[go: up one dir, main page]

TW201238768A - Gas barrier film, production device therefor, and production program therefor - Google Patents

Gas barrier film, production device therefor, and production program therefor Download PDF

Info

Publication number
TW201238768A
TW201238768A TW101101411A TW101101411A TW201238768A TW 201238768 A TW201238768 A TW 201238768A TW 101101411 A TW101101411 A TW 101101411A TW 101101411 A TW101101411 A TW 101101411A TW 201238768 A TW201238768 A TW 201238768A
Authority
TW
Taiwan
Prior art keywords
buffer layer
gas barrier
barrier film
film
formula
Prior art date
Application number
TW101101411A
Other languages
Chinese (zh)
Other versions
TWI555645B (en
Inventor
Takayoshi Fujimoto
Masamichi Yamashita
Toyoharu Terada
Original Assignee
Toray Eng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Eng Co Ltd filed Critical Toray Eng Co Ltd
Publication of TW201238768A publication Critical patent/TW201238768A/en
Application granted granted Critical
Publication of TWI555645B publication Critical patent/TWI555645B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Laminated Bodies (AREA)

Abstract

The objective of the present invention is to provide a technology regarding a gas barrier film capable of obtaining a favorable balance among transmittance of visible light, coatability, and flexibility. A gas barrier film (1) comprises a buffer layer (2) containing a silicon compound, and a barrier layer (3) laminated on the buffer layer (2) and containing silicon oxide and/or silicon nitride, wherein, with respect to the Fourier transform infrared absorption spectrum of the buffer layer (2), AR and t satisfy ARR=3 and the formula (2), wherein AR (AR=A1/A2) is a ratio between the infrared absorbance (A1) at the wave number of 900 cm-1 and the infrared absorbance (A2) at the wave number of 1260 cm-1, and t (nm) is the total thickness of the buffer layers contained in the gas barrier film.

Description

201238768 六、發明說明: 【發明所屬之技術領域】 [〇〇〇1] 本發明是關於可使用於有機EL(organic electroluminescence:有機電致發光)等的電子元件 (electronic device)的保護之阻氣膜(gas barHer_ iilm)以及其製造裝置及其製造程序。 【先前技術】 以往對飲食品、醫藥品、化學藥品、曰用品、雜貨 品等的種種的物品包裝,被要求阻氣性(gas barr_ier property)高的塑膠膜(plastic film)。一般塑膠膜因 阻氣性比玻璃等還差,故將種種的阻氣膜塗佈於塑膠膜 的種種方法被提出。 再者近年來’針對使用有機EL或液晶等的顯示裝置 (display device),由輕量化及薄膜化進而撓性化 (flexibilization)的觀點,以塑膠薄板或塑膠膜當作 基板使用的方法被提出。由維持顯示部的辨識性,並且 防止形成於基板表面上的元件部的氧化劣化的觀點,被 要求透明且具有阻氧性及阻水氣性(water vapor barrier property)非常高的阻氣性的阻氣膜。而且, 針對太陽電池(solar cel 1)也由防止發電層或電極等的 劣化、長壽命化的觀點’被要求阻氣性高的阻氣膜。201238768 VI. Description of the Invention: [Technical Field of the Invention] [The present invention relates to a gas barrier that can be used for protection of an electronic device such as an organic electroluminescence (organic electroluminescence) or the like. Membrane (gas barHer_ iilm) and its manufacturing apparatus and its manufacturing process. [Prior Art] Conventionally, various types of articles such as foods, medicines, chemicals, enamels, and miscellaneous goods are required to have a plastic film having a high gas barrier (gas barr_ier property). Since the plastic film is generally inferior in gas barrier properties to glass, various methods for applying various gas barrier films to the plastic film have been proposed. In recent years, it has been proposed to use a plastic thin plate or a plastic film as a substrate for a display device using an organic EL or a liquid crystal, from the viewpoint of weight reduction, thin film formation, and flexibilization. . From the viewpoint of maintaining the visibility of the display portion and preventing oxidative degradation of the element portion formed on the surface of the substrate, it is required to be transparent and have a gas barrier property which is extremely high in oxygen barrier property and water vapor barrier property. Gas barrier film. In addition, the solar cell (solar cel 1) is also required to have a gas barrier film having high gas barrier properties from the viewpoint of preventing deterioration of the power generation layer or the electrodes and the like.

例如在專利文獻1記載有:形成於塑膠基材上,藉由 有機矽化合物的化學氣相沈積(chemical vapor deposition)而形成,波數(wavenumber)845〜833cin_1 中的8丨(^3的紅外線特性吸收實質上為零,且Si〇H/SiO rat io)(A) 1013085717-0 的紅外線吸光度比(infra red absorbance 101101411^單編號施的 第4頁/共45頁 201238768 為0.25以下之氧化石夕(silicon oxide)塗膜。 另一方面,在專利文獻2記載有:在基板上為了使形 成氧化物層用的面的凹凸平坦化而配設有機化合物層。 而且,在專利文獻3記載有:精由低溫電聚法在塑膠 基體的表面形成有機矽化合物聚合物的塗膜,接著在該 基體的有機矽化合物聚合物的塗膜上覆蓋氧化矽膜,製 造阻氣性塑膠材。 [專利文獻1]日本國特開2003-236976號公報 [專利文獻2]曰本國特開201 0-274562號公報 [專利文獻3]曰本國特開平5-345831號公報 【發明内容】 [0003] 雖然氧化矽塗膜自身顯示優良的阻氣性,但因可撓 性(flexibility)低,故當形成於塑膠等的柔軟的基材 時,有膜與基板之間的密著性也低,膜容易產生裂斷等 之缺點。其結果有阻氣性無法被充分發揮的問題。 疊層了有機矽化合物聚合物的層與氧化矽層的阻氣 膜有如下的問題點。雖然有機矽化合物聚合物的層是當 作緩衝層(buffer layer),亦即應力緩和層而發揮功能 ,但一般有機矽化合物聚合物其透明性低。因此,對於 作為透明性高的阻氣膜,需減少有機矽化合物的層的厚 度。其結果應力緩和的效果降低,可撓性變低而容易產 生裂斷。 本發明其目的為提供可實現在阻氣膜中可見光的透 過性與覆蓋性及可撓性之良好的平衡的技術。 與本發明的第一觀點有關的阻氣膜,包含:含有矽化 合物(silicon compound)之緩衝層;被疊層於前述緩 10110141!^單編號 A0101 第5頁/共45頁 1013085717-0 201238768 衝層,含有氧化石夕及/或氮化石夕(silicon nitride)之 阻障層(barrier layer),在針對前述緩衝層的傅立葉 變換紅外線吸收光譜(Fourier transform infrared absorption spectrum)中,在波數900cm_1的紅外線吸 光度(infrared absorbance )A1 與在波數 1 260(^-1 的 紅外線吸光度A2的比AR(AR = A1/A2),與包含於前述阻氣 膜的緩衝層的厚度的合計t(nra)滿足AR<3且式(1),哎滿 SAR23且式(2), [公式1] [0004] 15656For example, Patent Document 1 discloses that it is formed on a plastic substrate and formed by chemical vapor deposition of an organic cerium compound, and 8 丨 (^3 of the wave number 845 to 833 cin_1) The characteristic absorption is substantially zero, and the infrared absorption ratio of Si〇H/SiO rat io)(A) 1013085717-0 (infra red absorbance 101101411^ single number application page 4 / total 45 pages 201238768 is 0.25 or less oxidized stone On the other hand, in the case of the above-mentioned patent document 2, it is described that the organic compound layer is disposed on the substrate to flatten the unevenness of the surface for forming the oxide layer. A fine coating film of an organic bismuth compound polymer is formed on the surface of a plastic substrate by a low-temperature electropolymerization method, and then a ruthenium oxide film is coated on the coating film of the organic bismuth compound polymer of the substrate to produce a gas barrier plastic material. [Patent Document 1] Japanese Unexamined Patent Publication No. Hei No. Hei No. Hei. No. Hei. No. Hei. The bismuth coating film itself exhibits excellent gas barrier properties, but has low flexibility. Therefore, when it is formed on a soft substrate such as plastic, the adhesion between the film and the substrate is low, and the film is easy. There is a problem that the gas barrier property cannot be sufficiently exerted as a result. The gas barrier film in which the layer of the organic germanium compound polymer and the tantalum oxide layer are laminated has the following problems. The layer functions as a buffer layer, that is, a stress relaxation layer, but generally, the organic ruthenium compound polymer has low transparency. Therefore, as a gas barrier film having high transparency, it is necessary to reduce an organic ruthenium compound. As a result, the thickness of the layer is lowered, and the effect of stress relaxation is lowered, and the flexibility is lowered to cause cracking. The object of the present invention is to provide a good visibility of light transmittance and coverage and flexibility in the gas barrier film. The gas barrier film according to the first aspect of the present invention comprises: a buffer layer containing a silicon compound; and is laminated on the aforementioned 10110141!^, single number A0101, page 5 / Total 45 pages 1013085717-0 201238768 Punch layer, containing a barrier layer of oxidized stone and/or silicon nitride, Fourier transform infrared absorption spectrum for the aforementioned buffer layer (Fourier transform infrared absorption spectrum) In the spectrum, the ratio of the infrared absorbance A1 of the wave number 900 cm_1 to the infrared absorbance A2 of the wave number 1 260 (^-1 (AR = A1/A2), and the buffer included in the above gas barrier film The total thickness t(nra) of the layers satisfies AR < 3 and formula (1), 哎 SAR 23 and formula (2), [Formula 1] [0004] 15656

A 3.313 (1)A 3.313 (1)

RR

[公式2] (2) 837 a 0.648 ΆΚ ΙΟΠΟΗ^單編號 Α0101 第6頁/共45頁 1013085717-0 201238768 而且,與本發明的第二觀點有關的缓衝層厚度算出 裝置,包含:至少接受在阻氣膜中被當作目標的可見光的 正透身率(regu 1 ar transmission factor),與在針 對缓衝層的傅立葉變換紅外線吸收光譜中,在波數 90 0 cm-1的紅外線吸光度A1與在波數12 60cm 1的紅外線 吸光度A2的比AD(AD = A1/A2)的輸入之輸入接受部;根據 前述輸入接受部的接受内容,滿足AD<3且式(1),或滿足 AD 23且式(2)而算出包含於阻氣膜的緩衝層的厚度的合[Formula 2] (2) 837 a 0.648 ΆΚ ΙΟΠΟΗ ^单单 Α 0101 Page 6 / Total 45 pages 1013085717-0 201238768 Further, the buffer layer thickness calculating device according to the second aspect of the present invention includes: at least accepting The regu 1 ar transmission factor of the visible light in the gas barrier film and the infrared absorption A1 of the wave number of 90 0 cm-1 in the Fourier transform infrared absorption spectrum for the buffer layer The input receiving unit of the input of the ratio AD (AD = A1/A2) of the infrared ray absorbance A2 of the wave number of 12 60 cm 1 ; the content of the acceptance of the input accepting unit satisfies AD < 3 and formula (1), or satisfies AD 23 Calculating the thickness of the buffer layer included in the gas barrier film by the formula (2)

K Ο [0005] [0006]K Ο [0005] [0006]

計t(nm)之緩衝層厚度算出部。 【發明的功效】 依照本發明,可實現在阻氣膜中維持良好的可見光 的透過性,且適度的厚度。 【實施方式】 [1、阻氣膜] 針對本實施形態的阻氣膜1,參照圖1進行說明》 如圖1所示,本實施形態的阻氣膜1被配設,以便覆 蓋配置於基板(substrate)4上的有機EL元件等的電子元 件42。阻氣膜1也被稱為密封膜,保護電子元件42以免受 到水及氧等的影響。 阻氣膜1全體的厚度為l//m左右也可以。 阻氣膜1的最外面是藉由阻障層3覆蓋。在本實施形 態中,緩衝層2與阻障層3交互被疊層。此外,阻氣膜1例 如包含組成不同,直接被疊層的兩個以上的緩衝層也可 以,且包含組成不同直接被疊層的兩個以上的阻障層也 可以。 1011014#單編號 A_ 第7頁/共45頁 1013085717-0 201238768 在圖1顯示有η個緩衝層2及η個阻障層3。由接近基 板4起稱各個緩衝層2為第一緩衝層2-1、第二緩衝層2-2 .....第η緩衝層2-η。而且,由接近基板4起稱各個阻障 層3為第一阻障層3-1、第二阻障層3-2.....第η阻障層 3-η。當未特別區別各個緩衝層時是整合該等緩衝層僅稱 為緩衝層2,當未特別區別各個阻障層時是整合該等阻障 層僅稱為阻障層3。 以下有時稱η為[疊層數],疊層數η例如為2以上也 可以,5以上也可以,10以下也可以。而且,各個阻障層 3及緩衝層2的厚度未被特別限定,為1〇11111~數百11111也可 以。特別是阻障層3的厚度為20nm以上較佳。 緩衝層2也被稱為應力緩和層,含有碎化合物。緩衝 層2可含有以石夕化合物為主成分。[含有以…為主成分]是 指含有60重量%以上的特定的成分也可以,含有70重量% 以上也可以,含有80重量%以上也可以,含有90重量%以 上也可以,意味著僅由其成分組成也可以。 例如緩衝層2為矽系膜也可以,為包含Η、C及Si的 矽系膜也可以。具體上緩衝層2為包含Si(CH3)的矽系膜 也可以。各個緩衝層2的組成可相同也可不同。 缓衝層2的密度為1. 3〜1. 7g/cm3的範圍較佳。 在針對缓衝層2的傅立葉變換紅外線吸收光譜中,在 波數900cm_1的紅外線吸光度A1與在波數1260cm 1的紅 外線吸光度A2的比AD(AD = A1/A2),及包含於阻氣膜1的 緩衝層2的厚度的合計t(nm)滿足AD<3且式(1),或滿足 Ar23 且式(2) [公式3] 謝腿^單編號A_ 1013085717-0 第8頁/共45頁 (1) 201238768 15656λ 3.313 Ar [0007] ❹ [公式4 ] 837 Δ 0.648 XJL*pA buffer layer thickness calculation unit of t (nm). [Effects of the Invention] According to the present invention, it is possible to maintain good transmittance of visible light in a gas barrier film with a moderate thickness. [Embodiment] [1. Gas barrier film] The gas barrier film 1 of the present embodiment will be described with reference to Fig. 1. As shown in Fig. 1, the gas barrier film 1 of the present embodiment is disposed so as to be placed over the substrate. The electronic component 42 such as an organic EL element on the substrate 4 is used. The gas barrier film 1 is also referred to as a sealing film to protect the electronic component 42 from water, oxygen, and the like. The thickness of the entire gas barrier film 1 may be about 1/m. The outermost surface of the gas barrier film 1 is covered by the barrier layer 3. In the present embodiment, the buffer layer 2 and the barrier layer 3 are alternately laminated. Further, the gas barrier film 1 may have two or more buffer layers directly laminated, for example, including different compositions, and may include two or more barrier layers directly laminated with different compositions. 1011014#单号 A_ Page 7 of 45 1013085717-0 201238768 In Figure 1, there are shown n buffer layers 2 and n barrier layers 3. Each of the buffer layers 2 is referred to as a first buffer layer 2-1, a second buffer layer 2-2, and an n-th buffer layer 2-n. Further, each of the barrier layers 3 is referred to as a first barrier layer 3-1, a second barrier layer 3-2, ..., an n barrier layer 3-n. When the respective buffer layers are not particularly distinguished, the buffer layers are integrated only as the buffer layer 2. When the respective barrier layers are not particularly distinguished, the barrier layers are integrated only as the barrier layer 3. In the following, η is sometimes referred to as [number of layers], and the number of layers η may be 2 or more, for example, 5 or more, and 10 or less. Further, the thickness of each of the barrier layer 3 and the buffer layer 2 is not particularly limited, and may be from 1 to 11111 to several hundreds of 11111. In particular, the thickness of the barrier layer 3 is preferably 20 nm or more. The buffer layer 2, also referred to as a stress relaxation layer, contains a broken compound. The buffer layer 2 may contain a compound of the stone compound as a main component. The term "containing a component as a main component" may be 60% by weight or more, and may be 70% by weight or more, and may be 80% by weight or more, and may be 90% by weight or more, meaning that only Its composition is also ok. For example, the buffer layer 2 may be a lanthanide film, and may be a lanthanoid film containing lanthanum, C, and Si. Specifically, the buffer layer 2 may be a lanthanoid film containing Si (CH3). The composition of each of the buffer layers 2 may be the same or different. The range of the density of the buffer layer 2 is 1. 3~1. The range of 7g/cm3 is preferred. In the Fourier transform infrared absorption spectrum for the buffer layer 2, the ratio of the infrared absorbance A1 of the wave number 900 cm_1 to the infrared absorbance A2 of the wave number of 1260 cm 1 is AD (AD = A1/A2), and is included in the gas barrier film 1 The total thickness t (nm) of the buffer layer 2 satisfies AD < 3 and formula (1), or satisfies Ar23 and formula (2) [formula 3] Xie leg ^ single number A_ 1013085717-0 page 8 / total 45 pages (1) 201238768 15656λ 3.313 Ar [0007] ❹ [Formula 4] 837 Δ 0.648 XJL*p

t< (2) 緩衝層2的厚度的合計t為10nm以上較佳,4000nm 以下較佳。 藉由阻氣膜1滿足該條件,使得可見光的正透射率( 例如70%以上)與可撓性及覆蓋性的至少一方可保持良好 的平衡。 阻障層3可含有以氧化矽及/或氮化矽為主成分。而 且,當阻障層3含有以氧化矽及氮化矽為主成分時,第一 阻障層31的組成與第二阻障層32的組成可相同也可不同 〇 阻障層3具有比緩衝層2高的密度。雖然阻障層3的密 ΙΟΙΙΟΜΙ产單編號A0101 第9頁/共45頁 1013085717-0 201238768 度不疋被限疋於具體的數值,但若為可防止水或氧到達 電子元件4 2的程度的話即可。例如阻障層3的密度為 1. 8〜2. 5g/cm3左右較佳。 此外,阻氣膜1的構成除了緩衝層2及阻障層3之外, 變更為更具備包含有機物的層也可以。 而且,阻氣膜1的構成變更為使緩衝層2與阻障層3顛 倒配置也可以。亦即基板4、阻障層3、緩衝層2、阻障層 3、緩衝層2…依此順序配置也可以。此外,在比所有的 緩衝層2中位於最外側(上侧)的緩衝層2更外側,至少配 設有一個阻障層3較佳。 [2、製造裝置] 參照圖卜圖4針對阻氣膜的製造裝置進行說明。 如圖2所示,製造嚴置1〇〇包含:輸入接受部、控 制裝置102、製膜裝置1〇。 輸入接受部101接受來自操作者之針對可見光的正透 射率、緩衝層的紅外線吸光度比〜及阻氣膜全體的厚度 、緩衝層的厚度、緩衝層的數目等的希望條件的輸入。 輸入接受部101是藉由硬鍵(hardkey)及觸控面板 (touch panel )等實現。 控制裝置102進行各式各樣的運算,並且控制製造裝 置100的各部的動作。包含於控制裝置1〇2的功能塊 (functional block)可藉由cpu(Centralt< (2) The total thickness t of the buffer layer 2 is preferably 10 nm or more, and more preferably 4,000 nm or less. When the gas barrier film 1 satisfies this condition, the positive transmittance (for example, 70% or more) of visible light can be kept in good balance with at least one of flexibility and coverage. The barrier layer 3 may contain cerium oxide and/or cerium nitride as a main component. Moreover, when the barrier layer 3 contains yttrium oxide and tantalum nitride as a main component, the composition of the first barrier layer 31 and the composition of the second barrier layer 32 may be the same or different, and the barrier layer 3 has a buffer ratio. Layer 2 has a high density. Although the size of the barrier layer 3, A0101, page 9 / page 45, 1013085717-0, 201238768 is limited to a specific value, if it is to prevent water or oxygen from reaching the electronic component 4 2 Just fine. For example, the density of the barrier layer 3 is preferably about 1. 8 to 2. 5 g / cm 3 or so. Further, the configuration of the gas barrier film 1 may be changed to include a layer containing an organic substance in addition to the buffer layer 2 and the barrier layer 3. Further, the configuration of the gas barrier film 1 may be changed so that the buffer layer 2 and the barrier layer 3 may be arranged upside down. That is, the substrate 4, the barrier layer 3, the buffer layer 2, the barrier layer 3, the buffer layer 2, ... may be arranged in this order. Further, it is preferable to provide at least one barrier layer 3 on the outer side of the buffer layer 2 located on the outermost side (upper side) of all the buffer layers 2. [2. Manufacturing Apparatus] A manufacturing apparatus of the gas barrier film will be described with reference to FIG. As shown in Fig. 2, the manufacturing unit 1 includes an input receiving unit, a control device 102, and a film forming apparatus 1A. The input accepting unit 101 receives an input of a desired condition such as a positive transmittance of visible light from the operator, an infrared ray absorbance ratio of the buffer layer, a thickness of the entire gas barrier film, a thickness of the buffer layer, and a number of buffer layers. The input accepting unit 101 is realized by a hard key, a touch panel, or the like. The control device 102 performs various calculations and controls the operations of the respective units of the manufacturing apparatus 100. The functional block included in the control device 1〇2 can be obtained by cpu (Central)

Processing Unit:中央處理單元)以及R〇M(Read 〇nlyProcessing Unit: Central Processing Unit) and R〇M (Read 〇nly

Memory:唯讀記憶體)、RAM(Random Access Memory: 隨機存取記憶體)、FLASH(快閃記憶體)等的記憶媒體實 現。亦即可藉由CPU讀出被儲存於R0M等的記錄媒體内的 10110141#單編號Α01〇ι 第1〇頁/共45頁 1013085717-0 201238768 程式而執行,實現各種功能。RAM可當作CPU的作業區域 而發揮功能。而且’也可以在R〇M等的記錄媒體記錄有: 顯示紅外線吸光度比AR與製膜條件的相互關係之檢量曲 線(calibration curve)、顯示阻氣膜内的缓衝層的厚 度的總和與紅外線吸光度比\的相互關係之檢量曲線、 紅外線吸光度比AR與可見光的正透射率的相互關係等。 具體上控制裝置102包含:紅外線吸光度比算出部 103、製膜條件決定部104、緩衝層厚度算出部1〇5、製 膜裝置控制部1 0 6。針對各區塊的功能將於後述。 如圖3及圖4所示,製膜裝置1〇包含:加載互鎖真空 至(load-lock chamber)5、連結於加載互鎖真空室5的 機械手臂室(robot chamber)6及連結於機械手臂室6的 第一製膜室7及第二製膜室8。該製膜裝置1〇可形成緩衝 層2與阻障層3的疊層膜(亦即阻氣膜)。 Ο 在加載互鎖真空室5與機械手臂室6之間配設有閘閥 (gate valve)51。可透過閘閥51使加載互鎖真空室5與 機械手臂室6隔絕。 加载互鎖真空室5被連接於真空泵卜以⑽^ pump)52並且在其内部具備基板儲存架(substrate st〇cker)53。基板儲存架53具備支撐基板4的周緣部之 支撐銷54。在基板4的單面於表面形成有電子元件a,基 板4的尺寸例如為370mmx470mm左右。 機械手臂室6在内部具備基板運送機械手臂61。基板 運送機械手臂61具備馬達62、臂63及可動支撐台64。可 動支撐台64藉由馬達62的驅動且透過臂63而在χ、y&z 節_产單編號 各方向移動自如地構成。可動支撐台64與基板儲存架53 Α0101 第11頁/共45頁 1013085717-0 201238768 具備支撐銷54—樣,具備支撐銷65。 而且,在機械手臂室6經由第一流量控制閥66連接有 真空泵67。 在機械手臂室6與第一製膜室7之間配設有閘閥68, 在機械手臂室6與第二製膜室8之間配設有閘閥69。藉由 開關閘閥68及69,基板運送機械手臂61可使可動支撐台 64移動並使基板4移動至第一製膜室7及第二製膜室8。 第一製膜室7與機械手臂室6連通,經由第二流量控 制閥761連接於真空泵71,經由第三流量控制閥762連接 於HMDS(hexamethyldisi lazane :六曱基二石夕氣烧)供 給槽72,經由第四流量控制閥763連接於H2供給槽73及 Ar供給槽74。 在第一製膜室7的内部配設有環形天線(loop antenna)77。環形天線77是產生電漿(plasma)的手段 (means),藉由絕緣管78與導電電極79構成。兩條絕緣 管78在第一製膜室7内被平行配設。導電電極79被插設於 兩條絕緣管78,如圖4所示,平面視呈略U字形而貫通第 一製膜室7的相對的兩個侧壁,被連接於供給高頻電流的 電源771。高頻電流的頻率為13. 56MHz左右較佳。此外 ,環形天線77的構造為ICP(Inductive Coupled Plasma:感應輕合電漿)放電的構造,惟別的構造的電極 以CCP(Capacitive Coupled Plasma:電容搞合電漿) 、阻障(barrier)、空心(hollow)等的電極使其電衆放 電也可以。 第二製膜室8與機械手臂室6連通,經由第五流量控 制閥861連接於真空泵81,經由第六流量控制閥862連接 而腿#單編號施01 第12頁/共45頁 1013085717-0 201238768 於HMDS供給槽82,經由第七流量控制閥863連接於〇供 給槽83。 2 在第二製膜室8内配設有環形天線87。環形天線 是藉由絕緣官88與導電電極89構成。針對環形天線87的 詳細的說明因與第一製膜室7的環形天線77重複,故省略 。導電電極89被連接於供給高頻電流的電源871。 [3、製造方法] 其次參照圖2及圖5~圖8,針對使用製造裝置1〇〇製 0 造阻氣膜的方法,亦即製造裝置100的動作進行說明。此 外,製膜在本實施形態中被以自動控制,惟其一部分或 全部的開始及結束等被以手動控制也可以。 在本實施形態中,阻氣膜1的可見光的正透射率的目 標值被設定為70%以上而構成。而且,疊層數11也被設定 為一定的值’不變而構成。但是,本發明不是被限定於 此,例如阻氣膜1的可見光的正透射率及疊層數η藉由操 作者指定也可以。 & 如圖5所示,若輸入接受部1〇1接受來自操作者的輸 入,則依照其内容設定製膜條件。例如當輸入緩衝層2的 紅外線吸光度比或與紅外線吸光度比AD具有相互關係 的值時(在步驟S31為Yes),緩衝層2的厚度的總和被決 定(步驟S32)。此處如上述因疊層數η被固定,故可以說 步驟S32是決定各個緩衝層2的厚度之步驟。 吸光度比AD如已經說明的,是指在波數900cm_1的紅 外線吸光度A1與在波數1260cm_1的紅外線吸光度A2的比 AR(AR=A1/A2)。 此外,與紅外線吸光度比AD具有相互關係的值是指Memory media such as Memory: Read Only Memory, RAM (Random Access Memory), and FLASH (Flash Memory). It can also be executed by the CPU by reading the program stored in the recording medium of the ROM or the like, such as 10110141#single number Α01〇ι 1 page/45 pages 1013085717-0 201238768, to realize various functions. The RAM functions as a work area of the CPU. Further, it is also possible to record, on a recording medium such as R〇M, a calibration curve showing the correlation between the infrared absorbance ratio AR and the film forming conditions, and the sum of the thicknesses of the buffer layers in the gas barrier film. The correlation curve between the infrared absorption ratio and the correlation between the infrared absorption ratio and the positive transmittance of the visible light. Specifically, the control device 102 includes an infrared ray absorbance ratio calculating unit 103, a film forming condition determining unit 104, a buffer layer thickness calculating unit 〇5, and a film forming apparatus control unit 106. The functions for each block will be described later. As shown in FIGS. 3 and 4, the film forming apparatus 1A includes a load-lock chamber 5, a robot chamber 6 coupled to the load lock chamber 5, and a machine attached to the machine. The first film forming chamber 7 and the second film forming chamber 8 of the arm chamber 6. The film forming apparatus 1 can form a laminated film of the buffer layer 2 and the barrier layer 3 (i.e., a gas barrier film).设置 A gate valve 51 is disposed between the load lock chamber 5 and the arm chamber 6. The load lock chamber 5 can be isolated from the robot arm chamber 6 by the gate valve 51. The load lock chamber 5 is connected to a vacuum pump 52 and has a substrate holder 53 therein. The substrate storage rack 53 is provided with a support pin 54 that supports the peripheral edge portion of the substrate 4. The electronic component a is formed on one surface of the substrate 4 on one surface, and the size of the substrate 4 is, for example, about 370 mm x 470 mm. The robot arm chamber 6 is provided with a substrate transport robot 61 therein. The substrate transport robot 61 includes a motor 62, an arm 63, and a movable support table 64. The movable support table 64 is configured to be movable in the respective directions of the χ, y&z section_production number by the driving of the motor 62 and through the arm 63. The movable support table 64 and the substrate storage rack 53 Α 0101 Page 11 of 45 1013085717-0 201238768 The support pin 54 is provided with a support pin 65. Further, a vacuum pump 67 is connected to the arm chamber 6 via the first flow rate control valve 66. A gate valve 68 is disposed between the robot arm chamber 6 and the first film forming chamber 7, and a gate valve 69 is disposed between the robot arm chamber 6 and the second film forming chamber 8. The substrate transport robot 61 moves the movable support table 64 and moves the substrate 4 to the first film forming chamber 7 and the second film forming chamber 8 by the switch gate valves 68 and 69. The first film forming chamber 7 communicates with the robot arm chamber 6, is connected to the vacuum pump 71 via the second flow rate control valve 761, and is connected to the HMDS (hexamethyldisi lazane) supply tank via the third flow rate control valve 762. 72 is connected to the H2 supply tank 73 and the Ar supply tank 74 via the fourth flow rate control valve 763. A loop antenna 77 is disposed inside the first film forming chamber 7. The loop antenna 77 is a means for generating plasma, and is constituted by an insulating tube 78 and a conductive electrode 79. The two insulating tubes 78 are arranged in parallel in the first film forming chamber 7. The conductive electrode 79 is inserted into the two insulating tubes 78, as shown in FIG. 4, and has a substantially U-shape in plan view and penetrates the opposite side walls of the first film forming chamber 7, and is connected to a power source for supplying a high frequency current. 771. The frequency of the high frequency current is preferably about 13.56 MHz. In addition, the structure of the loop antenna 77 is a structure of ICP (Inductive Coupled Plasma) discharge, and the electrodes of the other structure are CCP (Capacitive Coupled Plasma), barrier, An electrode such as a hollow may be electrically discharged. The second film forming chamber 8 communicates with the robot arm chamber 6, is connected to the vacuum pump 81 via the fifth flow control valve 861, and is connected via the sixth flow control valve 862. The leg #单编号施 01 page 12 / total 45 pages 1013085717-0 201238768 is connected to the 〇 supply tank 83 via the seventh flow control valve 863 in the HMDS supply tank 82. 2 A loop antenna 87 is disposed in the second film forming chamber 8. The loop antenna is constructed by an insulating officer 88 and a conductive electrode 89. The detailed description of the loop antenna 87 is omitted because it overlaps with the loop antenna 77 of the first film forming chamber 7. The conductive electrode 89 is connected to a power source 871 that supplies a high-frequency current. [3. Manufacturing method] Next, a method of manufacturing a gas barrier film using the manufacturing apparatus 1 and the operation of the manufacturing apparatus 100 will be described with reference to Figs. 2 and 5 to 8 . Further, the film formation is automatically controlled in the present embodiment, but the start and end of some or all of the film formation may be manually controlled. In the present embodiment, the target value of the positive transmittance of visible light of the gas barrier film 1 is set to 70% or more. Further, the number of laminations 11 is also set to a constant value '. However, the present invention is not limited thereto, and for example, the positive transmittance of the visible light of the gas barrier film 1 and the number of layers η may be specified by the operator. & As shown in Fig. 5, when the input accepting unit 1〇1 receives input from the operator, the film forming conditions are set in accordance with the contents. For example, when the infrared absorption ratio of the input buffer layer 2 or the value corresponding to the infrared absorption ratio AD is correlated (Yes in step S31), the sum of the thicknesses of the buffer layers 2 is determined (step S32). Here, since the number of layers η is fixed as described above, it can be said that step S32 is a step of determining the thickness of each of the buffer layers 2. The absorbance ratio AD, as already explained, refers to the ratio AR (AR = A1/A2) of the infrared absorbance A1 at a wave number of 900 cm_1 to the infrared absorbance A2 at a wavenumber of 1260 cm_1. In addition, a value that has a correlation with the infrared absorbance ratio AD means

R 10110141^單編號 A〇101 第 13 頁 / 共 45 頁 1013085717-0 201238768 包含緩衝層2的可見光的正透射率及[製膜壓力xHMDS流量 /投入功率(Pa*sccm/kW)]。如後述,緩衝層2的可見光 的正透射率與紅外線吸光度比\具有相互關係,而且, 紅外線吸光度&AR與製膜壓力xHMDS流量/投入功率 (Pa*sccra/kW)具有相互關係。因此,控制裝置1〇2可根 據該等相互關係由[具有相互關係的值]求紅外線吸光度 比Ar。 由如此被輸入的或求出的紅外線吸光度比〜,透過 緩衝層厚度算出部105算出緩衝層2的厚度的合計。亦即 包含於阻氣膜1的緩衝層2的厚度的合計t(nm)的目標值被 設定,以便滿足AR<3且式(1),或滿足、且式(2)。 該等算式的圖表如圖9所示β [公式5 ] 15656R 10110141^Single number A〇101 Page 13 of 45 1013085717-0 201238768 Positive transmittance of visible light including buffer layer 2 and [film formation pressure xHMDS flow rate / input power (Pa*sccm/kW)]. As will be described later, the positive transmittance of visible light of the buffer layer 2 has a correlation with the infrared ray absorbance ratio, and the infrared ray absorbance &AR has a correlation with the film forming pressure xHMDS flow rate/input power (Pa*sccra/kW). Therefore, the control device 1〇2 can determine the infrared absorption ratio Ar from the [values having a mutual relationship] based on the mutual relations. The transmission layer thickness calculation unit 105 calculates the total thickness of the buffer layer 2 from the infrared ray absorbance ratio 〜 which is input or obtained as described above. That is, the target value of the total t (nm) of the thickness of the buffer layer 2 included in the gas barrier film 1 is set so as to satisfy AR < 3 and the formula (1), or satisfy the formula (2). The graphs of these equations are shown in Figure 9. [Formula 5] 15656

Ar 3.313 (1) [0008] [公式 6] [0009] 第14頁/共45頁 10110141^單編號 A0101 1013085717-0 837 201238768 t A 0.648Ar (2) 若可見光的正透射率的目標值為70%,則式(1)及式 (2)中的不等號變更為等號也可以。 _ 亦即輸入接受部101及缓衝層厚度算出部105是當作 緩衝層厚度算出裝置而發揮功能。 而且,若透過操作者輸入的不是紅外線吸光度比ad (包含與紅外線吸光度比AR具有相互關係的值)(在步驟 S31為No),而是缓衝層2的厚度的合計值t(在步驟S33為 Yes),則透過紅外線吸光度比算出部103使當作目標的紅 外線吸光度比AD根據上述式(1)或式(2)而被算出(步驟 S34)。此時,若1;比411nm大則適用式(1),若t為411nm 0 以下則適用式(2 )。 其次,製膜條件被決定(步驟S35)。在該步驟中, 製膜條件決定部104由在步驟S32被決定的或藉由操作者 輸入的厚度的合計值設定各緩衝層的製膜時間,或根據 在步驟S34被決定的或藉由操作者輸入的紅外線吸光度比 八1?的目標值,設定製膜壓力xHMDS流量/投入功率 (Pa*sccm/kW)。 當用以決定製膜條件的必要的資訊不被輸入時(在步 驟S31及S33為No),則不決定製膜條件而結束處理。此 時,在未圖示的顯示裝置中對操作者顯示催促資訊的輸 1()11。1411^單編號A0101 第15頁/共45頁 1013085717-0 201238768 入的訊息也可以。 製膜裝置控制部m根據如以上決定的條件控制製膜 裝置10的動作。 製膜裝置10以處於如下所示的初始狀態進行說明。 亦即加載互鎖真空室5為閘閥51關閉的狀態,加載互鎖真 空室5的内壓為大氣堡。在基板儲存架Μ,於表面配置有 電子元件42的未密封的基板4在其單面油直下方的狀態 下被保持。 首先,在關閉閉閥69 ’閘閥68被打開的狀態下如圖 6所示’藉由真空栗71使第-製膜室7及機械手臂室6減壓 (步驟si)。此時’藉由真使第二製膜室8減壓(步 驟 S1)。 其-人真工果52開始動作,使加載互鎖真空室5減壓 (步驟S2)在加载互鎖真空室5的内壓與第一製膜室7及 機械手臂室6的内壓大致相同的時間點打開問闊51。 接著,形成緩衝層Η (步糊卜基板運送機械手 臂61使臂63延伸至加載互鎖真空室5,在相同姿勢亦即使 其單面朝錯直下方的狀態下,將被保持於基板儲存架53 的未密封的基板4遞送至可動支樓台64上。在接受基板4 後’基板運送機械手臂61使臂63收縮。臂63收縮後閘 閥51關閉’基板運送機械手臂61使臂63旋轉到第一製膜 室7的方向。 其次,藉由打開第四流量控制閥763*Η2氣體與Ar 氣體的混合氣體導入到第一製膜室7(圖7的步驟S10)。與 此同時藉由打開第三流量控制閥762將HMDS氣體導入到第 一製膜室7(圖7的步驟S10)。此時的各氣體的導入流量, 1011014ΐί^早編號A0101 第16頁/共45頁 1013085717-0 201238768 特別是HMDS氣體的流量如在步驟S35被決定的。例如針對 H2氣體與Ar氣體的混合氣體可設為20sccm〜40sccm,針 對HDMS氣體可設為3sccm~5sccm。 藉由以在步驟S 3 5被決定的流量將各氣體導入到第一 製膜室7,調整第二流量控制閥761的開度而調整成第一 壓力(圖7的步驟S11)。第一壓力是指相當於在步驟S35 被決定的製膜條件中的製膜壓力。 接著,由電源771使高頻電流流到環形天線77。此 時的電漿電力,亦即投入功率被設定為例如0. lkW~10kW 左右。據此,在環形天線77的周邊產生電漿(圖7的步驟 S12)。然後,使臂63延伸至第一製膜室7,將基板4設置 於環形天線77的上方(圖7的步驟S13)。在基板4的表面 進行表面反應(surface reaction)形成緩衝層2-1,以 便覆蓋電子元件42。因HMDS的化學式為 (CH3)3SiNHSi(CH3)3,故 HMDS 供給槽 72 是當作 C(碳)的 供給源而發揮功能。藉由包含碳,可使形成的膜的密度 成較低的密度,可有效地抑制因應力產生造成的裂痕 (crack)等。 在規定的時間經過後,藉由關閉第三流量控制閥762 及第四流量控制閥763,停止HMDS氣體、H2氣體及Ar氣 體的導入(圖7的步驟S14)。 緩衝層2-1 —被形成,就在步驟S4中開始阻障層3-1 的形成處理。 首先,基板運送機械手臂61使基板4由第一製膜室7 退避至機械手臂室6,退避一完了,就關閉閘閥68。 其次如圖8所示,使真空泵67與第一流量控制閥66 1〇11〇141产單編號A_ 第17頁/共45頁 1013085717-0 201238768 動作並使機械手臂室6減壓(步驟S20)。在機械手臂室6的 内壓與第二製膜室8的内壓大致相同的時間點,打開閘閥 69停止真空泵67。此外,設真空泵81為動作下的狀態。 其次,藉由打開第七流量控制閥863將〇2氣體導入到 第二製膜室8(步驟S21)。與此同時藉由打開第六流量控 制閥862將HMDS氣體導入到第二製膜室8(步驟S21)。此 時的各氣體的導入流量可設〇2氣體為20sccm~1000sccm ,可設HDMS氣體為3sccm~20sccm。藉由調整第五流量 控制閥861的開度而調整成第二壓力(步驟S22)。 接著,由電源871使高頻電流流到環形天線87。此 時的電漿電力,亦即投入功率被設定為例如0.1kW〜10kW 左右。據此,在環形天線87的周邊產生電漿(步驟S23)。 然後,使臂63延伸至第二製膜室8,將基板4設置於環形 天線87的上方(步驟S24)。在基板4的表面進行表面反應 形成阻障層3-1,亦即氧化矽層以便覆蓋緩衝層2-1。在 規定時間經過後,藉由關閉第六流量控制閥862及第七流 量控制閥863,停止HMDS氣體及〇2氣體的導入(步驟S25) 〇 此外,使用含氮氣體(N2氣體或NH3氣體)或〇2氣體與 含氮氣體的混合氣體以取代〇2氣體也可以。 重複規定次數(N次)的上述步驟S3及步驟S4的處理( 步驟S5)。處理的次數未滿N時(在步驟S5為No),在阻障 層形成後形成緩衝層時是進行步驟S3。 此外,當形成複數層缓衝層2時,各個緩衝層2的製 膜條件(材料氣體的組成、材料氣體的流量、壓力等)可 相同也可不同。針對阻障層3的製膜也一樣。 ΗΠ1隨1*單編號A_ 第18頁/共45頁 1013085717-0 201238768 規定數的層一被形成(在步驟S5為Yes),基板運送 機械手臂61就使臂63旋轉到加載互鎖真空室5的方向。閘 閥51打開,基板運送機械手臂61使臂63延伸至加載互鎖 真空室5。然後,將密封完了的基板4移載(transfer)至 基板儲存架53,基板運送機械手臂61使臂63收縮。臂63 收縮後,閘閥51關閉,在步驟S6中停止真空泵52,讓外 部空氣進入等,使加載互鎖真空室5返回並釋放到大氣壓 後,可在步驟S7中將密封膜形成完了的基板4取出到外部 〇 此外,在本實施形態中藉由先形成緩衝層2然後形成 阻障層3,重複該等步驟而在基板4上形成有缓衝層2、阻 障層3、缓衝層2、阻障層3…依此順序被疊層的重複構造 〇 但是,本發明不是被限定於此,先形成阻障層3然後 形成緩衝層2也可以。也就是說,在基板4上阻障層3、緩 衝層2、阻障層3…依此順序被形成也可以。 此外,在圖5~圖8的流程圖所示的製造方法中,於遮 罩(mask)對向基板4而被配置的狀態下,在第一壓力下藉 由以電聚CVD(plasma Chemical Vapour Deposit ion:電漿化學氣相沉積)使無機物沉積而形成緩 衝層2之緩衝層形成程序(步驟S3),與緩衝層形成程序後 ,在配置有遮罩的基板4,在比第一壓力低的第二壓力下 藉由以電漿CVD使無機物沉積而形成阻障層3之阻障層形 成程序(步驟S4)被執行。遮罩是規定形成有阻氣膜1的區 域。 此外,在本實施形態中因阻氣膜是當作保護電子元 10110141 产單編號 A〇101 第19頁/共45頁 1013085717-0 201238768 件用的阻氣膜而被使用’故形成阻氣膜的基材可舉出基 板4 ’但本發明的製造方法及製造裝置不被限定於此,可 使用於對各式各樣的物體(基材)製造阻氣膜。 [4 '製造裝置的其他的實施形態] 圖3及圖4所示的製膜裝置1〇具備第一製膜室7(包含 被連接的各種槽及真空泵)當作緩衝層形成部的一例,具 備第二製膜室8(包含被連接的各種槽及真空系)當作阻障 層形成部的-例。而且,機械手臂室6也可以視為緩衝層 形成部及阻障層形成部的一部分。 亦即在上述實施形態中,藉由透過基板運送機械手 臂61而移動於兩個製膜室之間,進行第—屋力與第二壓 力的切換。但是,本發明不是被限定於此,阻氣臈丨的製 造裝置藉由改變一個製膜室的内壓而進行第一壓力與第 二壓力的切換也可以。 而且,基板4為塑膠等的長條狀的薄片(film)也可 以。薄片可藉由滾子對滚子(rGll t。rQ⑴方式連續地 接受阻氣膜的形成。 此外,HDMS只不過是原料氣體的一例,可將原料氣 體變更為其他的氣體。原料氣體特別是包含Si及C(峻)的 氣體較佳。 而且,形成緩衝層2的原料氣體與形成阻障層3的氣 體其組成不同也可以。 [5、紅外線吸光度比、製膜條件、可見光的正透射 率、緩衝層的厚度的關係] 在以下的實驗令,紅外線吸光度是藉由傅立葉變換 紅外線吸收法’具體上為使用Bruker製 101101411^單編號A0101 第20頁/共45頁 1013085717-0 201238768 FT-IRIFS-66V/S的透射法測定。而且,可見光區域中的 正透射率是藉由分光光度計(spectrophotometer)(曰 本分光製MODEL V-670)測定。 如圖10所示,緩衝層2的傅立葉變換紅外線吸收光譜 在波數900cm_1顯示起源於Si-C及Si-N的伸縮振動 (stretching vibration)的尖峰(peak),在波數 1260cm 1顯示起源於形振動(deformation vibration)的尖峰。亦即波數900cm 1的尖峰量顯示 Si-C及Si-N的量的和,波數1260cm 1的尖_峰量顯示 Si-CH3 的量。 本發明者們發現了針對緩衝層2之在波數900CHT1的 紅外線吸光度A1與在波數1260cm_1的紅外線吸光度A2的 &AD(AD = A1/A2),與緩衝層2的製膜時的製膜壓力xHMDS 流量/投入功率(Pa*sccm/kW)具有圖11所示的相互關係 。進而發現了阻氣膜中的可見光的正透射率(亦即在可見 光區域400~800nm中被測定的正透射率的最小值)與緩衝 層2的製膜壓力xHMDS流量/投入功率(Pa*sccm/kW)具有 圖12所示的相互關係。此外,在圖12的正透射率的測定 對象為阻氣膜全體,在該阻氣膜中,緩衝層的厚度的合 計t為42Onm。因阻障層的正透射率高,故可忽視阻障層 給予阻氣膜全體的正透射率的影響。阻障層的形成是與 實施例--樣而進行。 亦即本發明者們發現了紅外線吸光度比人1?與可見光Ar 3.313 (1) [0008] [Formula 6] [0009] Page 14 of 45 10110141^Single Number A0101 1013085717-0 837 201238768 t A 0.648Ar (2) If the target value of the positive transmittance of visible light is 70 %, the inequality in equations (1) and (2) may be changed to an equal sign. That is, the input receiving unit 101 and the buffer layer thickness calculating unit 105 function as a buffer layer thickness calculating means. Further, when the operator does not input the infrared ray absorbance ratio ad (including a value related to the infrared ray absorbance ratio AR) (No at step S31), the total value t of the thickness of the buffer layer 2 is obtained (at step S33). In the case of Yes, the infrared ray absorbance ratio calculating unit 103 calculates the infrared ray absorbance ratio AD as the target based on the above formula (1) or (2) (step S34). In this case, if 1 is larger than 411 nm, the formula (1) is used, and when t is 411 nm 0 or less, the formula (2) is applied. Next, the film forming conditions are determined (step S35). In this step, the film forming condition determining unit 104 sets the film forming time of each buffer layer from the total value of the thickness determined in step S32 or input by the operator, or based on the operation determined in step S34 or by operation. The infrared ray absorbance input is set to a target value of 8%, and the film forming pressure xHMDS flow rate/input power (Pa*sccm/kW) is set. When the information necessary for determining the film forming conditions is not input (No in steps S31 and S33), the processing is terminated without determining the film forming conditions. At this time, the display of the urging information is displayed to the operator in a display device (not shown). 1) 1111^单单 A0101 Page 15 of 45 1013085717-0 201238768 The incoming message is also available. The film forming apparatus control unit m controls the operation of the film forming apparatus 10 based on the conditions determined as described above. The film forming apparatus 10 will be described in an initial state as shown below. That is, the load lock chamber 5 is in a state in which the gate valve 51 is closed, and the internal pressure of the load lock chamber 5 is atmospheric. In the substrate storage rack, the unsealed substrate 4 on which the electronic component 42 is disposed is held in a state where the oil is directly under one side of the substrate. First, in the state where the closing valve 69' gate valve 68 is opened, as shown in Fig. 6, the first film forming chamber 7 and the robot arm chamber 6 are decompressed by the vacuum pump 71 (step si). At this time, the second film forming chamber 8 is decompressed by the fact (step S1). The human real work 52 starts to operate, and the load lock vacuum chamber 5 is depressurized (step S2). The internal pressure of the load lock vacuum chamber 5 is substantially the same as the internal pressure of the first film forming chamber 7 and the robot arm chamber 6. The point in time to open the question is 51. Next, a buffer layer 形成 is formed (the step substrate transport robot arm 61 extends the arm 63 to the load lock vacuum chamber 5, and is held in the substrate storage rack even in the same posture even if its one side faces the wrong straight side. The unsealed substrate 4 of 53 is delivered to the movable gantry 64. After receiving the substrate 4, the substrate transport robot 61 contracts the arm 63. After the arm 63 is retracted, the gate valve 51 is closed. The substrate transport robot 61 rotates the arm 63 to the first The direction of the film forming chamber 7. Next, the mixed gas of the gas and the Ar gas is introduced into the first film forming chamber 7 by opening the fourth flow rate control valve 763*Η2 (step S10 of Fig. 7). The third flow rate control valve 762 introduces the HMDS gas into the first film forming chamber 7 (step S10 of Fig. 7). At this time, the introduction flow rate of each gas, 1011014ΐί^ early number A0101 page 16 / total 45 pages 1013085717-0 201238768 In particular, the flow rate of the HMDS gas is determined in step S35. For example, the mixed gas for the H2 gas and the Ar gas may be set to 20 sccm to 40 sccm, and the HDMS gas may be set to 3 sccm to 5 sccm by being used in step S35. The determined flow introduces each gas The first film forming chamber 7 is adjusted to the first pressure by adjusting the opening degree of the second flow rate control valve 761 (step S11 of Fig. 7). The first pressure means the film forming condition determined in step S35. Next, the high-frequency current is supplied to the loop antenna 77 by the power source 771. The plasma power at this time, that is, the input power is set to, for example, about 0. lkW to 10 kW. Accordingly, around the loop antenna 77. The plasma is generated (step S12 of Fig. 7). Then, the arm 63 is extended to the first film forming chamber 7, and the substrate 4 is placed above the loop antenna 77 (step S13 of Fig. 7). The surface is made on the surface of the substrate 4. The surface layer forms a buffer layer 2-1 so as to cover the electronic component 42. Since the chemical formula of HMDS is (CH3)3SiNHSi(CH3)3, the HMDS supply tank 72 functions as a supply source of C (carbon). By containing carbon, the density of the formed film can be made lower, and cracks and the like due to stress can be effectively suppressed. After the lapse of a prescribed time, the third flow control valve 762 is closed by the third flow rate control valve 762. And a fourth flow control valve 763, stopping the HMDS gas, the H2 gas, and Introduction of Ar gas (step S14 of Fig. 7) The buffer layer 2-1 is formed, and the formation process of the barrier layer 3-1 is started in step S4. First, the substrate transport robot 61 causes the substrate 4 to be first. The film forming chamber 7 is retracted to the robot arm chamber 6. When the retraction is completed, the gate valve 68 is closed. Next, as shown in Fig. 8, the vacuum pump 67 and the first flow rate control valve 66 1〇11〇141 are produced, the order number A_ page 17/ A total of 45 pages 1013085717-0 201238768 act and decompress the robot arm chamber 6 (step S20). When the internal pressure of the robot arm chamber 6 is substantially the same as the internal pressure of the second film forming chamber 8, the gate valve 69 is opened to stop the vacuum pump 67. Further, the vacuum pump 81 is in a state of being operated. Next, the helium gas is introduced into the second film forming chamber 8 by opening the seventh flow rate control valve 863 (step S21). At the same time, the HMDS gas is introduced into the second film forming chamber 8 by opening the sixth flow rate control valve 862 (step S21). At this time, the introduction flow rate of each gas can be set to 20 sccm to 1000 sccm, and HDMS gas can be set to 3 sccm to 20 sccm. The second pressure is adjusted by adjusting the opening degree of the fifth flow rate control valve 861 (step S22). Next, the high frequency current is caused to flow to the loop antenna 87 by the power source 871. The plasma power at this time, that is, the input power is set to, for example, about 0.1 kW to 10 kW. According to this, plasma is generated around the loop antenna 87 (step S23). Then, the arm 63 is extended to the second film forming chamber 8, and the substrate 4 is placed above the loop antenna 87 (step S24). Surface reaction is performed on the surface of the substrate 4 to form a barrier layer 3-1, that is, a ruthenium oxide layer so as to cover the buffer layer 2-1. After the lapse of the predetermined time, the introduction of the HMDS gas and the 〇2 gas is stopped by closing the sixth flow control valve 862 and the seventh flow control valve 863 (step S25). Further, a nitrogen-containing gas (N2 gas or NH3 gas) is used. Alternatively, a mixed gas of 〇2 gas and a nitrogen-containing gas may be substituted for 〇2 gas. The processing of the above-described step S3 and step S4 (step S5) is repeated a predetermined number of times (N times). When the number of times of processing is less than N (No in step S5), when the buffer layer is formed after the formation of the barrier layer, step S3 is performed. Further, when the plurality of buffer layers 2 are formed, the film forming conditions (the composition of the material gas, the flow rate of the material gas, the pressure, and the like) of the respective buffer layers 2 may be the same or different. The same applies to the film formation of the barrier layer 3. ΗΠ1 with 1*single number A_ page 18/total 45 pages 1013085717-0 201238768 The specified number of layers is formed (Yes in step S5), and the substrate transport robot 61 rotates the arm 63 to the load-locking vacuum chamber 5 The direction. The gate valve 51 is opened and the substrate transport robot 61 extends the arm 63 to the load lock vacuum chamber 5. Then, the sealed substrate 4 is transferred to the substrate storage rack 53, and the substrate transport robot 61 contracts the arm 63. After the arm 63 is contracted, the gate valve 51 is closed, the vacuum pump 52 is stopped in step S6, the outside air is allowed to enter, and the load lock vacuum chamber 5 is returned and released to atmospheric pressure, and the sealing film can be formed in the substrate 4 in step S7. Further, in the present embodiment, the buffer layer 2 is formed first and then the barrier layer 3 is formed, and the steps are repeated to form the buffer layer 2, the barrier layer 3, and the buffer layer 2 on the substrate 4. The barrier layer 3 is a repetitive structure laminated in this order. However, the present invention is not limited thereto, and the barrier layer 3 may be formed first and then the buffer layer 2 may be formed. That is, the barrier layer 3, the buffer layer 2, the barrier layer 3, ... may be formed in this order on the substrate 4. Further, in the manufacturing method shown in the flowcharts of FIGS. 5 to 8, in the state in which the mask is disposed opposite to the substrate 4, by the CVD (plasma chemical Vapour) under the first pressure. Deposit ion: a buffer layer forming process for depositing an inorganic substance to form the buffer layer 2 (step S3), and after the buffer layer forming process, the substrate 4 having the mask disposed is lower than the first pressure The barrier layer forming process (step S4) of forming the barrier layer 3 by depositing inorganic substances by plasma CVD is performed under the second pressure (step S4). The mask is an area defining the formation of the gas barrier film 1. Further, in the present embodiment, since the gas barrier film is used as a gas barrier film for protecting the electronic component 10110141, the order number A 〇 101 page 19 / page 45 1013085717-0 201238768, the gas barrier film is formed. The substrate 4' is exemplified as the substrate 4'. However, the production method and the production apparatus of the present invention are not limited thereto, and it is possible to produce a gas barrier film for various objects (substrates). [4] Other Embodiments of the Manufacturing Apparatus The film forming apparatus 1 shown in FIGS. 3 and 4 includes an example in which the first film forming chamber 7 (including various connected grooves and a vacuum pump) is used as a buffer layer forming portion. An example in which the second film forming chamber 8 (including various grooves and vacuum systems to be connected) is provided as a barrier layer forming portion is provided. Further, the robot arm chamber 6 can also be regarded as a part of the buffer layer forming portion and the barrier layer forming portion. In other words, in the above embodiment, the mechanical arm 6 is transported through the substrate to move between the two film forming chambers, and the first house force and the second pressure are switched. However, the present invention is not limited thereto, and the gas damper manufacturing apparatus may switch between the first pressure and the second pressure by changing the internal pressure of one of the film forming chambers. Further, the substrate 4 may be a long film such as plastic. The sheet can be continuously subjected to the formation of a gas barrier film by a roller-to-roller (rG11t. rQ(1) method. Further, HDMS is merely an example of a material gas, and the material gas can be changed to another gas. The material gas is particularly contained. The gas of Si and C is preferable. Further, the material gas forming the buffer layer 2 may be different from the composition of the gas forming the barrier layer 3. [5. Infrared absorbance ratio, film formation conditions, and positive transmittance of visible light. Relationship between the thickness of the buffer layer] In the following experimental procedure, the infrared absorbance is determined by Fourier transform infrared absorption method. Specifically, it is made by Bruker 101101411^Single number A0101 Page 20/45 pages 1013085717-0 201238768 FT-IRIFS The transmission method of -66 V / S was measured. Moreover, the positive transmittance in the visible light region was measured by a spectrophotometer (Model V-670). As shown in Fig. 10, the Fourier of the buffer layer 2 The converted infrared absorption spectrum shows a peak of stretching vibration originating from Si-C and Si-N at a wave number of 900 cm_1, and is derived from a shape vibration at a wave number of 1260 cm 1 ( The peak of the wave number of 900 cm 1 shows the sum of the amounts of Si-C and Si-N, and the amount of peaks of the wave number of 1260 cm 1 shows the amount of Si-CH3. The inventors have found The infrared ray absorbance A1 of the wave layer 900CHT1 of the buffer layer 2 and the &AD (AD = A1/A2) of the infrared ray absorbance A2 of the wave number of 1260 cm_1, and the film formation pressure xHMDS flow rate/input of the buffer layer 2 at the time of film formation The power (Pa*sccm/kW) has the correlation shown in Fig. 11. Further, the positive transmittance of visible light in the gas barrier film (i.e., the minimum value of the positive transmittance measured in the visible light region of 400 to 800 nm) was found. The film formation pressure xHMDS flow rate/input power (Pa*sccm/kW) with the buffer layer 2 has a correlation relationship as shown in Fig. 12. Further, the measurement target of the positive transmittance in Fig. 12 is the entire gas barrier film, and the resistance is In the gas film, the total thickness t of the buffer layer is 42 Onm. Since the positive transmittance of the barrier layer is high, the influence of the barrier layer on the positive transmittance of the entire gas barrier film can be ignored. The formation of the barrier layer is implemented. Example - the sample was carried out. That is, the inventors found that the infrared absorbance is better than that of the human Light

K 的正透射率具有相互關係。 如此,藉由改變製膜時的投入功率或原料氣體的流 量或壓力等,可不改變原料氣體的種類而改變緩衝層的 1〇11〇141产單編號 A0101 第21頁/共45頁 1013085717-0 201238768 紅外線吸光纽。其_可•如下。若舉原料氣體使 用HMDS並改變投人功率的情形為例,則當投人功率小時 ,不太引起包含於HMDS的鍵能(bGnd㈣㈣)小的c_h 鍵結的解離,成為Si-%的存在量多的狀態。另一方面 ,當投入功率大時,C-Η鍵結的解離變多,Μ—%的存在 量也減少,並且相反地除了 Si,,的Si_c的量3增加。 因此’投人功率大的情形與小的情形比較,紅外線吸光 度比AR亦即Si-C量/Si-CH3量的值變大。 實際上若降低投人功率,則、變小,藉由提高製膜 壓力使ar變小,藉由提高原料(例如HMDS)氣體的流量使 A R降低。 省略圖示,即使改變阻氣膜中的緩衝層的厚度合計 ,在可見光的正透射率與紅外線吸光度比AR之間也看得 見相互關係。 顯示滿足可見光的正透射率70%的情形的紅外線吸光 度比AR與緩衝層的厚度的合計的關係於圖9。如圖9所示 ,以紅外線吸光度比AR = 3,亦即緩衝層的厚度合計4iinra 為邊界,式(1,)及式(2,)被滿足。 [公式7]The positive transmittance of K has a correlation. By changing the input power at the time of film formation, the flow rate or pressure of the material gas, etc., the buffer layer can be changed without changing the type of the material gas. The number of the buffer layer is A11101, page 21, page 45, 1013085717-0 201238768 Infrared light absorption button. Its _ can be as follows. In the case where the raw material gas uses HMDS and changes the power of the input, for example, when the power is small, the dissociation of the c_h bond which is small in the bond energy (bGnd(4)(4)) of the HMDS is not caused, and the amount of Si-% is present. More state. On the other hand, when the input power is large, the dissociation of the C-Η bond is increased, the amount of Μ-% is also decreased, and conversely, the amount of Si_c is increased in addition to Si. Therefore, in the case where the power of the investment is large, the value of the infrared absorption ratio is larger than the value of the amount of Si, which is the amount of Si-C/Si-CH3. Actually, if the power of the input is lowered, it becomes smaller, and ar is made smaller by increasing the film forming pressure, and A R is lowered by increasing the flow rate of the raw material (e.g., HMDS) gas. The illustration is omitted, and even if the thickness of the buffer layer in the gas barrier film is changed in total, the correlation between the positive transmittance of visible light and the infrared absorption ratio AR is observed. The relationship between the infrared absorption ratio AR and the thickness of the buffer layer in the case where the positive transmittance of visible light is 70% is shown in Fig. 9 is shown. As shown in Fig. 9, the equations (1,) and (2,) are satisfied with an infrared absorption ratio AR = 3, that is, a total thickness of the buffer layer of 4 iinra. [Formula 7]

1565615656

A 3313 (1,)A 3313 (1,)

R 10110141^單編號A〇101 第22頁/共45頁 1013085717-0 201238768 LUUIUJ [公式 8 ] [0011] (2,) 837 λ 0.648 xTLti ❹ 亦即藉由設定紅外線吸光度比及緩衝層的厚度合計 ,以便滿足該算式,可滿足正透射率70%。此外,藉由將 式(Γ )及式(2’)置換成上述的式(1)及式(2),可得到 滿足正透射率70%以上的條件。 [實施例] (實施例一) 依照上述的程序,作成阻氣膜。 具體上在厚度 100//m的PET(polyethylene terephthalate:聚對苯二曱酸乙二酯)薄片上各交互疊 層了 7層緩衝層與阻障層。 在緩衝層的製膜中是以HMDS氣體當作原料氣體,以 H2氣體及Ar氣體當作電漿產生氣體,進行了電漿CVD。緩 衝層2的紅外線吸光度比八。為2. 05,缓衝層的厚度的合計 值為81 Onm。 此外在本說明書中,算出紅外線吸光度比時的波數 900cin_1中的紅外線吸光度與波數1260CHT1中的紅外線 lOllOHlf 單編號 A0101 第23頁/共45頁 1013085717-0 201238768 吸光度分別為在530〜1 320CDT1、1 225〜1 300cm_1的範圍 進行了基線補正(baseline correction)的值。 阻障層是以HMDS氣體當作原料氣體,以〇2氣體當作 電漿產生氣體,藉由電漿CVD形成。阻障層3為透明性高 ,以獲得高的阻氣性的條件製作。 測定所製作的阻氣膜的可見光的正透射率(其中減去 基板後的值)的結果,在可見光區域為91. 0%。可確認在 本實施例使用的氧化矽之阻障層的可見光區域中的可見 光的正透射率非常高,不給予阻氣膜的正透射率影響。 若由紅外線吸光度比AD與緩衝層的厚度t的關係式 (1)計算緩衝層2的厚度合計的最大值,則成為1452nm。 亦即上述的缓衝層的厚度合計值充分滿足該算式。 (實施例二) 藉由在厚度100 //in的PET薄片上各交互疊層3層緩衝 層2與阻障層3,製作了阻氣膜1。 設阻障層3的條件與實施例一相同。 設緩衝層2的紅外線吸光度比AD為5.86,設包含於 阻氣膜中的緩衝層的厚度的合計值為180nm。測定可見光 的正透射率的結果,在可見光區域為83. 9%。此外,若由 紅外線吸光度比AD與緩衝層2的厚度t的關係式(2)計算緩 衝層的厚度合計的最大值,則成為266nm。因此,本實施 例的緩衝層的厚度的合計值充分滿足該式(2)。 (比較例一) 在厚度100/zra的PET薄片上各交互疊層7層缓衝層與 阻障層,製作了阻氣膜。 設阻障層3的條件與實施例一相同。 1〇11〇14#單編號 A_ 1013085717-0 第24頁/共45頁 201238768 設緩衝層的紅外線吸光度比為3. 90,設包含於阻氣 膜中的緩衝層的厚度的合計值為420nra。 測定阻氣膜的可見光的正透射率的結果,在可見光 區域為63. 9%。若由紅外線吸光度比AD與緩衝層的厚度的R 10110141^单编号A〇101 Page 22/45 pages 1013085717-0 201238768 LUUIUJ [Formula 8] [0011] (2,) 837 λ 0.648 xTLti 亦 That is, by setting the infrared absorbance ratio and the thickness of the buffer layer In order to satisfy this formula, the positive transmittance can be satisfied by 70%. Further, by substituting the formula (Γ) and the formula (2') for the above formulas (1) and (2), a condition satisfying a positive transmittance of 70% or more can be obtained. [Examples] (Example 1) A gas barrier film was produced in accordance with the above procedure. Specifically, seven layers of buffer layer and barrier layer are alternately laminated on a PET (polyethylene terephthalate) sheet having a thickness of 100/m. In the film formation of the buffer layer, HMDS gas was used as a material gas, and H2 gas and Ar gas were used as a plasma generating gas, and plasma CVD was performed. The infrared absorption of the buffer layer 2 is eight. The total thickness of the buffer layer is 2.0 Onm. In addition, in the present specification, the infrared absorbance in the wave number 900cin_1 at the time of the infrared absorbance ratio is calculated and the infrared wave in the wave number 1260CHT1 is calculated. The single-number A0101 page 23/45 page 1013085717-0 201238768 absorbance is 530~1 320CDT1, respectively. A range of 1 225 to 1 300 cm_1 was subjected to baseline correction. The barrier layer is formed by using HMDS gas as a material gas and 〇2 gas as a plasma generating gas by plasma CVD. The barrier layer 3 is made of a material having high transparency and high gas barrier properties. 0%。 In the visible light region, the visible light region was 91.0% as a result of measuring the positive transmittance of the visible film of the gas barrier film (in which the value after the substrate was subtracted). It was confirmed that the positive transmittance of visible light in the visible light region of the barrier layer of cerium oxide used in the present embodiment was extremely high, and the positive transmittance of the gas barrier film was not imparted. When the maximum value of the total thickness of the buffer layer 2 is calculated from the relationship (1) of the infrared ray absorbance ratio AD and the thickness t of the buffer layer, it is 1452 nm. That is, the total thickness of the buffer layer described above sufficiently satisfies the equation. (Example 2) A gas barrier film 1 was produced by laminating three layers of the buffer layer 2 and the barrier layer 3 on a PET sheet having a thickness of 100 // in. The conditions for providing the barrier layer 3 are the same as those of the first embodiment. The infrared ray absorbance ratio AD of the buffer layer 2 was 5.86, and the total thickness of the buffer layer included in the gas barrier film was 180 nm. 9%。 In the visible light region, the visible light transmittance was 83.9%. Further, when the maximum value of the total thickness of the buffer layer is calculated from the relation (2) of the infrared ray absorbance ratio AD and the thickness t of the buffer layer 2, it is 266 nm. Therefore, the total value of the thickness of the buffer layer of the present embodiment sufficiently satisfies the formula (2). (Comparative Example 1) Seven layers of the buffer layer and the barrier layer were alternately laminated on a PET sheet having a thickness of 100/zra to form a gas barrier film. The conditions for providing the barrier layer 3 are the same as those of the first embodiment. 1〇11〇14#单号 A_ 1013085717-0 Page 24 of 45 201238768 The infrared absorption ratio of the buffer layer is 3.90, and the total thickness of the buffer layer contained in the gas barrier film is 420 nra. The result of the positive transmittance of the visible light in the gas barrier film was 63.9% in the visible light region. If the infrared absorbance is greater than the thickness of the AD and the buffer layer

K 合計值t的關係式(2)計算緩衝層的最大厚度,則為 347nm。因此,實際的厚度不滿足算式。 [表1] 紅外線吸 光度比ar 緩衝層的 厚度合計 (nm) 阻氣膜的 正透射率 的實測值 (%) 為了使正 透射率為 70%以上的 缓衝層的 厚度合計 的最大值 的算出值 (nm) 實施例一 2. 05 810 91. 0 1452 實施例二 5. 86 180 83. 9 266 比較例一 3.90 420 63. 9 347 (實施例三及四以及比較例三)The relation (2) of the total value of K is calculated as the maximum thickness of the buffer layer, which is 347 nm. Therefore, the actual thickness does not satisfy the formula. [Table 1] Infrared Absorbance Ratio Total Thickness of ar Buffer Layer (nm) Actual Measurement Value (%) of Positive Conductance of Gas Barrier Film Calculation of Maximum Value of Thickness of Buffer Layer with Positive Transmittance of 70% or More Value (nm) Example 1 2. 05 810 91. 0 1452 Example 2 5. 86 180 83. 9 266 Comparative Example 1 3.90 420 63. 9 347 (Examples 3 and 4 and Comparative Example 3)

由提高對基板表面的凹凸的覆蓋性的觀點,緩衝層 的厚度在滿足所要求的正透射率的範圍内,儘可能形成 厚膜的方法可形成缺陷少的阻氣膜。 使用紅外線吸光度比為2. 79的緩衝層當作實施例三 ,在玻璃基板上各交互疊層7層緩衝層與阻障層,製作了 阻氣膜當作實施例三。設包含於阻氣膜中的緩衝層的厚 10110141 产單編號 A0101 第25頁/共45頁 1013085717-0 201238768 度為480nm。測定了所製作的阻氣膜的光的正透射率的結 果,在可見光區域為73. 2%。 若由紅外線吸光度比AD與緩衝層的厚度合計t的關係From the viewpoint of improving the coverage of the unevenness on the surface of the substrate, the thickness of the buffer layer is such that a thick film is formed as much as possible within a range satisfying the required positive transmittance, and a gas barrier film having few defects can be formed. A buffer layer having an infrared absorption ratio of 2.79 was used as the third embodiment, and seven buffer layers and a barrier layer were alternately laminated on the glass substrate, and a gas barrier film was produced as the third embodiment. Set the thickness of the buffer layer contained in the gas barrier film. 10110141 Production No. A0101 Page 25 of 45 1013085717-0 201238768 Degree is 480nm. The result of the positive transmittance of the light-shielding film was determined to be 73.2% in the visible light region. If the relationship between the infrared absorbance ratio AD and the thickness of the buffer layer is t

K 式(1)計算緩衝層的最大厚度,則成為523nm。亦即緩衝 層的厚度合計t位於以式(1)表示的範圍内。 針對實施例三,藉由約餘刻法(calcium etching me thod )測定了阻氣膜的水蒸氣透射率的結果,在8 5 °C x 85%RH的環境下成為3xl0_3g/m2/day,在維持了高的透 明性的狀態下顯示了良好的阻氣性。 而且,使用與實施例三相同的緩衝層當作實施例四 ,設緩衝層的厚度合計t為350nm。該值t位於以式(1)表 示的範圍内。實際上針對實施例四測定了正透射率的結 果,得到了高的值。 而且,使用紅外線吸光度比人。為4. 09的緩衝層當作K Formula (1) calculates the maximum thickness of the buffer layer and becomes 523 nm. That is, the total thickness t of the buffer layer is in the range represented by the formula (1). For the third embodiment, the water vapor transmission rate of the gas barrier film was measured by a calcium etching me thod, and it was 3x10_3 g/m2/day in an environment of 85 ° C x 85% RH. Good gas barrier properties were exhibited while maintaining high transparency. Further, the same buffer layer as in the third embodiment was used as the fourth embodiment, and the total thickness t of the buffer layer was set to 350 nm. This value t is within the range expressed by the formula (1). Actually, the results of the positive transmittance were measured for the fourth embodiment, and a high value was obtained. Moreover, the use of infrared absorbance is better than that of people. Used as a buffer layer of 4.09

K 比較例三,製作了阻氣膜。由紅外線吸光度比ar,被容 許的缓衝層的厚度合計t的最大值為336nm,惟在本比較 例中是設為超過該值的5 4 0 nm。其結果,比較例三的阻氣 膜為正透射率的實測值顯示了 63. 8%的低的值。 若比較實施例三及四以及比較例三的話,特別是在 實施例三的阻氣膜中,可使高的阻障性與高的正透射率 兩立。 [表2 ] 紅外線 緩衝層 正透射 為了使 阻氣膜 吸光度 的厚度 率的實 正透射 的水蒸 比\ 合計 測值(%) 率為70% 氣透射 (nm) 以上的 率 101101411^^^^ A〇101 ^ 26 1 / * 45 I 1013085717-0 缓衝層 的厚度 合計的 最大值 的算出 值(nm) / day ) 實施例 2. 79 480 73. 2 523 3xl0~3 實施例 四 2.79 350 81.0 523 lxlO-2 比較例 三 4. 09 540 63. 8 336 2xl0-3 201238768 Ο 【產業上的可利用性】 本發明的阻氣膜可當作像有機EL顯示器的發光材料 或太陽電池的發電材料等之對氧或水非常脆弱的材料的 阻氣膜而應用。而且,也能當作附加於薄片、膜的阻氣 膜(功能性附加)而利用。 【圖式簡單說明】 [0013] 圖1是顯示與本發明的實施形態有關的阻氣膜1的構 成之剖面圖。 圖2是顯示阻氣膜的製造裝置的一例之方塊圖。 圖3是顯示阻氣膜的製造裝置的一例之前視圖。 圖4是圖3所示的製造裝置之俯視圖。 圖5是阻氣膜製造時的條件決定之流程圖。 圖6是顯示阻氣膜的製造方法的一例之流程圖。 圖7是顯示緩衝層形成方法的一例之流程圖。 10110141 产單編號 Α0101 第27頁/共45頁 1013085717-0 201238768 圖8是顯示阻障層形成方法的一例之流程圖。 圖9是顯示表示可見光的正透射率7〇%的阻氣膜中的 紅外線吸光度比與緩衝層的厚度合計的關係之圖表。 圖10是緩衝層的紅外線吸收光譜的一例。 圖11是顯示製膜條件與紅外線吸光度比的關係之圖 表。 圖12是顯示«條件與可見光的正透射率的關係之 圖表。 【主要元件符號說明】 [0014] 1 :阻氣膜 2:緩衝層 2-1 :第一緩衝層 2-2:第二緩衝層 2- n:第η緩衝層 3:阻障層 3- 1 :第一阻障層 3-2:第二阻障層 3 - η :第η阻障層 4 :基板 5:加載互鎖真空室 6:機械手臂室 7:第一製膜室 8:第二製膜室 10:製膜裝置 31 :第一阻障層 32:第二阻障層 10110141产單編號Α〇101 第28頁/共45頁 1013085717-0 201238768 42:電子元件 51 :閘閥 52、67、81 :真空泵 53:基板儲存架 54、65:支撐銷 61 :基板運送機械手臂 62 :馬達 63:臂 64:可動支撐台 66:第一流量控制閥 68 :機械手臂室與第一製膜室7之間的閘閥 69:機械手臂室與第二製膜室8之間的閘閥 72、8LHMDS供給槽 73:H2供給槽 74 : Ar供給槽 77、87:環形天線 78:絕緣管 79:導電電極 83:〇2供給槽 88:絕緣管 89 :導電電極 100:製造裝置 1 01 :輸入接受部 102·.控制裝置 1 03 :紅外線吸光度比算出部 104:製膜條件決定部 匪隱产單編號A〇m 1013085717-0 第29頁/共45頁 201238768 105:緩衝層厚度算出部 106:製膜裝置控制部 761:第二流量控制閥 762:第三流量控制閥 763:第四流量控制閥 771 :電源 105:緩衝層厚度算出部 8 61 :第五流量控制閥 862 :第六流量控制閥 863:第七流量控制閥 8 71 :電源 AD:紅外線吸光度比K Comparative Example 3, a gas barrier film was produced. The maximum value of the total thickness t of the buffer layer allowed by the infrared ray absorbance ratio ar is 336 nm, but in this comparative example, it is set to 504 nm exceeding the value. As a result, the measured value of the positive transmission of the gas barrier film of Comparative Example 3 showed a low value of 63.8%. Comparing Examples 3 and 4 and Comparative Example 3, particularly in the gas barrier film of Example 3, high barrier properties and high positive transmittance can be achieved. [Table 2] Infrared buffer layer positive transmission The water vaporization ratio of the true transmission rate of the thickness of the gas barrier film absorbance is measured and the total value (%) is 70%. The rate of gas transmission (nm) or more is 101101411^^^^ A〇101 ^ 26 1 / * 45 I 1013085717-0 Calculated value of the maximum value of the total thickness of the buffer layer (nm) / day ) Example 2. 79 480 73. 2 523 3xl0~3 Example 4 2.79 350 81.0 523 lxlO-2 Comparative Example 3 4. 09 540 63. 8 336 2xl0-3 201238768 Ο [Industrial Applicability] The gas barrier film of the present invention can be used as a light-emitting material for an organic EL display or a power generation material for a solar battery. It is applied to a gas barrier film of a material that is very weak to oxygen or water. Further, it can also be used as a gas barrier film (functionally added) attached to a sheet or a film. BRIEF DESCRIPTION OF THE DRAWINGS [0013] Fig. 1 is a cross-sectional view showing the configuration of a gas barrier film 1 according to an embodiment of the present invention. 2 is a block diagram showing an example of a device for manufacturing a gas barrier film. 3 is a front view showing an example of a device for manufacturing a gas barrier film. Fig. 4 is a plan view of the manufacturing apparatus shown in Fig. 3. Fig. 5 is a flow chart for determining the conditions at the time of production of the gas barrier film. Fig. 6 is a flow chart showing an example of a method of producing a gas barrier film. Fig. 7 is a flow chart showing an example of a method of forming a buffer layer. 10110141 Production Order No. Α0101 Page 27 of 45 1013085717-0 201238768 FIG. 8 is a flow chart showing an example of a method of forming a barrier layer. Fig. 9 is a graph showing the relationship between the infrared ray absorbance ratio in the gas barrier film showing the positive transmittance of visible light of 7 〇% and the thickness of the buffer layer. Fig. 10 is an example of an infrared absorption spectrum of a buffer layer. Fig. 11 is a graph showing the relationship between the film forming conditions and the infrared ray absorbance ratio. Fig. 12 is a graph showing the relationship between the condition and the positive transmittance of visible light. [Description of Main Element Symbols] [0014] 1 : Gas barrier film 2: Buffer layer 2-1: First buffer layer 2-2: Second buffer layer 2-n: nth buffer layer 3: barrier layer 3- 1 : First barrier layer 3-2: Second barrier layer 3 - η: nth barrier layer 4: Substrate 5: Load interlocking vacuum chamber 6: Robot arm chamber 7: First film forming chamber 8: Second Film making chamber 10: Film forming apparatus 31: First barrier layer 32: Second barrier layer 10110141 Production order number Α〇 101 Page 28 / Total 45 pages 1013085717-0 201238768 42: Electronic component 51: Gate valve 52, 67 81: vacuum pump 53: substrate storage rack 54, 65: support pin 61: substrate transport robot 62: motor 63: arm 64: movable support table 66: first flow control valve 68: mechanical arm chamber and first film making chamber Gate valve 69 between 7: Gate valve 72 between the arm chamber and the second film forming chamber 8, 8LHMDS supply tank 73: H2 supply tank 74: Ar supply tank 77, 87: Loop antenna 78: Insulation tube 79: Conductive electrode 83: 〇2 supply tank 88: insulating tube 89: conductive electrode 100: manufacturing apparatus 1 01: input receiving unit 102. control device 103: infrared absorbing ratio calculation unit 104: film forming condition determining unit 匪 hidden production number A 〇m 10130 85717-0 Page 29 of 45 201238768 105: Buffer layer thickness calculation unit 106: Film formation apparatus control unit 761: Second flow rate control valve 762: Third flow rate control valve 763: Fourth flow rate control valve 771: Power source 105 : Buffer layer thickness calculation unit 8 61 : Fifth flow rate control valve 862 : Sixth flow rate control valve 863 : Seventh flow rate control valve 8 71 : Power supply AD: Infrared absorbance ratio

K 10U0141 产單編號 A〇101 第 3。頁 / 共 45 胃 1013085717-0K 10U0141 Production Order No. A〇101 No. 3. Page / Total 45 Stomach 1013085717-0

Claims (1)

201238768 七、甲請專利範圍: 1 . 一種阻氣膜,包含:含有矽化合物之緩衝層,與被疊層於 該緩衝層,含有氧化矽及/或氮化矽之阻障層, 在針對該缓衝層的傅立葉變換紅外線吸收光譜中, 在波數900CHT1的紅外線吸光度A1與在波數1 260cm_1的紅 外線吸光度A2的比AD(AD = A1/A2),與包含於該阻氣膜的 缓衝層的厚度的合計t(nm)滿足Ad<3且式(1),或滿足Ad K K 23且式(2), 八 [公式1] 15656 ix 3.313 (1) [公式2 ] (2) 1013085717-0 837 Δ 0.648 JLJLT% lOllOMlf單編號A〇1〇l 第31頁/共45頁 201238768 •如申專利範圍第1項之阻氣膜,其中可見光區域中的光 的正透射率為70%以上。 •如申叫專利範圍第1項或第2項之阻氣膜,其中包含於該阻 氣膜的緩衝層的厚度的合計t為l〇nm以上4000nm以下。 .一種阻氣性薄>} ’包含巾請專利範圍第丨項至第3項中任— 項之阻氣膜。 .一種緩衝層厚度算出裝置,包含: 至少接受在阻氣膜中被當作目標的可見光的正透射 率,與在針對緩衝層的傅立葉變換紅外線吸收光譜中,在 波數900CDT1的紅外線吸光度“與在波的紅外 線吸光度A2的比AR(AR=A1/A2)的輸入之輸入接受邹;以 及 根據該輸入接受部的接受内容,滿足\<3且式(丨), 或滿足AR 2 3且式(2)而算出包含於阻氣膜的緩衝層的厚 度的合計t(nm)之緩衝層厚度算出部, [公式3] 15656 Ar 3.313 (1) [公式4 ] 第32頁/共45頁 1013085717-0 (2) 837201238768201238768 VII. A patent scope: 1. A gas barrier film comprising: a buffer layer containing a ruthenium compound, and a barrier layer layered on the buffer layer containing ruthenium oxide and/or tantalum nitride, In the Fourier transform infrared absorption spectrum of the buffer layer, the ratio of the infrared absorbance A1 of the wave number 900 CHT1 to the infrared absorbance A2 of the wave number of 1 260 cm_1 (AD = A1/A2), and the buffer contained in the gas barrier film The total thickness t(nm) of the layers satisfies Ad<3 and formula (1), or satisfies Ad KK 23 and formula (2), eight [formula 1] 15656 ix 3.313 (1) [formula 2] (2) 1013085717- 0 837 Δ 0.648 JLJLT% lOllOMlf single number A〇1〇l Page 31 of 45 201238768 • The gas barrier film of claim 1 of the patent scope, wherein the positive transmittance of light in the visible light region is 70% or more. In the gas barrier film of the first or second aspect of the patent application, the total thickness t of the buffer layer included in the gas barrier film is from 10 nm to 4000 nm. A gas barrier film>} includes a gas barrier film of any of the scope of the patent application. A buffer layer thickness calculation device comprising: at least a positive transmittance of visible light that is targeted as a gas barrier film, and an infrared absorption of a wave number of 900 CDT1 in a Fourier transform infrared absorption spectrum for a buffer layer Accepting the input of the ratio AR (AR=A1/A2) of the infrared ray absorbance A2 of the wave; and satisfying \<3 and formula (丨) according to the accepted content of the input accepting unit, or satisfying AR 2 3 and In the formula (2), the buffer layer thickness calculation unit of the total thickness t (nm) of the buffer layer of the gas barrier film is calculated, [Formula 3] 15656 Ar 3.313 (1) [Formula 4] Page 32 of 45 1013085717-0 (2) 837201238768 O 101101411^單編號 A0101 jAl 0.648 第33頁/共45頁 1013085717-0O 101101411^单号 A0101 jAl 0.648 Page 33 of 45 1013085717-0
TW101101411A 2011-03-31 2012-01-13 A gas barrier film, a manufacturing apparatus thereof, and a manufacturing program thereof TWI555645B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079656A JP2012213880A (en) 2011-03-31 2011-03-31 Gas barrier film, production device therefor, and production program therefor

Publications (2)

Publication Number Publication Date
TW201238768A true TW201238768A (en) 2012-10-01
TWI555645B TWI555645B (en) 2016-11-01

Family

ID=46930349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101101411A TWI555645B (en) 2011-03-31 2012-01-13 A gas barrier film, a manufacturing apparatus thereof, and a manufacturing program thereof

Country Status (3)

Country Link
JP (1) JP2012213880A (en)
TW (1) TWI555645B (en)
WO (1) WO2012132585A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488349B (en) * 2012-11-15 2015-06-11 Ind Tech Res Inst Composite barrier structures and package structures comprising the same
TWI703614B (en) * 2017-01-12 2020-09-01 美商應用材料股份有限公司 Barrier layer system, electro-optical device having the same, and method for manufacturing a barrier layer system in a continuous roll-to-roll process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6872849B2 (en) * 2016-01-04 2021-05-19 東レエンジニアリング株式会社 Light conversion film manufacturing method, light conversion film manufacturing equipment, and light conversion film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118339B2 (en) * 1992-08-07 2000-12-18 三井化学株式会社 Gas barrier transparent conductive laminate and method for producing the same
JP2003340971A (en) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd Gas barrier plastic film
JP4766243B2 (en) * 2005-12-06 2011-09-07 大日本印刷株式会社 Gas barrier film and method for producing the same
JP4969495B2 (en) * 2008-03-14 2012-07-04 尾池工業株式会社 Gas barrier film manufacturing method and gas barrier film
JP2009220482A (en) * 2008-03-18 2009-10-01 Toppan Printing Co Ltd Transparent barrier film and manufacturing method thereof
JPWO2010026869A1 (en) * 2008-09-02 2012-02-02 コニカミノルタホールディングス株式会社 Composite film, gas barrier film, method for producing the same, and organic electroluminescence device
JP2010013735A (en) * 2009-09-29 2010-01-21 Konica Minolta Holdings Inc Method for producing resin film, and organic electroluminescence element using the resin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488349B (en) * 2012-11-15 2015-06-11 Ind Tech Res Inst Composite barrier structures and package structures comprising the same
TWI703614B (en) * 2017-01-12 2020-09-01 美商應用材料股份有限公司 Barrier layer system, electro-optical device having the same, and method for manufacturing a barrier layer system in a continuous roll-to-roll process

Also Published As

Publication number Publication date
WO2012132585A1 (en) 2012-10-04
JP2012213880A (en) 2012-11-08
TWI555645B (en) 2016-11-01

Similar Documents

Publication Publication Date Title
Andringa et al. Low-temperature plasma-assisted atomic layer deposition of silicon nitride moisture permeation barrier layers
Nam et al. A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier
Min et al. Atomic layer deposition of Al2O3 thin films from a 1-methoxy-2-methyl-2-propoxide complex of aluminum and water
Kim et al. Highly-impermeable Al2O3/HfO2 moisture barrier films grown by low-temperature plasma-enhanced atomic layer deposition
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
JP2014151571A (en) Gas barrier film, production method of the same and electronic device including the gas barrier film
JP2007516347A (en) Barrier film for plastic substrates manufactured by atomic layer deposition
Cho et al. Moisture barrier and bending properties of silicon nitride films prepared by roll-to-roll plasma enhanced chemical vapor deposition
CN103382549B (en) A kind of preparation method of multilayered structure high-isolation film
JP2002192646A (en) Gas-barrier film
US10196740B2 (en) Laminate and method of manufacturing the same, and gas barrier film and method of manufacturing the same
Lee et al. Effects of O2 plasma treatment on moisture barrier properties of SiO2 grown by plasma-enhanced atomic layer deposition
JP2009274251A (en) Transparent barrier film and its manufacturing method
Lim et al. Ultralow water permeation barrier films of triad a-SiN x: H/n-SiO x N y/h-SiO x structure for organic light-emitting diodes
Han et al. Atomic-Layer-Deposited SiO x/SnO x Nanolaminate Structure for Moisture and Hydrogen Gas Diffusion Barriers
TW201238768A (en) Gas barrier film, production device therefor, and production program therefor
TW201522048A (en) Stacked body, and gas barrier film
JP2003340971A (en) Gas barrier plastic film
Su et al. Effects of surface pretreatment and deposition conditions on the gas permeation properties and flexibility of Al2O3 films on polymer substrates by atomic layer deposition
CN107428125A (en) Laminate and method for producing same
Lim et al. Thin film encapsulation for quantum dot light-emitting diodes using a-SiN x: H/SiO x N y/hybrid SiO x barriers
CN108164734A (en) A kind of gas barrier film and its application
US11560619B2 (en) Laminate and method of producing the same, and gas barrier film and method of producing the same
TWI703614B (en) Barrier layer system, electro-optical device having the same, and method for manufacturing a barrier layer system in a continuous roll-to-roll process
TW202101807A (en) Silicon metal oxide encapsulation layer, method of producing the same, multilayer thin film and oled device comprising the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees