201237360 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種位置及深度之檢出裝置及其方 法,特別是有關於一種光學式位置及深度之檢出裝置及其 方法。 【先前技術】 現今量測一物體表面的曲率之方式有許多種,舉例來 說,有投射疊紋法、干涉法、像差法以及雷射掃描三角定 位法;其中疊紋量測技術一般採用穿透式或斜向反射式以 形成疊紋,雖具有低成本、系統架構簡單與穩定性高的優 點,但穿透式量測架構只適用於透明物體表面曲率之量 測,並無法運用至不具透光性之物體表面之曲率量測。而 斜向反射式則存在理論計算複雜的缺點,並且受限於反射 影像的強度較弱,因此影像對比度差而將導致表面曲率之 誤差值提高。 此外,干涉法、像差法以及雷射掃描三角定位法,其 不僅理論計算複雜,且其量測系統及裝置更是相當複雜且 昂貴’因此具有局成本之缺點。 因此,如何設計出簡單的架構,其可量測物體的表面 深淺變化,實為目前研究發展之一重要方向。 【發明内容】 本發明係有關於一種位置及深度之檢出裝置及其方 法’其具有簡易的組成構件’不需要複雜的檢測方式即可 201237360 檢測出待測物的位置及深度資訊。 根據本發明之一方面,提出一種位置及深度之檢出裝 置,用以檢出具有一表面之待測物的位置及深度,此位置 及深度之檢出裝置至少包括一電控擺動元件、一光源、一 光學系統、一儲存單元以及一計算單元。該電控擺動元件 係經由以電氣驅動之一致動器控制此電控擺動元件的擺動 角度。該光源係藉由此電控擺動元件將該光源的光束反射 至此表面以產生光點。該光學系統係用以接收投射至此表 面的光點之投射資訊。該儲存單元係用以儲存投射至一預 設平面的光點之預設資訊。該計算單元係依據此投射資訊 與此預設資訊計算出待測物的深度資訊。 根據本發明另一方面,提出一種檢出位置及深度之方 法,用以檢出具有一表面之待測物的位置及深度,此檢出 位置及深度之方法包括下列步驟:利用一光源發射一光 束;此光束藉由一電控擺動元件之往復擺動來反射至此表 面,使得此光束掃描範圍涵蓋此表面並產生複數光點;經 由一光學系統接收投射至此表面的此些光點之複數投射資 訊;以及根據此些光點投射至一預設平面之複數預設資訊 與此些投射資訊,計算出待測物的深度資訊。 為使本發明之上述内容能更明顯易懂,下文特舉本發 明較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 請參照第一圖,其繪示本發明一實施例之一種位置及 深度檢出系統100的示意圖。本實施例之位置及深度檢出 201237360 系統100包括一待測物110、一光源120、一光學系統130、 一光感測元件140、一電控擺動元件150、一計算單元16〇 以及一儲存單元170。 該待測物110可為一種具有至少一表面之物體,此表 面可能係具有一凹凸不平整的輪廓。該光源12〇可為可見 光或不可見光’其可提供一平行光束,例如雷射光束,使 得該光源120所發射之光束經過一段距離後其發散程度不 至於太大。此外,該光源120在空間平面上所產生的=點 形狀可為圓形、長條圓形、或圓形與長條圓形的反覆漸變 形狀’其中長條圓形光點係由脈衝寬度調變(Pu丨se Width201237360 VI. Description of the Invention: [Technical Field] The present invention relates to a position and depth detecting device and a method thereof, and more particularly to an optical position and depth detecting device and method thereof. [Prior Art] There are many ways to measure the curvature of an object surface, for example, projection rubbing method, interference method, aberration method, and laser scanning triangulation method; Transmissive or oblique reflection to form a moiré, although the advantages of low cost, simple system architecture and high stability, but the penetrating measurement architecture is only suitable for the measurement of the curvature of the surface of transparent objects, and can not be applied to Curvature measurement of the surface of an object that is not translucent. The oblique reflection type has the disadvantage of complicated theoretical calculation, and is limited by the intensity of the reflected image. Therefore, the contrast of the image is poor and the error value of the surface curvature is increased. In addition, the interferometry method, the aberration method, and the laser scanning triangulation method are not only complicated in theoretical calculation, but also the measurement system and device are quite complicated and expensive, and thus have the disadvantage of having a local cost. Therefore, how to design a simple structure, which can measure the surface depth of an object, is an important direction of current research and development. SUMMARY OF THE INVENTION The present invention relates to a position and depth detecting device and a method thereof, which have a simple component member. No complicated detection method is required. 201237360 detects the position and depth information of the object to be tested. According to an aspect of the present invention, a position and depth detecting device is provided for detecting a position and a depth of an object to be tested having a surface, and the detecting device of the position and depth includes at least one electronically controlled swinging component, A light source, an optical system, a storage unit, and a computing unit. The electrically controlled oscillating element controls the angle of oscillation of the electrically controlled oscillating element via an electrically driven actuator. The light source reflects the light beam of the light source to the surface by means of the electrically controlled oscillating element to produce a spot of light. The optical system is for receiving projection information of a spot projected onto the surface. The storage unit is configured to store preset information of a spot projected onto a predetermined plane. The calculation unit calculates the depth information of the object to be tested based on the projection information and the preset information. According to another aspect of the present invention, a method for detecting a position and a depth for detecting a position and a depth of a test object having a surface, the method for detecting a position and a depth includes the following steps: transmitting a light source by using a light source a beam; the beam is reflected to the surface by a reciprocating oscillation of an electrically controlled oscillating element such that the beam scan covers the surface and produces a plurality of spots; and the plurality of projections of the spots projected onto the surface are received via an optical system And calculating the depth information of the object to be tested according to the plurality of preset information projected by the light spots to a predetermined plane and the projection information. In order to make the above description of the present invention more comprehensible, the preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. A schematic diagram of a position and depth detection system 100 of an embodiment. Position and depth detection of the present embodiment 201237360 The system 100 includes a test object 110, a light source 120, an optical system 130, a light sensing component 140, an electronically controlled oscillating component 150, a computing unit 16A, and a storage device. Unit 170. The object to be tested 110 may be an object having at least one surface which may have an uneven contour. The light source 12A can be visible or invisible, which can provide a parallel beam, such as a laser beam, such that the beam emitted by the source 120 does not diverge too much after a distance. In addition, the shape of the point generated by the light source 120 on the spatial plane may be a circular shape, a long circular shape, or a reversed gradient shape of a circular shape and a long circular shape. The long circular light spot is adjusted by the pulse width. Change (Pu丨se Width)
Modulation ’ PWM)控制或脈衝頻率調變(Puise FrequencyModulation 'PWM' control or pulse frequency modulation (Puise Frequency)
Modulation,PFM)控制所產生。而光點形狀可藉由該電控 擺動元件150之擺動角度與該光源120之開啟與關閉所控 制。 該光學系統130係包括至少一鏡片,用以接收光學資 訊’且其視角係涵蓋所需之空間平面。該光感測元件140, 例如是線狀CMOS感測器與線狀CCD感測器,其係位於 該光學系統130的一成像端,用以感測影像資訊。於一實 施例中,該光學系統130與該光感測元件140係可以一攝 頭鏡頭來實現。該電控擺動元件150係進行週期性擺動, 其擺動角度之範圍係使得反射的光束可涵蓋所需之空間 平面,且擺動角度可經由擺動頻率或給定訊號決定。該計 算單元160例如是一中央微處理器,其可接收該光源12〇 等所傳送之資料,並依據所接收的資料計算出所需資訊。 該儲存單元170例如是硬碟、快閃記憶體等,用以儲存資 201237360 訊。 請參照第二圖,其繪示本發明前述實施例之檢出位置 及深度之方法流程圖,用以檢出具有一表面之一待測物的 位置及深度。請同時參照第一圖。於步驟S210中’利用該 光源120發射一光束。舉例來說,該光源120可以朝向該 電控擺動元件150之方向發射光束。 於步驟S220中,前述光束藉由該電控擺動元件150之 往復擺動來反射至該待測物110的一表面,使得光束掃描 範圍涵蓋該待測物110的該表面並於其上產生複數光點。 其中該電控擺動元件150係經由以電氣驅動之一致動器控 制該電控擺動元件150的擺動角度,使得該電控擺動元件 150可為往復擺動並涵蓋該待測物110的該表面。此外,該 光源120係藉由該電控擺動元件150而將該光源120的光 束反射至該待測物Π0的該表面以於其上產生光點。 於步驟S230中,經由該光學系統130接收投射至該待 測物110的該表面的此些光點之複數投射資訊。舉例來說, 該光源120所發出之光束係經由該電控擺動元件15()的往 復擺動,使得光束於該待測物110的該表面上於不同時間 點產生光點,而該光學系統130則於不同時間點個別接收 此些光點的投射資訊。舉例來說,於一特定時間點上,也 就是該電控擺動元件150係為一特定擺動角度時,投射於 該待測物110該表面的光點係只有一個,此時該光學系統 13 0接收具有一特定光點投射於該待測物丨丨〇表面的影像資 訊。 ,、 於步驟S240中,該計算單元16〇根據此些光點投射至 201237360 一預設平面之複數預設資訊與此些投射資訊,計算出該待 測物110的該表面的深度資訊。舉例來說,該光源120所 發出之光束投射至該待測物110前,先經由該電控擺動元 件150反射至一預設平面(Default Plane,DP),並於其上產 生複數光點,而該光學系統130接收產生於該預設平面DP 上的光點之資訊,並以預設資訊的方式將其儲存於該儲存 單元1?0。也就是該儲存單元17〇將儲存投射至該預設平面 的光點之預設資訊。_計算單元⑽將依據此些投射資 訊與此些預設資訊計算出該待職UG的該表面的深度資 =向:Ϊ算Ϊ中深度資訊可為該表面的深度變化。如 而二笪160即可結合此光點的深度資訊與軸 物UG表面上彳找光點的二維位 物110的表面,&二=15G係往復擺動並涵蓋該待測 而構成該待測物110矣计异出广即可統整此些資訊 測物11G在m上之二維位的置—維’也就是計算出該待 深度g料細介紹如何依據投㈣訊與預設資訊計算出 深度檢出系統300二Γ本發明—實施例之一種位置 示意圖。其中待測物偏移量來計算深度資訊 測元件340、電控擺 光學系^ 330、光 元370類似於第一午35〇、计鼻早兀360以及儲存 ⑽、光感測元件,源⑽、光學系Modulation, PFM) is produced by control. The spot shape can be controlled by the swing angle of the electronically controlled oscillating member 150 and the opening and closing of the light source 120. The optical system 130 includes at least one lens for receiving optical information' and its viewing angle encompasses the desired spatial plane. The light sensing component 140 is, for example, a linear CMOS sensor and a linear CCD sensor, which is located at an imaging end of the optical system 130 for sensing image information. In one embodiment, the optical system 130 and the light sensing element 140 can be implemented as a camera lens. The electronically controlled oscillating member 150 is periodically oscillated with a range of oscillating angles such that the reflected beam can cover the desired spatial plane, and the oscillating angle can be determined via the oscillating frequency or a given signal. The computing unit 160 is, for example, a central microprocessor that can receive the data transmitted by the light source 12, etc., and calculate the required information based on the received data. The storage unit 170 is, for example, a hard disk, a flash memory, or the like for storing the 201237360 message. Referring to the second figure, a flow chart of the method for detecting the position and depth of the foregoing embodiment of the present invention is used to detect the position and depth of an object having a surface. Please also refer to the first picture. A light beam is emitted by the light source 120 in step S210. For example, the light source 120 can emit a beam of light in the direction of the electrically controlled oscillating member 150. In step S220, the light beam is reflected to a surface of the object to be tested 110 by reciprocating oscillation of the electronically controlled oscillating element 150, so that the beam scanning range covers the surface of the object to be tested 110 and generates a plurality of lights thereon. point. The electronically controlled oscillating member 150 controls the oscillating angle of the electronically controlled oscillating member 150 via an electrically driven actuator such that the electrically oscillating member 150 can reciprocate and cover the surface of the object to be tested 110. In addition, the light source 120 reflects the light beam of the light source 120 to the surface of the object to be tested 藉0 by the electronically controlled oscillating element 150 to generate a light spot thereon. In step S230, the plurality of projection information of the light spots projected onto the surface of the object to be tested 110 is received via the optical system 130. For example, the light beam emitted by the light source 120 is reciprocally oscillated via the electronically controlled oscillating member 15 () such that the light beam generates a light spot on the surface of the object to be tested 110 at different time points, and the optical system 130 The projection information of the light spots is individually received at different time points. For example, at a specific time point, that is, when the electronically controlled oscillating member 150 is at a specific oscillating angle, only one spot is projected on the surface of the object to be tested 110. At this time, the optical system 13 0 Receiving image information having a specific spot projected on the surface of the object to be tested. In step S240, the calculating unit 16 calculates the depth information of the surface of the object to be tested 110 according to the plurality of preset information of the predetermined surface of the 201237360 and the projection information. For example, before the light beam emitted by the light source 120 is projected onto the object to be tested 110, it is first reflected by the electronically controlled oscillating element 150 to a predetermined plane (DP), and a plurality of light spots are generated thereon. The optical system 130 receives the information of the light spot generated on the preset plane DP and stores it in the storage unit 1 to 0 in a preset manner. That is, the storage unit 17 〇 stores the preset information of the spot projected onto the preset plane. The calculation unit (10) calculates the depth of the surface of the in-service UG based on the projection information and the preset information. The depth information may be the depth variation of the surface. For example, the depth information of the spot can be combined with the surface of the two-dimensional object 110 on the surface of the axis UG to find the spot, and the second = 15G system reciprocates and covers the test to form the test. The object 110 can be used to calculate the information of the 11G in the two-dimensional position of the m-dimensional 'that is to calculate the to-be-depth g material to introduce how to calculate according to the vote (four) and preset information The depth detection system 300 is a schematic diagram of a position of the present invention. The object to be measured offset is used to calculate the depth information measuring component 340, the electronically controlled pendulum optical system ^ 330, and the optical element 370 is similar to the first noon 35, the premature aging 360 and the storage (10), the light sensing component, and the source (10) Optical system
冤控擺動兀件150、計算單元J 201237360 以及儲存單元170 ’於此不再贅述。其中β係電控擺動元件 150可擺動的角度。 當該電控擺動元件350的擺動角度係一特定角度時, 光束投射至一預設平面(Default Plane,DP)與該待測物31〇 表面的光點例如係分別為PLP(Plane Light Point,PLP)與 〇LP(〇bject Light Point,0LP)。舉例來說,當該電控擺動 元件350的擺動角度係一第一角度時,投射至該預設平面 DP與該待測物310表面的光點係分別為PLP1與〇Lpi,而 該光學系統330各別接收PLP1與0LP1的資訊並成像於該 光感測元件340,藉此分別產生對應至qlp 1之物體光點爹 像R0LP1 (Reflection 〇LP)之投射資訊以及對應至pLpi之 平面光點影像RPLPl(Reflection PLP)之預設資訊。其中, ROLP1與rplpi之中心偏移量係D1。 其中 ,,由於该預設平面DP係已知,所以成像於該光感 測凡件34〇❾RPLP1之預設資訊係預先儲存於該儲存單元 37〇。而該計算單元36〇則依據此預設資訊與此投射資訊得 到之此光點的一中心偏移量來計算出該待測物的一、果^ 當該電控擺動元件350的擺動角度係^定 時田R0LP1與RPLP1之中心偏移量愈大時 ,巧該待測物31G上的光點〇Lpi與pLpi距離愈遠,藉 U 3=計算出該待測物310表面上的⑽心 通頂°又十面DP的距離hi 〇 、 W工挪初〜丨T J〜Μ诚勒角度係第二、 物度時,投射至該預設平面即與該待測 物〇表面的先點係分別為PLP2〜PLP5與0LP2〜0Ι Ρ5,而 201237360 該光學系統330各別接收PLP2〜PLP5與OLP2〜OLP5的資 訊並成像於該光感測元件340,藉此分別產生對應至 OLP2〜OLP5之物體光點影像ROLP2〜ROLP5之投射資訊以 及對應至PLP2〜PLP5之平面光點影像RPLP2〜RPLP5之預 設資訊。其中,ROLP2〜ROLP5與RPLP2〜RPLP5之中心偏 移量係各別為D2〜D5。而由於該光源320所產生之光束非 常的小,且該電控擺動元件350的可控制之擺動角度也相 當精密,使得藉由光點中心偏移量來計算深度資訊之誤差 係可接受的。而由於該光源320所發出之光束可涵蓋該待 測物310的表面,故此該計算單元360可計算出該待測物 310 —表面的深淺變化,進而獲得該待測物310的深度資訊。 於另一實施例中,可藉由光點的大小變形量來計算出 待測物的深度資訊。 請參照第四圖,其繪示本發明一實施例之一種位置及 深度檢出系統400利用光點大小變形量來計算深度資訊之 示意圖。其中待測物410、光源420、光學系統430、光感 測元件440、電控擺動元件450、計算單元460、儲存單元 470、OLP1 〜OLP5、PLP1 〜PLP5、ROLP1 〜ROLP5、 RPLP1〜RPLP5、H1〜H5係類似於第三圖中的待測物31〇、 光源320、光學系統330、光感測元件340、電控擺動元件 350、計算單元360、儲存單元370、OLP1〜〇LP5、 PLP1 〜PLP5、ROLP1 〜ROLP5、RPLP1 〜RPLP5、H1 〜H5,& 此不再贅述。 其中,由於該預設平面DP係已知,所以成像於該光感 測元件440的RPLP1之預設資訊係預先儲存於該儲存單元 201237360 470。而该计算單元460則依據此RpLp丨之預設資訊與此 ROLP1之投射資訊得到此光點的一大小變形量,並藉此計 算出該待測物410的深度資訊。舉例來說,由於該電控擺 動元件450的擺動角度係固定,所以當R〇Lpi與RpLpi兩 者之間的大小變形量愈大時,例如是RpLp丨與R〇Lp丨之大 小差異愈大’則代表光束投射至該待測物410上的光點 OLP1與PLP1距離愈遠’藉此計算單元46〇可計算出該待 測物410中OLP1所處之表面距離預設平面DP的距離H1。 以此類推,該電控擺動元件450的擺動角度係第二、 第三、第四、第五角度時,投射至該預設平面DP與該待測 物410的光點係分別為PLP2〜PLP5與OLP2〜OLP5,而該光 學系統430各別接收PLP2〜PLP5與OLP2〜OLP5的資訊並 成像於該光感測元件340,藉此分別產生對應至 OLP2〜OLP5之物體光點影像ROLP2〜ROLP5之投射資訊以 及對應至PLP2〜PLP5之平面光點影像RPLP2〜RPLP5之預 設資訊。其中,該計算單元460分別依據ROLP2〜ROLP5 之投射資訊與RPLP2〜RPLP5之預設資訊得到之光點的各 別大小變形量,並藉此各別計算出各光點OLP2〜OLP5各別 距離該預設平面DP之距離H2〜H5。故該計算單元460可計 算出該待測物410之一表面的深淺變化,進而獲得該待測 物410的深度資訊。 於再一實施例中,可藉由光點的強度中心變異量來計 算出待測物的深度資訊。 請參照第五圖,其繪示本發明一實施例之一種位置及 深度檢出系統500利用光點的強度中心變異量來計算深度 201237360 資訊之示意圖。其中待測物51G、光源52q、光學系統53〇、 光感測元件54G、電控擺動元件55G、計 湖 單元谓、ΟΠΜ及PLP1係類似於第三圖中的待測物^ 光源320、光學系統330、光4刺元杜 疋蛾利兀件340、電控擺動元件 ⑽計算早元^儲存單元^⑽^孔⑴於此 不再贅述。 其中,當該電控擺動元件550的擺動角度係一特定角 度時,投射於該待測物510表面上的光點為簡,投射於 預設平面DP的光點為PLP1。E1與E2係分別為光束投射 於該預設平面DP之光點PLP1右側與左側的強度,而ΕΓ 與E2,係分別為光束投射於該待測物51〇之光點〇〇>1右側 與左側的強度。 由於該預設平面DP係已知,所以該光感測元件440 感測到投射於該預設平面DP的光點pLpi強度Ει、E2之 預設資訊係預先儲存於該儲存57〇卜而當該光感測 元件440感測到投射於該待測物51〇表面的光點〇Lpi強度 E1,與E2,之投射資訊時,該計算單元湯可依據此m、E2 之預設資訊與ΕΓ與E2’之投射f訊得到之光點的強度中心 變異量來計算出光點的深度資訊。舉例來說,投射於該預 設平面DP的光點PLP1的強度中,m與E2之平均,投 射於該待測物510表面的光點〇Lpi的強度中心係E1,盥 E2,之平均,而光點㈣度中,異量即為μ、E2之平均 與E1’、E2’之平均之差異。其中由於光束的強度與行經路 徑長短成反比,也就是當光束行料彳績長,錢度愈弱; 所以’當光_強度中心變異量愈大時,則代表投射於該The swaying swaying member 150, the computing unit J 201237360, and the storage unit 170' are not described herein again. The angle at which the beta-based electronically controlled oscillating member 150 can swing. When the swing angle of the electronically controlled oscillating member 350 is at a specific angle, the light spot projected onto a predetermined plane (DP) and the surface of the object to be tested 31 is, for example, a PLP (Plane Light Point, respectively). PLP) and 〇LP (〇bject Light Point, 0LP). For example, when the swing angle of the electronically controlled oscillating member 350 is at a first angle, the spot points projected onto the surface of the predetermined plane DP and the object to be tested 310 are PLP1 and 〇Lpi, respectively, and the optical system 330 separately receives the information of PLP1 and 0LP1 and images the light sensing element 340, thereby respectively generating projection information corresponding to the object spot image R0LP1 (Reflection 〇LP) of qlp 1 and a plane spot corresponding to pLpi Preset information of the image RPLP1 (Reflection PLP). Among them, the center offset of ROLP1 and rplpi is D1. Wherein, since the preset plane DP is known, the preset information imaged on the light sensing unit 34 〇❾ RPLP1 is pre-stored in the storage unit 37 〇. The calculating unit 36 计算 calculates a sway angle of the electronically controlled oscillating member 350 according to a center offset of the light spot obtained by the preset information and the projection information. ^ When the center offset of the timing field R0LP1 and RPLP1 is larger, the farther the distance between the light spot 〇Lpi and the pLpi on the object to be tested 31G is, the distance (10) on the surface of the object to be tested 310 is calculated by U 3 = The distance between the top and the ten sides DP is hi 〇, Wgong 初初~丨TJ~Μ诚勒 angle is the second, when the object is projected, the projection to the preset plane is the first point of the surface of the object to be tested PLP2~PLP5 and 0LP2~0Ι Ρ5, and 201237360, the optical system 330 receives the information of PLP2~PLP5 and OLP2~OLP5, respectively, and images the light sensing element 340, thereby generating object light corresponding to OLP2~OLP5, respectively. The projection information of the dot images ROLP2 to ROLP5 and the preset information corresponding to the planar spot images RPLP2 to RPLP5 of the PLP2 to PLP5. The center shift amounts of ROLP2 to ROLP5 and RPLP2 to RPLP5 are respectively D2 to D5. Since the light beam generated by the light source 320 is very small, and the controllable swing angle of the electronically controlled oscillating member 350 is also relatively precise, the error of calculating the depth information by the center offset of the light spot is acceptable. Since the light beam emitted by the light source 320 can cover the surface of the object to be tested 310, the calculating unit 360 can calculate the depth change of the surface of the object to be tested 310, thereby obtaining the depth information of the object to be tested 310. In another embodiment, the depth information of the object to be tested can be calculated by the amount of deformation of the spot. Please refer to the fourth figure, which illustrates a schematic diagram of a position and depth detection system 400 using the spot size deformation amount to calculate depth information according to an embodiment of the invention. The object to be tested 410, the light source 420, the optical system 430, the light sensing element 440, the electronically controlled oscillating element 450, the calculation unit 460, the storage unit 470, OLP1 to OLP5, PLP1 to PLP5, ROLP1 to ROLP5, RPLP1 to RPLP5, H1 ~H5 is similar to the object to be tested 31〇 in the third figure, the light source 320, the optical system 330, the light sensing element 340, the electronically controlled oscillating element 350, the calculation unit 360, the storage unit 370, the OLP1 〇 LP5, the PLP1 〜 PLP5, ROLP1 to ROLP5, RPLP1 to RPLP5, H1 to H5, & The preset information of the RPLP1 imaged on the light sensing element 440 is pre-stored in the storage unit 201237360 470. The calculating unit 460 obtains a size deformation amount of the light spot according to the preset information of the RpLp and the projection information of the ROLP1, and thereby calculates the depth information of the object to be tested 410. For example, since the swing angle of the electronically controlled oscillating member 450 is fixed, the larger the magnitude of the magnitude change between R 〇 Lpi and RpLpi, for example, the larger the difference between the sizes of RpLp 丨 and R 〇 Lp 丨. 'That represents the farther the distance between the light spot OLP1 and the PLP1 that the light beam is projected onto the object to be tested 410'. The calculation unit 46〇 can calculate the distance H1 between the surface of the object to be tested 410 where the OLP1 is located from the preset plane DP. . Similarly, when the swing angle of the electronically controlled swinging element 450 is the second, third, fourth, and fifth angles, the spot points projected to the predetermined plane DP and the object to be tested 410 are PLP2~PLP5, respectively. And OLP2~OLP5, and the optical system 430 receives the information of PLP2~PLP5 and OLP2~OLP5, respectively, and images the light sensing element 340, thereby generating object spot images ROLP2~ROLP5 corresponding to OLP2~OLP5, respectively. Projection information and preset information corresponding to the planar spot images RPLP2 to RPLP5 of PLP2 to PLP5. The calculation unit 460 respectively calculates the respective sizes of the light spots according to the projection information of the ROLP2 to the ROLP5 and the preset information of the RPLP2 to the RPLP5, and respectively calculates the respective distances of the light points OLP2 to OLP5. The distance from the preset plane DP is H2 to H5. Therefore, the calculating unit 460 can calculate the depth change of the surface of the object to be tested 410, thereby obtaining the depth information of the object to be tested 410. In still another embodiment, the depth information of the object to be tested can be calculated by the intensity center variation of the spot. Please refer to the fifth figure, which illustrates a schematic diagram of the position and depth detection system 500 using the intensity center variation of the light spot to calculate the depth 201237360 information according to an embodiment of the present invention. The object to be tested 51G, the light source 52q, the optical system 53A, the light sensing element 54G, the electronically controlled oscillating element 55G, the lake unit, the ΟΠΜ and the PLP1 are similar to the object to be tested in the third figure, the light source 320, and the optical The system 330, the light 4 thorn element, the rhododendron moth 340, the electronically controlled oscillating element (10) calculate the early element ^ storage unit ^ (10) ^ hole (1) will not be described here. When the swing angle of the electronically controlled oscillating member 550 is at a specific angle, the spot projected on the surface of the object to be tested 510 is simple, and the spot projected on the predetermined plane DP is PLP1. The E1 and E2 systems respectively indicate the intensity of the light beam projected on the right and left sides of the light spot PLP1 of the predetermined plane DP, and ΕΓ and E2, respectively, are the light beam projected onto the right side of the light spot 〇〇>1 of the object to be tested 51 Strength with the left side. Since the preset plane DP is known, the light sensing component 440 senses that the preset information of the light spot pLpi intensity Ει, E2 projected on the preset plane DP is pre-stored in the storage 57. The light sensing component 440 senses the intensity of the spot 〇Lpi, which is projected on the surface of the object to be tested 51, and the projection information of E2, and the calculation unit can use the preset information of the m and E2. The depth information of the spot is calculated by the intensity center variation of the spot obtained by the projection of E2'. For example, in the intensity of the spot PLP1 projected on the predetermined plane DP, the average of m and E2, the intensity center of the spot 〇Lpi projected on the surface of the object to be tested 510, E1, 盥E2, average, In the spot (four) degree, the difference is the difference between the average of μ and E2 and the average of E1' and E2'. Wherein, since the intensity of the beam is inversely proportional to the length of the path, that is, when the beam is long, the money is weaker; so when the intensity of the light intensity center is larger, it is projected on the beam.
S 12 201237360 待測物510表面的光點〇LPi距離該預設平面Dp的距離愈 遠,據此該計算單元560可估算出該待測物51〇表面上^ 點OLP1距離該預設平面dp的距離hi。 综上所述,雖於上述係個別以光點中心偏移量、光點 ^小=形量以及光點的強度中心變異量來計算出待測物的 冰度為汛,然本發明並不限於此。舉例來說,計算單元可 依據預設資訊與投射資訊得到光點的大小變形量與強度 〜變異量來計算出待測物的深度資訊。如此一來,由於在 某些特殊的表面凹凸狀況下,以光點的大小變形量所估 出的深度資訊之誤差較以光點的強度中心變異量 的深度資訊為小;而在另一些特殊的表面凹凸狀況下,以 光點的大小變形量所估算出的深度資訊之誤差較以 強,中心變異量所估算出的深度資訊為大。所以結合兩錄 估算方式可提高所計算出的深度資訊之精準度,社二方 =如是,計算結果的平均值。此外,本發明也二於= 述兩種估算方式之結合,「光點中心偏移量」、點 小變形量」、「光點的強度中心變異量」三者中任二赤: 同時用於計算深度資訊之方法及裝置皆屬於 次此外’由於可藉由計算單元計算出待測物表面的 貝讯,所以計算單元更可藉由電控擺動元件於― ^ 量……' 异出待測物於空間中的移動 I也就疋况,糟由量測待測物表面的 ^ 13 201237360 得此特測物的移動量。由於藉由簡單的元件架構即可推知 待測物的移動量,此舉可增加此裝置的用途。 再者,藉由光源在空間平面上所產生的光點形狀,例 如是圓形、長條圓形、或圓形與長條圓形的反覆漸變形 狀,可提升計算單元計算待測物表面的深度資訊的精確 性。 如此一來,本發明僅需藉由光感測元件即可估算待測 物表面的深淺變化。也就是說,本發明可以使用較少的元 件及簡單的配置即可達到估算待測物表面深淺變化的需 求。所以本發明具有不需複雜影像辨識處理而可提高反應 效率之優點。此外,本發明的結構簡單,所需的設備成本 也較低,故更具有成本低廉之優點。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 201237360 【圖式簡單說明】 第一圖係繪示本發明一實施例之一種位置及深度檢出 系統的示意圖。 第二圖係繪示本發明一實施例之檢出位置及深度之方 法流程圖。 第三圖係繪示本發明一實施例之一種位置及深度檢出 系統利用光點中心偏移量來計算深度資訊之示意圖。 第四圖係繪示本發明一實施例之一種位置及深度檢出 系統利用光點大小變形量來計算深度資訊之示意圖。 第五圖係繪示本發明一實施例之一種位置及深度檢出 系統利用光點的強度中心變異量來計算深度資訊之示意 圖。 【主要元件符號說明】 100、300、400、500 :位置及深度檢出系統 110、310、410、510 :待測物 120、320、420、520 :光源 130、330、430、530 :光學系統 140、340、440、540 :光感測元件 150、350、450、550 :電控擺動元件 160、360、460、560 :計算單元 170、370、470、570 :儲存單元 DP :預設平面 D1〜D5 :光點中心偏移量S 12 201237360 The farther the distance 〇LPi of the surface of the object to be tested 510 is from the preset plane Dp, the calculation unit 560 can estimate the point OLP1 on the surface of the object to be tested 51 from the preset plane dp. The distance hi. In summary, although the above-mentioned system calculates the ice of the object to be tested as the 偏移 by the spot center offset, the spot size = the shape amount, and the intensity center variation of the spot, the present invention does not Limited to this. For example, the calculation unit can calculate the depth information of the object to be tested according to the preset information and the projection information to obtain the amount of deformation and intensity of the spot. As a result, the depth information estimated by the amount of deformation of the spot is smaller than the depth information of the intensity center variation of the spot in some special surface irregularities; In the case of surface unevenness, the error of the depth information estimated by the amount of deformation of the spot is stronger, and the depth information estimated by the amount of center variation is larger. Therefore, combining the two-record estimation method can improve the accuracy of the calculated depth information, and the two sides of the community = if yes, calculate the average value. In addition, the present invention is also used in the combination of the two estimation methods, "the spot center offset amount, the point small deformation amount", and the "light point intensity center variation amount". The method and device for calculating the depth information are inferior. 'Because the calculation unit can calculate the surface of the object to be tested, the calculation unit can be tested by the electronically controlled oscillating element. The movement I in the space is also awkward, and the amount of movement of the special object is obtained by measuring the surface of the object to be tested. Since the amount of movement of the object to be tested can be inferred by a simple component architecture, this can increase the use of the device. Furthermore, by the shape of the light spot generated by the light source on the spatial plane, for example, a circular shape, a long circular shape, or a reverse gradation shape of a circular shape and a long circular shape, the calculation unit can calculate the surface of the object to be tested. The accuracy of the depth information. In this way, the present invention only needs to estimate the depth change of the surface of the object to be tested by the light sensing element. That is to say, the present invention can achieve the requirement of estimating the depth change of the surface of the object to be tested by using fewer components and a simple configuration. Therefore, the present invention has the advantage of improving the reaction efficiency without requiring complicated image recognition processing. In addition, the structure of the present invention is simple, and the required equipment cost is also low, so that it has the advantage of being low in cost. In the above, the present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. 201237360 BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic diagram of a position and depth detection system according to an embodiment of the present invention. The second figure is a flow chart showing the method for detecting the position and depth of an embodiment of the present invention. The third figure is a schematic diagram of a position and depth detection system using a spot center offset to calculate depth information according to an embodiment of the invention. The fourth figure is a schematic diagram of a position and depth detection system for calculating depth information by using a spot size deformation amount according to an embodiment of the present invention. The fifth figure is a schematic diagram of a position and depth detection system for calculating depth information using the intensity center variation of a light spot according to an embodiment of the present invention. [Description of main component symbols] 100, 300, 400, 500: position and depth detection systems 110, 310, 410, 510: objects to be tested 120, 320, 420, 520: light sources 130, 330, 430, 530: optical system 140, 340, 440, 540: Light sensing elements 150, 350, 450, 550: electronically controlled oscillating elements 160, 360, 460, 560: computing unit 170, 370, 470, 570: storage unit DP: preset plane D1 ~D5: Spot center offset
El、E2 :投射於預設平面之光點右側與左側的強度 15 201237360 ΕΓ、E2’ :投射於待測物之光點右側與左側的強度 Η:預設平面距離光源的距離 Η1~Η5 :光點距離預設平面的距離 OLP1〜OLP5 :光束投射至待測物表面的光點 PLP1〜PLP5 :光束投射至預設平面的光點 ROLP1〜ROLP5 :物體光點影像 RPLP1〜RPLP5 :平面光點影像 S210〜S260 :流程步驟 β:電控擺動元件的可擺動角度El, E2: The intensity of the right side and the left side of the spot projected on the preset plane. 201237360 ΕΓ, E2': The intensity of the right side and the left side of the spot projected on the object to be tested: the distance of the preset plane from the light source Η1~Η5: The distance between the light spot and the preset plane OLP1 to OLP5: the light spot projected onto the surface of the object to be tested PLP1 to PLP5: the light spot projected onto the predetermined plane ROLP1 to ROLP5: the object spot image RPLP1 to RPLP5: the plane spot Image S210~S260: Process step β: swingable angle of the electronically controlled swinging element
S 16S 16