[go: up one dir, main page]

TW201240046A - Global system for mobile communications (GSM) radio-frequency emission front-end module adopting Quad Flat No-lead package - Google Patents

Global system for mobile communications (GSM) radio-frequency emission front-end module adopting Quad Flat No-lead package Download PDF

Info

Publication number
TW201240046A
TW201240046A TW100115940A TW100115940A TW201240046A TW 201240046 A TW201240046 A TW 201240046A TW 100115940 A TW100115940 A TW 100115940A TW 100115940 A TW100115940 A TW 100115940A TW 201240046 A TW201240046 A TW 201240046A
Authority
TW
Taiwan
Prior art keywords
gsm
end module
package
power amplifier
quad flat
Prior art date
Application number
TW100115940A
Other languages
Chinese (zh)
Inventor
Jun Chen
li-gang Xie
Original Assignee
Rda Microelectronics Beijing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rda Microelectronics Beijing Co Ltd filed Critical Rda Microelectronics Beijing Co Ltd
Publication of TW201240046A publication Critical patent/TW201240046A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/142HF devices
    • H01L2924/1421RF devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

The invention discloses a global system for mobile communications (GSM) radio-frequency emission front-end module adopting quad flat no-lead package. A metal frame of the module comprises an output matching network, a radio-frequency antenna switch, a power controller and a radio-frequency power amplifier. The module is characterized in that: the output matching network, the radio-frequency antenna switch, the power controller and the radio-frequency power amplifier are manufactured into corresponding semiconductor tube cores through different semiconductor processes respectively; and the semiconductor tube cores are stuck on the metal frame. Compared with the prior art, the invention has the advantages that: the cost of the GSM radio-frequency emission front-end module adopting the quad flat no-lead package can be effectively reduced; and the whole price cost of handheld equipment with the GSM radio-frequency emission front-end module is reasonably reduced.

Description

201240046 六、發明說明: 【發明所屬之技術領域】 本發明涉及第二代移動通信領域,具體地說,本發明 涉及一種採用四方扁平無引腳封裝的GSM射頻發射前端模 組。 【先前技術】 备則’第二代行動通訊系統正在全球範圍内越來越廣 泛地進行部署和應用,然而,作為第二代行動通訊標準的 GSM ( Global System for Mobile Communication),仍然 是世界上應用最為廣泛的行動通訊標準。GSM手持設備的 出貨量佔據了目前所有移動通信設備出貨量的絕大多數, 而更小尺寸、更低成本的射頻前端模組是GSM手機終端的 發展趨勢。 通常,一個GSM射頻發射前端模組包括GSM射頻功 率放大器晶片、控制器晶片、匹配網路以及射頻天線開關 晶片等部分。該射頻功率放大器晶片通常需要採用砷化鎵 異質接面雙極性電晶體(GaAsHBT)或者金屬氧化物半導 體場效應電晶體(M0SFET)的半導體製程技術加以製造, 實現對GSM射頻信號的功率放大。控制器晶片通常採用互 補金屬氧化物半導體(CMOS)半導體製程技術製造,其根 據外部輸入到射頻發射前端模組的控制信號來控制整個射 頻發射前端模組的工作狀態,如控制射頻功率放大器晶片 輸出射頻信號的功率大小、選擇射頻天線開關的通路等。 該匹配網路是射頻功率放大器晶片的輸出匹配網路,通常 201240046 由多個電感、電容或變壓器無源器件組成;而該匹配網路 的實現形式既可以是採用分立元器件製造,也可以採用積 體被動元件(丨PD,Integrated Passive Device)製程技術 將匹配網路製成一個晶片。至於該射頻天線開關晶片則通 常是一個單刀多擲的射頻開關,包括了射頻發射通路及射 頻接收通路’通常由砷化鎵高電子移動度電晶體(GaAs HEMT)製程技術製造,也可以使用p型-絕緣-N型(p丨N ) 二極體製程技術實現。如上所述,GSM射頻發射前端模組 中的多個功能模組採用了不同的半導體製程技術,因此它 是一個多晶片模組(MCM,Mum-Chip-Module)。 通常GSM射頻發射前端模組都需要採用柵格陣列封裝 (LGA,Land Grid Array)形式來封裝成一個單獨的半導 體元件。所述射頻功率放大器晶片、控制器晶片、匹配網 路(分立元件或丨PD晶片)以及射頻天線開關晶片貼裝在 LGA多層層壓基板(Lamjnate Substrate)之上,通過鍵合 線(Bondwire)及LGA基板上的金屬走線相互連接,一 ^ 典型的LGA封| GSM射頻發射前端模組的*意圖如圖, 所不。通常所採用的LGA基板是多層層壓基板,包括了 $ 層或2層以上的金屬層(金屬材料通常是銅或者鋁等材 料),相鄰金屬層通過絕緣材料層(可以是環氧樹脂或者 陶瓷等材料)相互隔離,不同金屬層之間可以通過貫孔相 互連接》 如圖1所示,所述GSM射頻發射前端模組1〇〇中包 括4個晶片:功率控制器晶片(CM〇s控制器晶片⑴、 GaAsHBT射頻功率放大器晶片U2、|pD晶片u3及射頻天 .201240046 線開關晶片U4。上述4個晶片貼裝在LGA基板的上表面, 4個晶片上的鍵合焊墊(pad )通過鍵合線1彳彳連接到模組 的相應接腳,如CMOS控制器晶片U1的鍵合焊墊通過鍵 合線連接到控制信號接腳VC1、VC2、VC3及VC4等,射 頻功率放大器晶片U2的鍵合焊墊通過鍵合線連接到射頻輸 入信號接腳RFinl、RFin2等,IPD晶片U3的鍵合焊墊通 過鍵合線連接到接地信號接腳GND1、GND2、GND3及 G N D4等’射頻天線開關晶片(J4的鍵合焊墊通過鍵合線連 接到射頻接收信號接腳RX1、RX2等。LGA基板上還可以 製作電路中所需的電感等被動元件,如圖1中所示的平面 螺旋電感101及102,或直線電感1〇6等,上述電感1〇1、 102、106都製作於LGA基板的某一層金屬層上,並且這些 平面螺旋電感101、102、106的琿或者直接與模組的接腳 相連接(如平面螺旋電感1 02的一端與電源信號接腳VCC2 相連接,平面螺旋電感106的一端與電源信號接腳VCC1 相連接),或者通過鍵合線與相應的晶片上的鍵合焊墊相 連接(如平面螺旋電感101的一端通過鍵合線與射頻天線 開關晶片U4的相應鍵合焊墊相連接,平面螺旋電感、〇2的 一端通過鍵合線與丨PD晶片U3的相應鍵合焊塾相連接, 106的一端通過鍵合線與ipd晶片U3及射頻功率放大器晶 片U2的相應鍵合焊塾相連接)。在LGA封裝中,晶片之 間的相互連接,可以通過各自晶片上的相應鍵合焊墊之間 通過鍵合線直接連接(如CMOS控制器晶片U1與射頻天 線開關晶片U4之間通過鍵合線直接相連接,丨晶片 與射頻天線開關晶片U 4之間通過鍵合線直接相連接,射頻 201240046 功率放大器晶片U2與丨PD晶片U3之間通過鍵合線直接相 連接);或者可以首先將第一晶片上的鍵合焊墊通過鍵合 線連接到LGA基板上層走線的一端,然後將所述走線的另 外一端通過鍵合線連接到第二晶片上的鍵合焊墊,從而實 現了兩個晶片相應鍵合焊墊的相互連接(如CMOS控制器 晶片U1上的鍵合焊墊通過鍵合線連接到|_GA上走線ι1〇 的一端,該走線110的另外一端通過鍵合線再連接到射頻 功率放大器晶片U2上的鍵合焊墊)。 如圖1所示,製作在LGA基板上層金屬層的平面螺旋 電感102通過貫孔103連接到第二層金屬層,走線1〇4在 第二層金屬層,並通過貫孔105連接到上層金屬層,進而 走線1 04連接到射頻發射前端模組的電源接腳ν〇〇2。需要 說明的是,LGA基板金屬層的厚度為幾十微米,製作線寬 可以達到數百微米,從而使得製作的電感的寄生電阻很小 (通常在0.1歐姆以下)’相對得到高Q值電感,保證了 GSM射頻則端模組的高效率》尤其在GSM低頻段 ( 824MHZ-915MHZ),所用電感的Q值對射頻前端模組性 能影響很大。 LG A基板的製造包括金屬層和絕緣材料層的層壓、鑽 孔並填充金屬材料、光刻金屬層走線圖形、刻蝕多餘圖形、 電錄金屬等步驟’製造完成的LG A基板之上貼裝多個晶 片’然後通過鍵合設備連接各個需要連接的鍵合焊墊、接 腳和埠等;最後再經過密封樹脂包覆整個基板、晶片及鍵 合線,最終完成LGA封裝的GSM射頻發射前端模組。需 要說明的是’在上述舉例的LGA封裝的GSM射頻發射前 .201240046 端模組中採用了丨pd方法來實現射頻功率放大 配網路1然’也可以採用電感、電容等分立元件來= ,出匹配網路。當採用分立元件形式的輸出匹配網路時, 在LGA封裝GSM射頻發射前端模組的製造過程中带 要增加將這些分立元件貼裝在LGA基板上的工序.步驟:: ^所述’無論是採用IPD形式的輸出匹配網路,還是採用 分立元件來構成輸出匹配網路,LGA封裝形式的GW射頻 發射前端模組的製造都很複雜,使得整個模組的成本布 向。通常,LGA封裝GSM射頻前端發射模組的總體成本當: 中,LGA基板製造及封裝的成本佔了 5〇%左右。如上所述, 可以看到’降低GSM射頻前端模組的封裝成本是降低其總 成本的有效手段。 〜 在半導體封裝中應用最為廣泛的封裝形式是四方扁平 無引腳封裝(QFN,Quad F丨at N〇n_丨的…阼…听)。 QFN封袋不需要採用多層基板’它是一塊整體的裸露扁平 金屬框,半導體晶片貼裝在該金屬框中間的一個表面上, 通過鍵合線將晶片上的鍵合焊墊連接到QFN金屬框的相應 接腳之上,如圖2所示,最後採用樹脂或塑膠等密封材料 將阳片及QFN金屬框包覆,就完成了 QFN封裝的半導體元 件如圖2中所示,QFN封裝的半導體元件2〇〇中,兩個 曰曰片U1和U2貼裝在QFN金屬框架201中心的金屬表面 上通過鍵合線202,可以將υ «I和U2的相應鍵合焊墊連 接在起,或者將U1和U2的相應鍵合焊墊與QFN框架的 接腳相連接。QFN作為半導體領域廣泛使用的標準封裝形 式具有非常豐富的供貨來源,並且不需要像LGA那樣對忘 7 201240046 其進行客制化製造’製造工序也非常簡$,因此QFN封裝 的成本非常低廉,這是本領域人員所公知的。201240046 VI. Description of the Invention: TECHNICAL FIELD The present invention relates to the field of second generation mobile communications, and more particularly to a GSM radio frequency transmitting front end module using a quad flat no-lead package. [Prior Art] The second generation of mobile communication systems is being deployed and applied more and more widely around the world. However, GSM (Global System for Mobile Communication), which is the second generation mobile communication standard, is still in the world. The most widely used mobile communication standard. GSM handset shipments account for the vast majority of all current mobile communications equipment shipments, while smaller, lower cost RF front-end modules are the trend in GSM handsets. Typically, a GSM RF front-end module includes GSM RF power amplifier chips, controller chips, matching networks, and RF antenna switch chips. The RF power amplifier chip is typically fabricated using a semiconductor process technology of a gallium arsenide heterojunction bipolar transistor (GaAsHBT) or a metal oxide semiconductor field effect transistor (M0SFET) to achieve power amplification of the GSM RF signal. The controller chip is usually fabricated using complementary metal oxide semiconductor (CMOS) semiconductor process technology, which controls the operation of the entire RF transmit front-end module based on external control signals input to the RF transmit front-end module, such as controlling the RF power amplifier chip output. The power level of the RF signal, the path of the RF antenna switch, and so on. The matching network is an output matching network of the RF power amplifier chip. Usually 201240046 is composed of a plurality of inductors, capacitors or transformer passive components; and the matching network can be implemented by using discrete components or The integrated passive passive device (丨PD, Integrated Passive Device) process technology creates a wafer for the matching network. As for the RF antenna switch chip, it is usually a single-pole multi-throw RF switch, including the RF transmission path and the RF receiving path, which is usually manufactured by a gallium arsenide high electron mobility transistor (GaAs HEMT) process technology, and can also be used. Type-insulation-N type (p丨N) bipolar system technology implementation. As mentioned above, multiple functional modules in the GSM RF front-end module use different semiconductor process technologies, so it is a multi-chip module (MCM, Mum-Chip-Module). Usually, the GSM RF front-end module needs to be packaged into a single semiconductor component in the form of a LGA (Land Grid Array). The RF power amplifier chip, the controller chip, the matching network (discrete component or 丨PD chip), and the RF antenna switch chip are mounted on the LGA multilayer laminated substrate (Lamjnate Substrate) through a bonding wire (Bondwire) and The metal traces on the LGA substrate are connected to each other. A typical LGA package | GSM RF transmit front-end module is intended to be as shown. The commonly used LGA substrate is a multilayer laminate substrate comprising a layer of two or more metal layers (the metal material is usually a material such as copper or aluminum), and the adjacent metal layer passes through a layer of insulating material (which may be epoxy or Ceramics and other materials are isolated from each other, and different metal layers can be connected to each other through through holes. As shown in FIG. 1 , the GSM RF front-end module 1 includes four wafers: a power controller chip (CM〇s). Controller chip (1), GaAsHBT RF power amplifier chip U2, |pD wafer u3 and RF day.201240046 Line switch wafer U4. The above four wafers are mounted on the upper surface of the LGA substrate, and the bonding pads on the four wafers (pad) Connected to the corresponding pin of the module through the bonding wire 1彳彳, such as the bonding pad of the CMOS controller chip U1 is connected to the control signal pins VC1, VC2, VC3 and VC4 through the bonding wire, the RF power amplifier The bonding pads of the wafer U2 are connected to the RF input signal pins RFin1, RFin2, etc. through the bonding wires, and the bonding pads of the IPD wafer U3 are connected to the ground signal pins GND1, GND2, GND3, GN D4, etc. through the bonding wires. 'RF day The wire switch wafer (J4's bonding pad is connected to the RF receiving signal pins RX1, RX2, etc. through the bonding wire. The LGA substrate can also be used to make passive components such as inductors required in the circuit, as shown in Figure 1. Spiral inductors 101 and 102, or linear inductors 1〇6, etc., the above-mentioned inductors 1〇1, 102, 106 are all fabricated on a certain metal layer of the LGA substrate, and the turns of these planar spiral inductors 101, 102, 106 or directly The pins of the module are connected (for example, one end of the planar spiral inductor 102 is connected to the power signal pin VCC2, one end of the planar spiral inductor 106 is connected to the power signal pin VCC1), or through the bonding wire and the corresponding chip. The upper bonding pads are connected (for example, one end of the planar spiral inductor 101 is connected to the corresponding bonding pad of the RF antenna switch chip U4 through the bonding wire, and the planar spiral inductor, one end of the 〇2 passes through the bonding wire and the 丨PD The corresponding bonding pads of the wafer U3 are connected, one end of the 106 is connected to the corresponding bonding pads of the ipd wafer U3 and the RF power amplifier chip U2 through the bonding wires. In the LGA package, the interconnection between the wafers The first bonding pads on the respective wafers can be directly connected by a bonding wire (for example, the CMOS controller chip U1 and the RF antenna switching chip U4 are directly connected by a bonding wire, and the silicon wafer and the RF antenna switch wafer U are directly connected. 4 is directly connected by a bonding wire, RF 201240046 power amplifier chip U2 and 丨PD wafer U3 are directly connected by a bonding wire); or the bonding pad on the first wafer can be first passed through the bonding wire Connecting to one end of the upper trace of the LGA substrate, and then connecting the other end of the trace to the bonding pad on the second wafer through the bonding wire, thereby realizing the interconnection of the corresponding bonding pads of the two wafers ( For example, the bonding pad on the CMOS controller chip U1 is connected to one end of the |_GA upper trace ι1〇 through the bonding wire, and the other end of the trace 110 is connected to the key on the RF power amplifier chip U2 through the bonding wire. Bond pad). As shown in FIG. 1, the planar spiral inductor 102 fabricated on the upper metal layer of the LGA substrate is connected to the second metal layer through the through hole 103, and the trace 1〇4 is in the second metal layer, and is connected to the upper layer through the through hole 105. The metal layer, and thus the wiring 104, is connected to the power pin ν〇〇2 of the RF transmitting front end module. It should be noted that the thickness of the LGA substrate metal layer is several tens of micrometers, and the fabrication line width can reach several hundred micrometers, so that the parasitic resistance of the fabricated inductor is small (usually below 0.1 ohms), and relatively high Q inductance is obtained. The high efficiency of the GSM radio terminal module is guaranteed, especially in the GSM low frequency band (824MHZ-915MHZ), and the Q value of the inductor used has a great influence on the performance of the RF front end module. Manufacture of LG A substrate includes lamination of metal layer and insulating material layer, drilling and filling of metal material, lithographic metal layer trace pattern, etching of unnecessary pattern, electro-recording metal, etc. Mounting a plurality of wafers' and then connecting the bonding pads, pins and turns, etc., which need to be connected by bonding devices; finally, sealing the entire substrate, the wafer and the bonding wires through the sealing resin, and finally completing the GSM RF of the LGA package. Launch front-end module. It should be noted that 'in the above example LGA package GSM RF transmission before. 201240046 end module uses 丨pd method to achieve RF power amplification network 1 'can also use discrete components such as inductors, capacitors, etc. Match the network. When using an output matching network in the form of discrete components, the process of mounting these discrete components on the LGA substrate is added during the manufacturing process of the LGA packaged GSM RF front-end module. Steps: ^ ^The ' The output matching network in the form of IPD is used, or the discrete components are used to form the output matching network. The manufacturing of the GW RF transmitting front-end module in the LGA package format is complicated, and the cost of the entire module is distributed. In general, the overall cost of the LGA packaged GSM RF front-end transmitter module is: In the middle, the cost of LGA substrate manufacturing and packaging accounts for about 5%. As mentioned above, it can be seen that reducing the packaging cost of the GSM RF front-end module is an effective means of reducing its total cost. ~ The most widely used package in semiconductor packages is the quad flat no-lead package (QFN, Quad F丨at N〇n_丨...阼...listen). The QFN envelope does not need to use a multi-layer substrate. It is an integral bare flat metal frame. The semiconductor wafer is mounted on a surface between the metal frames. The bonding pads on the wafer are connected to the QFN metal frame through the bonding wires. On the corresponding pins, as shown in Figure 2, the semiconductor and QFN metal frame are coated with a sealing material such as resin or plastic, and the semiconductor component of the QFN package is completed as shown in Fig. 2, and the semiconductor of the QFN package is shown. In the component 2, two cymbals U1 and U2 are mounted on the metal surface of the center of the QFN metal frame 201 through the bonding wire 202, and the corresponding bonding pads of the υ «I and U2 can be connected together, or Connect the corresponding bond pads of U1 and U2 to the pins of the QFN frame. As a standard packaging form widely used in the semiconductor field, QFN has a very rich supply source, and it does not need to be customized for the LGA 7 201240046. The manufacturing process is also very simple, so the cost of the QFN package is very low. This is well known to those skilled in the art.

如上所述,如果可以採用QFN封裝製造GSM射頻發 射前端模組’將會具有很大的成本優勢。但是,由於qFn 封裝中的金屬框架是一整塊金屬,整個在電氣連接上是一 體的’因此在其上貼裝分立被動元件會比LGA形式更加困 難。當前業内探索採用QFN封裝製造產品中多數不能集成 輸出匹配網路’而疋在產品貼裝的印刷電路板(B )上實 現。例如,美國RFMD公司曾推出採用QFN封裝的GSM 射頻功率放大器產& RF2m,但它並不包括射頻天線開 關,故不算是一個完整的GSM射頻發射前端模組,並且它 將射頻功率放大器的輸出匹配網路放在封裝之外的pCB 上,使付整個射頻發射前端的集成度較低,QFN封裝的成 本優勢沒有完全體現。 在專利申請(申請號2〇〇91〇2〇2〇72 3)中提出了一 種在QFN封裝上採用鍵合線製作用於射頻功率放大器的電 感的方法:可以實現片内集成高〇值,低損耗輸出匹配網 路。但是該方法在-個封裝内可以實現的電感器數量及其 電感值都受很大限帝j ;並且輸出匹配網路中所冑&電容元 件仍然需要在半導體晶片上實現,這就增加了鍵合線連接 關係的複雜度。對於GSM四頻段射頻功率放大器的輸出匹 配網路來講’通常需要多個電感和電容元件,採用這一技 術不能完全滿足要求。 综上所述,如何提供一種集成度高、尺寸小、成本低, 並且可以實現向Q值電感的四方扁平無引腳(qfn )封裝 8 201240046 的GSM射頻發射前端模組,便成為極待解決的問題。 【發明内容】 本發明所要解決的技術問題是提供— T至休用四方爲早 無引腳封裝# GSM射頻發射前端模組,u解決現有的 射頻發射前端模組製作成本高,造成帶有GSM射頻發射前 端模組的手持設備的整體價格成本過高問題。 月 為解決上述技術問題,本發明提供了一種採用四方扁 平無引腳封裝# GSM射頻發射前端模、细,該模組的金屬裡 架上包括:輸出匹配網路、射頻天線開關、功率控制器及 射頻功率放大器,其特徵在於,所述輸出匹配網路、射頻 天線開關、功率控制器及射頻功率放大器分別採用不同半 導體製程技術製作成相應的半導體晶片,並將上述半導體 管晶片裝在所述金屬框架上。 進一步地,本發明所述採用四方扁平無引腳封裝的 GSM射頻發射前端模組,其中,所述射頻功率放大器上的 至少一個扼流電感係由該金屬框架上所設置的半腐蝕金屬 條製成。 進一步地,其中,所述半腐蝕金屬條一端與所述金屬 框架上的接腳連通。 進一步地,其中,所述半腐蝕金屬條的形狀為直線、 弧形或者蛇形。 進一步地,其中,所述射頻功率放大器為支援GSM高 頻段和低頻段信號放大的射頻功率放大器。 進一步地’其中,所述射頻功率放大器為採用砷化鎵 201240046 異質接面雙極性電晶體製程技術或絕緣體上;ε夕(丨 Silicon-On-lnsulator)製程技術的射頻功率放大器。 進一步地,其中’所述輸出匹配網路採用積體被動_ 件製程技術製造。 進一步地,其中,所述射頻天線開關採用$化録高言 電子移動度電晶體製程技術製造;所述功率控制器垃^ w休用互補 金屬氧化物半導體製程技術製造。 進一步地,其中,將所述輸出匹配網路和射頻天線 關採用絕緣體上矽工藝製作成1個半導體晶片。 進一步地’其中,所述金屬框架上至少有三個戍一個 以上的接腳是直流連通的。 與現有技術相比,本發明所述採用四方扁平無引腳封 裝的GSM射頻發射前端模組,能夠有效降低Gsm射頻前 端模組的成本,從而合理地,降低了帶有GSM射頻發射前 端模組的手持設備的整體價格成本。 _ 【實施方式】 本發明的主要思想是解決現有的GSM射頻發射前端模 組製作成本高,造成帶有GSM射頻發射前端模組的手持設 備的整體價格成本過高問題。纟發明所述採用目方扁平: 引腳(QFN)封裝的GSM射頻發射前端模組,能夠有效降 低GSM射頻刖端模組的成本,從而合理地,降低了帶有 GSM手持設備的整體價格成本。以下對具體實施方式進行 詳細描述’但不作為對本發明的限定。 、下為本發明所提出QFN封裝技術方案的一個具體實 201240046 施例’如圖3和4所示,為本發明實施例所述採用qfn封 裝的GSM射頻發射前端模組的電路示意圖;其中模組的 QFN金屬框架300上包括了 4個半導體元件,分別是:輸 出匹配網路U1 ’射頻天線開關U2,功率控制器(SM〇^ 控制器)U3,射頻功率放大器U4e所述輸出匹配網路⑴、 射頻天線開關U2、功率控制器U3及射頻功率放大器u4 分別採用不同半導體製程技術製作成相應的半導體晶片, 並將上述的半導體晶片貼裝在所述金屬框架3〇〇上。 在本實施例中,該輸出匹配網路U1和射頻天線開關 U2貼裝在QFN金屬框架300的區域305上,功率控制器 U3和射頻功率放大器U4貼裝在QFN金屬框架3〇〇的區域 304 上。 其中’在本實施例中所述輸出匹配網路U1採用製作積 體被動元件(IPD)的半導體製程技術;所述射頻天線開關 U2可以採用砷化鎵高電子移動度電晶體製程技術製造;所 述功率控制器U3可以採用互補金屬氧化物半導體的製程技 術製造;所述射頻功率放大器U4為能夠支持GSM高頻段 (1710MHz-1 910MHz 信號)和低頻段(824MHz-915MHz 信號)信號放大的射頻功率放大器;所述射頻功率放大器 U4可以採用砷化鎵異質接面雙極性電晶體製程技術或絕緣 體上矽的製程技術製造。 當然,在本發明其他實施例中,輸出匹配網路U1和射 頻天線開關U2還可以採取一種合適的半導體製程技術,如 絕緣體上矽製程技術的方式集成在一起,形成一個半導體 晶片;同理,也可以將功率控制器U3和射頻功率放大器 s 11 201240046 U4採用一種合適的半導體製程技術集成在一起,形成一個 半導體晶片。具體採用何種半導體製程技術(如雙載子互 補式金氧半導體製程,BiCMOS: Bipolar-CMOS)製造及 具體如何組合這些功能電路,則根據具體設計要求來進行 選擇,這對於本領域專業人員來說是公知的,在本發明中 不做具體限定。 在本實施例中射頻天線開關U2為一個單刀四擲的射頻 天線開關;GSM射頻輸入信號Rf=jn1 (GSM高頻段 1710MHz-1910MHz 信號)和 RFin2 ( GSM 低頻段 824MHz-915MHz信號)經過射頻功率放大器U4完成功率 放大。所述輸出匹配網路U1不僅包括圖中4所示的平面螺 旋電感306 ' 307,還包括若干電容及電感等被動元件。 所述單刀四擲的射頻天線開關U2與GSM高頻段和低 頻段的發射彳s就通路及至少一個接收信號通路相連,在本 實施例中其單刀連接到GSM射頻發射前端模組的天線接腳 ANT,四擲分別連接到GSM高頻段發射信號和低頻段發射 信號及兩路接收信號RX1、RX2。 所述功率控制器U3根據外部輸入的控制信號 VC1-VC4來控制整個GSM射頻發射前端模組的工作狀 態,如控制射頻功率放大器U4的輸出信號功率大小以及射 頻天線開關U2中單刀所連接到的射頻通路。 如圖4所示,所述半導體晶片之間、所述半導體晶片 與QFN金屬框架300上的接腳之間均通過鍵合線303相 連。 所述射頻功率放大器上設置的至少一個扼流電感,係 12 201240046 由在QFN金屬框架300上設置的半腐蝕的金屬條3〇1所製 成,請配合參閱圖5所示,該金屬條3〇1兩端分別與所述 QFN金屬框架300上的接腳連通,且該金屬條3〇1的底表 面咼於所述QFN金屬框架300上所有接腳及貼裝半導體晶 片區域的底表面。在QFN金屬框架3〇〇上至少有三個或者 二個以上的接聊是直流連通的。 如圖4所示,所述QFN金屬框架300上需要接地的鍵 合焊墊均連接到了 QFN金屬框架300上的大面積連通的接 地部分β同時,所述QFN金屬框架3〇〇上包括的輸出匹配 網路U1、射頻天線開關U2、功率控制器U3和射頻功率放 大器U4還可以具有靜電釋放(ESD)通路,從而具有esd 保護作用,這種配置方式可以大幅提高輸出匹配網路Ui上 電容元件的ESD等級’滿足工業產品要求。 需要進一步說明的是,由於本發明還需要實現射頻功 率放大器的直流供電通路上很低寄生電阻的電感(扼流電 感),尤其是在GSM低頻段( 800MHZ-915MHZ)射頻功 率放大器工作的峰值電流高達L5A時,要求電感器的寄生 電阻小於0.1歐姆,才不會對射頻功率放大器的效率造成較 大影響。而通常輸出匹配網路U1製造採用半導體製造技 術’其導電金屬層薄膜厚度很薄,通常為微米量級,由此 製作的電感寄生電阻都較大,將惡化射頻功率放大器U4的 效率。因此在本實施例中,如圖4所示,GSM低頻段的射 頻功率放大器U4上設置的扼流電感由QFN金屬框架3〇〇 上的金屬條301來實現。具體地,在本發明的實施例中, 金屬條301的第一端與QFN金屬框架3〇〇的電源供電接腳 13 201240046 (VCC1、VCC2 )是連通的’電源供電接腳(VCC1、VCC2 ) 通過鍵合線可以連接到功率控制器U3及射頻天線開關U2 的相應鍵合焊墊為其提供電源供電;金屬條301的第二端 與QFN金屬框架300的接腳3〇8、3〇9連通,在供電接腳 (VCC1、VCC2)與接腳308、3〇9之間的包括金屬條3〇1 在内的部分,就構成了 GSM低頻段射頻功率放大器的扼流 電感;金屬條301上陰影部分的底表面高於區域3〇4、3〇5 和所有接腳的底表面。這樣最後QFN封裝的GSM射頻發 射前端模組的背面只有金屬接腳及區域3〇4、3〇5是裸露 的,而半腐蝕金屬條301被樹脂封裝材料包覆,從而與周 圍非物理連接的金屬接腳絕緣隔離,如與金屬接腳 VC1-VC4絕緣隔離;而通過金屬條3〇1連接的兩個或兩個 以上的金屬接腳,則仍然是保持直流連通的,如圖4所示, 金屬接腳308與VCC2。半腐蝕金屬條301的金屬厚度通 常為接腳厚度的一半,約為100微米,寬度通常也可以達 到100微米’直流寄生電阻很小。由於金屬條3〇1可以製 作得比較厚(超過幾十微米)’所以其寄生電阻非常小, 完全適於構成GSM低頻段射頻功率放大器的扼流電感。這 裡金屬條301與接腳厚度及位置的關係,如圖5所示QFn 封裝剖面圖。 由於鍵合過程中半腐蝕金屬條301的下表面懸空,為 了減小製造技術上的風險,將金屬條301連接到電路中的 所有鍵合線都選擇在QFN金屬框架的接腳(如圖4中的 VCC1、VCC2、308和309)上鍵合。還需要說明的是,金 屬條301所能實現的電感值與其長度是相關的,其長度越 201240046 長則電感值越大’·為了使最终完成的Qfn封裝GSM射 前端模組的整體尺寸最小,需要在電路設計中設計保證該 電感的感值在2nHq 5nH之間,這可以通過射頻功率放^ 器晶片U4的輸出匹配網路的合理設計達到,這對於本領域 技術人員來說是公知常識。 同時需要注意的是,金屬條3〇1的形狀不限定為直線, 也可以是弧形或者蛇形等彎曲形狀,只要其等效電感值達 到電路設計要求即可。並且,根據實際需要的不同,也可 以在QFN上實現兩根或兩根以上的類似扼流電感同時用 於GSM低頻段射頻功率放大器、GSM高頻段射頻功率放大 器、及其前級扼流電感。但是,增加這樣的扼流電感數目 會增加QFN金屬框架設計和製造的難度及尺寸,需要在具 體實施中進行權衡選擇,但都在本發明的精神之内。〃 另外,如圖3所示,本實施例中射頻功率放大器u4中 包括兩路射頻功率放大器電路,同時支援GSM低頻段 (824MHz-915MHz )和 GSM 高頻段 (1710MHz-1910MHz)。如上所述的金屬條3〇1實現了 GSM低頻段射頻功率放大器電路所需的扼流電感,而gsm 高頻段射頻功率放大器電路所需的扼流電感,由於其對於 寄生電阻及Q值要求較低,在本實施例中採用了鍵合線與 輸出匹配網路ui上電感相結合的方式實現。另外,如圖4 所示,本實施例所述QFN封裝的GSM射頻發射前端模組 在實際應用時,在PCB板上供電接腳(VcC1、VCC2 )需 要連接至少一個去耗電容(C1、C2),其容值範圍為aw 量級。 15 201240046 另外’通常在輸出匹配網路U1上製作的電容元件的靜 電保護(ESD )等級較弱,在人體模式(HBM )下為 50V-500V ’不能達到工業產品通常要求的HBm>2〇〇〇V的As mentioned above, if a GSM RF front-end module can be manufactured in a QFN package, there would be a significant cost advantage. However, since the metal frame in the qFn package is a monolithic piece of metal, the entire electrical connection is monolithic. Therefore, placing discrete passive components on it is more difficult than the LGA form. At present, most of the products in the industry that use QFN package manufacturing cannot integrate the output matching network, and are implemented on the printed circuit board (B) of the product placement. For example, RFMD of the United States has introduced the GSM RF power amplifier & RF2m in QFN package, but it does not include the RF antenna switch, so it is not a complete GSM RF transmit front-end module, and it will output the RF power amplifier. The matching network is placed on the pCB outside the package, so that the integration of the entire RF transmission front end is low, and the cost advantage of the QFN package is not fully reflected. In the patent application (Application No. 2〇〇91〇2〇2〇72 3), a method for fabricating an inductor for a radio frequency power amplifier using a bonding wire on a QFN package is proposed: an on-chip integrated high enthalpy value can be achieved, Low loss output matching network. However, the number of inductors and their inductance values that can be realized in one package are greatly limited; and the capacitance components in the output matching network still need to be implemented on the semiconductor wafer, which increases the keys. The complexity of the join relationship. For the output matching network of a GSM quad-band RF power amplifier, multiple inductor and capacitor components are typically required, and this technique is not fully satisfactory. In summary, how to provide a GSM RF front-end module with high integration, small size, low cost, and can realize the quad flat no-lead (qfn) package 8 201240046 to the Q-value inductor becomes a problem to be solved. The problem. SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide a GSM RF front-end module for the early-stage leadless package, and to solve the problem of high cost of manufacturing the existing RF front-end module, resulting in GSM. The overall price cost of the handheld device of the RF transmitting front-end module is too high. In order to solve the above technical problem, the present invention provides a quad-square flat leadless package # GSM RF transmitting front-end mode, and the metal truss of the module includes: an output matching network, an RF antenna switch, and a power controller. And an RF power amplifier, wherein the output matching network, the RF antenna switch, the power controller, and the RF power amplifier are respectively fabricated into corresponding semiconductor wafers by using different semiconductor process technologies, and the semiconductor tube wafer is mounted on the On the metal frame. Further, the GSM radio frequency front-end module adopting a quad flat no-lead package according to the present invention, wherein at least one choke inductor on the radio frequency power amplifier is made of a semi-corrosive metal strip provided on the metal frame to make. Further, wherein one end of the semi-corroded metal strip is in communication with a pin on the metal frame. Further, wherein the semi-corroded metal strip has a shape of a straight line, an arc or a serpentine shape. Further, wherein the radio frequency power amplifier is an RF power amplifier that supports GSM high frequency band and low frequency band signal amplification. Further, wherein the RF power amplifier is a radio frequency power amplifier using a gallium arsenide 201240046 heterojunction bipolar transistor process technology or an insulator; 丨 Silicon-On-lnsulator process technology. Further, wherein the output matching network is manufactured using an integrated passive process technology. Further, wherein the radio frequency antenna switch is manufactured by using a high-performance electronic mobility transistor process technology; the power controller is manufactured by a complementary metal oxide semiconductor process technology. Further, wherein the output matching network and the radio frequency antenna are fabricated into one semiconductor wafer by an on-insulator process. Further, wherein at least three of the plurality of pins on the metal frame are in direct communication. Compared with the prior art, the GSM RF front-end module adopting the quad flat no-lead package of the present invention can effectively reduce the cost of the Gsm RF front-end module, thereby reasonably reducing the module with the GSM RF transmitting front end. The overall price cost of the handheld device. _ [Embodiment] The main idea of the present invention is to solve the problem that the existing GSM RF transmitting front-end module is expensive to manufacture, and the overall cost of the handheld device with the GSM RF transmitting front-end module is too high. The GSM RF front-end module in the flat-panel: pin (QFN) package can effectively reduce the cost of the GSM RF terminal module, thereby reasonably reducing the overall price cost of the GSM handheld device. . The detailed description of the embodiments is described in detail below, but is not intended to limit the invention. As shown in FIG. 3 and FIG. 4, a schematic diagram of a GSM RF transmitting front-end module using a qfn package according to an embodiment of the present invention is shown in FIG. 3 and FIG. 4; The group of QFN metal frame 300 includes four semiconductor components, namely: output matching network U1 'radio antenna switch U2, power controller (SM〇^ controller) U3, and output matching network of radio frequency power amplifier U4e (1) The RF antenna switch U2, the power controller U3, and the RF power amplifier u4 are respectively fabricated into corresponding semiconductor wafers by using different semiconductor process technologies, and the above semiconductor wafers are mounted on the metal frame. In this embodiment, the output matching network U1 and the RF antenna switch U2 are mounted on the area 305 of the QFN metal frame 300, and the power controller U3 and the RF power amplifier U4 are mounted on the area 304 of the QFN metal frame 3〇〇. on. Wherein the output matching network U1 in the embodiment adopts a semiconductor process technology for fabricating an integrated passive component (IPD); the radio frequency antenna switch U2 can be fabricated by using a gallium arsenide high electron mobility transistor process technology; The power controller U3 can be fabricated by a complementary metal oxide semiconductor process technology; the RF power amplifier U4 is a radio frequency power capable of supporting GSM high frequency band (1710MHz-1 910MHz signal) and low frequency band (824MHz-915MHz signal) signal amplification. The RF power amplifier U4 can be fabricated using a gallium arsenide heterojunction bipolar transistor process technology or an insulator process technology. Of course, in other embodiments of the present invention, the output matching network U1 and the RF antenna switch U2 may also be integrated into a semiconductor wafer by a suitable semiconductor process technology, such as an on-insulator process technology; Power controller U3 and RF power amplifier s 11 201240046 U4 can also be integrated using a suitable semiconductor process technology to form a semiconductor wafer. Which semiconductor process technology (such as bi-CMOS complementary MOS process, BiCMOS: Bipolar-CMOS) is used to manufacture and how to combine these functional circuits, according to specific design requirements, which is suitable for professionals in the field. It is known that it is not specifically limited in the present invention. In this embodiment, the RF antenna switch U2 is a single-pole four-throw RF antenna switch; the GSM RF input signal Rf=jn1 (GSM high frequency band 1710MHz-1910MHz signal) and RFin2 (GSM low frequency band 824MHz-915MHz signal) pass the RF power amplifier U4 completes power amplification. The output matching network U1 includes not only the planar spiral inductor 306' 307 shown in FIG. 4 but also passive components such as capacitors and inductors. The single-pole four-throw RF antenna switch U2 is connected to the GSM high-band and low-band transmission 彳s in the path and the at least one receiving signal path. In this embodiment, the single-pole is connected to the antenna pin of the GSM RF transmitting front-end module. ANT, four throws are respectively connected to the GSM high-band transmit signal and the low-band transmit signal and two receive signals RX1, RX2. The power controller U3 controls the working state of the entire GSM radio frequency transmitting front end module according to the externally input control signals VC1-VC4, such as controlling the output signal power level of the radio frequency power amplifier U4 and the single-pole connection of the radio frequency antenna switch U2. RF path. As shown in Fig. 4, the semiconductor wafers, the semiconductor wafers and the pins on the QFN metal frame 300 are connected by a bonding wire 303. The at least one choke inductor disposed on the radio frequency power amplifier, 12 201240046, is made of a semi-corroded metal strip 3〇1 disposed on the QFN metal frame 300. Please refer to FIG. 5 for the metal strip 3 The two ends of the 〇1 are respectively connected to the pins on the QFN metal frame 300, and the bottom surface of the metal strips 〇1 lie on all the pins on the QFN metal frame 300 and the bottom surface of the semiconductor wafer area. At least three or more chats on the QFN metal frame 3 are DC-connected. As shown in FIG. 4, the bonding pads on the QFN metal frame 300 that need to be grounded are connected to the large-area connected ground portion β on the QFN metal frame 300, and the output included in the QFN metal frame 3〇〇 The matching network U1, the RF antenna switch U2, the power controller U3, and the RF power amplifier U4 can also have an electrostatic discharge (ESD) path, thereby having esd protection. This configuration can greatly increase the capacitance component on the output matching network Ui. The ESD rating 'satisfies the requirements of industrial products. It should be further noted that the present invention also needs to achieve a very low parasitic resistance inductance (choke inductance) on the DC power supply path of the RF power amplifier, especially the peak current of the GSM low frequency band (800MHZ-915MHZ) RF power amplifier. Up to L5A, the parasitic resistance of the inductor is required to be less than 0.1 ohm, so that the efficiency of the RF power amplifier is not greatly affected. In general, the output matching network U1 is manufactured using semiconductor manufacturing technology. The thickness of the conductive metal layer film is very thin, usually on the order of micrometers, and the resulting parasitic resistance of the inductor is large, which will deteriorate the efficiency of the RF power amplifier U4. Therefore, in the present embodiment, as shown in Fig. 4, the choke inductor provided on the GSM low frequency band frequency power amplifier U4 is realized by the metal strip 301 on the QFN metal frame 3''. Specifically, in the embodiment of the present invention, the first end of the metal strip 301 is connected to the power supply pin 13 of the QFN metal frame 3 201240046 (VCC1, VCC2), and the power supply pin (VCC1, VCC2) is connected. The corresponding bonding pads of the power controller U3 and the RF antenna switch U2 can be connected to the power supply by the bonding wires; the second ends of the metal strips 301 and the pins of the QFN metal frame 300 are 3〇8, 3〇9 Connected, the portion including the metal strip 3〇1 between the power supply pin (VCC1, VCC2) and the pins 308, 3〇9 constitutes a choke inductor of the GSM low-band RF power amplifier; the metal strip 301 The bottom surface of the upper shaded portion is higher than the regions 3〇4, 3〇5 and the bottom surfaces of all the pins. Thus, in the final QFN package, the back side of the GSM RF front-end module has only metal pins and the regions 3〇4, 3〇5 are bare, and the semi-corrosive metal strip 301 is covered by the resin encapsulation material, thereby being non-physically connected to the surroundings. The metal pins are insulated and isolated from the metal pins VC1-VC4, while the two or more metal pins connected by the metal strips 〇1 remain in direct current communication, as shown in FIG. , metal pin 308 and VCC2. The metal thickness of the semi-etched metal strip 301 is typically half the thickness of the pin, about 100 microns, and the width can typically be as high as 100 microns. The DC parasitic resistance is small. Since the metal strip 3〇1 can be made thicker (more than several tens of micrometers), its parasitic resistance is very small, and it is fully suitable for the choke inductor of the GSM low-band RF power amplifier. Here, the relationship between the metal strip 301 and the thickness and position of the pin is shown in the sectional view of the QFn package shown in FIG. Since the lower surface of the semi-corroded metal strip 301 is suspended during the bonding process, in order to reduce the manufacturing technical risk, all the bonding wires connecting the metal strip 301 to the circuit are selected in the pins of the QFN metal frame (see FIG. 4). Bonding on VCC1, VCC2, 308, and 309). It should also be noted that the inductance value that the metal strip 301 can achieve is related to its length, and the longer the length of the 201240046 is, the larger the inductance value is. · In order to minimize the overall size of the final Qfn package GSM shot front end module, It is necessary to design in the circuit design to ensure that the inductance of the inductor is between 2nHq and 5nH, which can be achieved by reasonable design of the output matching network of the RF power amplifier chip U4, which is common knowledge to those skilled in the art. At the same time, it should be noted that the shape of the metal strip 3〇1 is not limited to a straight line, and may be a curved shape such as an arc shape or a serpent shape, as long as the equivalent inductance value reaches the circuit design requirement. Moreover, depending on the actual needs, two or more similar choke inductors can be implemented on the QFN for both the GSM low-band RF power amplifier, the GSM high-band RF power amplifier, and its pre-stage choke inductor. However, increasing the number of such choke inductors increases the difficulty and size of QFN metal frame design and fabrication, and requires trade-offs in specific implementations, but are within the spirit of the present invention. 〃 In addition, as shown in FIG. 3, the RF power amplifier u4 in the embodiment includes two RF power amplifier circuits, and supports the GSM low frequency band (824MHz-915MHz) and the GSM high frequency band (1710MHz-1910MHz). The metal strip 3〇1 as described above realizes the choke inductor required for the GSM low-band RF power amplifier circuit, and the choke inductor required for the gsm high-band RF power amplifier circuit is required for parasitic resistance and Q value. Low, in the embodiment, the bonding wire is combined with the inductance on the output matching network ui. In addition, as shown in FIG. 4, in the QFN packaged GSM RF front-end module of the present embodiment, at least one depletion capacitor (C1 is required to be connected to the power supply pins (VcC1, VCC2) on the PCB. C2), its capacitance range is aw. 15 201240046 In addition, the electrostatic protection (ESD) level of the capacitor element usually produced on the output matching network U1 is weak, and it is 50V-500V in the human body mode (HBM). 'HBm> which is usually required for industrial products cannot be achieved. 〇V

ESD等級❶並且’製作輸出匹配網路ui所採用的丨pD製 程技術中通常都不提供ESD保護元件,只能通過整個GSM 射頻發射刚端模組的整體設計來避免輸出匹配網路υι上元 件受到靜電的直接侵害。 另外’需要說明的是,在本實施例甲GSM射頻發射前 端模組中包括了 4個採用不同製程技術的晶片,然而晶片 的數目並不是作為對本發明精神的限制。在本實施例基礎 之上的任意改變及修改,都被認為仍在本發明權利要求書 的保護範圍之内。與現有技術相比,本發明所述採用QFN 封裝的GSM射頻發射前端模組,能夠有效降低GSM射頻 發射前端模組的成本,從而合理地’降低了帶有GSM射頻 發射前端模組的手持設備的整體價格成本。 田然,本發明還可有其他多種實施例,在不背離本發 明精神及其實質的情況下,熟悉本領域的技術人員可根據 本發明做出各種相應的改變和變形,但這些相應的改變和 變形都應屬於本發明所附的權利要求的保護範圍。 【圖式簡單說明】 圖1為現有的採用LGA封裝的GSM射頻發射前 組結構圖; 圖2為現有的四方扁平無引腳(QFN )封裝結構圖. 圖3為本發明實施例所述採用四方扁平無引腳封裝的 16 201240046 GSM射頻發射前端模組的電路示意圖; 圖4為本發明實施例所述採用四方扁平無弓|腳 GSM射頻發射前端模組的結構圖; t、 用四方扁平無引腳封裝的 所示切線Α-Α的剖面圖。 圖5為本發明實施例所述採 G S Μ射頻發射前端模組的沿圖4 【主要元件符號說明】 100 GSM射頻發射前端模組 101、102平面螺旋電感 103 ' 105貫孔 104走線 106直線電感 110走線 111鍵合線 200半導體元件 202鍵合線 301金屬條 304、305 區域 308、309 接腳 201金屬框架 300金屬框架 303鍵合線 306、307平面螺旋電感The ESD level ❶ and the 丨pD process technology used in the production output matching network ui usually do not provide ESD protection components, and can only avoid the output matching network components by the overall design of the entire GSM RF transmission terminal module. Directly invaded by static electricity. In addition, it should be noted that in the embodiment of the present invention, the GSM RF transmitting front-end module includes four wafers using different process technologies, but the number of wafers is not intended to limit the spirit of the present invention. Any changes and modifications commensurate with the present invention are considered to be within the scope of the appended claims. Compared with the prior art, the GSM radio frequency transmitting front-end module adopting the QFN package of the present invention can effectively reduce the cost of the GSM radio frequency transmitting front-end module, thereby reasonably reducing the handheld device with the GSM radio transmitting front-end module. The overall price cost. There may be other various embodiments of the present invention, and various changes and modifications can be made in accordance with the present invention without departing from the spirit and scope of the invention. And modifications are intended to fall within the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural diagram of a prior GSM radio frequency pre-assembly group using an LGA package; FIG. 2 is a conventional quad flat no-lead (QFN) package structure diagram. FIG. 3 is a schematic diagram of an embodiment of the present invention. FIG. 4 is a structural diagram of a quad flat no-bow|foot GSM radio frequency front-end module according to an embodiment of the present invention; t. A cross-sectional view of the tangent Α-Α shown in the leadless package. FIG. 5 is a schematic diagram of a GS Μ RF transmitting front-end module according to an embodiment of the present invention. FIG. 4 [Main component symbol description] 100 GSM RF transmitting front-end module 101, 102 planar spiral inductor 103 '105 through-hole 104 trace 106 straight line Inductor 110 trace 111 bond wire 200 semiconductor component 202 bond wire 301 metal strip 304, 305 area 308, 309 pin 201 metal frame 300 metal frame 303 bond wire 306, 307 plane spiral inductor

S 17S 17

Claims (1)

201240046 七、申請專利範圍: 1、一種採用四方扁平無引腳封装的GSM射頻發射前 端模組,該模組的金屬框架上包括:#出匹配網路、射頻 天線開關、功率控制器及射頻功率放大器,其特徵在於: 所述輸出匹配網路、射頻天線開關、功率控制器及射頻功 率放大器分別採用不同半導體製程技術製作成相應的半導 體晶片,並將上述半導體晶片貝占裝在所述金屬植架上。 2、如申請專利範圍第】項所述採用时扁平無引腳封 裝的GSM射頻發射前端模組,所述射頻功率放大器上至少 -個扼流電感係由在所述金屬框架上設置的半腐钱金屬條 製成。 3、如申tf專利範圍第2項所述採用时騎無引腳封 裝的GSM射頻發射前端模組,所述半腐蝕金屬條一端與所 述金屬框架上的接腳連通。 4、 如申請專利範圍第3項所述採用四方扁平無引腳封 裝的GSM射頻發射前端模組,所述半腐蝕金屬條的形狀為 直線、弧形或者蛇形。 "" 5、 如申請專利範圍第彳項所述採用四方扁平無引腳封 裝的GSM射頻發射前端模組,所述射頻功率放大器為支持 GSM高頻段和低頻段信號放大的射頻功率放大器。 6、 如申請專利範圍第第5項所述採用四方爲平無引腳 封裝的G S Μ射頻發射前端模組,所述射頻功率放大器為於 用珅化鎵異質接面雙極性電晶體製程技術或絕緣體上石夕= 程技術製造的射頻功率放大器。 7、 如申請專利範圍第1項所述採用四方扁平無引 I 201240046 裝的GSM射頻發射前端模組,所述輸出匹配網路採用積體 被動元件制程技術製造。 8、 如申請專利範圍第,項所述採用四方扁平無引腳封 裝的GSM射頻發射前端模組,所述射頻天線開關採用绅化 鎵1¾電子移動度電晶體製程技術製造;所述功率控制器採 用互補金屬氧化物半導體製程技術製造。 9、 如申請專利範圍第1項所述採用四方扁平無引腳封 裝的GSM射頻發射前端模組,將所述輸出匹配網路和射頻 天線開關採用絕緣體上矽製程技術製作成一個半導體晶 片。 10如申凊專利範圍第1至9項中任一項所述採用四 方扁平無引腳封襞的GSM射頻發射前端模組,所述金屬框 架上至J有二個或三個以上的接腳是直流連通的。 八、圖式:(如次頁)201240046 VII. Patent application scope: 1. A GSM RF transmitting front-end module adopting a quad flat no-lead package. The metal frame of the module includes: #出配网络, RF antenna switch, power controller and RF power The amplifier is characterized in that: the output matching network, the RF antenna switch, the power controller and the RF power amplifier are respectively fabricated into corresponding semiconductor wafers by using different semiconductor process technologies, and the semiconductor wafers are mounted on the metal implants. On the shelf. 2. A GSM RF front-end module in a flat leadless package as described in the scope of the patent application, wherein at least one choke inductor on the RF power amplifier is provided by a semi-corrosion disposed on the metal frame Made of money metal strips. 3. A GSM RF front-end module that rides a leadless package as described in claim 2 of the scope of the patent application, wherein one end of the semi-corroded metal strip is in communication with a pin on the metal frame. 4. The GSM RF front-end module adopting a quad flat no-lead package as described in claim 3 of the patent scope, the semi-corroded metal strip has a straight line, an arc shape or a serpentine shape. "" 5. The GSM RF front-end module is a quad flat no-lead package as described in the scope of the patent application. The RF power amplifier is an RF power amplifier that supports GSM high-band and low-band signal amplification. 6. As described in item 5 of the patent application, the GS Μ RF transmitting front-end module is a flat-no-package package, and the RF power amplifier is a bipolar transistor manufacturing technology using a gallium arsenide heterojunction or Insulators are RF power amplifiers manufactured by Shiyi Technology. 7. The GSM RF front-end module installed in the quad flat no-input I 201240046 is used as described in item 1 of the patent application scope. The output matching network is manufactured by integrated passive component process technology. 8. The GSM RF front-end module of the quad flat no-lead package is used in the patent application scope, and the RF antenna switch is manufactured by a gallium antimonide 13⁄4 electronic mobility transistor process technology; the power controller Manufactured using complementary metal oxide semiconductor process technology. 9. The GSM RF front-end module is a quad flat no-lead package as described in the first paragraph of the patent application, and the output matching network and the RF antenna switch are fabricated into a semiconductor wafer by using an insulator winding process technology. The GSM radio frequency transmitting front-end module using a quad flat no-pin package as described in any one of claims 1 to 9, wherein the metal frame has two or more pins on the J to J. It is DC connected. Eight, schema: (such as the next page)
TW100115940A 2011-03-25 2011-05-06 Global system for mobile communications (GSM) radio-frequency emission front-end module adopting Quad Flat No-lead package TW201240046A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100737512A CN102184917B (en) 2011-03-25 2011-03-25 Global system for mobile communications (GSM) radio-frequency emission front-end module adopting Quad Flat No-lead package

Publications (1)

Publication Number Publication Date
TW201240046A true TW201240046A (en) 2012-10-01

Family

ID=44571068

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100115940A TW201240046A (en) 2011-03-25 2011-05-06 Global system for mobile communications (GSM) radio-frequency emission front-end module adopting Quad Flat No-lead package

Country Status (3)

Country Link
CN (1) CN102184917B (en)
TW (1) TW201240046A (en)
WO (1) WO2012129819A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324638B2 (en) 2010-12-13 2016-04-26 Infineon Technologies Americas Corp. Compact wirebonded power quad flat no-lead (PQFN) package
US9324646B2 (en) 2010-12-13 2016-04-26 Infineon Technologies America Corp. Open source power quad flat no-lead (PQFN) package
US9362215B2 (en) 2010-12-13 2016-06-07 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) semiconductor package with leadframe islands for multi-phase power inverter
US9443795B2 (en) 2010-12-13 2016-09-13 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package having bootstrap diodes on a common integrated circuit (IC)
US9449957B2 (en) 2010-12-13 2016-09-20 Infineon Technologies Americas Corp. Control and driver circuits on a power quad flat no-lead (PQFN) leadframe
TWI550734B (en) * 2013-03-07 2016-09-21 國際整流器股份有限公司 Power Quad Flat No-Lead (PQFN) Package in Single Shunt Inverter Circuit
US9524928B2 (en) 2010-12-13 2016-12-20 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package having control and driver circuits
US9620954B2 (en) 2010-12-13 2017-04-11 Infineon Technologies Americas Corp. Semiconductor package having an over-temperature protection circuit utilizing multiple temperature threshold values
US9659845B2 (en) 2010-12-13 2017-05-23 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package in a single shunt inverter circuit
US9711437B2 (en) 2010-12-13 2017-07-18 Infineon Technologies Americas Corp. Semiconductor package having multi-phase power inverter with internal temperature sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009772A (en) * 2013-02-26 2014-08-27 民瑞科技股份有限公司 GSM mobile communication front-end module circuit device
CN104143547B (en) * 2014-07-25 2016-08-24 西安交通大学 A kind of low stray inductance GaN power integration module of shunt capacitance intermediate layout
CN104320154A (en) * 2014-10-29 2015-01-28 络达科技股份有限公司 Multi-mode multi-frequency front-end device
JP6646491B2 (en) * 2016-03-24 2020-02-14 サンデン・オートモーティブコンポーネント株式会社 Electronic circuit device and inverter-integrated electric compressor having the same
CN111835302B (en) * 2019-04-18 2025-04-04 苏州能讯高能半导体有限公司 A radio frequency bias circuit packaging structure
WO2021006020A1 (en) * 2019-07-09 2021-01-14 株式会社村田製作所 High frequency module and communication device
CN115004366A (en) * 2020-01-23 2022-09-02 华为技术有限公司 Chip device and wireless communication device
CN111653552B (en) * 2020-06-16 2022-06-10 西安科技大学 Square flat chip packaging structure with high electromagnetic pulse interference resistance
CN111865280A (en) * 2020-07-22 2020-10-30 中科芯(苏州)微电子科技有限公司 Stacked RF Switch Circuit
CN112687675B (en) * 2021-03-16 2021-06-29 荣耀终端有限公司 Die, module, wafer and manufacturing method of die

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529493A (en) * 2002-06-06 2005-09-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Non-lead quad flat package with semiconductor devices
CN101271878B (en) * 2007-03-22 2010-06-09 中芯国际集成电路制造(上海)有限公司 Lead frame
WO2009100614A1 (en) * 2008-02-03 2009-08-20 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Electronic circuit package
US7768108B2 (en) * 2008-03-12 2010-08-03 Fairchild Semiconductor Corporation Semiconductor die package including embedded flip chip
US8175541B2 (en) * 2009-02-06 2012-05-08 Rfaxis, Inc. Radio frequency transceiver front end circuit
CN101714852A (en) * 2009-09-22 2010-05-26 锐迪科微电子(上海)有限公司 Double-frequency radio-frequency power amplifier circuit chip
CN101667810B (en) * 2009-09-29 2011-11-16 锐迪科科技有限公司 Dual frequency RF power amplifier circuit chip
CN101814927B (en) * 2010-04-14 2014-07-02 中兴通讯股份有限公司 Multimode all-frequency-band radio-frequency emitting device and method
CN101917166B (en) * 2010-07-28 2012-09-19 锐迪科创微电子(北京)有限公司 Configurable radio-frequency power amplifier and radio-frequency transmitting front-end module with same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9524928B2 (en) 2010-12-13 2016-12-20 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package having control and driver circuits
US9324646B2 (en) 2010-12-13 2016-04-26 Infineon Technologies America Corp. Open source power quad flat no-lead (PQFN) package
US9362215B2 (en) 2010-12-13 2016-06-07 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) semiconductor package with leadframe islands for multi-phase power inverter
US9443795B2 (en) 2010-12-13 2016-09-13 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package having bootstrap diodes on a common integrated circuit (IC)
US9449957B2 (en) 2010-12-13 2016-09-20 Infineon Technologies Americas Corp. Control and driver circuits on a power quad flat no-lead (PQFN) leadframe
US9324638B2 (en) 2010-12-13 2016-04-26 Infineon Technologies Americas Corp. Compact wirebonded power quad flat no-lead (PQFN) package
US9530724B2 (en) 2010-12-13 2016-12-27 Infineon Technologies Americas Corp. Compact power quad flat no-lead (PQFN) package
US9620954B2 (en) 2010-12-13 2017-04-11 Infineon Technologies Americas Corp. Semiconductor package having an over-temperature protection circuit utilizing multiple temperature threshold values
US9659845B2 (en) 2010-12-13 2017-05-23 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package in a single shunt inverter circuit
US9711437B2 (en) 2010-12-13 2017-07-18 Infineon Technologies Americas Corp. Semiconductor package having multi-phase power inverter with internal temperature sensor
US9899302B2 (en) 2010-12-13 2018-02-20 Infineon Technologies Americas Corp. Semiconductor package having multi-phase power inverter with internal temperature sensor
US10438876B2 (en) 2010-12-13 2019-10-08 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package in a single shunt inverter circuit
TWI550734B (en) * 2013-03-07 2016-09-21 國際整流器股份有限公司 Power Quad Flat No-Lead (PQFN) Package in Single Shunt Inverter Circuit

Also Published As

Publication number Publication date
CN102184917A (en) 2011-09-14
WO2012129819A1 (en) 2012-10-04
CN102184917B (en) 2013-04-03

Similar Documents

Publication Publication Date Title
TW201240046A (en) Global system for mobile communications (GSM) radio-frequency emission front-end module adopting Quad Flat No-lead package
US11107782B2 (en) Radio frequency module and communication device
US11631659B2 (en) High-frequency module and communication apparatus
TWI744822B (en) Front end systems and related devices, integrated circuits, modules, and methods
JP5239309B2 (en) Semiconductor device
CN102024795B (en) Semiconductor device and forming method thereof
US10950569B2 (en) High frequency module and communication device
CN205789962U (en) Circuit and packaged type electronic equipment
KR101721703B1 (en) Semiconductor device and method of forming rf fem with lc filter and ipd filter over substrate
TWI531160B (en) Semiconductor device having a balanced band pass filter implemented with an LC resonator
EP2319078B1 (en) High q transformer disposed at least partly in a non-semiconductor substrate
TWI693676B (en) Integrated passive device on soi substrate
US10971466B2 (en) High frequency module and communication device
US8035458B2 (en) Semiconductor device and method of integrating balun and RF coupler on a common substrate
JP2008042063A (en) Semiconductor device
US11088661B2 (en) Power amplifier devices containing inverted power transistor dies and methods for the fabrication thereof
WO2011104774A1 (en) Semiconductor device
JP2006165830A (en) Electronic equipment, low pass filter and method for manufacturing electronic equipment
US7250673B2 (en) Signal isolation in a package substrate
US20240022275A1 (en) Radio-frequency module and communication device
US20240178204A1 (en) Radio-frequency module
JP2024085244A (en) High-frequency module