[go: up one dir, main page]

TW201240071A - Lens stack structures and methods for manufacturing the same - Google Patents

Lens stack structures and methods for manufacturing the same Download PDF

Info

Publication number
TW201240071A
TW201240071A TW100109496A TW100109496A TW201240071A TW 201240071 A TW201240071 A TW 201240071A TW 100109496 A TW100109496 A TW 100109496A TW 100109496 A TW100109496 A TW 100109496A TW 201240071 A TW201240071 A TW 201240071A
Authority
TW
Taiwan
Prior art keywords
substrate
lens
lens stack
layer
lower substrate
Prior art date
Application number
TW100109496A
Other languages
Chinese (zh)
Inventor
Fang-Ming Huang
Original Assignee
Himax Imagimg Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Imagimg Inc filed Critical Himax Imagimg Inc
Priority to TW100109496A priority Critical patent/TW201240071A/en
Publication of TW201240071A publication Critical patent/TW201240071A/en

Links

Landscapes

  • Lens Barrels (AREA)

Abstract

Disclosed is a lens stack structure including a plurality of spacer layers disposed between a top substrate, a middle substrate, and a bottom substrate to define a plurality of compartments. A plurality of lenses is disposed in the compartments. A molding layer is disposed on edge and sidewall of the bottom substrate, sidewalls of the spacer layer, the middle substrate, and the top substrate, and edge of the top substrate. A diaphragm is defined as a part of the top substrate not covered by the molding material, wherein the diaphragm corresponds to a center part of the lens.

Description

201240071 六、發明說明: 【發明所屬之技術領域】 本發明係關於透鏡堆疊結構,更特別關於其形成方法。 【先前技術】 如第1A圖所示,將上基板10、間隔物層16、透鏡層 18、中間基板12、透鏡層18、間隔物層16、及下基板14 黏合在一起。上基板10、中間基板12、與下基板14均為 透明材料如玻璃、石英、或塑膠。一般而言,上基板10上 方鍍有圖案化鉻層10A以定義光圈17。夾設於上基板10、 中間基板12、與下基板14之間的間隔物層16可定義密閉 空間13,而密閉空間13可用以容納透鏡層18之透鏡18。 可採用紫外線硬化膠黏合上述之層狀結構。對準透鏡18A 之中心部份的光圈17,會略小於透鏡18 A之尺寸。 接著如第1B圖所示,以貼紙15保護圖案化鉻層10A 定義之光圈17。之後直接將晶圓等級的多層結構切開,形 成多個晶粒如第1C圖所示之結構。第1C圖之結構下方可 加設感測元件(未圖示),感測穿過光圈17、上基板10、透 鏡18A、中間基板14、另一透鏡18A、及下基板12之光線。 另一方面,感測元件(未圖示)可位於下基板12上的密閉空 間13中。不論採用哪種設計,上基板10、中間基板14、 以及下基板12均為透明材質,除了穿過光圈17的光線以 外,其他方向的光線亦會由第1C圖所示之結構的側壁穿過 並影響感測元件。為避免上述現象,可將第1C圖之結構套 入黑色桶狀結構19,再撕除貼紙15,即形成第1D圖所示 4 201240071 之結構。可以理解的是,黑色桶狀結構19與第1C圖所示 之、=構之間的尺寸差異不能太大,否則將出現套不進或套 不牢的問題。如此—來,將出現兩個關鍵尺寸:黑色桶狀 結構19之關鍵尺寸與第1C圖所示之結構的關鍵尺寸。只 要這兩個雜尺寸有—個偏差,就會造成產^失效。另一 個方法是在第1C®所示之結構㈣塗上黑漆。但此種作法 仍有黑漆厚度*均與製程困料問題。上述兩種避免側辟 漏光的作法均為晶粒等級的製程,不但耗時耗工,其機= 成本也遠高於晶圓等級的製程。 口 綜上所述, 所造成的問題。 【發明内容】 目前亟需新的製程改善上述晶粒等級製程 本發明一實施例提供一種透鏡堆疊結構,包括多個間 :㈣Ϊ設於上基板、中間基板、以及下基板之二 夕個雄閉空間,多個透鏡位於密閉空間中;成型材料層 位於下基板之邊緣及側壁上、間隔物層與中間基板與上基 壁、以及上基板的邊緣上;以及光圈定義於上基板 未被成型材料覆蓋的部份’且光圈對應透鏡的中心部份。 ^發明另—實施例提供—種透鏡堆疊結構的形成方 Ϊ =黏合上基板、中間基板、下基板、多個間隔物 :、及夕個透鏡層,其中間隔物層係夾設於上基板、中間 板、、與下基板之間以定義多個密閉空間,而透鏡層具有 夕個透鏡位於密閉空間中.將夕 — 八 t心的部Υ八. 字夕個復盍物貼覆於對應透鏡 、°刀土板上’垂直切割透鏡之間的上基板、中間 201240071 基板、間隔物層、透鏡層、與部份下基板,以形成多個溝 槽;形成成型材料層於溝槽中、上基板上、與覆蓋物上; 垂直切割成型材料層與溝槽下方保留的部份下基板;去除 覆蓋物與其上方的成型材料,以形成多個光圈對應透鏡中 心,即完成多個分離的透鏡堆疊結構。 【實施方式】 在本發明一實施例中,如第2A圖所示,將上基板10、 間隔物層16、透鏡層18、中間基板12、透鏡層18、間隔 物層16、及下基板14黏合在一起。上基板10、中間基板 12、與下基板14均為透明材料如玻璃、石英、或塑膠。與 習知技藝之差異在於,本案不需在上基板10上方形成圖案 化鉻層定義光圈。夾設於上基板10、中間基板Π、與下基 板14之間的間隔物層16可定義密閉空間13,而密閉空間 13可用以容納透鏡層18之透鏡18。可採用紫外線硬化膠 黏合上述之層狀結構。可以理解的是,上述層狀結構只圖 示兩個透鏡堆疊結構,但實際操作上每一個層狀圖案如間 隔物層16(或透鏡層18)均具有數以千計甚至萬計的間隔物 (或透鏡18A),端視間隔物層16(或透鏡層18)與間隔物(透 鏡18A)之間的比例。舉例來說,上述之上基板10、中間基 板14、下基板12、間隔物層16、透鏡層18可為4吋、6 吋、8吋、或更大之晶圓尺寸。另一方面,雖然第2A圖所 示之兩個透鏡層18分別位於中間基板14之上下表面,但 透鏡層18亦可位於上基板10之下表面及/或下基板之上表 面上,端視需要而定。在本發明另一實施例中,堆疊結構 6 201240071 可/、具有單一透鏡層18而非圖示之兩層透鏡層18。為圖 示簡潔起見,第2A圖僅有兩層的密閉空間13。實際上, 可採用更多的中間基板14與間隔物層16定義3、4、5或 更多層的密閉空間13,以形成更多層的透鏡堆疊結構。 在本發明一實施例中,感測元件(未圖示)可形成於下基 板12下方,或形成於下基板12上的密閉空間13中。若是 採用第一種設計,可將整片的感測元件層疊合於下基板Η 下方。若是採用第二種設計,則可將感測元件層疊合於下 基板12與間隔物層16之間。 且〇 、 接著如第2B圖所示,以覆蓋物15貼覆於對應透鏡18八 中心的部份上基板1G上’覆蓋物15例如是貼紙等。換句 話說,覆+蓋物15覆蓋的範圍即最後產品中光圈丨了的範圍。 接著如第2C圖所示’垂直切割透鏡18八之間的上基 板、中間基板14、間隔物層16、透鏡層18、與部份下 基板12,以形成多個溝槽2卜切割步驟可為雷射切割或機 械切割。此切割步驟為本發明之關鍵,重點在於不要完全 切斷下基板。在本發明一實施例中,下基板12被切割 的部分與下基板12之厚度約介於1:4至3:4之間。若下基 板12被切割的比例過低,則可能有漏光的問題。若下基板 12被切割的比例過高,則易整個切斷下基板而失去此 步驟的意義。重點在不切斷下基板12以讓整個結構維持為 晶圓等級,但是溝槽21需儘量露出下基板12之側壁。 —接著如第2D圖所示,將成型材料23填入溝槽21中並 ,蓋上基板1G與覆蓋物15的上表面。必需注意的是,覆 蓋於覆蓋物15上表面的成型材料23不宜過厚,以避免妨 201240071 礙後續移除覆蓋物15的步驟。成型材料23必需具有遮光 效果。舉例來說,成型材料23可為掺有黑色顏料或碳黑之 樹脂。成型材料23的形成方法可為擠出成型、射出成型、 壓延成型、模壓成型、吹塑成型、滚塑成型、或澆鑄成型。 不論採用何種方法,在成型材料23形成於第2C圖之結構 上後,將硬化成型如第2D圖所示之結構。 接著如第2E圖所示之結構,進行切割製程25以完全 切斷第2D圖所示之結構。在第2E圖中,成型材料23已 完全遮蔽結構側壁,可避免經結構側壁穿入之光線影響感 測元件。 最後移除覆蓋物15與其上方的成型材料23即形成光 圈17,至此已完成多個獨立的透鏡堆疊結構,如第2F圖 所示。如此一來,只有經光圈17穿入之光線會進入底部的 感測元件。 在第2A-2F圖所示之製程中,只有最後移除覆蓋物15 的製程屬於晶粒等級的製程。本發明以成型材料23之晶圓 等級製程,可取代習知技藝的黑色桶狀結構或黑色塗漆等 晶粒等級製程。另一方面,成型材料23具有抗酸、抗鹼、 高機械強度等優點,亦不需在上基板10的上方形成圖案化 鉻層以定義光圈。 雖然本發明已以數個較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作任意之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。 8 201240071 【圖式簡單說明】 第1A-1D圖係習知技藝中,形成透鏡堆疊結構之製程 剖視圖;以及 第2A-2F圖係本發明一實施例中,形成透鏡堆疊結構 的製程剖視圖。 【主要元件符號說明】 10〜上基板; 10 A〜圖案化鉻層; 12〜下基板; 14〜中間基板; 15〜覆蓋物; 16〜間隔物層; 17〜光圈; 18〜透鏡層; 18 A〜透鏡; 19〜黑色桶狀結構; 21〜溝槽; 23〜成型材料, 25〜切割製程。201240071 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a lens stack structure, and more particularly to a method of forming the same. [Prior Art] As shown in Fig. 1A, the upper substrate 10, the spacer layer 16, the lens layer 18, the intermediate substrate 12, the lens layer 18, the spacer layer 16, and the lower substrate 14 are bonded together. The upper substrate 10, the intermediate substrate 12, and the lower substrate 14 are both transparent materials such as glass, quartz, or plastic. In general, the upper substrate 10 is plated with a patterned chrome layer 10A to define the aperture 17. The spacer layer 16 interposed between the upper substrate 10, the intermediate substrate 12, and the lower substrate 14 defines a sealed space 13, and the sealed space 13 can be used to accommodate the lens 18 of the lens layer 18. The above layered structure can be bonded by ultraviolet curing glue. The aperture 17 aligned with the central portion of the lens 18A is slightly smaller than the size of the lens 18A. Next, as shown in Fig. 1B, the aperture 17 defined by the patterned chrome layer 10A is protected by a sticker 15. Thereafter, the wafer-level multilayer structure is directly cut to form a plurality of crystal grains as shown in Fig. 1C. A sensing element (not shown) may be disposed under the structure of Fig. 1C to sense light passing through the aperture 17, the upper substrate 10, the lens 18A, the intermediate substrate 14, the other lens 18A, and the lower substrate 12. On the other hand, a sensing element (not shown) may be located in the sealed space 13 on the lower substrate 12. Regardless of the design, the upper substrate 10, the intermediate substrate 14, and the lower substrate 12 are all transparent materials, and in addition to the light passing through the aperture 17, light rays in other directions are also passed through the sidewalls of the structure shown in FIG. 1C. And affect the sensing components. In order to avoid the above phenomenon, the structure of Fig. 1C can be inserted into the black barrel structure 19, and the sticker 15 can be removed, thereby forming the structure of 4 201240071 shown in Fig. 1D. It can be understood that the difference in size between the black barrel structure 19 and the = structure shown in Fig. 1C is not too large, otherwise there will be a problem that the sleeve is not inserted or the sleeve is not tight. As such, two key dimensions will appear: the critical dimensions of the black barrel structure 19 and the critical dimensions of the structure shown in Figure 1C. As long as the two miscellaneous dimensions have a deviation, it will cause the production to fail. Another method is to apply black lacquer to the structure (4) shown in 1C®. However, there are still black paint thicknesses* in this way. The above two methods of avoiding side leakage are all grain-level processes, which are not only time-consuming and labor-intensive, but also cost-effective than wafer-level processes. In summary, the problems caused. SUMMARY OF THE INVENTION Currently, there is a need for a new process for improving the above-described die-level process. One embodiment of the present invention provides a lens stack structure including a plurality of spaces: (d) a second substrate disposed on the upper substrate, the intermediate substrate, and the lower substrate. Space, a plurality of lenses are located in the sealed space; the molding material layer is located on the edge and the sidewall of the lower substrate, the spacer layer and the intermediate substrate and the upper base wall, and the edge of the upper substrate; and the aperture is defined on the upper substrate without the molding material The covered portion' and the aperture correspond to the central portion of the lens. The invention provides a method for forming a lens stack structure. The upper substrate, the intermediate substrate, the lower substrate, the plurality of spacers, and the outer lens layer are disposed, wherein the spacer layer is sandwiched between the upper substrate and the substrate. A plurality of confined spaces are defined between the intermediate plate and the lower substrate, and the lens layer has an evening lens located in the confined space. The part of the eve-eight t-heart is attached to the corresponding lens. , the upper substrate between the vertical cutting lenses, the middle 201240071 substrate, the spacer layer, the lens layer, and the partial lower substrate on the blade soil plate to form a plurality of grooves; forming a molding material layer in the groove On the substrate, on the cover; vertically cutting the layer of the molding material and a portion of the lower substrate remaining under the groove; removing the molding material from the cover and the upper portion thereof to form a plurality of apertures corresponding to the lens center, that is, completing a plurality of separate lens stacks structure. [Embodiment] In an embodiment of the present invention, as shown in FIG. 2A, the upper substrate 10, the spacer layer 16, the lens layer 18, the intermediate substrate 12, the lens layer 18, the spacer layer 16, and the lower substrate 14 are provided. Bonded together. The upper substrate 10, the intermediate substrate 12, and the lower substrate 14 are both transparent materials such as glass, quartz, or plastic. The difference from the prior art is that it is not necessary to form a patterned chrome layer defining aperture above the upper substrate 10. The spacer layer 16 interposed between the upper substrate 10, the intermediate substrate Π, and the lower substrate 14 defines a sealed space 13, and the sealed space 13 can be used to accommodate the lens 18 of the lens layer 18. The layered structure described above may be bonded by an ultraviolet curing adhesive. It can be understood that the above layered structure only illustrates two lens stack structures, but in practice, each layered pattern such as the spacer layer 16 (or the lens layer 18) has thousands or even tens of spacers. (or lens 18A), the ratio between the spacer layer 16 (or lens layer 18) and the spacer (lens 18A) is viewed. For example, the upper substrate 10, the intermediate substrate 14, the lower substrate 12, the spacer layer 16, and the lens layer 18 may have a wafer size of 4 Å, 6 Å, 8 Å, or larger. On the other hand, although the two lens layers 18 shown in FIG. 2A are respectively located on the upper surface of the upper substrate 14, the lens layer 18 may be located on the lower surface of the upper substrate 10 and/or the upper surface of the lower substrate. Need to be determined. In another embodiment of the invention, the stack structure 6 201240071 can have a single lens layer 18 instead of the two lens layers 18 shown. For the sake of simplicity, Figure 2A has only two layers of confined space 13. In practice, more intermediate substrate 14 and spacer layer 16 may be employed to define 3, 4, 5 or more layers of enclosed space 13 to form a more layered lens stack. In an embodiment of the invention, a sensing element (not shown) may be formed under the lower substrate 12 or in the enclosed space 13 on the lower substrate 12. If the first design is used, the entire sensing element can be laminated under the lower substrate 。. If a second design is employed, the sensing elements can be laminated between the lower substrate 12 and the spacer layer 16. Further, as shown in Fig. 2B, the cover 15 is attached to the upper substrate 1G of the center of the corresponding lens 18 by the cover 15. The cover 15 is, for example, a sticker or the like. In other words, the coverage covered by the cover + cover 15 is the range in which the aperture of the final product is smashed. Then, as shown in FIG. 2C, the upper substrate, the intermediate substrate 14, the spacer layer 16, the lens layer 18, and the portion of the lower substrate 12 between the vertical cutting lenses 18 are formed to form a plurality of trenches. For laser cutting or mechanical cutting. This cutting step is the key to the invention and the focus is not to completely cut the lower substrate. In an embodiment of the invention, the portion of the lower substrate 12 that is cut and the thickness of the lower substrate 12 are between about 1:4 and 3:4. If the ratio of the lower substrate 12 being cut is too low, there may be a problem of light leakage. If the ratio at which the lower substrate 12 is cut is too high, it is easy to completely cut the lower substrate and lose the meaning of this step. The focus is on not cutting the lower substrate 12 to maintain the entire structure at the wafer level, but the trenches 21 need to expose the sidewalls of the lower substrate 12 as much as possible. - Next, as shown in Fig. 2D, the molding material 23 is filled in the groove 21, and the upper surface of the substrate 1G and the cover 15 is covered. It must be noted that the molding material 23 covering the upper surface of the cover 15 should not be too thick to avoid the subsequent step of removing the cover 15 from 201240071. The molding material 23 must have a light blocking effect. For example, the molding material 23 may be a resin doped with a black pigment or carbon black. The molding material 23 may be formed by extrusion molding, injection molding, calender molding, compression molding, blow molding, rotational molding, or cast molding. Regardless of the method used, after the molding material 23 is formed on the structure of Fig. 2C, the structure shown in Fig. 2D is hardened. Next, as shown in Fig. 2E, a cutting process 25 is performed to completely cut off the structure shown in Fig. 2D. In Figure 2E, the molding material 23 has completely shielded the side walls of the structure to prevent light impinging through the sidewalls of the structure from affecting the sensing elements. Finally, the cover 15 and the molding material 23 thereabove are formed to form the aperture 17, and thus a plurality of independent lens stack structures have been completed, as shown in Fig. 2F. As a result, only the light that passes through the aperture 17 enters the sensing element at the bottom. In the process shown in Figures 2A-2F, only the process in which the cover 15 is finally removed is a grain level process. The present invention can replace the conventional grain-level process such as black barrel structure or black paint by the wafer leveling process of the molding material 23. On the other hand, the molding material 23 has the advantages of acid resistance, alkali resistance, high mechanical strength, and the like, and it is not necessary to form a patterned chromium layer on the upper substrate 10 to define the aperture. While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. 8 201240071 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A-1D is a cross-sectional view showing a process of forming a lens stack structure in the prior art; and FIG. 2A-2F is a cross-sectional view showing a process of forming a lens stack structure in an embodiment of the present invention. [Main component symbol description] 10~ upper substrate; 10 A~ patterned chromium layer; 12~lower substrate; 14~intermediate substrate; 15~covering; 16~ spacer layer; 17~ aperture; 18~ lens layer; A ~ lens; 19 ~ black barrel structure; 21 ~ groove; 23 ~ molding material, 25 ~ cutting process.

Claims (1)

201240071 七、申請專利範圍: 1. 一種透鏡堆疊結構,包括: 多個間隔物層夾設於一上基板、一中間基板、以及一 下基板之間,以定義多個密閉空間; 多個透鏡位於該些密閉空間中; 一成型材料層位於該下基板之邊緣上、該些間隔物層 與該中間基板與該上基板之側壁、以及該上基板的邊緣 上;以及 一光圈定義於該上基板未被該成型材料覆蓋的部份, 且該光圈對應該些透鏡的中心部份。 2. 如申請專利範圍第1項所述之透鏡堆疊結構,其中 該上基板、該中間基板、與該下基板包括玻璃、石英、或 塑膠。 3. 如申請專利範圍第1項所述之透鏡堆疊結構,其中 該些間隔物層與該透鏡包括玻璃、石英、或塑膠。 4. 如申請專利範圍第1項所述之透鏡堆疊結構,其中 該成型材料包括捧有黑色顏料或碳黑之樹脂。 5. 如申請專利範圍第1項所述之透鏡堆疊結構,更包 括一感測元件貼附於該下基板之上方或下方。 6. —種透鏡堆疊結構的形成方法,包括: 黏合一上基板、一中間基板、一下基板、多個間隔物 層、及至少一個透鏡層,其中該些間隔物層係夾設於該上 基板、該中間基板、與該下基板之間以定義多個密閉空間, 而該透鏡層具有多個透鏡位於該些密閉空間中; 201240071 將多個覆蓋物貼覆於對應該些透鏡中心的部份該上美 板上, 垂直切割該些透鏡之間的該上基板、該中間基板、該 些間隔物層、該透鏡層、與部份該下基板,以形成多個溝 槽; / 该上基板上、與該 形成一成型材料層於該些溝槽中 些覆蓋物上; 垂直切割該些成型材料層與該些溝槽τ方保留的部份 該下基板; 去除該些覆蓋物與其上方的成型材料,以形成多 圈對應該些透鏡h,即完成多個分離的透鏡堆疊結構。 、7.如中請專利範㈣6項所述之透鏡堆疊結構的形成 方法’其巾該下基板中的該㈣槽深度與該下基板之 比例介於1:4至3:4之間。 又 、8.如申料利範圍第6項所述之透鏡堆疊結構的形成 方法’其中垂直切割的步驟包括f射切割或機械切割。 、9.如中請專利範㈣6項所述之透鏡堆疊結構的形成 方法’其中形成該成型材料層之步驟包括擠出成型 成型、壓延成型、模壓成型、吹塑成型、 ϋ A: ^ 、10·如申請專利範圍第6項所述之透鏡堆疊結構的形 成方法’更包括形成—感測元件於該些透鏡堆疊結 ^ 下基板之上方或下方。 °Λ201240071 VII. Patent application scope: 1. A lens stack structure, comprising: a plurality of spacer layers sandwiched between an upper substrate, an intermediate substrate, and a lower substrate to define a plurality of sealed spaces; In a sealed space; a molding material layer is located on an edge of the lower substrate, the spacer layer and the sidewall of the intermediate substrate and the upper substrate, and an edge of the upper substrate; and an aperture is defined on the upper substrate The portion covered by the molding material, and the aperture corresponds to the central portion of the lens. 2. The lens stack structure of claim 1, wherein the upper substrate, the intermediate substrate, and the lower substrate comprise glass, quartz, or plastic. 3. The lens stack structure of claim 1, wherein the spacer layer and the lens comprise glass, quartz, or plastic. 4. The lens stack structure of claim 1, wherein the molding material comprises a resin holding a black pigment or carbon black. 5. The lens stack structure of claim 1, further comprising a sensing element attached above or below the lower substrate. The method for forming a lens stack structure, comprising: bonding an upper substrate, an intermediate substrate, a lower substrate, a plurality of spacer layers, and at least one lens layer, wherein the spacer layers are sandwiched on the upper substrate a plurality of sealed spaces are defined between the intermediate substrate and the lower substrate, and the lens layer has a plurality of lenses located in the sealed spaces; 201240071 A plurality of covers are attached to the portions corresponding to the centers of the lenses The upper substrate, the upper substrate, the intermediate substrate, the spacer layer, the lens layer, and a portion of the lower substrate are vertically cut between the lenses to form a plurality of trenches; / the upper substrate And forming a molding material layer on the plurality of coverings of the trenches; vertically cutting the portions of the molding material and the portions of the trenches τ to retain the lower substrate; removing the coverings and the upper portions thereof The molding material is formed to form a plurality of lenses corresponding to the plurality of lenses h, that is, to complete a plurality of separate lens stack structures. 7. The method for forming a lens stack structure as described in claim 4, wherein the ratio of the (four) groove depth in the lower substrate to the lower substrate is between 1:4 and 3:4. Further, 8. The method of forming a lens stack structure as described in claim 6 wherein the step of vertically cutting comprises f-cutting or mechanical cutting. 9. The method for forming a lens stack structure as described in claim 6 (4), wherein the step of forming the layer of the molding material comprises extrusion molding, calender molding, compression molding, blow molding, ϋ A: ^, 10 The method of forming a lens stack structure as described in claim 6 further includes forming a sensing element above or below the substrate of the lens stack. °Λ
TW100109496A 2011-03-21 2011-03-21 Lens stack structures and methods for manufacturing the same TW201240071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100109496A TW201240071A (en) 2011-03-21 2011-03-21 Lens stack structures and methods for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100109496A TW201240071A (en) 2011-03-21 2011-03-21 Lens stack structures and methods for manufacturing the same

Publications (1)

Publication Number Publication Date
TW201240071A true TW201240071A (en) 2012-10-01

Family

ID=47599698

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109496A TW201240071A (en) 2011-03-21 2011-03-21 Lens stack structures and methods for manufacturing the same

Country Status (1)

Country Link
TW (1) TW201240071A (en)

Similar Documents

Publication Publication Date Title
JP7171200B2 (en) Display device and manufacturing method thereof
CN103995380B (en) Display base plate, the mask for manufacturing it and the method for manufacturing the display base plate
TW201102705A (en) Color filter array on pixel array substrate and display panel
JP2011507284A5 (en)
US20110222173A1 (en) Wafer level optical lens substrate and fabrication method thereof
TW507095B (en) Manufacturing method of ODF liquid crystal panel
CN107643626A (en) Display device
CN102621598A (en) Lens assembly and method for forming the same
US20050046778A1 (en) Liquid crystal display panel with dual sealing and method for fabricating the same
CN117460289A (en) Display panel, manufacturing method thereof and display device
US11380877B2 (en) Organic light emitting device and organic light emitting display device comprising a polarizing layer having a first inorganic layer, a first polarizing layer, a second inorganic layer, and a second polarizing layer, which are sequentially disposed
JP2010091828A (en) Liquid crystal optical element and method of manufacturing the same
TW201249636A (en) Manufacturing a plurality of optical elements
TWI457614B (en) Method for manufacturing flexible color filter substrate
US20060138928A1 (en) Flat panel display apparatus
TW201240071A (en) Lens stack structures and methods for manufacturing the same
TW201825962A (en) Lens barrel, lens- barrel wafer, and associated method
JP2008261936A (en) Liquid crystal device, method for manufacturing the same, and substrate for liquid crystal device
TWI354825B (en) A liquid crystal display and a method for fabricat
TWI657272B (en) Color filter plate and display panel having the same
US20080170192A1 (en) Optical film and manufacturing method thereof and substrate structure and display panel using the optical film
CN106125972A (en) The manufacture method of protective layer, array base palte and preparation method thereof and touch screen
TWI328134B (en) Fabricating method of liquid crystal display device
US20180348564A1 (en) Liquid crystal cell and manufacturing method thereof
TWI269075B (en) Manufacturing method of color filter device, liquid crystal display panel and manufacturing method thereof