TW201240201A - Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell - Google Patents
Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell Download PDFInfo
- Publication number
- TW201240201A TW201240201A TW100138196A TW100138196A TW201240201A TW 201240201 A TW201240201 A TW 201240201A TW 100138196 A TW100138196 A TW 100138196A TW 100138196 A TW100138196 A TW 100138196A TW 201240201 A TW201240201 A TW 201240201A
- Authority
- TW
- Taiwan
- Prior art keywords
- positive electrode
- lithium ion
- electrode active
- lithium
- active material
- Prior art date
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 39
- 239000013543 active substance Substances 0.000 title abstract 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 37
- 239000002245 particle Substances 0.000 claims abstract description 27
- 229910052808 lithium carbonate Inorganic materials 0.000 claims abstract description 22
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims abstract description 18
- 238000004448 titration Methods 0.000 claims abstract description 15
- 239000003513 alkali Substances 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052718 tin Inorganic materials 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 4
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 4
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 3
- 239000007774 positive electrode material Substances 0.000 claims description 57
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 20
- 150000002500 ions Chemical class 0.000 claims description 18
- 238000006386 neutralization reaction Methods 0.000 claims description 8
- 229910015947 LixNi Inorganic materials 0.000 claims description 2
- 239000011164 primary particle Substances 0.000 abstract description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 4
- 229910052796 boron Inorganic materials 0.000 abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 229910052726 zirconium Inorganic materials 0.000 abstract description 2
- 229910014223 LixNi1-yMyO2 Inorganic materials 0.000 abstract 1
- 229910014042 LixNi1−yMyO2 Inorganic materials 0.000 abstract 1
- 229910052797 bismuth Inorganic materials 0.000 abstract 1
- 230000007935 neutral effect Effects 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 31
- 239000002184 metal Substances 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 18
- 238000010298 pulverizing process Methods 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 13
- 229910052744 lithium Inorganic materials 0.000 description 13
- 239000000843 powder Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 238000010304 firing Methods 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 229910001868 water Inorganic materials 0.000 description 8
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Inorganic materials [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 229910000032 lithium hydrogen carbonate Inorganic materials 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002642 lithium compounds Chemical class 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- KKMOSYLWYLMHAL-UHFFFAOYSA-N 2-bromo-6-nitroaniline Chemical compound NC1=C(Br)C=CC=C1[N+]([O-])=O KKMOSYLWYLMHAL-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- RJEIKIOYHOOKDL-UHFFFAOYSA-N [Li].[La] Chemical compound [Li].[La] RJEIKIOYHOOKDL-UHFFFAOYSA-N 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- LBSANEJBGMCTBH-UHFFFAOYSA-N manganate Chemical group [O-][Mn]([O-])(=O)=O LBSANEJBGMCTBH-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
201240201 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種鐘離子電池用正極活性物質、_ 子電池用正極、及鋰離子電池。 【先前技術】 鋰離子電池之正極活性物質,通常使用含鐘之過渡金 屬氧化物。具體而言,為鈷酸鋰(uc〇〇2)、鎳酸鋰 “iNi〇2)、錳酸链(LiMn2〇4) f,為 了改善 容化、循環特性、保存特性、降低内部電阻、比率(r^e) 特性)或提高安全性,而不斷對該等進行複合化。對= 輛用或負載調平。。adleveling)用等大型用途中之鐘離 電池’謀求與至今為止之行動電話 特性。 & 入冤腦用不同之 為了改善電池特性,先前使用各種方法,例 文獻1中揭示有一種下述鋰二次電 ; 电也用正極材料之盥抨古 法,其特徵在於:將!^犯卜yMy〇2 i 乏氣块方 (〇·。….3’〇<0〇.5,乂表201240201 SUMMARY OF THE INVENTION [Technical Field] The present invention relates to a positive electrode active material for a clock ion battery, a positive electrode for a sub-battery, and a lithium ion battery. [Prior Art] A positive electrode active material of a lithium ion battery is usually a transition metal oxide containing a bell. Specifically, it is lithium cobaltate (uc〇〇2), lithium nickelate “iNi〇2), and manganate chain (LiMn2〇4) f, in order to improve capacitance, cycle characteristics, storage characteristics, and reduce internal resistance and ratio. (r^e) characteristics) or improve safety, and continue to compound these. For = vehicle or load leveling. Adleveling) with the clock in the large-scale use of the battery 'seeking and mobile phone characteristics so far In order to improve the battery characteristics, various methods have been used previously. For example, a lithium secondary battery is disclosed in the literature 1. The electric method also uses a positive electrode material, which is characterized by: ^犯卜yMy〇2 i lack of gas block (〇·.....3'〇<0〇.5,乂表
Fe、cr、V、Ti、Cu、A1、Ga、Bi、Sn、;^C°、Mn、Fe, cr, V, Ti, Cu, A1, Ga, Bi, Sn, ^C°, Mn,
Ta、Bp … Sn、Zn、Mg、Ge、Nb、 e、B、Ca、ScA Zr所組成之群中的至 “目當於氧欠缺或氧過剩量,表示一 〇1…二素, 所示的鋰鎳複合氧化物通過分級 ·之,、且成 〜饵以千衡分離粒徑i 〜⑽Λ人成粒徑較大者與較小者,以重量比為 該方法二:徑較大者與較小者…,記载有若根據 p I易製造比率特性與電容各項平衡的鋰二次 201240201 電池用正極材料。 [專利文獻1]日本特許第41 75026號公報 【發明内容】 專利文獻1中§己載之鐘錄複合氧化物係其組 氧量過剩者,但即俑山L T之 -I5便如此,對於作為高品質之鋰離 用正極活性物質而言,仍然具有改善之餘地。 電池 2此’本發明之課題在於,提供一種具 性之鐘離子電池用正極活性物質。 特 本發明人經努力研究,結果發現 與電池特性之間尨户软+ 仍負之氧量 緊社、之相關關係。即,發現去 性物質之氧量為某數佶" 發現田正極活 性。 、值以上時,可獲得特別良好之電池特 又發現正極活性物質的粒子表面之含驗量 子表面的鹼量之中,氫 及该粒 乳乳化鐘量A與碳酸鋰詈R + 電池特性之間具有密 文煙里B之比,與 ,、令在切的相關關係。即, 物質的粒子表面之含 务見田正極活性 面的鹼量之中亍又 §亥粒子表 ^風氧化鋰量A與碳酸鋰量B 某數值以下時,可姐 之比A/B在 :了得到特別良好的電池特性。 上述見解為基礎而完成之本 種鋰離子電池用 月於一態樣中為一 τ.用正極活性物質,其細下述W主 LlxNi,_ yMy〇2+ 〇 攻,、且成式表不: (上述式中’Μ為選自Sc、Ti、Ta, Bp ... Sn, Zn, Mg, Ge, Nb, e, B, Ca, ScA Zr in the group consisting of "the purpose of oxygen deficiency or oxygen excess, indicating a 〇 1 ... The lithium-nickel composite oxide is classified by the classification, and is formed into a bait to separate the particle diameter i to (10). The particle size is larger and smaller, and the weight ratio is the second method: the larger diameter is In the case of a smaller one, there is a lithium secondary 201240201 battery positive electrode material which is based on the p I easy to manufacture ratio characteristics and the capacitance balance. [Patent Document 1] Japanese Patent No. 41 75026 [Patent Document] Patent Document 1 The Zhonglu composite oxide contained in § is the excess of oxygen in the group, but it is the same as the LT-I5 of the Laoshan Mountain, and there is still room for improvement as a high-quality lithium ion-using positive electrode active material. 2. The object of the present invention is to provide a positive electrode active material for a versatile clock ion battery. The inventors have made an effort to study and found that the balance between the battery characteristics and the battery characteristics is still negative. Correlation, that is, the amount of oxygen found in a substance is 某" When the value is above the value, a particularly good battery is obtained, and among the alkali content of the surface of the particle containing the surface of the positive electrode active material, hydrogen and the emulsion emulsified volume A and lithium carbonate 詈R are found. + The characteristics of the battery have the ratio of B in the ciphertext, and the relationship between the cut and the cut. That is, the surface of the particle of the substance is found in the amount of alkali in the positive active surface of the field. When the amount of lithium oxide A and the amount of lithium carbonate B are less than or equal to a certain value, the ratio of A/B can be found to be particularly good. The lithium ion battery used in the above-mentioned knowledge is used in a state. For a τ. using a positive active material, the following W main LlxNi, _ yMy 〇 2+ 〇 attack, and the formula is not: (in the above formula 'Μ is selected from Sc, Ti,
Cu、Zn、Ga、Ge、A Cr、Mn、Fe、c〇、 種以上,〇.kxgl.2,()<1、Sn、Mg、Ca、B&Z421 y$Q·7 ’ a >CM),利用兩階段 s 4 201240201 中和滴定所敎之粒子表面的鹼量在12質量%以下,若將 隸子表面的驗量中之氫氧化鐘設為"量%,碳酸裡設為 B質量%,則A/B在i以下。 本發明之鐘離子電池用正極活性物質,於一實施形態 中,利用兩階段中和滴定所測定 疋所巧疋之拉子表面的鹼量在0.8質 量%以下。 於另一實施形 本發明之鋰離子電池用正極活性物質 態中’ A/ B在〇·7以下。 於再另一實施 本發明之鋰離子電池用正極活性物質 形態中,M為選自]^11及(::〇中之丨種以上 於再另一實施 本發明之鋰離子電池用正極活性物質 形態中’組成式中,α > 〇15。 於再另一實施 本發明之鋰離子電池用正極活性物質 形態中,組成式中,《> 0.20。 本發明於另一態樣中為一 裡經離子電池用正極,直 用有本發明之鋰離子電池用正極活性物質。 八 本發明於再另一態樣中為_ 裡經離子電池,苴栋用古 本發明之鋰離子電池用正極,、优用有 根據本發明,可提供一種具 ^ π民好電池特性之鐘離早 電池用正極活性物質。 雕十 【實施方式】 (鋰離子電池用正極活性物質之構成) 本發明之鐘離子電池用正極活性物質之材料,可 使用適用作為一般鋰離子電池用正 極用之正極活性物質的 201240201 化合物,尤佳使用鈷酸鋰 L C 〇2 )、鎳酸鋰(LiNi02 ) ' 猛酸鐘(LiMn2〇4 )等含鋰,亦人 ^ ., d度金屬氧化物。使用上述材 料而製作之本發明之鋰離 十電池用正極活性物質係以下述 組成式表示:Cu, Zn, Ga, Ge, A Cr, Mn, Fe, c〇, above, 〇.kxgl.2, () <1, Sn, Mg, Ca, B&Z421 y$Q·7 ' a > ;CM), using two-stage s 4 201240201 Neutralization titration, the amount of alkali on the surface of the particles is less than 12% by mass, and if the hydration clock in the surface of the solute is set to "%, For B mass%, A/B is below i. In the positive electrode active material for a clock ion battery of the present invention, in one embodiment, the amount of alkali on the surface of the puller determined by the two-stage neutralization titration is 0.8% by mass or less. In another embodiment, the positive electrode active material for a lithium ion battery of the present invention has an A/B of 〇·7 or less. In another embodiment of the positive electrode active material for a lithium ion battery of the present invention, M is a positive electrode active material for a lithium ion battery selected from the group consisting of ^11 and (:: 〇 in the 〇) In the form of the composition formula, α > 〇 15. In the embodiment of the positive electrode active material for a lithium ion battery of the present invention, in the composition formula, "> 0.20. In another aspect, the present invention is a The positive electrode for a lithium ion battery of the present invention is used for the positive electrode for an ion battery, and the positive electrode active material for a lithium ion battery of the present invention is used in the other aspect. According to the present invention, it is possible to provide a positive electrode active material for a clock-free early battery having a battery characteristic of the present invention. [Embodiment] (Composition of a positive electrode active material for a lithium ion battery) The clock ion battery of the present invention As the material of the positive electrode active material, a compound 201240201 which is suitable as a positive electrode active material for a positive electrode for a general lithium ion battery can be used, and lithium cobaltate LC 〇 2 ) and lithium nickelate (LiNi02 ) are preferably used. ' LiMn2〇4) and other lithium-containing, also known as, d degree metal oxide. The positive electrode active material for lithium ion batteries of the present invention produced by using the above materials is represented by the following composition formula:
LixNi,-yMy02+ α (上述式中 ’Μ 為選自 Sc、Ti、v、Cr、Mn、Fe、c〇、 u、Zn、Ga、Ge'八卜則、sn、呦、a' b及汾中之i 種以上,0_9S i 2,η〆 ^ ^ -.2 0< 0.7,α > 〇」)。 链離子電池用正極活性物皙中 I王物買甲之鋰相對於全部金屬的 比率為0_9〜1 2,止[•你士认j· t ,、由於右未達〇.9,則難以保持穩定之 —構造’若超過U則變得無法確保電池之高電容。 本發月之鐘離子電池用正極活性物質之氧,於組成式 中如上述’係表示為〇 ( (α > 0 _ 1),過剩地含有,當用 於經離子電池之情形時, 电谷比羊特性及電容保持率等 電池特性變得良好。卜卜未 «β ι付民紆此處,關於α,較佳為α〉〇15,更佳 為 0!〉0 · 2 0 〇 本發明之鐘離子雷m τ in , 于電池用正極活性物質其利用兩階段中 和滴定所測定之粒子矣& & &I, 千表面的鹼量在υ質量%以下。若鋰離 子電池用正極活性物皙中的相;主二 〇 奶買肀的粒子表面之鹼量超過1.2質量 Α則使用有S玄正極活付妨J哲沾细汹^ 7 〖生物質的鋰離子電池於重複進行充放 電時會與電解液反庫。, 又右驗較多,則會產生氣體。因 此,引起電池的劣化,领雜j4 力化鋰離子電池的電池特性,特別是循LixNi, -yMy02+ α (In the above formula, 'Μ is selected from the group consisting of Sc, Ti, v, Cr, Mn, Fe, c〇, u, Zn, Ga, Ge', and s, 呦, a, a' b and 汾More than i, 0_9S i 2, η〆^ ^ -.2 0< 0.7, α > 〇"). The ratio of lithium to the total metal in the positive electrode active material of the chain ion battery is 0_9~1 2, and it is difficult to maintain the ratio of the lithium to the total metal. Stable - Construction 'If it exceeds U, it becomes impossible to ensure the high capacitance of the battery. The oxygen of the positive electrode active material for the ion battery of the present month is expressed as 〇((α > 0 _ 1) in the composition formula, and is excessively contained, when used in an ion battery, The battery characteristics such as the characteristics of the valley and the capacity of the capacitor become good. Bub is not «β ι付民纡 Here, about α, preferably α>〇15, more preferably 0!>0 · 2 0 〇本Inventive clock ion mine m τ in , for the positive electrode active material for a battery, the particle 矣 &&& I measured by two-stage neutralization titration, the amount of alkali of the thousand surface is less than υ mass %. If the lithium ion battery The phase in the positive active material 皙; the amount of alkali on the surface of the particles of the main 〇 〇 超过 超过 超过 超过 超过 超过 超过 超过 超过 玄 玄 玄 玄 J 哲 哲 哲 哲 哲 哲 生物 生物 生物When charging and discharging, it will be reversed from the electrolyte. If there are more right-hand tests, gas will be generated. Therefore, the battery will be degraded, and the battery characteristics of the lithium-ion battery will be especially useful.
環特性會變得不良。法丨丨田A eru A ^利用兩階段中和滴定所測定之鹼量較 佳在0.8質量%以下,更佳在〇 6質量%以下。 201240201 f發明之鐘離子電池用正極活性物f,若將粒子表面 的鹼量中之氫氧化鋰設為A質量%,碳酸鋰設為B質量%, 則Μ…以下。鋰離子電池用正極活性物質所含有的鹼 中有氫氧化鋰及碳酸鋰,當中氫氧化鋰量相對於碳酸 鋰量的比即上述A/B超過! ’則為強鹼之氫氧化鋰的比例 會變得比為弱鹼之碳酸鋰多,故pH值變高,使用有此正極 活性物質之鋰離子電池的電池特性,特別是循環特性會變 得不良。A/B較佳在〇·7以下,更佳在〇 4以下。 鋰離子電池用正極活性物質的兩階段中和滴定可使用 一般方法,又,例如於JISKl2〇1—3_1 (中和滴定)中有 規定。具體而言,該滴定法係根據以下之鹼與酸的反應。The ring characteristics can become bad. The amount of alkali measured by the two-stage neutralization titration is preferably 0.8% by mass or less, more preferably 〇6% by mass or less. In the positive electrode active material f for a clock ion battery of the invention, the amount of lithium hydroxide in the alkali amount on the surface of the particle is A mass%, and lithium carbonate is B mass%. Among the bases contained in the positive electrode active material for lithium ion batteries, there are lithium hydroxide and lithium carbonate, and the ratio of the amount of lithium hydroxide to the amount of lithium carbonate, that is, the above A/B exceeds! 'The ratio of lithium hydroxide which is a strong base becomes more than that of the weak base lithium carbonate, so the pH value becomes high, and the battery characteristics of the lithium ion battery using the positive electrode active material, especially the cycle characteristics, become bad. The A/B is preferably 〇7 or less, more preferably 〇4 or less. The two-stage neutralization titration of the positive electrode active material for a lithium ion battery can be carried out by a general method, and is also exemplified, for example, in JIS Kl 2〇1 - 3_1 (neutralization titration). Specifically, the titration method is based on the reaction of the following base with an acid.
LiOH+HC1—LiCl+H20 〇)LiOH+HC1—LiCl+H20 〇)
Li2C03 + HCl-> LiCl + LiHC03 (2)Li2C03 + HCl-> LiCl + LiHC03 (2)
LiHC03 + HC1—LiCl + C02 + H20 (3) 使用習知之指示藥劑的滴定法中,於(i )及(2 )之 反應中檢測出pH7.8,且將該測定點設為第丨終點。又,於 (3 )之反應中檢測出PH3.9,且將該測定點設為第2終點。 又,於根據JIS K1201 — 3 — 2 (電位差滴定)的規定之滴定 法中,檢測出2位置的折曲點’分別設為第1終點、第2 終點。然後,由至各自之終點所使用的HC1量來算出氫氧 化鋰及碳酸鋰的質量%。 鋰離子電池用正極活性物質係以一次粒子、一次粒子 凝集而形成之二次粒子,或一次粒子及二次粒子的混合物 所構成。鋰離子電池用正極活性物質其一次粒子或二次粒 201240201 子的平均粒徑較佳為2〜i5/i m。 右平均粒徑未達2以m,則會難以塗布至集電體。若平 均粒徑超過1 5 // m ’則在填充時會容易產生空隙,使填充性 降低。又,平均粒徑更佳為3〜1〇em。 (鋰離子電池用正極及使用其之鋰離子電池之構成) 本發明之實施形態之鋰離子電池用正極,例如具有下 述構造:將混合上述構成之鋰離子電池用正極活性物質、 導電助劑及黏合劑而製備成之正極合劑,設置於由鋁箱等 構成之集電體的單面或雙面。又’本發明之實施形態之鋰 離子電池,具備有上述構成之鋰離子電池用正極。 (鐘離子電池用正極活性物質之製造方法) 其人,詳細說明本發明之實施形態之鋰離子電池用正 極活性物質的製造方法。 首先,製作金屬鹽溶液。該金屬為Ni,及選自Sc、Ti V、Cr、Mn、Fe、c〇、Cu、Zn、Ga、以、^ 扪、^、—、LiHC03 + HC1 - LiCl + C02 + H20 (3) In the titration method using the conventional indicator agent, pH 7.8 was detected in the reaction of (i) and (2), and the measurement point was set as the third endpoint. Further, in the reaction of (3), pH 3.9 was detected, and the measurement point was set as the second end point. Further, in the predetermined titration method according to JIS K1201 - 3 - 2 (potential difference titration), it is detected that the two-point bending point 'is the first end point and the second end point, respectively. Then, the mass % of lithium hydroxide and lithium carbonate was calculated from the amount of HC1 used at each end point. The positive electrode active material for a lithium ion battery is composed of primary particles formed by primary particles and primary particles, or a mixture of primary particles and secondary particles. The positive electrode active material for a lithium ion battery preferably has an average particle diameter of primary particles or secondary particles of 201240201 of 2 to i5/i m. When the right average particle diameter is less than 2 m, it is difficult to apply to the current collector. If the average particle diameter exceeds 1 5 // m ', voids are likely to occur at the time of filling, and the filling property is lowered. Further, the average particle diameter is more preferably 3 to 1 〇em. (Position of a positive electrode for a lithium ion battery and a lithium ion battery using the same) The positive electrode for a lithium ion battery according to the embodiment of the present invention has a structure in which a positive electrode active material for a lithium ion battery and a conductive auxiliary agent having the above-described configuration are mixed. The positive electrode mixture prepared by using a binder is provided on one side or both sides of a current collector composed of an aluminum box or the like. Further, the lithium ion battery according to the embodiment of the present invention includes the positive electrode for a lithium ion battery having the above configuration. (Manufacturing Method of Positive Electrode Active Material for Clock Ion Batteries) A method for producing a positive electrode active material for a lithium ion battery according to an embodiment of the present invention will be described in detail. First, a metal salt solution is prepared. The metal is Ni and is selected from the group consisting of Sc, Ti V, Cr, Mn, Fe, c〇, Cu, Zn, Ga, Y, 扪, ^, —,
Ca、B及Zr中之i種以上。又,金屬鹽為硫酸鹽、氣化物、 頌酸鹽、乙酸鹽等,尤佳為確酸鹽。其原因在力:即便是 :雜質的形態混人燒成原料中’亦可直接燒成,故可省去 清洗步驟;及硝酸鹽會作為氧化劑而發揮功㉟,具有促進 燒成原料中之金屬氧化的功能。預先調整金屬鹽中所含各 金屬成為所欲莫耳比率。藉此,決定正極活性物質中之各 金屬的莫耳比率。 其次,使碳酸鋰懸浮於純水,其後投入上述金屬之 屬鹽溶液而製作金屬碳酸鹽溶液漿料。此時,漿料中會More than one of Ca, B and Zr. Further, the metal salt is a sulfate, a vapor, a citrate, an acetate or the like, and particularly preferably an acid salt. The reason is that the force: even if the form of impurities is mixed in the raw material, it can be directly fired, so that the washing step can be omitted; and the nitrate acts as an oxidizing agent 35, and the metal in the raw material is promoted. The function of oxidation. The metal contained in the metal salt is adjusted in advance to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined. Next, lithium carbonate was suspended in pure water, and then a metal salt solution of the above metal was introduced to prepare a metal carbonate solution slurry. At this point, the slurry will
S 8 201240201 出微小粒之含鋰碳酸鹽。再者,於作為金屬鹽之硫酸鹽或 氣化物等之熱處理時其鋰化合物不進行反應之情形時,利 用飽和碳酸鋰溶液清洗後進行過濾分離。如硝酸鹽或乙酸 鹽,其鋰化合物於熱處理過程中作為鋰原料進行反應之情 形時,可不進行清洗’而直接過濾分離並加以乾燥,藉此 使用作為燒成前驅物。 、其-人,藉由將經過濾分離之含鋰碳酸鹽加以乾燥,而 獲知鋰鹽之複合體(鋰離子電池正極材料用前驅物)之粉 末。 …其次’準備具有特定大小之容量的燒成容器,於該燒 f谷器中填充鋰離子電池正極材料用前驅物之粉末。其 :將填充有鋰離子電池正極材料用前驅物之粉末的燒成 谷益搬移至燒成爐’進行燒成。燒成係藉由在氧環境下加 熱保持特定時間來進行。又,若於HH〜202KPa之加壓下 進行燒成,則由於會進—步增加組成中之氧量,故較佳。 然後,自燒成容器取出粉末,冑用市售之粉碎裝置等 進行粉碎,藉此獲得正極活性物質之粉體。此時之粉碎係 二盡1不生成微粒的方式來調整適#的粉碎強度及粉碎時 曲%=具體而^,藉由該粉碎,於將_設為:累積 萌線成為90%之點的粒+牺 子徑(“m),將D10設為:累積曲 綠成為1 0%之點的粒子狎 ("m)時,將(D90—Dio) /2 D周整成8 /』m以下。又,宙从 更佳為將(D90—D10)/2調整成 6 β m以下。粉碎性軔估 成 ^ 的情形為微粉發生較少,且粗大粉 體發生亦較少,故D9〇 八财 成為相對較小的值,D10成為相對 201240201 較大的值特別是’在粉碎性劣化之情形時,於粒徑較小 的區域谷易變成拉出長指邊(出現尾巴)t狀態,若成為 此清形’則Dl〇變成相對地小,其結果(D90-D10) /2 &大巾即’(D9〇__D1G) 可說是表示粒度不均較少 之指標。 藉由以上述方式抑制粉碎時之微粉的發生,可減少每 體積之粉末的表面m可抑制粒子表©之氫氧化鋰量。 又,碳酸鋰於具有水分之場所,會變成氫氧化鋰,因 此藉由於乾燥空氣環境下進行粉碎,可控制成不會攝取到 水分。 [實施例] 以下,提供用以更好地理解本發明及其優點之實施 例’但本發明並不限定於此等實施例。 (實施例1〜1 5 ) 首先,使表1中記載之投入量的碳酸鋰懸浮於純水3 2 公升後,投入4.8公升金屬鹽溶液。此處,金屬鹽溶液係調 整各金屬之硝酸鹽的水合物,使各金屬成為表丨中記載之 組成比,又,調整成使全部金屬莫耳數為14莫耳。 再者,碳酸鋰之懸浮量為以LixNil_yMy02+a表示製品 (鋰離子二次電池正極材料,即正極活性物質)且X為表i 之值的量,分別由下式算出者。 W(g) = 73·9χ14χ(1 + 〇_5Χ)χΑ 上述式中,「A」係除了作為析出反應必需之量外,用 以預先自懸浮量減去過濾後原料中殘留之碳酸鋰以外的鋰 201240201 而乘的數值。「A」,如頌酸鹽或乙酸鹽於鋰 乍為燒成原料進行反應之情料為0.9,如錢越或氣化 物於鐘鹽未作為燒成原料進行反應之情形時為1〇;、 藉由該處理,於溶液中會析出微小粒之含鍾碳酸鹽, 使用壓濾、機將該析出物過據分離。 繼而’將析出物加以乾燥而獲得含裡碳酸鹽(鐘離子 電池正極材料用前驅物)。 α其认,準備燒成容器,將含链碳酸鹽填充於該燒成容 器内。其次’將燒成容器於大氣壓下放入氧氣環境爐,以 表1中記載之燒成溫度加熱保持1G小時後,進行冷卻,而 獲得氧化物。 其次,使用小型粉碎機(hosokawamieronACM—2EC、 將所獲得之氧化物粉碎成特定粒徑之微粉為特定的粒度分 布之分布幅度,而獲得鋰離子二次電池正極材料之粉末。 (實施例16 ) 實施例16 ’係使原料之各金屬為表i所示組成,使金 屬鹽為氣化物,使含鋰碳酸鹽析出後,利用飽和碳酸鋰溶 液進行清洗、過濾,除此之外,其餘皆進行與實施例丨〜。 相同之處理。 (實施例1 7 ) 實施例17,係使原料之各金屬為表丨所示組成,使金 屬鹽為硫酸鹽,使含經碳酸鹽析出後,制飽和碳酸鐘溶 液進行清洗、過濾,除此之外,皆進行與實施例丨〜15相 同之處理。 201240201 (實施例1 8 ) 實施例1 8 ’係使原料之各金屬為表1所示組成,並非 於大氣壓下而是於1 2〇KPa之加壓下進行燒成,除此之外, 其餘皆進行與實施例1〜丨5相同之處理。 (比較例1〜3 ) 比較例1 ’係使原料之各金屬為表1所示組成,且對於 最後之氧化物的粉碎不進行如實施例丨〜丨5般之調整除 此之外,其餘皆進行與實施例1〜15相同之處理。 (比較例4〜6 ) 、比較例4〜6,係使原料之各金屬為表丨所示組成,且 並非於氧氣環境爐中’而是於空氣環境爐中進行燒成步 驟除此之外,其餘皆進行與比較例【相同之處理。 (評價) —正極材料組成之評價— 各正極材料中之金屬含量係利用感應耦合電漿發射光 譜分析儀(ICP-⑽)測量,而算出各金屬之組成比(莫 耳比)。又’含氧量係利用LECO法測量並算出α。確認 該等結果如表1記載所示。 ~平均粒徑之評價_ 〜才木集各正極材料之粉末,藉由雷射繞射型粒度分布測 疋裝置(Micr〇trackMT33〇〇EXIi)來測定平均粒徑。 ~驗量之評價― 正極材料中的給吾技Λ丨m — 量係利用兩階段令和滴定法來進行測 疋。具體而言,採隹S 8 201240201 A lithium carbonate containing fine particles. Further, when the lithium compound is not reacted during heat treatment such as a sulfate or a vapor of a metal salt, it is washed with a saturated lithium carbonate solution and then subjected to filtration separation. For example, in the case of a nitrate or acetate, the lithium compound is reacted as a lithium raw material during the heat treatment, and it can be directly filtered and separated without drying, and used as a baking precursor. Further, the powder of the lithium salt complex (precursor for a positive electrode material for a lithium ion battery) of the lithium salt is obtained by drying the filtered lithium-containing carbonate. Next, a firing vessel having a capacity of a specific size is prepared, and a powder of a precursor for a positive electrode material for a lithium ion battery is filled in the burner. It is: the calcination of the powder filled with the precursor of the positive electrode material for a lithium ion battery is transferred to a baking furnace and calcined. The firing is carried out by heating for a certain period of time in an oxygen atmosphere. Further, if the firing is carried out under the pressure of HH to 202 KPa, the amount of oxygen in the composition is increased step by step, which is preferable. Then, the powder is taken out from the firing container, and pulverized by a commercially available pulverizing apparatus or the like to obtain a powder of the positive electrode active material. In this case, the pulverization strength of the smashing system is adjusted so that no pulverization is generated, and the pulverization strength at the time of pulverization and the pulverization at the time of pulverization are specifically determined, and by the pulverization, the _ is set to a point at which the cumulative germination line becomes 90%. Grain + sacrifice path ("m), set D10 to: When the particle 狎 ("m) which accumulates the curvature of green to become 10%, the (D90-Dio) /2 D week is rounded into 8 /』m In addition, it is better to adjust (D90-D10)/2 to 6 β m or less. The pulverization property is estimated to be less, and the coarse powder is less generated, so D9〇八财 has become a relatively small value, and D10 has a relatively large value relative to 201240201. In particular, in the case of pulverizing deterioration, the valley in the region where the particle size is small is easy to become the state of pulling out the long finger edge (the tail appears). If it becomes this clear shape, then Dl〇 becomes relatively small, and the result (D90-D10) /2 & the towel, '(D9〇__D1G) can be said to be an index indicating that the particle size is less uneven. The above method suppresses the occurrence of fine powder during pulverization, and can reduce the amount of lithium hydroxide of the particle surface by reducing the surface m of the powder per volume. Since it is turned into lithium hydroxide, it can be controlled so as not to be ingested by pulverization in a dry air atmosphere. [Embodiment] Hereinafter, an embodiment for better understanding of the present invention and its advantages will be provided. However, the present invention is not limited to the examples. (Examples 1 to 15) First, lithium carbonate was charged in an amount of 3 2 liters of pure water described in Table 1, and then 4.8 liters of a metal salt solution was charged. Here, the metal salt solution adjusts the hydrate of the nitrate of each metal so that each metal becomes the composition ratio described in the surface, and is adjusted so that the total number of metal moles is 14 m. Further, the suspension of lithium carbonate The amount is expressed by LixNil_yMy02+a (the lithium ion secondary battery positive electrode material, that is, the positive electrode active material) and X is the value of the table i, and is calculated by the following formula: W(g) = 73·9χ14χ(1 + 〇_5Χ) χΑ In the above formula, "A" is a value obtained by multiplying the lithium 201240201 other than lithium carbonate remaining in the filtered raw material from the amount of suspension in addition to the amount necessary for the precipitation reaction. "A", such as bismuth citrate or acetate in the case where lithium lanthanum is a raw material for calcination, the reaction is 0.9, and if the amount of valence or vapor is not reacted as a raw material for sintering, it is 1 〇; By this treatment, the bell-containing carbonate containing fine particles is precipitated in the solution, and the precipitate is separated by filtration using a press filter. Then, the precipitate was dried to obtain a condensed carbonate (precursor for a positive electrode material for a clock ion battery). According to α, it is prepared to burn the container, and the chain-containing carbonate is filled in the firing container. Next, the firing container was placed in an oxygen atmosphere furnace under atmospheric pressure, and heated at a firing temperature shown in Table 1 for 1 G hour, and then cooled to obtain an oxide. Next, a powder of a lithium ion secondary battery positive electrode material was obtained by using a small pulverizer (hosokawamieron ACM-2EC), which pulverized the obtained oxide into a specific particle size distribution to obtain a specific particle size distribution. (Example 16) Example 16 'The metal of the raw material is a composition shown in Table i, and the metal salt is vaporized. After the lithium carbonate is precipitated, it is washed and filtered with a saturated lithium carbonate solution, and the rest is carried out. The same treatment as in Example 丨 (Example 1 7) Example 17 is such that each metal of the raw material has a composition shown in Table ,, and the metal salt is a sulfate, and the salt is precipitated and saturated. The same procedure as in Examples -15 to 15 was carried out except that the carbonic acid clock solution was washed and filtered. 201240201 (Example 1 8) Example 1 8 'The respective metals of the raw materials were the compositions shown in Table 1, The same treatment as in Examples 1 to 5 was carried out except that the firing was carried out under a pressure of 1 2 Torr KPa under atmospheric pressure. (Comparative Examples 1 to 3) Comparative Example 1 Making each metal of the raw material The composition shown in Table 1 was the same as that of Examples 1 to 15 except that the pulverization of the last oxide was not carried out as in the case of Example 〜 to 丨5. (Comparative Examples 4 to 6) And Comparative Examples 4 to 6, in which the metals of the raw materials are of the composition shown in Table ,, and not in the oxygen atmosphere furnace, but the firing step is performed in an air environment furnace, and the others are compared and compared. Example [Same treatment. (Evaluation) - Evaluation of composition of positive electrode material - The metal content in each positive electrode material was measured by an inductively coupled plasma emission spectrometer (ICP-(10)), and the composition ratio of each metal was calculated. In addition, the oxygen content is measured by the LECO method and the α is determined. The results are shown in Table 1. ~ Evaluation of the average particle size _ ~ The wood powder of each positive electrode material, by laser The particle size distribution measuring device (Micr〇trackMT33〇〇EXIi) is used to determine the average particle size. ~ Evaluation of the measurement - the technique in the positive electrode material - the quantity is measured by two-stage order and titration疋. Specifically, pick
” g的各正極材料粉末,加入至50mLg of each positive electrode material powder, added to 50mL
S 12 201240201 的純水並攪拌ι〇分鐘後,進行過濾。接著,使用微吸管, 將濾液10mL及純水15mL置入於5〇mL的高燒杯。接著, 將攪拌子置入於加入有酚酞作為指示藥劑的燒杯中,並置 於攪拌器,將電極設置於燒杯内。其次,一邊授掉燒杯内 的溶液,一邊滴入0.0 1N的HC1。 此處,兩階段中和滴定法係基於以下之鹼與酸反應。 UOH+HC1—LiCl+H2〇 ⑴S 12 201240201 of pure water and stirred for 10 minutes, filtered. Next, 10 mL of the filtrate and 15 mL of pure water were placed in a 5 mL high beaker using a micropipette. Next, the stirrer was placed in a beaker to which phenolphthalein was added as an indicator, and placed in a stirrer to place the electrode in the beaker. Next, while the solution in the beaker was given, 0.011 N of HC1 was dropped. Here, the two-stage neutralization titration method is based on the reaction of the following base with an acid. UOH+HC1—LiCl+H2〇 (1)
Li2C03 + HC1—LiCl + LiHC03 (2)Li2C03 + HC1—LiCl + LiHC03 (2)
LiHC03 + HC1—LiCl + C02 + H20 (3) 於⑴及(2)之反應中檢測出pH7 8,且將該測定點 設為第i終點。又,於(3)之反應中檢測出pH3 9,且將 該測定點設為第2終點。然後’將至第i終點所使用的Η。 量設為x(mL)’將至第2終點所使用的犯量設為/社), 藉由 Cy-x) χθ.369 質量。/〇求出 Li2C〇3,藉由(2χ—y) χ 〇·12質量。/〇求出u〇H量。 ( 又,由經算出之LiOH量及Li2C〇 LiOH 量 / Li2C03 量)。 3量,求出該等之 比 (y- X) χθ.369 質量 X 0.12質量%,係由以 再者,上述LhCO3量之計算式 〇/〇,及UOH量之計算式:(2x—y) 下的式子推導而得。 上述(3)式HC1的莫耳數传每丨丨田 J夫吁裂你利用以下式子而求得^ ^ V - x) xl/ 1000x0.Olmol/L^ ι〇-5ν , 、 lux(y-x) mol •因為上述(2 )之Li2C03的簟:g:叙也L丄 , 2 3旧旲斗數與上述HC1的箪 耳數相同,Li2c〇3的分子量為738q 'LiHC03 + HC1 - LiCl + C02 + H20 (3) pH 7 8 was detected in the reactions of (1) and (2), and the measurement point was taken as the ith end point. Further, in the reaction of (3), pH 3 was detected, and the measurement point was set as the second end point. Then 'will be used to the end of the ith end. The amount is set to x (mL)', and the amount of offense used to the second end point is set to /, by Cy-x) χ θ.369 mass. /〇 Find Li2C〇3, with (2χ-y) χ 〇·12 mass. /〇 Find the amount of u〇H. (In addition, the calculated amount of LiOH and Li2C〇 LiOH amount / Li2C03 amount). For the amount of 3, find the ratio (y-X) χ θ.369 mass X 0.12 mass%, which is the calculation formula of the above-mentioned LhCO3 amount, and the calculation formula of the UOH amount: (2x-y The formula below is derived. The Moir number of the above formula (3) HC1 is obtained by the following formula: ^ ^ V - x) xl / 1000x0. Olmol / L ^ ι〇 - 5ν , , lux (yx ) mol • Because of the above (2) Li2C03 簟: g: 叙也 L丄, 2 3 old hopper number is the same as the above HC1 箪 ear number, Li2c 〇 3 molecular weight is 738q '
3 里為73.89,於滴定時使用50mL 13 201240201 之中的10mL,且原本的正極材 性柯枓的投入量為lg,故Li2C〇3 量係利用以下式子而求得。 73_89g/molxl〇-5x ( y 、 、7 x) mGlx ( 5〇mL/ l〇mL) +lgx 1 00% = ( y - x ) xO.369 質量 〇/〇 上述(1 )式LiOH的莫耳數係利用以下式子而求得。 XXI/ lOOOxO.Olmol/L^ 1〇.5χ ( y_ χ) m〇1= 1〇.5χ ( 2χ —y ) mol 因為LiOH的刀子量為23 %,於滴定時使用 之中的10mL,且原本的正極材料的投入量為,故[〖OH 量係利用以下式子而求得。 23.95g/molx 1 〇·5χ ( 2x — v、 1 , , X、zx y) molx ( 50mL/10mL) -figIn 3, it is 73.89, and 10 mL of 50 mL of 13 201240201 is used for the titration, and the input amount of the original positive electrode material is lg, so the amount of Li2C〇3 is obtained by the following formula. 73_89g/molxl〇-5x ( y , , 7 x) mGlx ( 5〇mL/ l〇mL) +lgx 1 00% = ( y - x ) xO.369 Mass 〇 /〇 The above formula (1) LiOH The number system is obtained by the following formula. XXI/ lOOOxO.Olmol/L^ 1〇.5χ ( y_ χ) m〇1= 1〇.5χ ( 2χ —y ) mol Because the amount of LiOH is 23%, 10mL in the use of the titration, and the original The amount of the positive electrode material to be charged is, so [the OH amount is obtained by the following formula. 23.95g/molx 1 〇·5χ ( 2x — v, 1 , , X, zx y) molx ( 50mL/10mL) -fig
Xl00%= (2x-y) x〇.i2 質量 % 一電池特性之評價一 以85: 8: 7之比例秤量各正極材料 '導電材料與黏合 劑,將黏合劑溶解於有機溶劑(N —甲基吡咯啶酮(N _ methylpyrrolidone))後,再將正極材料與導電材料混合於 其中進行漿料化,塗佈於A1箔上加以乾燥後進行壓製而製 成正極。繼而,製作相對電極為Li之評價用2〇32型硬幣電 池(coin cell ),使用 1M- LiPF6 溶解於 EC _ DMC ( 1 : 1 ) 而成者作為電解液,測罝電流密度〇 · 2 C時之放電電容。又, 算出電流达、度2 C時相對於電流密度〇. 2 c時之電池電容的 放電電容之比’獲得比率特性。並且,電容保持率,係藉 由在室溫下將1C之放電電流所獲得之初始放電電容與1〇〇 循環後之放電電容加以比較而測得。Xl00%= (2x-y) x〇.i2 Mass % Evaluation of battery characteristics 1. Weigh each positive electrode material 'conductive material and adhesive agent at a ratio of 85: 8: 7 to dissolve the adhesive in organic solvent (N-A After the base pyrrolidone (N _ methylpyrrolidone), the positive electrode material and the conductive material are mixed therein to be slurried, coated on an A1 foil, dried, and pressed to obtain a positive electrode. Then, a 2〇32 type coin cell (coin cell) in which the counter electrode was Li was prepared, and 1 M-LiPF6 was dissolved in EC_DMC (1:1) as an electrolyte solution, and the current density 〇· 2 C was measured. The discharge capacitor at that time. Further, the ratio characteristic was obtained by calculating the ratio of the discharge capacitance of the battery capacitance with respect to the current density 〇. 2 c when the current reached 2 C. Further, the capacitance retention ratio was measured by comparing the initial discharge capacitance obtained by discharging a current of 1 C at room temperature with the discharge capacitance after 1 Torr.
14 S 201240201 該等之結果示於表1及表2。 15 201240201 粉碎後之(D90 —DIO) /2 (βηχ) (N (N OS — rn — ΓΛ Ο) 00 vd O) — r- (N vb (N 00 Os — 00 00 Os 〇〇 oo 00 〇115j 〇119j 0.04 0:_17— 〇ilJ 〇113j 〇1nJ 0.21 I 0.09 I 〇:13j I 0.07 I 0.10 | 0.23 I 0.18 I 0.09 0.12 -0.01 -0.01 0.00 X o O o 〇 0.025 I 0.05 I ο Ο o o o 〇 o o lo.oi I o o o 〇 o o o o 0.01 保持ι 溫度 rc) I looo I I looo I 1 looo I | looo | 970 I 950 1 looo I 920 I 1 900 I 800 I I 800 I 〇 § o 00 800 750 1 io⑻ | | looo I 950 looo I 920 I I 800 I 800 I 1 800 I 800 除去Li之全部金屬中之各金屬的組成比 (N (N *— < £ u i〇 p i〇 (N CN i 33.3 33.3 33.3 33.3 | 33.3 I 33.3 m (N «η (N o | 33.3 I 33.3 33.3 33.3 (N o 〇 33.3 33.3 33.3 33.3 33.3 33.3 m m o <n tr> 33.3 33.3 33.3 33.3 «Ο TOM o o 2 33.3 33.3 33.3 33.3 33.3 33.3 m m § § § 33.3 33.3 33.3 33.3 S g 碳酸链懸浮量 (g) 1393 1393 1393 1393 1442 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 I實施例ι | 實施例2 實施例3 實施例4 [實施例5 1 實施例6 [實施例71 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 實施例14 實施例15 實施例16 實施例17 實施例18 比較例1 比較例2 |比較例3 1 比較例4 比較例5 比較例6 201240201 【<N<】 M ^ (N ON s; <N 〇\ Os Os ON 00 00 00 ss 00 00 <rj 00 00 s (N 00 cn oo 00 00 ν〇 00 〇\ w-j 00 oo <N 00 oo jn ^ ¢1 '5 £^t (N 〇s in ON in ON cn a\ (N as (N OS 00 00 ON 00 E; 00 00 ir> 00 oo 00 Os 00 § § ON 5: 00 m oo i On 放電電容 (mAh / g ) ΓΛ 5 o v〇 00 U^) JO (N *T) Os *—H in 00 so 00 s; O 00 o 2 m *·"Η v〇 in m VD 1 o v〇 A/B 0.218 0.218 0.137 0.658 i 0.125 0.186 0.108 0.075 0.495 0.461 0.419 0.326 0.303 JO o 0.387 ! 0.108 o 〇 0.728 1.068 0.714 0.848 0.715 0.709 碳酸鋰量 B (質量%) 0.110 0.110 0.139 0.073 0.120 0.086 i 0.111 0.268 0.426 0.372 0.378 0.639 0.691 0.332 0.395 ! o.iii <N d 0.135 0.103 0.073 0.168 0.612 0.319 0.351 〇W Q ft4 0s ^ m 0.024 0.024 0.019 0.048 0.015 0.016 0.012 s o 0.211 0.172 0.159 0.208 0.209 0.249 0.153 1 0.012 0.012 0.000 0.075 0.078 (N d 0.519 0.228 0.249 /-~N ΦΊ c? ^ ®W \w/ 0.134 0.134 0.158 0.121 0.135 0.102 0.123 j 0.248 0.637 0.544 0.537 0.840 0.900 0.581 0.548 1 0.123 0.132 0.135 0.178 0.151 0.248 fN 0.547 0.600 平均 粒徑 (^rn) (N v〇 od (N 〇 卜 σ\ vi 卜 o o O) o ON ♦«H 卜 od 00 r- d (N ON 卜 00 寸· 寸 d CO (N On 00 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 實施例14 實施例15 實施例16 實施例17 實施例18 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 201240201 (評價) 實施例1〜18其電池特性皆 鹽為《鹽的實施们叫 =°又’原料之金屬 —+,廿# A 其電池特性特別良好。進 大氣壓力下進行燒成’而是於加壓下進行辦 成的實施例18其電池特性為最好。 〜 雖然比較例〗〜3其作為原料的金屬 同都過度地含有氧’但因為粉碎條件因'^發明相 良。比較例4〜6盆作為;§4丄 原因而電池特性不 以 J z、作為原料的金屬之組成在本發 从外,進一步因為粉碎條件 範圍 π 1衆件之原因而電池特性不 【圖式簡單說明】 無 【主要元件符號說明】 無14 S 201240201 The results of these are shown in Tables 1 and 2. 15 201240201 After smashing (D90 — DIO) /2 (βηχ) (N (N OS — rn ΓΛ Ο) 00 vd O) — r- (N vb (N 00 Os — 00 00 Os 〇〇oo 00 〇115j 〇119j 0.04 0:_17—〇ilJ 〇113j 〇1nJ 0.21 I 0.09 I 〇:13j I 0.07 I 0.10 | 0.23 I 0.18 I 0.09 0.12 -0.01 -0.01 0.00 X o O o 〇0.025 I 0.05 I ο Ο ooo 〇oo Lo.oi I ooo 〇oooo 0.01 Keep ι temperature rc) I looo II looo I 1 looo I | looo | 970 I 950 1 looo I 920 I 1 900 I 800 II 800 I 〇§ o 00 800 750 1 io(8) | | looo I 950 looo I 920 II 800 I 800 I 1 800 I 800 The composition ratio of each metal in all metals except Li (N (N *— < £ ui〇pi〇(N CN i 33.3 33.3 33.3 33.3 | 33.3 I 33.3 m (N «η (N o | 33.3 I 33.3 33.3 33.3 (N o 〇33.3 33.3 33.3 33.3 33.3 33.3 mmo <n tr> 33.3 33.3 33.3 33.3 «Ο TOM oo 2 33. 3 33.3 33.3 33.3 33.3 33.3 mm § § § 33.3 33.3 33.3 33.3 S g Chain suspension (g) 1393 1393 1393 1393 1442 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 1393 Example Example 2 Example 3 Example 4 [Example 5 1 Example 6 [Example 71 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 17 Example 18 Comparative Example 1 Comparative Example 2 | Comparative Example 3 1 Comparative Example 4 Comparative Example 5 Comparative Example 6 201240201 [<N<] M ^ (N ON s; <N 〇\ Os Os ON 00 00 00 ss 00 00 <rj 00 00 s (N 00 cn oo 00 00 ν〇00 〇\ wj 00 oo <N 00 oo jn ^ ¢1 '5 £^t (N 〇s in ON in ON cn a\ (N as N N 5 5 5 5 5 5 5 T) Os *—H in 00 so 00 s; O 00 o 2 m *·"Η v〇in m VD 1 ov〇A/B 0.218 0.218 0.137 0.658 i 0.125 0.186 0.108 0.075 0.495 0.461 0.419 0.326 0.303 JO o 0.387 ! 0.108 o 〇0.728 1.068 0.714 0.848 0.715 0.709 Amount of lithium carbonate B (% by mass) 0.110 0.110 0.139 0.073 0.120 0.086 i 0.111 0.268 0.426 0.372 0.378 0.639 0.691 0.332 0.395 ! o.iii <N d 0.135 0.103 0.073 0.168 0.612 0.319 0.351 〇WQ ft4 0s ^ m 0.024 0.024 0.019 0.048 0.015 0.016 0.012 so 0.211 0.172 0.159 0.208 0.209 0.249 0.153 1 0.012 0.012 0.000 0.075 0.078 (N d 0.519 0.228 0.249 /-~N ΦΊ c? ^ ®W \w/ 0.134 0.134 0.158 0.121 0.135 0.102 0.123 j 0.248 0.637 0.544 0.537 0.840 0.900 0.581 0.548 1 0.123 0.132 0.135 0.178 0.151 0.248 fN 0.547 0.600 Average particle size (^rn) (N v〇od (N 〇卜σ\ vi oo O) o ON ♦« H od 00 r-d (N ON 00 inch · inch d CO (N On 00 embodiment 1 embodiment 2 embodiment 3 embodiment 4 embodiment 5 embodiment 6 embodiment 7 embodiment 8 embodiment 9 embodiment 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 17 Example 18 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 201240201 (Evaluation) Example 1 ~18 The battery characteristics of the salt are "the salt implementation is called = ° and the material of the raw material - +, 廿 # A, its battery characteristics are particularly good. In Example 18, which was subjected to firing under atmospheric pressure, and was carried out under pressure, the battery characteristics were the best. ~ Although Comparative Example 〜3, the metal as a raw material all contains oxygen excessively, but the pulverization condition is good because of the invention. Comparative Example 4 to 6 pots; § 4 丄 reasons for the battery characteristics are not J z, the composition of the metal as a raw material in the present, and further because the pulverization conditions range π 1 due to the battery characteristics are not [pattern Brief description] No [Main component symbol description] None
S 18S 18
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011079227 | 2011-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201240201A true TW201240201A (en) | 2012-10-01 |
Family
ID=47599729
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100138196A TW201240201A (en) | 2011-03-31 | 2011-10-21 | Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell |
TW101109460A TWI469934B (en) | 2011-03-31 | 2012-03-20 | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101109460A TWI469934B (en) | 2011-03-31 | 2012-03-20 | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery |
Country Status (1)
Country | Link |
---|---|
TW (2) | TW201240201A (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3232984B2 (en) * | 1995-10-31 | 2001-11-26 | 松下電器産業株式会社 | Method for producing nonaqueous electrolyte battery and positive electrode active material |
JP3769871B2 (en) * | 1997-04-25 | 2006-04-26 | ソニー株式会社 | Method for producing positive electrode active material |
JP4259847B2 (en) * | 2001-10-25 | 2009-04-30 | パナソニック株式会社 | Positive electrode active material and non-aqueous electrolyte secondary battery including the same |
JP4794192B2 (en) * | 2005-03-31 | 2011-10-19 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery and charging method thereof |
JP2007257890A (en) * | 2006-03-20 | 2007-10-04 | Nissan Motor Co Ltd | Positive electrode material for nonaqueous lithium ion battery and battery using this |
-
2011
- 2011-10-21 TW TW100138196A patent/TW201240201A/en unknown
-
2012
- 2012-03-20 TW TW101109460A patent/TWI469934B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201240921A (en) | 2012-10-16 |
TWI469934B (en) | 2015-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5819200B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP5819199B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP5963745B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
TWI424606B (en) | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery | |
JP5368627B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
TWI423503B (en) | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery | |
JP6159514B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP5934089B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
TWI423505B (en) | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery | |
TW201205943A (en) | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery | |
JP6026403B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP6026404B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP6030546B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
TWI492444B (en) | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery | |
JP6243600B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP5985819B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
TW201240201A (en) | Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell | |
TWI467836B (en) | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery | |
TWI460912B (en) | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery | |
TWI453979B (en) | A lithium ion battery positive electrode active material, positive electrode for a lithium ion battery, and a lithium ion battery |