in the first embodiment, ion doping of the acceptor impurity is not required. 323818 38 201242003 Next, referring to 帛8B ffl, heat treatment is performed to thermally diffuse donor impurities from the n+ polycrystalline germanium layer 5a into the p-type germanium layer 30', and the N+ diffusion layer h is formed in the p-type germanium layer 30 (column) Below the la). Next, referring to FIG. 8B, a p+ type germanium layer 31' is formed by ion doping an acceptor impurity such as boron (B) at a portion above the p-type germanium layer 3〇 (column 1&) and by gas The phase deposition method and the shoe engraving form a metal layer 32 on the p+ type. Next, referring to the rib pattern, the oxidized stone layer 33 is formed to cover the P-type germanium layer 30 and the metal layer 32, and the contact holes 34 are sequentially formed on the metal layer 32 in the oxidized layer 33, Metal wiring layer 35. Accordingly, the metal wiring layer 35 and the metal layer are electrically connected via the contact hole 34. In the present embodiment, the pn junction diode is formed by the P + -type germanium layer 31 and the p-type germanium layer 30. According to the present embodiment, it is possible to form not only a solid-state scene, but also a semiconductor device such as a semiconductor device of a sensing device, and a diode device (circuit element), and a manufacturing step can be formed on the same semiconductor substrate. Simplified. In the eighth embodiment, a modification of this embodiment in which a piN photodiode is formed in the column la is shown. In this modification, the 夕 柱 la la 所示 所示 所示 la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la A p+ type germanium layer 31 is formed. Further, a plN photodiode is formed by the i-type germanium layer 3〇b&p+ type germanium layer 31. In the PIN photodiode, referring to Fig. 8C, the light beam is incident from the upper portion of the P+ type germanium layer 31. Therefore, the metal layer 32 for connecting the P-type germanium layer 31 and the external circuit is formed in the outer peripheral region of the p + -type germanium layer 31 in a manner of not inhibiting the incident of the light beam by 323818 39 201242003. According to the PIN photodiode of the present modification, the depletion layer is formed in the entire or wide-area region of the i-type germanium layer 3〇b, so that the photoelectric conversion region can be widely protected, and the capacitance-forming region is equivalent. Since the thickness of the depletion layer of the thickness is large, it is possible to reduce the capacitance. Further, the PIN photodiode system is formed as a beam connection photodetector on the same semiconductor substrate as the circuit element of the semiconductor device. • Since the PIN photodiode system of this modification functions as a beam switch, there is no RC delay due to the resistance/electric valley of the input circuit wiring, and the circuit input unit can be speeded up and the entire circuit can be realized. High speed. According to the present modification, not only a semiconductor device such as a pixel of a solid-state image sensing device or a SGT but also a PIN diode (circuit element) can be formed on the same semiconductor substrate, and the manufacturing steps can be simplified. φ (Ninth Embodiment) A CMOS inverter circuit using SGT according to the ninth embodiment of the present invention will be described with reference to Figs. 9A to 9C. A CMOS inverter circuit using SGT of this embodiment is shown in Fig. 9A. As shown in Fig. 9A, the P channel type MOS transistor 37a and the N channel type MOS transistor 37b are connected in series. The gates of the P-channel type MOS transistor 37a and the N-channel pear transistor 37b are fast-connected to each other via the gate connection wiring 38, and the gate connection wiring 38 is connected to the input terminal wiring Vi. The source of the p-channel MOS transistor 37a is connected to the power terminal 323818 40 201242003. The drain of the Vdd°P channel type MOS transistor 37a and the drain of the N-channel transistor 37b are connected via the drain connection wiring 39. The source terminal wiring Vss is connected to the output terminal wiring Vo' and is connected to the source of the N-channel type MOS transistor 37b to be a ground potential. Figure 9B shows a side configuration diagram of a CMOS inverter circuit using this SGT. As shown in Fig. 9B, contact holes 4le, _ pillars 40a, contact holes 41a, contact holes 41b, and contact holes 4ld are arranged in a line. • The input terminal wiring Vi is used to turn on the electric signal (gate voltage) from the contact hole 41c. The power supply terminal wiring Vdd is a one for supplying a power supply voltage from the contact hole 4la. The ground terminal wiring Vss is a ground connection for connecting via the contact hole 41b. The output terminal wiring ν is a person for outputting a telecommunication signal from the connection hole 41d. The contact hole 41c is formed on the gate connection wiring 38 φ which connects the gates of the P channel type MOS transistor 37a and the N channel type MOS transistor 37b to each other. The Shi Xizhu 4〇a system constitutes a p-channel type MOS transistor 37a. Contact holes are formed on the mast 40a. The mast 40b constitutes an N-channel type MOS electroforming body 37b. The contact hole 41b is formed on the mast 4〇b. The contact hole 4ld is formed on the drain connection wiring 39 which interconnects the drain of the P channel type MOS transistor 37a and the drain of the N channel type M 〇 transistor 37b. Further, the input terminal is arranged so as to extend in a direction orthogonal to the row direction of the contact hole 41b and the contact hole 41d.
Vi、電源端子配線Vdd、接地端子配線vss、以及輪早 配線Vo(參照第9A圖)。 323818 201242003 第9C圖係為第9B圖之在線之剖面構造圖。於 下述,係參照第9C圖說明上述之形成CMOS反相器電路之 方法。於本實施形態中,CMOS反相器電路之形成步驟除了 於下述特別說明之情形以外,係與第1實施形態相同。 於本實施形態中,第9C圖所示之具有P通道型M0S 電晶體37a、N通道型M0S電晶體37b之CMOS反相器電路’ 係將第3B圖所示電路之N通道型M0S電晶體與P通道型 M0S電晶體的左右位置關係交換,惟係與第3A圖、第3B ® 圖所示之第3實施形態同樣地予以形成。於下述,與上述 實施形態共通或者對應之符號所示之部分係省略說明。 如第9C圖所示,於P通道型M0S電晶體37a中作為汲 極發揮功能之P+擴散層6b、P+多結晶矽層55b,及於n通 道型M0S電晶體37b中作為汲極發揮功能之N+擴散層6a、 N+多結晶矽層55a之下方形成有汲極連接配線39。N+多結 晶矽層55a及P+多結晶矽層55b之下表面係接合有汲極連 •接配線39°N+多結晶矽層55a及P+多結晶矽層55b係經由 汲極連接配線39而予^連接。並且,及極連接配線加係 、、玉由形成於絕緣層43b上,且貫通氧化;g夕層45之接觸孔 41d而連接於輸出端子配線層v〇。 再者’ P通道型M0S電晶體37a的閘極導體層16ba、 16bb,與N通道型M〇s電晶體37b的閘極導體層16紐、 16ab’係經由形成於絕緣層43a上之閘極連接配線犯而予 以連接。 再者’於成為閘極連接配線38、及p通道型電晶 323818 42 201242003 體37a的汲極之N+擴散層6a、p+型矽層nb上形成之金屬 配線層18b、成為N通道型M0S電晶體37b的汲極之矿擴 散層6a、形成於N+型矽層17a上之金屬配線18a、汲極連 接配線39係分別經由貫通氧化矽層45之接觸孔41c、 41a、41b、41d,而連接於形成在氧化矽層45上之輸入端 子配線層Vi、電源端子配線層Vdd、接地端子配線層Vss、 輸出端子配線層Vo。輸入端子配線層vi、電源端子配線層 Vdd、接地端子配線層Vss、與輸出端子配線層v〇係互相 • 平行地予以配線(參照第9C圖)。 依據本實施形態,於P通道型M0S電晶體37a中作為 没極發揮功能之P+擴散層6a、p+多結晶矽層55b,與N通 道型M0S電晶體37b中作為汲極發揮功能之N+擴散層6a、 N+多結晶矽層55a係在互相接近之狀態下連接,並藉由具 有低電阻之汲極連接配線39予以電性連接。依據此構造, 可得到實現高速且高積體度之具有CMOS反相器電路之積 φ 體電路。 (第10實施形態) 於下述,係參照第10A至第10D圖,說明有關本發明 第10實施形態之二段構造之CMOS反相器電路。於下述, 與上述第9實施形態共通或者對應之符號所示之部分及構 造係省略說明。 於第10A圖,係顯示本實施形態所使用之二段構造 CMOS反相器電路。Vi, power terminal wiring Vdd, ground terminal wiring vss, and wheel early wiring Vo (refer to Fig. 9A). 323818 201242003 Figure 9C is a cross-sectional structural diagram of Figure 9B. The method of forming the CMOS inverter circuit described above will be described with reference to Fig. 9C. In the present embodiment, the steps of forming the CMOS inverter circuit are the same as those in the first embodiment except for the case described below. In the present embodiment, the CMOS inverter circuit having the P-channel type MOS transistor 37a and the N-channel type MOS transistor 37b shown in Fig. 9C is an N-channel type MOS transistor of the circuit shown in Fig. 3B. The left-right positional relationship with the P-channel type MOS transistor is exchanged, and is formed in the same manner as the third embodiment shown in Figs. 3A and 3B ® . In the following, the portions indicated by the same or corresponding reference numerals in the above embodiments are omitted. As shown in Fig. 9C, the P+ diffusion layer 6b functioning as a drain in the P channel type MOS transistor 37a, the P+ polycrystalline germanium layer 55b, and the n-channel type MOS transistor 37b function as a drain. A drain connection wiring 39 is formed under the N+ diffusion layer 6a and the N+ polycrystalline germanium layer 55a. The surface of the N+ polycrystalline germanium layer 55a and the P+ polycrystalline germanium layer 55b is bonded to the surface of the bottom layer, and the drain line is connected. The 39°N+ polycrystalline germanium layer 55a and the P+ polycrystalline germanium layer 55b are connected via the drain connection wiring 39. connection. Further, the terminal connection wiring is applied, and the jade is formed on the insulating layer 43b, and is penetrated and oxidized. The contact hole 41d of the layer 45 is connected to the output terminal wiring layer v. Further, the gate conductor layers 16ba and 16bb of the 'P channel type MOS transistor 37a and the gate conductor layer 16 and 16ab' of the N channel type M 〇 transistor 37b pass through the gate formed on the insulating layer 43a. Connect the wiring and connect them. Further, the metal wiring layer 18b formed on the N+ diffusion layer 6a and the p+ type germanium layer nb of the drain of the gate connection wiring 38 and the p-channel type transistor 323818 42 201242003 body 37a becomes the N channel type MOS battery. The mine diffusion layer 6a of the drain of the crystal 37b, the metal wiring 18a formed on the N+ type germanium layer 17a, and the drain connection wiring 39 are connected via the contact holes 41c, 41a, 41b, and 41d penetrating the ruthenium oxide layer 45, respectively. The input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vo formed on the yttrium oxide layer 45. The input terminal wiring layer vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer v are mutually parallel-connected (see Fig. 9C). According to the present embodiment, the P+ diffusion layer 6a, the p+ polycrystalline germanium layer 55b functioning as a poleless function, and the N+ diffusion layer functioning as a drain in the N channel type MOS transistor 37b in the P channel type MOS transistor 37a. 6a, the N+ polycrystalline germanium layer 55a is connected in a state of being close to each other, and is electrically connected by a drain connection wiring 39 having a low resistance. According to this configuration, it is possible to obtain a product φ body circuit having a CMOS inverter circuit which realizes high speed and high integration. (Tenth Embodiment) A CMOS inverter circuit having a two-stage structure according to a tenth embodiment of the present invention will be described below with reference to Figs. 10A to 10D. In the following, portions and configurations denoted by the same or corresponding reference numerals to the ninth embodiment will be omitted. In Fig. 10A, a two-stage CMOS inverter circuit used in the present embodiment is shown.
如第10A圖所示,P通道型M0S電晶體37a、37c與N 323818 43 201242003 通道型M0S電晶體37b、37d係分別於第一段、第二段串聯 連接。第一段p通道型M0S電晶體37a及N通道型M0S電 晶體37b的各閘極,係經由閘極連接配線38a而連接於輸 入端子配線Vi。第二段P通道型M0S電晶體37c及N通道 型M0S電晶體37d的各閘極,係經由閘極連接配線38b而 連接於第一段的輸出端子配線Vo。第一段及第二段之p通 道型M0S電晶體37a、37c的各汲極係連接於電源端子配線 Vdd。第一段及第二段之P通道型M0S電晶體37b、37d的 • 各源極係連接於接地端子配線Vss。 於第一段中,P通道型M0S電晶體37a的汲極及N通 道型電晶體37b的汲極,係經由汲極連接配線39a而連接 於第一段的輸出端子配線Vo。 於第二段中,P通道型電晶體37c的汲極及N通道型 電晶體3 7d的沒極,係經由》及極連接配線3 9b而連接於輸 出端子配線Vout。 於第10B圖顯示此CMOS反相器電路之平面配置圖。 如第10B圖所示,形成於構成第一段P通道型M0S電 晶體37a之矽柱40a,及構成N通道型M0S電晶體37b之 矽柱40b之閘極連接配線38a上係形成有接觸孔41c,且 接觸孔41c係與輸入端子配線Vi連接。閘極連接配線38a 係將P通道型M0S電晶體37a及N通道型M0S電晶體37b 的閘極彼此予以連接。 於第一段中,P通道型M0S電晶體37a的汲極與N通 道型M0S電晶體37b的汲極,係經由第一段的汲極連接配 323818 44 201242003 線39a而連接。 形成於構成第二段P通道型M0S電晶體37c之矽柱 40c,及構成N通道型M0S電晶體37d之石夕柱40d之閘極連 接配線38b上係形成有接觸孔41e,且接觸孔41 e係連接 於第一段的輸出端子配線ν〇(參照第10A圖)。 第一段的汲極連接配線係經由接觸孔41e(參照第 10C圖)而與閘極速接配線38b連接。閘極連接配線38b係 將第二段的P通道型M0S電晶體37c與N通道型M0S電晶 • 體37d的閘極彼此予以連接。 於第一段及第二段的P通道型M0S電晶體37a、37c 的石夕柱40a、40c上係分別形成有接觸孔41a、41c。接觸 孔41a、41c係皆連接於電源端子配線層Vdd。 於第一段及第二段的P通道型M0S電晶體37b、37d 的矽柱40b、40d上係分別形成有接觸孔41b、41d。接觸 孔41b、41d係皆連接於接地端子配線詹Vss。 φ 於第二段的汲極連接配線39b上形成有接觸孔41亡, 且接觸孔41f係連接於輸出端子配線層Vout。 再者’輸入端子配線層Vi、電源端子配線層Vdd、接 地端子配線層Vss、輸出端子配線層v〇ut係互相平行地予 以配線。 第10C圖係為於第10B圖的c-C,線之剖面構造圖, 於下述’係參照第10C圖說明有關上述之二段構造之CMOS 反相器電路。於本實施形態中,二段構造之CMOS反相器電 路係為與第1實施形態以相同方式而形成者。 323818 45 201242003 如第10C圖所示’具有P通道型M0S電晶體37a、N 通道型M0S電晶體37b之CMOS反相器電路’係為於第3B 圖所示之CMOS反相器電路之N通道型M0S電晶體與P通道 型M0S電晶體之左右位置關係予以交換,惟係與第3A圖、 第3B圖所示之第3實施形態以相同方式而形成。 如第10C圖所示,於第一段中’圍繞於P通道型M0S 電晶體37a的石夕柱40a的外周之閘極導體層16ba、16bb, 與圍繞於N通道型M0S電晶體37b的矽柱40b的外周之閘As shown in Fig. 10A, the P-channel type MOS transistors 37a, 37c and the N 323818 43 201242003 channel type MOS transistors 37b, 37d are connected in series in the first stage and the second stage, respectively. The gates of the first-stage p-channel MOS transistor 37a and the N-channel MOS transistor 37b are connected to the input terminal wiring Vi via the gate connection wiring 38a. The gates of the second-stage P-channel type MOS transistor 37c and the N-channel type MOS transistor 37d are connected to the output terminal wiring Vo of the first stage via the gate connection wiring 38b. The respective drains of the p-channel type MOS transistors 37a and 37c of the first and second stages are connected to the power supply terminal wiring Vdd. The respective sources of the P-channel type MOS transistors 37b and 37d of the first and second stages are connected to the ground terminal wiring Vss. In the first stage, the drain of the P-channel type MOS transistor 37a and the drain of the N-channel type transistor 37b are connected to the output terminal wiring Vo of the first stage via the drain connection wiring 39a. In the second stage, the drain of the P-channel type transistor 37c and the step of the N-channel type transistor 3 7d are connected to the output terminal wiring Vout via the "" and the connection wiring 3 9b. A plan view of the CMOS inverter circuit is shown in Fig. 10B. As shown in FIG. 10B, the gate 40a constituting the first-stage P-channel type MOS transistor 37a and the gate connection wiring 38a constituting the mast 40b of the N-channel type MOS transistor 37b are formed with contact holes. 41c, and the contact hole 41c is connected to the input terminal wiring Vi. The gate connection wiring 38a connects the gates of the P channel type MOS transistor 37a and the N channel type MOS transistor 37b to each other. In the first stage, the drain of the P-channel type MOS transistor 37a and the drain of the N-channel MOS transistor 37b are connected via the first stage of the drain connection 323818 44 201242003 line 39a. A contact hole 41e is formed on the gate 40c constituting the second-stage P-channel type MOS transistor 37c, and the gate connection wiring 38b constituting the shi- ike column 40d of the N-channel type MOS transistor 37d, and the contact hole 41 is formed. The e is connected to the output terminal wiring ν〇 of the first stage (see Fig. 10A). The drain connection wiring of the first stage is connected to the gate quick-connect wiring 38b via the contact hole 41e (see Fig. 10C). The gate connection wiring 38b connects the second-stage P-channel type MOS transistor 37c and the gate of the N-channel type MOS transistor 37d to each other. Contact holes 41a and 41c are formed in each of the Shishi columns 40a and 40c of the P-channel type MOS transistors 37a and 37c of the first and second stages, respectively. The contact holes 41a and 41c are connected to the power supply terminal wiring layer Vdd. Contact holes 41b and 41d are formed in the masts 40b and 40d of the P-channel type MOS transistors 37b and 37d of the first and second stages, respectively. The contact holes 41b, 41d are all connected to the ground terminal wiring JVs. φ is formed in the second-stage drain connection wiring 39b with the contact hole 41 dead, and the contact hole 41f is connected to the output terminal wiring layer Vout. Further, the input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer v〇ut are wired in parallel with each other. Fig. 10C is a cross-sectional structural view taken along line c-C of Fig. 10B, and the CMOS inverter circuit having the above-described two-stage structure will be described with reference to Fig. 10C. In the present embodiment, the CMOS inverter circuit of the two-stage structure is formed in the same manner as in the first embodiment. 323818 45 201242003 As shown in FIG. 10C, the 'CMOS inverter circuit having the P channel type MOS transistor 37a and the N channel type MOS transistor 37b' is the N channel of the CMOS inverter circuit shown in FIG. 3B. The left-right positional relationship between the MOS transistor and the P-channel MOS transistor is exchanged, but is formed in the same manner as the third embodiment shown in Figs. 3A and 3B. As shown in Fig. 10C, in the first stage, the gate conductor layers 16ba, 16bb surrounding the outer circumference of the Shishi column 40a of the P channel type MOS transistor 37a, and the 围绕 surrounding the N channel type MOS transistor 37b. The outer perimeter of the column 40b
極導體層16aa、16ab係經由閘極連接配線38a而連接。於 形成於閘極連接配線38a上之氧化夕層45,係形成有與n 通道型M0S電晶體37b上的金屬配線層18a連接之接觸孔 41b。接觸孔41b係連接於n通道型M0S電晶體37b的接地 端子配線Vss。並且,就第1〇c圖而言,於第一氧化矽層3 與閘極連接配線38a之間係形成有氧化矽層43。 於第一段中,形成於P通道型M〇s電晶體37a的矽本 40a的下端部且作為汲極發揮功能之p+多結晶矽層5讥、 與形成於N通道型M0S電晶體的雜働的下端部』 作為沒極發揮功能之N+多結晶♦層脱,係經由屬於第一 段的沒極連接配線39a之金屬配線層42而互相電性連接 ff、’金屬配線層42和將第二段P通道型M0S電晶谱 接配線咖,係m::極彼此連接之間極键 接(參照第他圖、第=)化'層45之接觸孔叫 於第奴的P通道型M〇S電晶體37a的石夕柱術上係 323818 46 201242003 形成有接觸孔41a,且接觸孔41a係連接於電源端子配線 層Vdd。於第一段的N通道型M0S電晶體37b的石夕柱4〇b 上係形成有接觸孔41b ’且接觸孔41b係連接於接地端子 配線層Vss。 於第二段的汲極連接配線39b上係形成有接觸孔 41f,且於氧化矽層45上,於接觸孔41f係連接有輸出端 子配線層Vout(參照第10A圖、第10B圖)。 再者,輸入端子配線層Vi、電源端子配線層Vdd、接 • 地端子配線層Vss、輸出端子配線層Vout係互相平行地予 以配線(參照第10B圖)。 依據本實施形態,作為第一段P通道型M0S電晶體37a 及N通道型M0S電晶體37b的汲極連接配線39a發揮功能 之金屬配線層42,係經由接觸孔41e而直接連接於第二段 P通道型M0S電晶體37c及N通道型M0S電晶體37d的間 極連接配線38b。就此構成而言,係無須經由形成於氧化 φ 矽層45之接觸孔而將金屬配線層42(39a)拉高至與輪入端 子配線層vi、電源端子配線層Vdd、接地端子配線層Vss、 輸出端子配線層V〇ut(參照第10B圖)同層,故可實現電路 元件之南積體度化。 (第11實施形態) 於下述,係參照第11A圖、第11B圖說明本發明第 實施形態之將遮罩對準標記形成於半導體基板之方法。 第11A圖所不之步驟係為對應於第1實施形態之第1H 圖所示之㈣者。其他步驟除了於下述制說明之情形 323818 47 201242003 外,係與第1實施形態相同。 如第11A圖所示,於第二半導體基板9上係形成有第 二氧化矽層8。於第2氧化矽層8上係依序形成有第一氧 化矽層3、第一半導體基板1。 如第11A圖所示,於第一半導體基板1上的預定位置, 係設定用於遮罩對準之遮罩對準標記形成區域47a、及為 了形成電路之電路形成區域47b。The pole conductor layers 16aa and 16ab are connected via the gate connection wiring 38a. The oxidized layer 45 formed on the gate connection wiring 38a is formed with a contact hole 41b connected to the metal wiring layer 18a on the n-channel type MOS transistor 37b. The contact hole 41b is connected to the ground terminal wiring Vss of the n-channel type MOS transistor 37b. Further, in the first 〇c diagram, a ruthenium oxide layer 43 is formed between the first ruthenium oxide layer 3 and the gate connection wiring 38a. In the first stage, the p+ polycrystalline germanium layer 5形成 which is formed at the lower end of the sample 40a of the P channel type M〇s transistor 37a and functions as a drain, and the impurity formed in the N channel type MOS transistor The lower end portion of the crucible is electrically connected to the metal wiring layer 42 of the first-stage non-polar connection wiring 39a, and is electrically connected to the metal wiring layer 42 and the metal wiring layer 42. The two-stage P-channel type M0S electro-crystal spectrum is connected to the wiring coffee, and the m:: poles are connected to each other by poles (refer to the figure of the second figure, the =). The contact hole of the layer 45 is called the P-channel type M of the first slave. The 夕S-electrode 37a of the 〇S transistor 37a is 323818 46 201242003 A contact hole 41a is formed, and the contact hole 41a is connected to the power terminal wiring layer Vdd. A contact hole 41b' is formed on the Shishizhu 4〇b of the N-channel type MOS transistor 37b of the first stage, and the contact hole 41b is connected to the ground terminal wiring layer Vss. A contact hole 41f is formed in the second-stage drain connection wiring 39b, and an output terminal wiring layer Vout is connected to the contact hole 41f on the yttria layer 45 (see FIGS. 10A and 10B). In addition, the input terminal wiring layer Vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss, and the output terminal wiring layer Vout are wired in parallel with each other (see FIG. 10B). According to the present embodiment, the metal wiring layer 42 functioning as the first-stage P-channel MOS transistor 37a and the drain connection wiring 39a of the N-channel MOS transistor 37b is directly connected to the second segment via the contact hole 41e. The inter-pole connection wiring 38b of the P-channel type MOS transistor 37c and the N-channel type MOS transistor 37d. With this configuration, it is not necessary to raise the metal wiring layer 42 (39a) to the wheel terminal wiring layer vi, the power supply terminal wiring layer Vdd, the ground terminal wiring layer Vss via the contact holes formed in the oxidized φ layer 45, Since the output terminal wiring layer V〇ut (see FIG. 10B) is in the same layer, the southerness of the circuit elements can be realized. (Eleventh Embodiment) A method of forming a mask alignment mark on a semiconductor substrate according to the first embodiment of the present invention will be described below with reference to Figs. 11A and 11B. The steps which are not shown in Fig. 11A are those corresponding to (4) shown in Fig. 1H of the first embodiment. The other steps are the same as in the first embodiment except for the case of the following description 323818 47 201242003. As shown in Fig. 11A, a second hafnium oxide layer 8 is formed on the second semiconductor substrate 9. A first ruthenium oxide layer 3 and a first semiconductor substrate 1 are sequentially formed on the second hafnium oxide layer 8. As shown in Fig. 11A, at a predetermined position on the first semiconductor substrate 1, a mask alignment mark forming region 47a for mask alignment and a circuit forming region 47b for forming a circuit are provided.
於第11A圖所示之遮罩對準標記形成區域47a中,於 • 第一氧化矽層3係形成有氧化矽層去除區域48(參照第1B 圖)。於氧化矽層去除區域48的中央部係以積層狀態形成 有標記金屬層49a、標記多結晶矽層49b。 氧化矽層去除區域48係如第1B圖所示,係與形成有 固態影像感測裝置的晝素之接面電場效果電晶體的源極或 者汲極之孔4同時形成。 另一方面,如第11A圖所示,於電路形成區域47b的 φ 中央部係以積層狀態形成有金屬層7、N+多結晶矽層5a(參 照第1H圖)。 由第11A圖所示之狀態,藉由對遮罩對準標記形成區 域47a之第一半導體基板1進行蝕刻,而如第11B圖所示 於預定之位置形成遮罩對準孔50。藉此,標記金屬層49a、 標記多結晶矽層49b及氧化矽層去除區域48係通過遮罩對 準孔50而露出。 接著,將於遮罩對準孔50内之標記金屬層49a、標記 多結晶矽層49b及氧化矽層去除區域48内中之任一者,作 323818 48 201242003 為成為^準之遮罩對準標記,並進行光遮罩之遮罩對準。 接著,將光遮罩重疊於形成有光阻劑(photoresist) 之區域並照射光束,從而轉錄電路。 相對於此,於未存在有遮罩對準孔5G時,係合於第一 半導體基板1上被覆光阻劑,且將付於货 ,,θ 饥復尤阻劑,且將位於第一半導體基板工 的下方之標記金屬層49a、標記多結日W層49b、氧化石夕層 去除區域48之任-者作為標記而進行遮罩對準。此情形In the mask alignment mark forming region 47a shown in Fig. 11A, a yttrium oxide layer removing region 48 is formed in the first yttria layer 3 (see Fig. 1B). In the central portion of the yttrium oxide layer removing region 48, a marking metal layer 49a and a marking polycrystalline ruthenium layer 49b are formed in a laminated state. The ruthenium oxide layer removal region 48 is formed at the same time as the source or the drain hole 4 of the junction electric field effect transistor of the halogen formed with the solid-state image sensing device as shown in Fig. 1B. On the other hand, as shown in Fig. 11A, the metal layer 7 and the N+ polycrystalline germanium layer 5a are formed in a layered state in the central portion of φ of the circuit formation region 47b (refer to Fig. 1H). In the state shown in Fig. 11A, the first semiconductor substrate 1 of the mask alignment mark forming region 47a is etched, and the mask alignment hole 50 is formed at a predetermined position as shown in Fig. 11B. Thereby, the mark metal layer 49a, the mark polycrystalline germanium layer 49b, and the ruthenium oxide layer removal region 48 are exposed through the mask alignment holes 50. Next, any one of the mark metal layer 49a, the mark polycrystalline germanium layer 49b, and the yttrium oxide layer removal region 48 in the mask alignment hole 50 will be used as a mask alignment for 323818 48 201242003. Mark and align the mask with the light mask. Next, the light mask is superimposed on the region where the photoresist is formed and irradiated with the light beam, thereby dubbing the circuit. On the other hand, when the mask alignment hole 5G is not present, the photoresist is coated on the first semiconductor substrate 1 and will be applied to the product, and the θ is a resist, and will be located in the first semiconductor. The mark metal layer 49a, the mark multi-junction W layer 49b, and the oxidized stone layer removal region 48 under the substrate are masked and aligned. This situation
時,由於第一半導體基板1係由矽所構成而對於藍光、紫 外線光之吸收較大’故在遮罩對準上係使用穿透 :::=者紅外線光。因此,標記像之解析度係下降 並使遮罩對準精度下降。 千 域47相本實施形態,於遮罩對準標記形成區 層,故可於棹光、紫外線光之吸收較大之石夕 層去除區域標記多結㈣49b、氧切 之桿記像,_。因此,可_高解析度 ^⑽而可提高料對準精度。 再者’依據本實施形態,係於氧 上直接形成光阻劑,故可提高第π 去除^ 48 層5a及石夕柱^之定位精度。 乡、,曰曰矽 示之=較係參照第12圖,並與第11A圖至第⑽圖所 交而針對使光罩的遮罩對準精声 =:形二= 係與第11實施形態相同。 323818 如第U圖所示’係將藍光或者紫外線光可穿透之透明 49 201242003 絕緣層50a埋入第11B圖所示之遮罩對準孔50内。於此透 明絕緣層50a係使用Si〇2膜。 之後,係藉由CMP而將該Si〇2膜及第一半導體基板1 的表面予以平坦化。由此遮罩對準孔50的Si〇2膜而來之 埋入步驟,係參照第II圖,而在形成有接面電場效果電晶 體之矽柱la形成之前予以進行。 依據此變形例,藉由遮罩對準孔50内之透明絕緣層 50a,係可將被覆遮罩對準標記形成區域47a及電路形成區 # 域47b之光阻劑薄化且均勻地予以形成,故與第11實施形 態比較,可使遮罩對準精度更進一步提升。 (第12實施形態) 於下述,係參照第13A圖、第13B圖說明本發明第12 實施形態之半導體裝置的製造方法。 第13A圖係為對應於第1實施形態之第1B圖所示之步 驟者。其他步驟除了於下述特別說明之情形以外,係與第 φ 1實施形態相同。 於本實施形態中,就第13A圖所示之步驟而言,係於 第一半導體基板1的預定深度,形成用以將此第一半導體 基板1分離為上下二個部分之分離層2,並在第一半導體 基板1上形成屬於絕緣體之第一氧化矽層3。 接著,如第13A圖所示,係於第一氧化矽層3中,藉 由去除預定區域之氧化矽(Si〇2)而形成孔4。 接著,如第13A圖所示,以填埋此孔4(氧化矽層去除 區域48)之方式,於第一氧化矽層3及第一半導體基板1 323818 50 201242003 上,藉由CVD法而形成多結 並未摻雜有施體雜質或者受體雜^。此多結曰曰石夕層111 :著’如第⑽圖所示,於多 CVD法及施體雜質之離 上鞛由 多結晶矽層106。 y雜而形成摻雜有施體雜質之r 接著,係於此N+多結晶石夕層106上與第1D圖所示之 步驟相同地形成金屬層7。 ' ’ _ 丹考與第1E圖至第II 斛 不之步驟相同地形成半導體裝置。 依據本實施形態,於篦一 μ 1Πβ 、第+導體基板1與Ν+多結晶矽 :之間’係形成有未摻雜有雜質之多結 ==有此多結晶…卜而於藉由心圖所示之步 糖多結料層簡作為擴散源之情形下,可 調整朝向石夕柱la之施體雜質之擴散深度。 例如’於第1G11所示之步驟中,在第一半導體基 上,預想有由於接著第二半導體 土 干等骽基板9及第二氧化矽層8 後之處:的條件,而使N+擴散層擴散成超過所期 望之深度讀形,為了抑制雜散之深度係為有效。 爲接另面’使文體雜質擴散時,亦可使用p+多結晶矽 雜哲夕户砝曰办既 6。於未摻雜有施體雜質或者受體 質之〜4層111 +,即便未積極地摻雜雜質而含有 微量的雜質’/林會影響本實施形態之效果。 (第13實施形態) 於下述,係參照第14A圖、第14B圖、第腿圖、第⑽ 圖’說明本發明第13實施形態之半導體裝置之製造方法。 323818 51 201242003 第14A圖係為對應於第1實施形態之第1C圖所示之 步驟者’第14B圖係為對應於第11(圖所示之步驟者。其他 步驟除了於下述特別說明之情形以外,係與第1實施形態 相同。 就本實施形態而言,係如第14A圖所示,於第一半導 體基板1的表面對應於第1B圖的孔4之區域4a的周邊, 藉由 STI(Shall〇w Trench Isolation,淺溝渠分離)法形At this time, since the first semiconductor substrate 1 is composed of germanium and absorbs light of blue light and ultraviolet light is large, it is used to penetrate :::= infrared light in the mask alignment. Therefore, the resolution of the mark image is lowered and the mask alignment accuracy is lowered. In the present embodiment, the mask is formed in the mask alignment mark layer, so that the multi-junction (4) 49b and the oxygen-cut rod image, _ can be marked in the Shih-shi layer removal region where the absorption of the ray and the ultraviolet light is large. Therefore, the material alignment accuracy can be improved by high resolution ^(10). Further, according to the present embodiment, the photoresist is directly formed on the oxygen, so that the positioning accuracy of the π-th removing layer 48a and the stone pillar can be improved.乡,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, the same. 323818 As shown in Fig. U, the blue or ultraviolet light is transparent. 49 201242003 The insulating layer 50a is buried in the mask alignment hole 50 shown in Fig. 11B. Here, the transparent insulating layer 50a is made of a Si 2 film. Thereafter, the Si〇2 film and the surface of the first semiconductor substrate 1 are planarized by CMP. The embedding step of masking the Si〇2 film of the alignment hole 50 is performed before referring to Fig. II, before the formation of the pillars la having the electric field effect electric crystals formed thereon. According to this modification, by masking the transparent insulating layer 50a in the alignment hole 50, the photoresist of the cover mask alignment mark forming region 47a and the circuit formation region #47b can be thinned and uniformly formed. Therefore, compared with the eleventh embodiment, the mask alignment accuracy can be further improved. (Twelfth Embodiment) A method of manufacturing a semiconductor device according to a twelfth embodiment of the present invention will be described with reference to Figs. 13A and 13B. Fig. 13A is a diagram corresponding to the steps shown in Fig. 1B of the first embodiment. The other steps are the same as those of the first φ 1 embodiment except for the case described below. In the present embodiment, in the step shown in FIG. 13A, a separation layer 2 for separating the first semiconductor substrate 1 into upper and lower portions is formed at a predetermined depth of the first semiconductor substrate 1, and A first ruthenium oxide layer 3 belonging to an insulator is formed on the first semiconductor substrate 1. Next, as shown in Fig. 13A, in the first yttria layer 3, the holes 4 are formed by removing yttrium oxide (Si 〇 2) in a predetermined region. Next, as shown in FIG. 13A, the hole 4 (the yttrium oxide layer removing region 48) is filled in the first yttria layer 3 and the first semiconductor substrate 1 323818 50 201242003 by a CVD method. The multijunction is not doped with donor impurities or acceptor impurities. The multi-corrugated layer 111 is formed by a polycrystalline germanium layer 106 on the surface of the multi-CVD method and the donor impurity as shown in the figure (10). y is formed to be doped with the donor impurity. Next, the metal layer 7 is formed on the N+ polycrystalline layer 106 in the same manner as the step shown in Fig. 1D. ' ’ _ Dan Kao forms a semiconductor device in the same manner as steps 1E to II. According to the present embodiment, a plurality of junctions are formed between the first layer of the substrate, the ++ conductor substrate 1 and the Ν+polycrystalline lanthanum: an undoped impurity is formed. In the case where the multi-layered layer of the sugar step shown in the figure is used as a diffusion source, the diffusion depth of the donor impurity toward the Shixi column la can be adjusted. For example, in the step shown in the first G11, on the first semiconductor substrate, it is expected that the N+ diffusion layer is formed by the condition that the second semiconductor soil is dried, such as the substrate 9 and the second hafnium oxide layer 8. Diffusion into a desired depth reading is effective in order to suppress the depth of the spurs. In order to spread the surface of the body, it is also possible to use p+ polycrystalline 矽. In the case of ~4 layers of 111 + which are not doped with donor impurities or acceptor substances, even if the impurities are not actively doped, a small amount of impurities are contained, and the effect of this embodiment is affected. (Thirteenth Embodiment) A method of manufacturing a semiconductor device according to a thirteenth embodiment of the present invention will be described below with reference to Figs. 14A, 14B, a leg diagram, and a (10) diagram. 323818 51 201242003 Fig. 14A is a diagram corresponding to the step shown in Fig. 1C of the first embodiment. Fig. 14B corresponds to the eleventh step (the steps shown in the figure. The other steps are specifically described below. The present embodiment is the same as the first embodiment. In the present embodiment, as shown in FIG. 14A, the surface of the first semiconductor substrate 1 corresponds to the periphery of the region 4a of the hole 4 of the first B-Fig. STI (Shall〇w Trench Isolation)
成氧化石夕層3a。具體而言,例如,首先,對區域4a的周 邊之石夕半導體基板1進行蝕刻。接著,藉由CVD(Chemical Vapor Deposition)法堆積氧化矽層,並進行CMp(Chemical Mechanical Pol ishing)將表面予以平滑化而形成第一氧 化石夕層3a。此料㈣基板丨之_,比祕氮化石夕層作 為遮罩並朝向垂直方向進行,係以形成錐形(taper)之方式 進行較佳。藉此’可使第—氧切層3a的底部比起區域 4a之㈣導體絲丨的表面更位於#導體基板丨的内側 之位置。之後,形成含有施體雜質之多結㈣層^(對應 於第1C圖的多結晶矽層5a)。 之後,藉由經過與第1D圖至第圖所示之步驟相同之 步驟,而形成帛14B圖赫之晝素構造。若將第ικ圖盘第 14Β圖進行比較,則第14Β圖與第1Κ圖係有以下 (1)相對於在第14Β圖中,r多結晶發居 _ ° 曰夕層5aa、金屬層7aa 係形成為平坦狀,在第1K圖中,if多結晶石夕層5a、 金屬層7係形成為朝上方之凸狀。 ⑵相對於在第则中’第一氧化石夕層3“斤圍繞之N+ 323818 52 201242003 擴散層6aa係形成為逆梯形,於第1K圖中,Ν+擴散層 5a係沿著第一氧化矽層3的側面而形成為梯形。 (3)相對於在第14B圖中,閘極導體層llaa、llbb係與 第一氧化矽層3a接觸,於第1K圖中,閘極導體層 11a、lib係與第一氧化矽層3分離。 藉由(1)至(3)之不同點,依據本實施形態係可得到下 述優點。亦即, (1) N+擴散層6aa係為藉由來自NT多結晶矽層5aa之熱擴 散而形成,且於熱擴散的熱處理之前為未存在有施體 雜質之層,並可使其具有與第12實施形態的第13B 圖之多結晶矽層111相同之功能。因此,即便未使用 多結晶矽層111,亦可形成擴散層端位於閘極導體層 llaa、llbb的下部位置之N+擴散層6aa。 (2 )對齊於N+擴散層6aa之位置而以钱刻形成石夕柱1 a時, 即便$夕柱la的侧面係偏向N+擴散層6aa的内側,亦 由於第一氧化矽層3a係屬於具有厚度之N+擴散層, 或者朝内側萎縮而形成,故矽蝕刻會難以到達金屬層 7aa(就第1K圖而言,於矽柱la從N+多結晶矽層5a 偏離位置時,由於N+多結晶石夕層5a係直接露出,故 容易地蝕刻至N+多結晶矽層5a與存在於其下方之金 屬層7)。 (3)由於在閘極導體層llaa、llbb與第一氧化矽層3a之 間無須形成間隙,故會容易地在閘極導體層llaa、 llbb及第一氧化矽層3a上形成閘極導體配線層。亦 323818 53 201242003 即,就第ικ圖而言,為了減低洩漏電流,而必須將 N+擴散層6a與P層矽層30之PN接合之邊界面的位置 形成於矽柱la之内部,故必須使第一氧化矽層3與 閘極導體層11a、lib分離。 茲一面參照第15A圖、第15B圖,一面說明第13實施 形態之半導體裝置的別的製造方法。第15A圖係為對應於 第1實施形態之第1C圖所示之步驟者,而第15B圖係為對 應於第1K圖所示之步驟者。其他步驟除了於下述特別說明 • 之情形以外,係與第1實施形態相同。 就本實施形態而言,係如第15A圖所示,藉由L0C0S (Local Oxidation of Silicon,石夕局部氧化)法而於區域 4a的周邊區域形成第一氧化層3b。就此LOCOS法而言,係 於區域4a上形成較薄之氧化石夕層與氮化石夕層,接著藉由進 行氧化處理,而形成氧化矽層3b。之後,經過與第1C圖 相同之步驟而形成N+多結晶矽層5bb。 φ 之後藉由經過第1D圖至第1K圖所示之步驟,可得到 第15B圖所示之晝素構造。若將第1K圖與第15B圖進行比 較,則第15B圖與第1K圖係有以下二點不同。 (1) 相對於在第15B圖中,第一氧化矽層3a所圍繞之N+ 擴散層6aa係與第14B圖相同形成為逆梯形,於第1K 圖中,N+擴散層5a係沿著第一氧石夕層3的側面而形成 為梯形。 (2) 相對於在第15B圖中,閘極導體層llaa、llbb係與 第一氧化矽層3b接觸,於第1K圖中,閘極導體層11a、 323818 54 201242003 lib係與第一氧化矽層3分離。 藉由此(1)至(3)之不同點,依據本實施形態,係有如 下述之優點。亦即, (1) 與第14B圖相同,r擴散層6bb係為藉由來自r多結 晶石夕層5bb之熱擴散而形成,且於熱擴散的熱處理之 前為未存在有施體雜質之層,並可使其具有與說明第 12實施形態之第13B圖之多結晶矽層111相同之功 能。因此,即便未使用多結晶矽層111,亦可形成擴 散層端部位於閘極導體層llaa、llbb的下方位置之 N+擴散層6bb。 (2) 與第14B圖相同,對齊於N+擴散層6bb之位置而以蝕 刻形成矽柱la時,即便矽柱la的側面係偏向N+擴散 層6bb的内側,亦由於第一氧化矽層3b係屬於具有 厚度之N+擴散層6bb,或者朝内側萎縮而形成,故矽 I虫刻會難以到達金屬層7aa。 (3) 與第14B圖相同,由於在閘極導體層llaa、llbb與 第一氧化矽層3a之間無須形成間隙,故在閘極導體 層llaa、llbb及第一氧化矽3b的上方形成閘極導體 層配線係容易化。 (第14實施形態) 於下述,係參照第16A、第16B圖,說明本發明第14 實施形態之半導體裝置的製造方法。本實施形態之特徵點 在於,在矽柱la的底部形成二個部位以上之雜質區域。 於第16A圖係顯示相當於第1C圖之剖面構造圖。將第 323818 55 201242003 一孔4bl、第二孔4b2形成於第一氧化矽層3b之相當於第 1B圖的孔4之區域,而使P型矽半導體基板1表面露出。 之後,將受體離子(acceptor ion)(此時為侧B離子)摻雜 至含有第一孔4bl之第一區域B1而形成P+多結晶矽層 5bl,並形成將施體離子(donor ion)(此時為珅(As)離子) 摻雜至含有第二孔之第二區域B2之N+多結晶矽層5b。此 受體離子及施體離子之摻雜,係以在其中一方的離子摻雜 結束後進行另一方之離子摻雜之方式進行。 • 接著,如第16B圖所示,形成在P+多結晶矽層5bl、 N+多結晶矽層5b2上被覆金屬層,且圍繞孔4bl、4b2的周 邊之第一氧化矽層3b之P+多結晶矽層5bbl、金屬層7bl 與N+多結晶矽層5bb2、金屬層7b2。 接著,藉由經過與第1F圖至第1K圖相同之步驟,如 第16C圖所示從p+多結晶矽層5bbl熱擴散而形成之P+擴 散層6bl ’及從N+多結晶矽層5bb2熱擴散而形成之N+擴散 φ 層6b2係形成於矽柱ia之底部。 於如此之固態影像感測裝置中,P+擴散層6bl、P+多結 晶石夕層5bbl係作為訊號讀出用接面電場效果電晶體的汲 極發揮功能,且N+擴散層6b2、N+多結晶矽層5bb2係作為 用以去除儲存於由N型矽層12a、12b及P型矽層30所構 成的光電二極體之電訊號之汲極發揮功能。並且,p+多結 晶石夕層5bbl、N+多結晶矽層5bb2係連接於金屬層7bl、 7b2,並配線至外部電路。據此,係減低形成於矽柱h之 從晝素至外部電路為止之訊號讀出線及訊號電荷去除線的 323818 56 201242003 電阻,而實現固態影像感測裝置的高速驅動。 再者’依據本實施形態’係與上述步驟同樣地,可於 石夕柱la的底部形成二個部位以上之雜質區域。再者,本實 施形態當然可適用於本實施形態以外之實施形態,例如, 將固想影像感測裝置以外之電路元件形成於矽柱之半 導體裝置的製造方法。 並且,就第1實施形態及與第i實施形態關聯之實施 形態而言,係藉由熱氧化、正極氧化、或者CVD(Chemical • VaP〇rD印0sition)等形成第1氧化矽層3,第1氧化矽層。 係不限於此,亦可藉由與氮化矽(SiN)膜等其他絕緣膜之多 層構造予以構成。 並且,本發明係不受在上述第丨至第12實施形態說明 之實施形態所限定,而可有各種變形。 就上述實施形態而言,第一半導體基板1係設為p型 導電型。係不限於此,第一半導體基板1亦可為屬於本徵 φ 半導體之i型(本徵(intrinsic)型)。再者,亦可因應形成 於第一半導體基板1之電路元件,而設為N型導電型。 同樣地,就使用第3B圖、第4圖、第9C圖、第i〇c 圖之實施形態而言,係設為P通道型M0S電晶體的通道係 形成為N型矽層30a,而N通道型M0S電晶體的通道係形 成為P型矽層30,惟係皆可形成為屬於本徵半導體之土型 石夕。 就上述實施形態而言,於第1K圖中,在形成於石夕柱la 之固態影像感測裝置的晝素中,雖將N+多結晶矽層5a、金 323818 57 201242003 屬層7、N+擴散層6a設為個別的材料層,惟亦可根據第ID 圖至第1K圖之間之步驟所進行之熱處理,藉由金屬層7的 金屬材料(Ni、W等)與N+多結晶矽層5a或者與N+擴散層6a 的一部分之反應,而將金屬層7、N+多結晶碎層5a、或者N+ 擴散層6a的全部或者一部分變化為石夕化層(NiSi、WSi等)。 再者,亦可根據第1L圖、第2圖、第3B圖、第4圖、第 8A圖、第8B圖、第8C圖、第9C圖、第10C圖、第11B圖、 第12圖所示之各步驟所進行之熱處理,藉由金屬層7的金 # 屬材料與N+多結晶矽層5a或者與N+擴散層6a的一部分之反 應,而將金屬層7、N+多結晶石夕層5a、或者N+擴散層6a的全 部或者一部分變化為矽化層(NiSi、WSi等)。根據此等,亦 可得到成為訊號線(電性配線)之部分的電阻值下降之功效。 就上述實施形態而言,如第1H圖所示,從將高濃度氫 離子(H+)離子注入至第1半導體基板1的預定深度而形成 之分離層2,藉由400至60(TC之熱處理而將第一半導體基 ^ 板1分離為上下,並將第一半導體基板1薄化至預定厚度。 係不限於此,亦可採用例如非專利文獻3所示之在分離層 2形成多孔質層之方法,而將第一半導體基板1薄化至預 定厚度。其他,亦可採用將第一半導體基板1分離為上下 之方法。 再者,第二半導體基板9係可為與矽不同種之半導 體,例如,碳化矽(SiC)等化合物半導體、絕緣體或者有機 樹脂體。依據此構成,亦可保持形成於第一半導體基板1 之電路元件。 323818 58 201242003 再者’第二氧化石夕層8、氧化石夕層2〇、29、45亦可為 與氮化矽(SiN)膜等其他絕緣膜之多層構成。 再者’N+多結晶碎層5a、55a、p+多結晶梦層娜係藉 由離子摻雜予以形成。係不限於此,亦可藉由㈣之熱擴 政此入雜質之經掺雜多結晶石夕層而形成。如此之經摻雜 多結晶梦層亦同樣可適驗本說时之其他實施形態。 再者’於第1B圖中,多結晶矽層5係藉由CVD法予以Oxidized stone layer 3a. Specifically, for example, first, the stellite semiconductor substrate 1 on the periphery of the region 4a is etched. Next, the ruthenium oxide layer is deposited by a CVD (Chemical Vapor Deposition) method, and the surface is smoothed by CMp (Chemical Mechanical Policing) to form the first oxidized layer 3a. This material (4) substrate 丨, which is a mask and is oriented in a vertical direction, is preferably formed in the form of a taper. Thereby, the bottom of the first oxygen-cut layer 3a can be positioned closer to the inner side of the #conductor substrate than the surface of the (four) conductor wire of the region 4a. Thereafter, a multi-junction (four) layer containing a donor impurity (corresponding to the polycrystalline germanium layer 5a of Fig. 1C) is formed. Thereafter, the enthalpy structure of 帛14B is formed by the same steps as those shown in Fig. 1D to Fig. If the 14th map of the 1st map is compared, the 14th and 1st maps have the following (1). In contrast, in the 14th map, r polycrystals grow in the _ ° 曰 layer 5aa, the metal layer 7aa In the first K-figure, the if polycrystalline litchi layer 5a and the metal layer 7 are formed in a convex shape upward. (2) The diffusion layer 6aa is formed as an inverse trapezoid with respect to N+ 323818 52 201242003 in the first step of 'the first oxidized stone layer 3'. In the 1K figure, the Ν+ diffusion layer 5a is along the first ruthenium oxide layer. The side surface of the layer 3 is formed in a trapezoidal shape. (3) With respect to the 14B, the gate conductor layers 11aa and 11bb are in contact with the first hafnium oxide layer 3a, and in the 1Kth diagram, the gate conductor layers 11a and 11b It is separated from the first ruthenium oxide layer 3. By the difference of (1) to (3), according to the present embodiment, the following advantages can be obtained. That is, (1) the N+ diffusion layer 6aa is derived from NT The polycrystalline germanium layer 5aa is formed by thermal diffusion, and is a layer in which no donor impurity is present before heat treatment of thermal diffusion, and may have the same layer as the polycrystalline germanium layer 111 of the 13th embodiment of the twelfth embodiment. Therefore, even if the polycrystalline germanium layer 111 is not used, the N+ diffusion layer 6aa whose diffusion layer ends are located at the lower positions of the gate conductor layers 11aa and 11bb can be formed. (2) Aligned with the position of the N+ diffusion layer 6aa with money When the formation of Shi Xizhu 1 a, even if the side of the 夕 la la is biased toward the inside of the N+ diffusion layer 6aa, The ruthenium oxide layer 3a belongs to the N+ diffusion layer having a thickness or is formed by atrophy toward the inner side, so that the ruthenium etching hardly reaches the metal layer 7aa (in the case of the 1Kth diagram, the la column la deviates from the N+ polycrystalline ruthenium layer 5a) In the position, since the N+ polycrystalline layer 5a is directly exposed, it is easily etched to the N+ polycrystalline germanium layer 5a and the metal layer 7) present thereunder. (3) Due to the gate conductor layers 11aa, 11bb and There is no need to form a gap between the first hafnium oxide layer 3a, so that a gate conductor wiring layer can be easily formed on the gate conductor layers 11aa, 11bb and the first hafnium oxide layer 3a. Also 323818 53 201242003, that is, the ικ图In order to reduce the leakage current, the position of the boundary surface of the PN junction of the N+ diffusion layer 6a and the P layer 矽 layer 30 must be formed inside the column la, so the first yttria layer 3 and the gate conductor layer must be made. 11a and lib are separated. Another manufacturing method of the semiconductor device according to the thirteenth embodiment will be described with reference to FIGS. 15A and 15B. Fig. 15A is a step corresponding to the first embodiment of the first embodiment. And Figure 15B corresponds to the one shown in Figure 1K. The other steps are the same as those in the first embodiment except for the case of the following description. In the present embodiment, as shown in Fig. 15A, the local Oxidation of Silicon, Shi Xi The local oxidation method forms the first oxide layer 3b in the peripheral region of the region 4a. In the LOCOS method, a thin oxide layer and a nitride layer are formed on the region 4a, followed by oxidation treatment. The ruthenium oxide layer 3b is formed. Thereafter, the N+ polycrystalline germanium layer 5bb is formed through the same steps as in the first panel. After φ, the steps shown in Fig. 15D to Fig. 1K are obtained, whereby the halogen structure shown in Fig. 15B can be obtained. If the 1Kth image and the 15th image are compared, the 15Bth image and the 1stKth image are different from the following two points. (1) With respect to Fig. 15B, the N+ diffusion layer 6aa surrounded by the first hafnium oxide layer 3a is formed into an inverse trapezoid as in the case of Fig. 14B, and in the 1Kth diagram, the N+ diffusion layer 5a is along the first The side surface of the oxygen stone layer 3 is formed in a trapezoidal shape. (2) With respect to Fig. 15B, the gate conductor layers 11aa, 11bb are in contact with the first hafnium oxide layer 3b, and in the 1Kth diagram, the gate conductor layers 11a, 323818 54 201242003 lib and the first hafnium oxide Layer 3 is separated. According to the difference between (1) and (3), the present embodiment has the following advantages. That is, (1) as in Fig. 14B, the r diffusion layer 6bb is formed by thermal diffusion from the r polycrystal layer 5bb, and is a layer in which no donor impurity exists before the heat treatment of thermal diffusion. Further, it has the same function as that of the polycrystalline germanium layer 111 of the 13th embodiment of the twelfth embodiment. Therefore, even if the polycrystalline germanium layer 111 is not used, the N+ diffusion layer 6bb in which the end portions of the diffusion layer are located below the gate conductor layers 11aa and 11bb can be formed. (2) Similarly to Fig. 14B, when the column la is formed by etching at the position of the N+ diffusion layer 6bb, even if the side surface of the column la is biased toward the inner side of the N+ diffusion layer 6bb, the first yttrium oxide layer 3b is also It belongs to the N+ diffusion layer 6bb having a thickness, or is formed by atrophy toward the inner side, so that it is difficult to reach the metal layer 7aa. (3) As in the case of Fig. 14B, since no gap is formed between the gate conductor layers 11aa, 11bb and the first tantalum oxide layer 3a, gates are formed above the gate conductor layers 11aa, 11bb and the first tantalum oxide 3b. The pole conductor layer wiring system is easy to handle. (Fourteenth Embodiment) A method of manufacturing a semiconductor device according to a fourteenth embodiment of the present invention will be described below with reference to Figs. 16A and 16B. The present embodiment is characterized in that two or more impurity regions are formed at the bottom of the mast. Fig. 16A shows a cross-sectional structural view corresponding to Fig. 1C. The 323818 55 201242003 one hole 4b1 and the second hole 4b2 are formed in a region of the first yttria layer 3b corresponding to the hole 4 of the first B-layer, and the surface of the P-type germanium semiconductor substrate 1 is exposed. Thereafter, an acceptor ion (in this case, a side B ion) is doped to the first region B1 containing the first hole 4b1 to form a P+ polycrystalline germanium layer 5b1, and a donor ion is formed. (At this time, an As (ion) ion) is doped to the N+ polycrystalline germanium layer 5b containing the second region B2 of the second hole. The doping of the acceptor ion and the donor ion is performed by doping the other ion after the ion doping of one of the ions is completed. • Next, as shown in Fig. 16B, a P+ polycrystalline germanium is formed on the P+ polycrystalline germanium layer 5b1, the N+ polycrystalline germanium layer 5b2, and the first germanium oxide layer 3b surrounding the periphery of the holes 4b1, 4b2. Layer 5bbl, metal layer 7b1 and N+ polycrystalline germanium layer 5bb2, metal layer 7b2. Next, the P+ diffusion layer 6b1 formed by thermal diffusion from the p+ polycrystalline germanium layer 5bbl and the thermal diffusion from the N+ polycrystalline germanium layer 5bb2 are formed by the same steps as those of the first to the first FIGS. The formed N+ diffusion φ layer 6b2 is formed at the bottom of the mast ia. In such a solid-state image sensing device, the P+ diffusion layer 6b1 and the P+ polycrystalline layer 5bbl function as the drain of the electric field effect transistor for signal readout, and the N+ diffusion layer 6b2 and the N+ polycrystal layer The layer 5bb2 functions as a drain for removing the electric signal stored in the photodiode composed of the N-type germanium layers 12a and 12b and the p-type germanium layer 30. Further, the p+ multi-crystallized layer 5bbl and the N+ polycrystalline germanium layer 5bb2 are connected to the metal layers 7b1 and 7b2, and are wired to an external circuit. Accordingly, the 323818 56 201242003 resistor formed on the signal readout line and the signal charge removal line formed from the pixel to the external circuit is reduced, thereby realizing high-speed driving of the solid-state image sensing device. Further, according to the present embodiment, in the same manner as the above-described step, two or more impurity regions can be formed at the bottom of Shi Xizhula. Further, the present embodiment can of course be applied to an embodiment other than the present embodiment, and for example, a method of manufacturing a semiconductor device in which a circuit element other than the optical image sensing device is formed on the mast. Further, in the first embodiment and the embodiment related to the i-th embodiment, the first hafnium oxide layer 3 is formed by thermal oxidation, positive electrode oxidation, or CVD (Chemical VaP〇rD printing). 1 yttrium oxide layer. The structure is not limited thereto, and may be constituted by a multi-layer structure with another insulating film such as a tantalum nitride (SiN) film. Further, the present invention is not limited to the embodiments described in the above-described second to twelfth embodiments, and various modifications are possible. In the above embodiment, the first semiconductor substrate 1 is of a p-type conductivity type. The first semiconductor substrate 1 may be an i-type (intrinsic type) belonging to the intrinsic φ semiconductor. Further, it is also possible to form an N-type conductivity type in accordance with the circuit elements formed on the first semiconductor substrate 1. Similarly, in the embodiment using the 3B, 4, 9C, and ith diagrams, the channel system of the P-channel MOS transistor is formed as an N-type 30 layer 30a, and N The channel of the channel type MOS transistor is formed as a P-type germanium layer 30, but all of them can be formed into a soil type stone which belongs to the intrinsic semiconductor. In the above-described embodiment, in the pixel of the solid-state image sensing device formed by Shi Xizhu, in the first embodiment, the N+ polycrystalline germanium layer 5a, gold 323818 57 201242003 is a layer 7, N+ diffusion. The layer 6a is set as an individual material layer, but may be heat treated according to the steps between the ID map and the 1K pattern, by the metal material of the metal layer 7 (Ni, W, etc.) and the N+ polycrystalline germanium layer 5a. Alternatively, all or a part of the metal layer 7, the N+ polycrystalline fine layer 5a, or the N+ diffusion layer 6a may be changed to a lithiation layer (NiSi, WSi, etc.) by reaction with a part of the N+ diffusion layer 6a. Furthermore, it can also be based on the 1st, 2nd, 3rd, 4th, 8th, 8th, 8th, 9th, 10th, 11th, and 12th. In the heat treatment performed in each step, the metal layer 7, the N+ polycrystalline layer 5a is reacted by the reaction of the metal material of the metal layer 7 with the N+ polycrystalline germanium layer 5a or with a portion of the N+ diffusion layer 6a. Or all or part of the N+ diffusion layer 6a is changed to a deuterated layer (NiSi, WSi, etc.). According to these, it is also possible to obtain a function of reducing the resistance value of a part of the signal line (electrical wiring). In the above embodiment, as shown in FIG. 1H, the separation layer 2 formed by injecting high-concentration hydrogen ion (H+) ions into a predetermined depth of the first semiconductor substrate 1 is heat-treated by 400 to 60 (TC). The first semiconductor substrate 1 is separated into upper and lower sides, and the first semiconductor substrate 1 is thinned to a predetermined thickness. The present invention is not limited thereto, and a porous layer may be formed in the separation layer 2 as shown, for example, in Non-Patent Document 3. In the method, the first semiconductor substrate 1 is thinned to a predetermined thickness. Alternatively, the first semiconductor substrate 1 may be separated into upper and lower layers. Further, the second semiconductor substrate 9 may be a semiconductor different from the germanium. For example, a compound semiconductor such as tantalum carbide (SiC), an insulator, or an organic resin body. According to this configuration, the circuit element formed on the first semiconductor substrate 1 can be held. 323818 58 201242003 Further, 'the second oxidized stone layer 8, The Oxide layer 2, 29, and 45 may be formed of a plurality of layers of other insulating films such as a tantalum nitride (SiN) film. Further, 'N+ polycrystalline layer 5a, 55a, p+ polycrystalline dream layer is used by Ion doping is formed. It is not limited to this, and it can also be formed by the thermal expansion of (4) into the doped polycrystalline layer of the impurity. Such a doped polycrystalline dream layer can also be tested in other embodiments. Furthermore, in Figure 1B, the polycrystalline germanium layer 5 is applied by CVD.
形成。係不限於此,多結晶㈣5亦可藉由遙晶成長而形 成。此時’單結晶石夕層係成長於第一半導體 依據其成長條件使於[氧切層3上形成有多結晶石夕 層。此時,單結晶㈣係成為朝向施體或者受體的石夕柱^ =擴散源。再者,亦可以依據單結晶石夕層的成長條件(溫度 專)而㈣層不形成於第-氧切層3上之方式進行。以此 方式㈣層獨成於第-氧切層3上之方式,亦同樣可 適用於本說明書之其他實施形態。 再者’於第1G圖中,係將由石夕構成之第二半導體基板 心與藉纟CMP丨以平坦化之第二氧化㈣8貼合,惟亦可 藉由氧化或者CVD法將氧化層或者絕緣層形成於第二半導 體基板9的表面之後,再將第二半導體基板9 *第 矽層8貼合。 再者,於第9C圖中,没極連接配線39與輸出端子配 線Vo係經由接觸孔41d而連接。係不限於此,汲極連接配 線39與輸出端子配線Vo亦可以接觸孔4U的底部與没極 連接配線39上的N+多結晶石夕層55a接觸之方式而予以連 323818 59 201242003 構成’㈣以結晶硬層5 小’故亦可實現電路元件<高速動作。 係充刀的 再者,於帛HK:时,作為汲極連接 金屬配線層42⑽a)與第二段的閘極連接配線3 = 接觸孔叫接。心限於此,亦可 孔、,、form. The structure is not limited thereto, and the polycrystal (4) 5 can also be formed by the growth of the crystal. At this time, the 'single crystal slab layer is grown on the first semiconductor, and the polycrystalline platy layer is formed on the oxygen cut layer 3 in accordance with the growth conditions. At this time, the single crystal (four) is a source of diffusion toward the donor or acceptor. Further, it may be carried out in such a manner that the (four) layer is not formed on the first oxygen cut layer 3 in accordance with the growth conditions (temperature) of the single crystal layer. The manner in which the (four) layer is uniquely formed on the first oxygen-cut layer 3 in this manner is also applicable to other embodiments of the present specification. Furthermore, in the first FIG. 1G, the second semiconductor substrate core composed of Shi Xi is bonded to the second oxide (4) 8 which is planarized by the CMP, but the oxide layer may be insulated or oxidized by CVD or CVD. After the layer is formed on the surface of the second semiconductor substrate 9, the second semiconductor substrate 9* the second layer 8 is bonded. Further, in Fig. 9C, the gate connection wiring 39 and the output terminal wiring line Vo are connected via the contact hole 41d. The present invention is not limited thereto, and the drain connection wiring 39 and the output terminal wiring Vo may be connected to the bottom of the contact hole 4U in contact with the N+ polycrystalline layer 55a on the gate connection wiring 39. 323818 59 201242003 constitutes '(4) The crystal hard layer 5 is small, so that the circuit element < high speed operation can also be realized. Further, in the case of 帛HK:, the drain connection metal wiring layer 42 (10) a) and the second-stage gate connection wiring 3 = contact holes are called. The heart is limited to this, but also holes,,,
:底部與金屬配線層42上㈣多結晶石夕層咖接觸之方 式而予以連接。依據此構成,由於N+多結晶韻脱的電 阻係充分的小,故村實現電路元件之高速動作。 再者’如第1L圖、第2圖、第3B圖所示的閘極導體 層 11a、lib、11c、lid、l6a、碰、16c、16d,而如第 1〇。 圖所示的閘極連接配線38、38a、識,為藉由氣相沉積法 或者⑽法而形成。係不限於此,亦可由單層或者不同種 類之複數個金屬層而構成’或者設為摻雜有雜質之多結晶 石夕層或者該多結晶層與金屬層之多層構成。再者,閉極連 接配線38、38a、38b亦可因應㈣道型與p通道型而使用 不同之材料。於閘極連接配線38、38a、38b因應N通道型 與P通道型而使用不同之材料之方式,亦同樣可適用於本 說明書之其他實施形態。 再者,第10B圖、第l〇C圖所示之二段CM〇s反相器電 ,,係亦可以下述之方式構成。亦即,將p通道型腦電 曰曰體37a的石夕柱4〇a ’與N通道型M0S電晶體37b的矽柱 4〇b的各個上方部位之P+型矽層17b、N+型矽層17a,經由 形成於氧化矽層45之接觸孔41a、41b而連接於第一段之 輸出端子配線層V〇ut。並且,將與p通道型m〇s電晶體37a 323818 201242003 的矽柱40a的下方部位之P+多結晶石夕層55b、及P+擴散層 6b連接之金屬層46b,設為電源端子酞線層Vdd,並將與N 通道型M0S電晶體37b的矽柱40b的下方部位之N+多結晶 矽層55a、及N+擴散層6a連接之金屬層46a ’設為接地端 子配線層Vss。於此構造中,亦可得到與第10C圖所示之 構造相同的效果。 再者,於第1K圖所示之晝素構造中,為了進行閘極導 體層11a、lib及成為訊號線之N+擴散層6a之自我整合, 而在形成閘極導體層lla、llb之後,可以砷(As)的離子摻 雜,或者將堆積As摻雜氧化矽層作為擴散源,而於閘極導 體層11a、lib與r擴散層6a間之矽枉la内形成n+型矽層。 再者,於第II圖之第1實施形態中,係將第一半導體 基板1蝕刻至第一氧化矽層3的表面而形成矽柱la,惟此 钱刻處理係可以在到達第—氧化⑦層3的表面之前停止之 =:行。例如,如第14A圖所示,销由摻雜施: 而將N型⑦層形成於未侧而殘留之⑨層。 雜質 ,者,於第2圖所示之SGT中,為了進行間極 6a、16b與成為汲極或者源極之…擴散層h —曰 可藉由坤(As)的離子摻雜,或者將堆積As# 、整合’ 為擴散源,而於閘極導體層16a、16b與雜氣切層作 矽柱la内形成型矽層。 a敬層6a間之 再者’於藉由第1K圖所示之第i實施形 所形成之固態影像感測裝置的晝素,係可在=造方法 323818 體之N型石夕層12a、12b的外周部,形成透、,電二極 518 π第二氧化矽層 201242003 10a、10b而將光束反射之導體層。藉此可防止混色。再者, 亦可設為藉由將與P+型矽層13a連接之P+型矽層形成於N 型矽層12a、12b的外周部的矽柱la内,而實現低殘像/ 低雜訊(noise)之構造。如此,可將固態影像感測裝置的功 能更加提升之構造適當地形成於石夕柱1 a。 再者,本發明之技術性的思維,當然不僅適用於在同 一基板上之一個實施形態之電路元件,亦可適用於形成有 複數個實施形態之電路元件者。再者,各實施形態之各製 # 造步驟,係在製造同一個構成時,可將順序適當地變更。 再者,本發明在不脫離本發明廣義的精神與範圍内, 可有各種實施形態及變形。再者,上述實施形態係為用以 說明本發明的一個實施例者,並非將本發明之範圍限定者。 (產業上之利用可能性) 本發明係可適用於具備在具有柱狀構造之半導體内形 成有通道區域之電晶體之半導體裝置。 φ 【圖式簡單說明】 第1A圖係為用以說明本發明第1實施形態之固態影像 感測裝置的製造方法之剖面圖。 第1B圖係為用以說明第1實施形態之固態影像感測裝 置的製造方法之刮面圖。 第1C圖係為用以說明第1實施形態之固態影像感測裝 置的製造方法之剖面圖。 第1D圖係為用以說明第1實施形態之固態影像感測裝 置的製造方法之剖面圖。 323818 62 201242003 第1E圖係為用以說明第i實施形態之固態影像感測 裝置的製造方法之剖面圖。 第1F圖係為用以說明第1實施形態之固態影像感測 裝置的製造方法之剖面圖。 第1G圖係為用以說明第1實施形態之固態影像感測 裝置的製造方法之剖面圖。 第1H圖係為用以說明第1實施形態之固態影像感測 裝置的製造方法之剖面圖。 • 第11圖係為用以說明第1實施形態之固態影像感測 裝置的製造方法之剖面圖。 第1J圖係為用以說明第1實施形態之固態影像感測 裝置的製造方法之剖面圖。 第1K圖係為用以說明第1實施形態之固態影像感測 裝置的製造方法之剖面圖。 第1L圖係為用以說明第1實施形態之固態影像感測 φ 裝置的製造方法之剖面圖。 第2圖係為顯示本發明第2實施形態之N通道型SGT 的構造之刮面圖。 第3A圖係為用以說明本發明第3實施形態之將N通道 型SGT及P通道型SGT形成於同一基板上之方法之剖面圖。 第3B圖係為用以說明第3實施形態之將N通道型SGT 及P通道型SGT形成於同一基板上之方法之剖面圖。 第4圖係為用以說明本發明第4實施形態之具有以金 屬配線層連接複數個SGT之構造之半導體裝置的製造方法 323818 63 201242003 之剖面圖。 第5A圖係為用以說明本發明第5實施形態之將電阻形 成於半導體裴置之方法之剖面圖。 第5B圖係為用以說明第5實施形態之將電阻形成於半 導體裝置之方法之剖面圖。 第5C圖係為用以說明第5實施形態之將電阻形成於半 導體裝置之方法之剖面圖。 第6A圖係為用以說明本發明第6實施形態之將電容形 ® 成於半導體裂置之方法之剖面圖。 第6B圖係為用以說明第6實施形態之將電容形成於半 導體裝置之方法之剖面圖。 第6C圖係為用以說明第6實施形態之將電容形成於半 導體裝置之方法之剖面圖。 第7A圖係為用以說明本發明第7實施形態之將電容形 成於半導體裝置之方法之刮面圖。 φ 第7B圖係為用以說明第7實施形態之將電容形成於半 導體裝置之方法之剖面圖。 第8 A圖係為用以說明本發明第8實施形態之將二極體 形成於半導體裝置之方法之剖面圖。 第8B圖係為用以說明第8實施形態之將二極體形成於 半導體裝置之方法之剖面圖。 第8C圖係為用以說明第8實施形態的變形例之將p I n 二極體形成於半導體裝置之方法之剖面圖。 第9 A圖係為用以說明本發明第9實施形態之CMOS反 323818 64 201242003 相器電路之電路圖。 第9B圖係為用以說明第9實施形態之CMOS反相器電 路之電路平面配置圖。 第9C圖係為用以說明第9實施形態之將CMOS反相器 電路形成於半導體裝置之方法之剖面圖。 第10A圖係為用以說明本發明第10實施形態之二段構 造的CMOS反相器電路之電路圖。 第10B圖係為用以說明第10實施形態之二段構造的 Φ CMOS反相器電路之電路平面配置圖。 第10C圖係為用以說明第10實施形態之形成二段構造 的CMOS反相器電路之方法之剖面圖。 第11A圖係為用以說明本發明第11實施形態之提高矽 柱的位置精度之方法之剖面圖。 第11B圖係為用以說明第11實施形態之將遮罩對準標 記形成於半導體基板之方法之剖面圖。 φ 第12圖係為用以說明第11實施形態之變形例之提高 矽柱的位置精度之製造方法之剖面圖。 第13A圖係為用以說明本發明第12實施形態之半導體 裝置的製造方法之剖面圖。 第13B圖係為用以說明第12實施形態之半導體裝置的 製造方法之剖面圖。 第14A圖係為用以說明本發明第13實施形態之半導體 裝置的製造方法之剖面圖。 第14B圖伤i m 承為用以說明第13實施形態之半導體裴置的 323818 65 201242003 製造方法之剖面圖。 第15A圖係為用以說明第13實施形態之半導體裝置的 製造方法之剖面圖。 第15B圖係為用以說明第13實施形態之半導體裝置的 製造方法之剖面圖。 第16A圖係為用以說明第13實施形態之半導體裝置的 製造方法之剖面圖。 第16B圖係為用以說明第13實施形態之半導體裝置的 _製造方法之剖面圖。 第16C圖係為用以說明第13實施形態之半導體裝置的 製造方法之剖面圖。 第17圖係為顯示習知例之固態影像感測裝置的晝素 的構造之剖面圖。 第18A圖係為使習知例之固態影像感測裝置進行高速 動作的晝素的剖面圖。 % 第18B圖係為用以說明為了獲得使習知例之固態影像 感測裝置進行高速動作的晝素之半導體基板的接著步驟之 圖。 第19圖係為具有習知例之SGT的畫素的剖面圖。 【主要元件符號說明】 1 第一半導體基板 h、lb、40a、40b、40c、40d 矽柱The bottom portion is connected to the metal wiring layer 42 in a manner in which the (tetra) polycrystalline stone layer is in contact with each other. According to this configuration, since the resistance of the N+ polycrystalline rhyme is sufficiently small, the village realizes high-speed operation of the circuit components. Further, the gate conductor layers 11a, lib, 11c, lid, l6a, bumps, 16c, and 16d shown in Figs. 1L, 2, and 3B are as shown in the first aspect. The gate connection wirings 38 and 38a shown in the figure are formed by a vapor deposition method or a method (10). The structure is not limited thereto, and may be composed of a single layer or a plurality of metal layers of different types or as a polycrystalline layer doped with impurities or a multilayer of the polycrystalline layer and the metal layer. Further, the closed-end connecting wirings 38, 38a, 38b may be made of different materials depending on the (four)-channel type and the p-channel type. The use of different materials for the gate connection wirings 38, 38a, 38b in accordance with the N-channel type and the P-channel type is also applicable to other embodiments of the present specification. Furthermore, the two-stage CM〇s inverters shown in Fig. 10B and Fig. 1C can also be constructed as follows. That is, the P+ type 矽 layer 17b and the N+ type 矽 layer of each of the upper portions of the 夕 柱 column 4 〇 a ' of the p-channel type electroencephalogram body 37a and the column 4 〇 b of the N channel type MOS transistor 37 b 17a is connected to the output terminal wiring layer V〇ut of the first stage via the contact holes 41a and 41b formed in the yttrium oxide layer 45. Further, the metal layer 46b connected to the P+ polycrystalline layer 55b and the P+ diffusion layer 6b at the lower portion of the mast 40a of the p-channel type m〇s transistor 37a 323818 201242003 is used as the power terminal wiring layer Vdd. The metal layer 46a' connected to the N+ polycrystalline germanium layer 55a and the N+ diffusion layer 6a in the lower portion of the mast 40b of the N-channel type MOS transistor 37b is referred to as a ground terminal wiring layer Vss. Also in this configuration, the same effects as those shown in Fig. 10C can be obtained. Further, in the pixel structure shown in FIG. 1K, in order to perform self-integration of the gate conductor layers 11a and 11b and the N+ diffusion layer 6a serving as a signal line, after forming the gate conductor layers 11a and 11b, The ion doping of arsenic (As) or the deposition of the As-doped yttrium oxide layer as a diffusion source forms an n+-type germanium layer in the 矽枉la between the gate conductor layers 11a and 11b and the r diffusion layer 6a. Further, in the first embodiment of Fig. II, the first semiconductor substrate 1 is etched to the surface of the first ruthenium oxide layer 3 to form the masts la, but the processing can reach the first oxidation 7 The surface of layer 3 is stopped before =: line. For example, as shown in Fig. 14A, the pin is doped by doping: and the N-type 7 layer is formed on the non-side and the remaining 9 layers. Impurities, in the SGT shown in Fig. 2, in order to carry out the interpoles 6a, 16b and become the drain or the source... the diffusion layer h - 曰 can be doped by ions of As, or will be stacked As#, the integration 'is a diffusion source, and a gate layer is formed in the gate conductor layer 16a, 16b and the miscellaneous layer as the pillar layer la. A further example of the solid-state image sensing device formed by the i-th embodiment shown in FIG. 1K can be used in the N-type layer 12a of the method 323818. The outer peripheral portion of 12b forms a conductive layer which is transparent and electrically dipoles 518 π second yttria layer 201242003 10a, 10b to reflect the light beam. This prevents color mixing. Further, it is also possible to form a P+ type germanium layer connected to the P+ type germanium layer 13a in the masts la of the outer peripheral portions of the N type germanium layers 12a and 12b, thereby achieving low afterimage/low noise ( The structure of noise). In this way, the structure in which the function of the solid-state image sensing device is further improved can be appropriately formed in Shi Xizhu 1 a. Furthermore, the technical idea of the present invention is of course applicable not only to circuit elements of one embodiment on the same substrate, but also to circuit elements in which a plurality of embodiments are formed. Further, in the respective manufacturing steps of the respective embodiments, when the same configuration is manufactured, the order can be appropriately changed. Further, various embodiments and modifications can be made without departing from the spirit and scope of the invention. Furthermore, the above embodiments are intended to describe one embodiment of the invention, and are not intended to limit the scope of the invention. (Industrial Applicability) The present invention is applicable to a semiconductor device including a transistor in which a channel region is formed in a semiconductor having a columnar structure. [Fig. 1A] Fig. 1A is a cross-sectional view showing a method of manufacturing the solid-state image sensing device according to the first embodiment of the present invention. Fig. 1B is a plan view showing a method of manufacturing the solid-state image sensing device according to the first embodiment. Fig. 1C is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing device of the first embodiment. Fig. 1D is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing device of the first embodiment. 323818 62 201242003 Fig. 1E is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing device of the i-th embodiment. Fig. 1F is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing device of the first embodiment. Fig. 1G is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing device of the first embodiment. Fig. 1H is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing device of the first embodiment. Fig. 11 is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing device of the first embodiment. Fig. 1J is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing device of the first embodiment. Fig. 1K is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing device of the first embodiment. Fig. 1L is a cross-sectional view for explaining a method of manufacturing the solid-state image sensing φ device of the first embodiment. Fig. 2 is a plan view showing the structure of the N-channel type SGT according to the second embodiment of the present invention. Fig. 3A is a cross-sectional view showing a method of forming an N-channel type SGT and a P-channel type SGT on the same substrate in the third embodiment of the present invention. Fig. 3B is a cross-sectional view showing a method of forming an N-channel type SGT and a P-channel type SGT on the same substrate in the third embodiment. Fig. 4 is a cross-sectional view showing a method of manufacturing a semiconductor device having a structure in which a plurality of SGTs are connected by a metal wiring layer according to a fourth embodiment of the present invention, 323818 63 201242003. Fig. 5A is a cross-sectional view showing a method of forming a resistor in a semiconductor device according to a fifth embodiment of the present invention. Fig. 5B is a cross-sectional view for explaining a method of forming a resistor in a semiconductor device according to the fifth embodiment. Fig. 5C is a cross-sectional view for explaining a method of forming a resistor in a semiconductor device according to the fifth embodiment. Fig. 6A is a cross-sectional view showing a method of forming a capacitance type into a semiconductor by the sixth embodiment of the present invention. Fig. 6B is a cross-sectional view for explaining a method of forming a capacitor in a semiconductor device according to the sixth embodiment. Fig. 6C is a cross-sectional view for explaining a method of forming a capacitor in a semiconductor device according to the sixth embodiment. Fig. 7A is a plan view showing a method of forming a capacitor in a semiconductor device according to a seventh embodiment of the present invention. Φ Fig. 7B is a cross-sectional view for explaining a method of forming a capacitor in a semiconductor device according to the seventh embodiment. Fig. 8A is a cross-sectional view showing a method of forming a diode in a semiconductor device according to an eighth embodiment of the present invention. Fig. 8B is a cross-sectional view for explaining a method of forming a diode in a semiconductor device according to the eighth embodiment. Fig. 8C is a cross-sectional view showing a method of forming a p I n diode in a semiconductor device in a modification of the eighth embodiment. Fig. 9A is a circuit diagram for explaining a phase circuit of a CMOS reverse 323818 64 201242003 according to a ninth embodiment of the present invention. Fig. 9B is a circuit plan layout diagram for explaining a CMOS inverter circuit of the ninth embodiment. Fig. 9C is a cross-sectional view showing a method of forming a CMOS inverter circuit in a semiconductor device according to the ninth embodiment. Fig. 10A is a circuit diagram showing a CMOS inverter circuit constructed in the second stage of the tenth embodiment of the present invention. Fig. 10B is a circuit plan layout diagram of the Φ CMOS inverter circuit for explaining the two-stage structure of the tenth embodiment. Fig. 10C is a cross-sectional view showing a method of forming a CMOS inverter circuit having a two-stage structure according to the tenth embodiment. Fig. 11A is a cross-sectional view showing a method for improving the positional accuracy of the mast of the eleventh embodiment of the present invention. Fig. 11B is a cross-sectional view showing a method of forming a mask alignment mark on a semiconductor substrate in the eleventh embodiment. Fig. 12 is a cross-sectional view showing a manufacturing method for improving the positional accuracy of the mast in the modification of the eleventh embodiment. Figure 13A is a cross-sectional view showing a method of manufacturing a semiconductor device according to a twelfth embodiment of the present invention. Fig. 13B is a cross-sectional view for explaining a method of manufacturing the semiconductor device of the twelfth embodiment. Figure 14A is a cross-sectional view showing a method of manufacturing a semiconductor device according to a thirteenth embodiment of the present invention. Fig. 14B is a cross-sectional view showing a manufacturing method for explaining a semiconductor device of the thirteenth embodiment, 323818 65 201242003. Fig. 15A is a cross-sectional view for explaining a method of manufacturing the semiconductor device of the thirteenth embodiment. Fig. 15B is a cross-sectional view for explaining a method of manufacturing the semiconductor device of the thirteenth embodiment. Fig. 16A is a cross-sectional view for explaining a method of manufacturing the semiconductor device of the thirteenth embodiment. Fig. 16B is a cross-sectional view showing a method of manufacturing the semiconductor device of the thirteenth embodiment. Fig. 16C is a cross-sectional view for explaining a method of manufacturing the semiconductor device of the thirteenth embodiment. Fig. 17 is a cross-sectional view showing the structure of a pixel of a solid-state image sensing device of a conventional example. Fig. 18A is a cross-sectional view showing a pixel in which a solid-state image sensing device of a conventional example is operated at a high speed. % Fig. 18B is a view for explaining the next steps of the semiconductor substrate for obtaining a high-speed operation of the solid-state image sensing device of the conventional example. Figure 19 is a cross-sectional view of a pixel having a conventional SGT. [Main component symbol description] 1 First semiconductor substrate h, lb, 40a, 40b, 40c, 40d
In N通道型SGT形成區域 lp P通道型SGT形成區域 323818 66 201242003 2 分離層 3、3a、3b、29、101a、101b 第一氧化矽層 4 孔 5、23 多結晶矽層 5a、5b、5aa、5b2、5bb2、23a、23b、51、55a、104 N+多結晶矽層 5bl、5bbl、55b P+多結晶矽層 6a、6aa、6ab、6b2、6bb N+擴散層 6b、6b卜102 P+擴散層 # 7、7a、7b、7M、7b2、7aa、7bb、26a、26b、28、32、46a、 59、105 金屬層 7a、7b、7aa、7bb 第一連接用金屬層 8 第二氧化矽層 9 第二半導體基板 10a、10b、10c、10d 第三氧化矽層 11a、lib、11c、lid、llaa、llbb、16a、16b、16c、16d、 16aa、16ab、16ba、16bb、54a、54b 閘極導體層 ^ 12a、12b、12c、12d N 型矽層 13a、13b、17b、31、56 P+型矽層 14a ' 14b ' 14c ' 14d 畫素選擇金屬配線層 15a、15b、15c、15d、71 閘極絕緣層 17a、51 N+型石夕層 18a、18b、22a、22b、22c、24a、24b、26a、26b、35、42、 109 金屬配線層 20、29、33、43、45、62、101a、101b、103、107 氧化矽層 21c、34、41a、41b、41c、41d、41e、41f、75、108 接觸孔 323818 67 201242003 27 電容氧化矽層 30、52 P型矽層 30a、58a、58b N型矽層 3〇b i型矽層 37a、37c P通道型MOS電晶體 37b ' 37d N通道型MOS電晶體 38、 38a、38b 閘極連接配線 39、 39a、39b 汲極連接配線In N channel type SGT formation region lp P channel type SGT formation region 323818 66 201242003 2 Separation layer 3, 3a, 3b, 29, 101a, 101b First hafnium oxide layer 4 Hole 5, 23 Polycrystalline hafnium layer 5a, 5b, 5aa , 5b2, 5bb2, 23a, 23b, 51, 55a, 104 N+ polycrystalline germanium layer 5bl, 5bbl, 55b P+ polycrystalline germanium layer 6a, 6aa, 6ab, 6b2, 6bb N+ diffusion layer 6b, 6b 102 102 P+ diffusion layer 7, 7a, 7b, 7M, 7b2, 7aa, 7bb, 26a, 26b, 28, 32, 46a, 59, 105 metal layers 7a, 7b, 7aa, 7bb first connection metal layer 8 second hafnium oxide layer 9 Two semiconductor substrates 10a, 10b, 10c, 10d third oxide layer 11a, lib, 11c, lid, llaa, llbb, 16a, 16b, 16c, 16d, 16aa, 16ab, 16ba, 16bb, 54a, 54b gate conductor layer ^ 12a, 12b, 12c, 12d N-type germanium layer 13a, 13b, 17b, 31, 56 P+ type germanium layer 14a ' 14b ' 14c ' 14d pixel select metal wiring layer 15a, 15b, 15c, 15d, 71 gate insulating Layers 17a, 51 N+ type layer 18a, 18b, 22a, 22b, 22c, 24a, 24b, 26a, 26b, 35, 42, 109 metal wiring layers 20, 29, 33, 43, 45, 62, 101a, 101b , 10 3, 107 yttrium oxide layer 21c, 34, 41a, 41b, 41c, 41d, 41e, 41f, 75, 108 contact hole 323818 67 201242003 27 capacitor yttrium oxide layer 30, 52 P-type enamel layer 30a, 58a, 58b N-type 矽Layer 3〇bi type germanium layer 37a, 37c P channel type MOS transistor 37b ' 37d N channel type MOS transistor 38, 38a, 38b Gate connection wiring 39, 39a, 39b Dip connection wiring
47a 47b 49a 50 53a、 60 遮罩對準標記形成區域 電路形成區域 48 標記金屬層 49b 遮罩對準孔 50a 53b 絕緣膜 57a、57b 基板 61、64 氧化矽層去除區域 標記多結晶梦層 透明絕緣層 晝素選擇線 半導體基板 66 埋入氧化膜基板67 平面狀石夕膜 68 PM0S柱狀石夕層69、70 P+型石夕擴散層 72 閘極電極 73 氮化矽(SiN)膜47a 47b 49a 50 53a, 60 mask alignment mark formation region circuit formation region 48 mark metal layer 49b mask alignment hole 50a 53b insulating film 57a, 57b substrate 61, 64 ruthenium oxide layer removal region mark polycrystalline dream layer transparent insulation Layered germanium selection line semiconductor substrate 66 buried oxide film substrate 67 planar stone film 68 PM0S columnar layer 69, 70 P+ type stone diffusion layer 72 gate electrode 73 tantalum nitride (SiN) film
74 氧化石夕(Si〇2)膜76 源極金屬配線 1〇〇 電容形成區域 106 (摻雜施體雜質之)N+多結晶矽層 110 柱狀半導體 111 (未摻雜施體雜質或者受體雜質之)多結晶係層74 Oxide oxide (Si〇2) film 76 Source metal wiring 1 Tantalum capacitor formation region 106 (doped with donor impurities) N+ polycrystalline germanium layer 110 Columnar semiconductor 111 (undoped donor impurity or acceptor Polycrystalline layer
Vi 輸入端子配線(層)Vi input terminal wiring (layer)
Vdd 電源端子配線(層)Vdd power terminal wiring (layer)
Vss 接地端子配線(層)Vss ground terminal wiring (layer)
Vo、Vout 輸出端子配線(層) 323818 68Vo, Vout output terminal wiring (layer) 323818 68
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/055408 WO2012120653A1 (en) | 2011-03-08 | 2011-03-08 | Production method for semiconductor device and semiconductor device |
PCT/JP2012/052777 WO2012120951A1 (en) | 2011-03-08 | 2012-02-07 | Production method for semiconductor device and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201242003A true TW201242003A (en) | 2012-10-16 |
Family
ID=46797656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101107287A TW201242003A (en) | 2011-03-08 | 2012-03-05 | Method for producing semiconductor device and semiconductor device |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101350577B1 (en) |
CN (1) | CN102792452A (en) |
TW (1) | TW201242003A (en) |
WO (2) | WO2012120653A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10615220B2 (en) | 2015-03-31 | 2020-04-07 | Hamamatsu Photonics K.K. | Semiconductor device and manufacturing method thereof |
TWI694569B (en) * | 2016-04-13 | 2020-05-21 | 日商濱松赫德尼古斯股份有限公司 | Semiconductor device |
US11581361B2 (en) | 2018-11-06 | 2023-02-14 | Shenzhen Xpectvision Technology Co., Ltd. | Packaging methods of semiconductor devices |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016184612A (en) * | 2015-03-25 | 2016-10-20 | 富士通株式会社 | Mounting method of semiconductor device |
JP6578930B2 (en) * | 2015-12-18 | 2019-09-25 | セイコーエプソン株式会社 | Method for manufacturing photoelectric conversion element, photoelectric conversion element and photoelectric conversion device |
CN107808905B (en) * | 2017-10-31 | 2019-10-15 | 沈阳工业大学 | Double-sided folded gate-controlled source-drain double-tunneling bidirectional conduction transistor and manufacturing method thereof |
CN107819036B (en) * | 2017-10-31 | 2019-11-22 | 沈阳工业大学 | Source-drain symmetrical interchangeable double-bracket gate-controlled tunneling transistor and manufacturing method thereof |
CN107768430B (en) * | 2017-10-31 | 2019-10-15 | 沈阳工业大学 | Source-drain symmetrical interchangeable bidirectional tunneling field effect transistor and manufacturing method thereof |
CN112840449B (en) * | 2018-10-01 | 2024-05-07 | 新加坡优尼山帝斯电子私人有限公司 | Method for manufacturing columnar semiconductor device |
EP3709360A1 (en) | 2019-03-13 | 2020-09-16 | Koninklijke Philips N.V. | Photodetector for imaging applications |
KR102778795B1 (en) * | 2022-07-12 | 2025-03-12 | 창신 메모리 테크놀로지즈 아이엔씨 | Method for manufacturing semiconductor structures |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004127957A (en) * | 2002-09-30 | 2004-04-22 | Fujitsu Ltd | Semiconductor device manufacturing method and semiconductor device |
JP3933608B2 (en) * | 2003-06-30 | 2007-06-20 | 株式会社東芝 | Semiconductor memory device and semiconductor integrated circuit |
EP2461363A1 (en) * | 2007-09-12 | 2012-06-06 | Unisantis Electronics Singapore Pte. Ltd. | Solid-state imaging device |
JP2009164589A (en) * | 2007-12-12 | 2009-07-23 | Elpida Memory Inc | Semiconductor device and manufacturing method thereof |
KR20090111481A (en) * | 2008-04-22 | 2009-10-27 | 주식회사 하이닉스반도체 | Method for manufacturing polysilicon gate using columnar polysilicon film and method for manufacturing semiconductor device using same |
-
2011
- 2011-03-08 WO PCT/JP2011/055408 patent/WO2012120653A1/en active Application Filing
-
2012
- 2012-02-07 WO PCT/JP2012/052777 patent/WO2012120951A1/en active Application Filing
- 2012-02-07 KR KR1020127015784A patent/KR101350577B1/en not_active Expired - Fee Related
- 2012-02-07 CN CN2012800004124A patent/CN102792452A/en active Pending
- 2012-03-05 TW TW101107287A patent/TW201242003A/en unknown
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10615220B2 (en) | 2015-03-31 | 2020-04-07 | Hamamatsu Photonics K.K. | Semiconductor device and manufacturing method thereof |
US10622403B2 (en) | 2015-03-31 | 2020-04-14 | Hamamatsu Photonics K.K. | Semiconductor device manufacturing method |
US10622402B2 (en) | 2015-03-31 | 2020-04-14 | Hamamatsu Photonics K.K. | Semiconductor device |
TWI694569B (en) * | 2016-04-13 | 2020-05-21 | 日商濱松赫德尼古斯股份有限公司 | Semiconductor device |
US11581361B2 (en) | 2018-11-06 | 2023-02-14 | Shenzhen Xpectvision Technology Co., Ltd. | Packaging methods of semiconductor devices |
TWI827688B (en) * | 2018-11-06 | 2024-01-01 | 大陸商深圳幀觀德芯科技有限公司 | Packaging methods of semiconductor devices |
Also Published As
Publication number | Publication date |
---|---|
CN102792452A (en) | 2012-11-21 |
WO2012120951A1 (en) | 2012-09-13 |
KR20120123278A (en) | 2012-11-08 |
WO2012120653A1 (en) | 2012-09-13 |
KR101350577B1 (en) | 2014-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201242003A (en) | Method for producing semiconductor device and semiconductor device | |
TWI265628B (en) | Semiconductor device for reading signal from photodiode via transistors | |
TWI249843B (en) | Semiconductor device and its manufacturing method, and electronic apparatus | |
TWI690070B (en) | Complementary metal-oxide-semiconductor image sensor and image sensor | |
TW201201368A (en) | Semiconductor apparatus, method of manufacturing semiconductor apparatus, method of designing semiconductor apparatus, and electronic machine | |
TWI308795B (en) | Pixel with transfer gate with no isolation edge | |
TW200839935A (en) | Two-sided semiconductor-on-insulator structures and methods of manufacturing the same | |
TW201025582A (en) | Solid-state imaging device, manufacturing method of the same, and imaging apparatus | |
TW201234571A (en) | Solid-state imaging element, method for producing solid-state imaging element, and electronic device | |
CN104795418B (en) | Photosensitive imaging device and its manufacturing method | |
JP6290245B2 (en) | Pixelated imager with MOTFET and method of manufacturing the same | |
TW200901456A (en) | Methods, structures and sytems for an image sensor device for improving quantum efficiency of red pixels | |
TWI867072B (en) | Camera equipment and electronic equipment | |
TWI255549B (en) | Solid-state image pickup device | |
JP2008541455A (en) | Pixel having gate contact over active region and method of forming the pixel | |
US8476699B2 (en) | Method for producing semiconductor device and semiconductor device | |
US7968358B2 (en) | Digital radiographic flat-panel imaging array with dual height semiconductor and method of making same | |
CN113169197A (en) | Photoelectric conversion elements, solid-state imaging devices, and electronic equipment | |
JP2010278303A (en) | Solid-state imaging device | |
TW200929530A (en) | Solid-state image sensor, solid-state image sensing device and method of producing the same | |
US20070020795A1 (en) | Solid-state imaging device and its manufacturing method | |
JP2006024787A (en) | Solid-state imaging device and its manufacturing method | |
CN106972035B (en) | Image sensor and image sensor manufacturing method | |
TW200933881A (en) | Image sensor and method for manufacturing the same | |
WO2022097427A1 (en) | Imaging device, method for manufacturing imaging device, and electronic apparatus |