201232996 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明屬於電子設備技術領域,尤其涉及一種電池的加 熱電路。 【先前技術】 [0002] 考慮到汽車需要在複雜的路況和環境條件下行駛,或者 有些電子設備需要在較差的環境條件中使用的情況,所 以,作為電動車或電子設備電源的電池就需要適應這些 複雜的狀況。而且除了需要考慮這些狀況,還需考慮電 池的使用壽命及電池的充放電迴圈性能,尤其是當電動 車或電子設備處於低溫環境中時,更需要電池具有優異 的低溫充放電性能和較高的輸入輸出功率性能。 一般而言,如果在低溫條件下對電池進行充電,將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降,最終導致電池壽命的降低。 【發明内容】 [0003] 本發明的目的是針對電池在低溫條件下會導致電池的阻 抗增大、極化增強從而引起電池的容量下降的問題,提 供一種電池的加熱電路。為了保持電池在低溫條件下的 容量,提高電池的充放電性能,本發明提供了一種電池 的加熱電路。 本發明提供的電池的加熱電路包括開關裝置、開關控制 模組、阻尼元件R1以及儲能電路,所述儲能電路用於與 所述電池連接,所述儲能電路包括第一電流記憶元件L1 和第一電荷記憶元件C1,所述阻尼元件R1和開關裝置與 1013113152-0 第4頁/共56頁 201232996 所述儲能電路串聯,所述開關控制模組與開關裝置連接 ,用於控制開關裝置導通和關斷,以使得當開關裝置導 通時,能量在所述電池與所述儲能電路之間往復流動。 本發明提供的加熱電路能夠提高電池的充放電性能,並 且由於在該加熱電路中,儲能電路與電池串聯,當給電 池加熱時,由於串聯的第一電荷記憶元件ci的存在,能 夠避免開關裝置失效短路時電流過大引起的安全性問題 ,能夠有效地保護電池。 本發明的其他特徵和優點將在隨後的具體實施方式部分 予以詳細說明。 【實施方式】 [0004] 以下結合附圖對本發明的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具體實施方式僅用於說明 和解釋本發明,並不用於限制本發明。 需要指出的是,除非特別說明,當下文中提及時,術語 “開關控制模組”為任意能夠根據設定的條件或者設定 的時刻輸出相應的控制指令(例如具有相應占空比的脈 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可編程控制器)等;當下 文中提及時,術語“開關”指的是可以通過電信號實現 通斷控制或者根據元器件自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide Semiconductor Field Effect Transistor, MOSFET)或帶有反並續流二極體的IGBT (Insulated 10014313(P編號 A_ 第5頁/共56頁 1013113152-0 201232996201232996 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to the field of electronic device technology, and more particularly to a heating circuit for a battery. [Prior Art] [0002] Considering that a car needs to travel under complicated road conditions and environmental conditions, or some electronic devices need to be used in poor environmental conditions, a battery that is a power source for an electric vehicle or an electronic device needs to be adapted. These complicated situations. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more desirable that the battery has excellent low temperature charge and discharge performance and higher Input and output power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase and the polarization will increase, resulting in a decrease in the capacity of the battery, which ultimately leads to a decrease in battery life. SUMMARY OF THE INVENTION [0003] An object of the present invention is to provide a heating circuit for a battery in which the battery causes an increase in impedance of the battery and an increase in polarization to cause a decrease in capacity of the battery under low temperature conditions. In order to maintain the capacity of the battery under low temperature conditions and to improve the charge and discharge performance of the battery, the present invention provides a heating circuit for a battery. The heating circuit of the battery provided by the invention comprises a switching device, a switch control module, a damping element R1 and a storage circuit, wherein the energy storage circuit is connected to the battery, and the energy storage circuit comprises a first current memory element L1 And the first charge storage element C1, the damping element R1 and the switching device are connected in series with the energy storage circuit of 1013113152-0, the switching control module is connected with the switching device for controlling the switch The device is turned on and off such that when the switching device is turned on, energy flows back and forth between the battery and the tank circuit. The heating circuit provided by the invention can improve the charge and discharge performance of the battery, and since the energy storage circuit is connected in series with the battery in the heating circuit, when the battery is heated, the switch can be avoided due to the presence of the first charge memory element ci connected in series. The safety problem caused by excessive current when the device is short-circuited can effectively protect the battery. Other features and advantages of the invention will be described in detail in the detailed description which follows. [Embodiment] Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. It is to be understood that the specific embodiments described herein are intended to be illustrative and not restrictive. It should be noted that, unless otherwise specified, the term "switch control module" is used to control the output of a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) according to a set condition or a set time. A controller that is turned on or off correspondingly to a switching device connected thereto, for example, may be a PLC (Programmable Controller) or the like; when referred to hereinafter, the term "switch" refers to an on-off control that can be realized by an electrical signal or according to a The switch of the device itself can realize the on-off control, which can be a one-way switch, such as a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as a metal oxide semiconductor field. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) or IGBT with reversed-current diode (Insulated 10014313) (P-No. A_ Page 5 of 56 Page 1013113152-0 201232996
Gate Bipolar Transistor,絕緣栅雙極型電晶體)等 ;當下文中提及時,術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元器件自身的特性實現通 斷控制的可雙嚮導通的開關,例如M0SFET或帶有反並續 流二極體的IGBT等;當下文中提及時,單向半導體元件 指的是具有單嚮導通功能的半導體元件,例如二極體等 ;當下文中提及時,術語“電荷記憶元件”指任意可以 實現電荷存儲的裝置,例如電容等;當下文中提及時, 術語“電流記憶元件”指任意可以對電流進行存儲的裝 置,例如電感等;當下文中提及時,術語“正向”指能 量從電池向儲能電路流動的方向’術語反向指能量 從儲能電路向電池流動的方向;當下文中提及時,術語 “電池”包括一次電池(例如乾電池、驗性電池等)和 二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛 酸電池等);當下文中提及時,術語“阻尼元件”指任 意通過對電流的流動起阻礙作用以實現能量消耗的裝置 ,例如電阻等;當下文中提及時,術語“主回路”指的 是電池與阻尼元件、開關裝置以及儲能電路串聯組成的 回路。 這裏還需要特別說明的是,考慮到不同類型的電池的不 同特性,在本發明中,“電池”可以指不包含内部寄生 電阻和寄生電感、或者内部寄生電阻的阻值和寄生電感 的電感值較小的理想電池,也可以指包含有内部寄生電 阻和寄生電感的電池包。因此,本領域技術人員應當理 解的是,當“電池”為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感電感值較小的理 1013113152-0 第6頁/共56頁 201232996 想電池時,阻尼元件R1指的是電池外部的阻尼元件,第 一電流記憶元件L1指的是電池外部的電流記憶元件;當 “電池”為包含有内部寄生電阻和寄生電感的電池包時 ,阻尼元件R1既可以指電池外部的阻尼元件,也可以指 電池包内部的寄生電阻,同樣地,第一電流記憶元件L1 既可以指電池外部的電流記憶元件,也可以指電池包内 部的寄生電感。 在本發明的實施例中,為了保證電池的使用壽命,需要 在低溫情況下對電池進行加熱,當達到加熱條件時,控 制加熱電路開始工作,對電池進行加熱,當達到停止加 熱條件時,控制加熱電路停止工作。 在電池的實際應用中,隨著環境的改變,可以根據實際 的環境情況對電池的加熱條件和停止加熱條件進行設置 ,以對電池的溫度進行更精確的控制,從而保證電池的 充放電性能。 為了對處於低溫環境中的電池E進行加熱,本發明提供了 一種電池E的加熱電路,如第1圖所示,該加熱電路包括 開關裝置1、阻尼元件R1、開關控制模組100以及儲能電 路,所述儲能電路用於與所述電池E串聯,所述儲能電路 包括第一電流記憶元件L1和第一電荷記憶元件C1,所述 阻尼元件R1、開關裝置1、第一電流記憶元件L1和第一電 荷記憶元件C1串聯,所述開關控制模組100與開關裝置1 連接,所述開關控制模組100用於控制開關裝置1導通和 關斷,以使得當開關裝置1導通時,能量在所述電池E與 所述儲能電路之間往復流動。 考慮到不同類型的電池E的不同特性,如果電池E内部的 1013113152-0 1{)()14313(^單編號A0101 第7頁/共56頁 201232996 寄生電阻阻值和寄生電感自感較大,所述阻尼元件以也 可以為電池内部的寄生電阻,所述第一電流記憶元件li 也可以為電池内部的寄生電感。 根據本發明的一種實施方式,所述第-電荷記憶元件C1 和所述開關裝置1均有多個,且第一電荷記憶元件C1與開 關裝置1--對應串聯構成多個支路,所述多個支路彼此 並聯之後與第一電流記憶元件L1、阻尼元件R1串聯’開 關控制模組100控制每一個開關裝置i的導通與關斷,從 而控制與該開關裝置i串聯的儲能電路是否與電池E連接 °優選地,所述開關控制模組⑽控制開關裝置1以使得 能量從電池E同時流到多個儲能電路,並且能量從各個儲 7電路依次流動回電池E。在這種實施方式中電流正向 流動時’電池E放電’可以將儲能電路同時與電池£連通 ,以增大電流,·電流反向流動時’對電池E充電此時可 以將儲能電路依次與電池E連通,以減小流過電池e的電 流。 所述開關裝置m儲能電路串聯,在導通時能夠實現電池 e與儲能電路之間的能量往復流動,開關裝置α有多種 實現方式,本發明對關裝置的實現方式不作限制。作 為開關裝置1的-種實施方式,所述開關裝幻為第一雙 向開關Κ3,如第2圖所示。由開關控制模組100控制第一 雙向開關Κ3的導通與關斷,當需要對電池加敎時,導通 第一雙向開關Κ3即可,如暫停加熱或者不需要加熱時關 斷第一雙向開關Κ3即可。 單獨使用一個第一雙向開關Κ3實現開關裝置卜電路簡單 ,佔用系統面積小,容易實現,但是電路功能受到明顯 10〇14313(Ρ編號施01 帛8頁/共56頁 1013113152-0 201232996 局限,例如不能實現反向電流時關斷等。對此,本發明 還提供了如下開關裝置1的優選實施方式。 優選地,所述開關裝置1包括用於實現能量從電池流向儲 能電路的第一單向支路和用於實現能量從儲能電路流向 電池的第二單向支路,所述開關控制模組100與所述第一 單向支路和第二單向支路中的一者或兩者分別連接,用 以控制所連接的支路的導通和關斷。當電池需要加熱時 ,導通第一單向支路和第二單向支路兩者,如暫停加熱 可以選擇關斷第一單向支路和第二單向支路中的一者或 兩者,當不需要加熱時,可以關斷第一單向支路和第二 單向支路兩者。優選地,第一單向支路和第二單向支路 兩者都能夠受開關控制模組100的控制,這樣,可以靈活 實現能量正向流動和反向流動。 作為開關裝置1的另一種實施方式,如第3圖所示,所述 開關裝置1可以包括第二雙向開關K4和第三雙向開關K5, 所述第二雙向開關K4和第三雙向開關K5彼此反向串聯以 構成所述第一單向支路和第二單向支路,所述開關控制 模組100與所述第二雙向開關K4和第三雙向開關K5分別連 接,用於通過控制第二雙向開關K4和第三雙向開關K5的 導通和關斷來控制第一單向支路和第二單向支路的導通 和關斷。當需要對電池加熱時,導通第二雙向開關K4和 K5即可,如暫停加熱可以選擇關斷第二雙向開關K4和第 三雙向開關K5中的一者或者兩者,在不需要加熱時關斷 第二雙向開關K4和第三雙向開關K5即可。這種開關裝置1 的實現方式能夠分別控制第一單向支路和第二單向支路 的導通和關斷,靈活實現電路的正向和反向能量流動。 1001431#料號删1 第9頁/共56頁 1013113152-0 201232996 作為開關裝置1的另一種實施方式,如第5圖所示,所述 開關裝置1可以包括第一開關K6、第一單向半導體元件 D11以及第二單向半導體元件1)12,第一開關Κ6和第一單 向半導體元件D11彼此串聯以構成所述第一單向支路,第 二單向半導體元件D12構成所述第二單向支路所述開關 控制模組100與第一開關K6連接,用於通過控制第一開關 Κ6的導通和關斷來控制第一單向支路的導通和關斷。在 如第5圖所示的開關裝置1中,當需要加熱時,導通第一 開關Κ6即可,不需要加熱時,關斷第_開關Κ6即可。 如第5圖中所示的開關裝置丨的實現方式雖然實現了能量 往返沿著相對獨立的支路流動,但是還不能實現能量反 向流動時的關斷功能。本發明還提出了開關裝置2的另一 種實施方式,如第6圖所示,所述開關裝置丨還可以包括 位於第_單向支路巾的第二開継7,該第二開継7與第 單向半V體元件D12串聯,所述開關控制模組1 〇 〇還與 第二開關Κ7連接,用於通過控制第二開關Κ7的導通和關 斷來控制第二單向支路的導通和關斷。這樣在第6圖示出 的開關裝置1中,由於兩個單向支路上均存在開關(即第 一開關Κ6和第二開關Κ7),同時具備能量正向和反向流 動時的關斷功能。 優選地,所述開關裝置1還可以包括與所述第一單向支路 和/或第二單向支路串聯的電阻,用於減小電池加熱回路 的電流,避免回路中電流過大對電池造成損害。例如, 可以在第3圖中示出的開關裝置1中添加與第二雙向開關 Κ4和第二雙向開關Κ5串聯的電阻R6,得到開關裝 種實現方式’如第4圖所示。第7圖中也示出了開關裝 丽娜賊腦。1 S W頁/共56頁 1013113152-0 201232996 置1的一種實施方式,其是在第6圖中示出的開關裝置1中 的兩個單向支路上分別串聯電阻R2、電阻R3得到的。 根據本發明的技術方案,當需要對電池E加熱時,開關控 制模組100控制開關裝置1導通,電池E與儲能電路串聯構 成回路,電池E對第一電荷記憶元件C1進行充電,當回路 中的電流經過電流峰值後正向為零時,第一電荷記憶元 件C1開始放電,電流從第一電荷記憶元件C1流回電池E, 回路中的正向、反向電流均流過阻尼元件R1,通過阻尼 元件R1的發熱可以達到給電池E加熱的目的。上述充放電 過程迴圈進行,當電池E的溫度升高達到停止加熱條件時 ,開關控制模組100可以控制開關裝置1關斷,加熱電路 停止工作。 在上述加熱過程中,當電流從儲能電路流回電池E時,第 一電荷記憶元件C1中的能量不會完全流回電池E,而是會 有一些能量餘留在第一電荷記憶元件C1中,最終使得第 一電荷記憶元件C1電壓接近或等於電池電壓,從而使得 從電池E向第一電荷記憶元件C1的能量流動不能進行,不 利於加熱電路的迴圈工作。因此,本發明優選實施方式 中還增加了將第一電荷記憶元件C1内的能量與電池E的能 量進行疊加、將第一電荷記憶元件C1内的能量轉移到其 他儲能元件等功能的附加單元。在達到一定時刻時,關 斷開關裝置1,對第一電荷記憶元件C1中的能量進行疊加 、轉移等操作。開關裝置1可以在一個週期或多個週期内 的任意時間點關斷;開關裝置1的關斷時刻可以是任何時 刻,例如回路中的電流為正向/反向時、為零時/不為零 時均可以實施關斷。根據所需要的關斷策略可以選擇開 1013113152-0 1(){)14313{^單編號 A0101 第 11 頁 / 共 56 頁 201232996 關裝置1的不同的實現形式,如果只需要實現正向電流流 動時關斷,則選用例如第2圖、第5圖所示的開關裝置1的 實現形式即可’如果需要實現正向電流和反向電流時均 可以關斷,則需要選用如第4圖、第6圖、第7圖所示的兩 個單向支路均可控的開關裝置。優選地,所述開關控制 模組1 0 0用於當開關裝置1導通後流過開關裝置1的電流為 零時或為零後關斷開關裝置1,這樣回路效率高,且回路 中電流為零再關斷開關裝置1對整個電路影響較小。 根據本發明的一種優選實施方式,如第8圖所示,本發明 提供的加熱電路可以包括能量疊加單元,該能量疊加單 元與所述儲能電路連接,用於在開關裝置1導通再關斷後 ,將儲能電路中的能量與電池E中的能量進行疊加。所述 能量疊加單元使得在開關裝置1再次導通時,電池E能夠 將疊加後的能量充入第一電荷記憶元件C1,由此提高加 熱電路的工作效率。 根據本發明的一種實施方式,如第9圖所示,所述能量疊 加單元包括極性反轉單元102,該極性反轉單元102與所 述儲能電路連接,用於在開關裝置1導通再關斷後,對第 一電荷記憶元件C1的電壓極性進行反轉,由於極性反轉 後的第一電荷記憶元件C1的電壓極性與電池E的電壓極性 形成串聯相加關係,當開關裝置1再次導通時,第一電荷 記憶元件C1中的能量可以與電池E中的能量進行疊加。 作為極性反轉單元102的一種實施方式,如第10圖所示, 所述極性反轉單元102包括第一單刀雙擲開關J1和第二單 刀雙擲開關J2,所述第一單刀雙擲開關J1和第二單刀雙 擲開關J2分別位於所述第一電荷記憶元件C1兩端,所述 1013113152-0 第12頁/共56頁 201232996 第一單刀雙擲開關ji的入線連接在所述儲能電路中,所 述第一單刀雙擲開關J1的第一出線連接所述第一電荷記 憶元件C1的第一極板,所述第一單刀雙擲開關J1的i二 出線連接所述第一電荷記憶元件C1的第二極板,所述第 二單刀雙擲開關J2的入線連接在所述儲能電路中,所述 第二單刀雙擲開關J2的第一出線連接所述第一電荷記憶 元件C1的第二極板,所述第二單刀雙擲開關J2的第二出 線連接在所述第一電荷記憶元件C1的第一極板,所述開 關控制模組100還與所述第一單刀雙擲開關J1和第二單刀 雙擲開關J2分別連接,用於通過改變所述第一單刀雙擲 開關J1和第二單刀雙擲開關J2各自的入線和出線的連接 關係來對所述第一電荷記憶元件C1的電壓極性進行反轉 〇 根據上述實施方式,可以預先對第一單刀雙擲開關J1和 第二單刀雙擲開關J2各自的入線和出線的連接關係進行 設置,使得當開關裝置K1導通時,所述第一單刀雙擲開 關J1的入線與其第一出線連接,而所述第二單刀雙擲開 關J2的入線與其第一出線連接,當開關裝置K1關斷時, 通過開關控制模組100控制第一單刀雙擲開關J1的入線切 換到與其第二出線連接,而所述第二單刀雙擲開關J2的 入線切換到與其第二出線連接,由此實現第一電荷記憶 元件C1電壓極性反轉的目的。 作為極性反轉單元102的另一種實施方式,如第11圖所示 ,所述極性反轉單元102包括第三單向半導體元件D3、第 二電流記憶元件L2以及第三開關K9,所述第一電荷記憶 元件C1、第二電流記憶元件L2和第三開關K9順次串聯形 1QQ14313(^單編號A0101 第13頁/共56頁 1013113152-0 201232996 成回路,所述第三單向半導體元件D3和串聯在所述第一 電荷記憶元件C1與第二電流記憶元件L 2或所述第二電流 記憶元件L2與第三開關K9之間,所述開關控制模組100還 與所述第三開關K9連接,用於通過控制第三開關K9導通 來對所述第一電荷記憶元件C1的電壓極性進行反轉。 根據上述實施方式,當開關裝置1關斷時,可以通過開關 控制模組100控制第三開關K9導通,由此,第一電荷記憶 元件C1與第三單向半導體元件D3、第二電流記憶元件L2 以及第三開關K9形成LC振盪回路,第一電荷記憶元件C1 通過第二電流記憶元件L2放電,振盪回路上的電流流經 正半週期後,流經第二電流記憶元件L2的電流為零時達 到第一電荷記憶元件C1電壓極性反轉的目的。 作為極性反轉單元102的又一種實施方式,如第12圖所示 ,所述極性反轉單元102包括第一DC-DC模組2和第二電 荷記憶元件C2,該第一DC-DC模組2與所述第一電荷記憶 元件C1和第二電荷記憶元件C2分別連接,所述開關控制 模組100還與所述第一DC-DC模組2連接,用於通過控制 第一DC-DC模組2工作來將所述第一電荷記憶元件C1中的 能量轉移至所述第二電荷記憶元件C2,再將所述第二電 荷記憶元件C2中的能量反向轉移回所述第一電荷記憶元 件C1,以實現對所述第一電荷記憶元件C1的電壓極性的 反轉。 所述第一DC-DC模組2是本領域中常用的用於實現電壓極 性反轉的直流變直流轉換電路,本發明不對第一DC-DC模 組2的具體電路結構作任何限制,只要能夠實現對第一電 荷記憶元件C1的電壓極性反轉即可,本領域技術人員可 10014313(^單編號 A0101 第14頁/共56頁 1013113152-0 201232996 以根據實際操作的需要對其電路中的元件進行增加、替 換或刪減。 第13圖為本發明提供的第一DC-DC模組2的—種實施方式 ,如第13圖所示,所述第一DC-DC模組2包括:雙向開關 Q1、雙向開_2、雙向關Q3、雙㈣_4、第一變壓 器T1、單向半導體元件D4、單向半導體元件卯、電流記 憶元件L3、雙向開關q5、雙向開關帅、第二變壓器τ2、 單向半導體元件卯、單向半導體元件!^、以及單向半導 體元件D8。 在該實施方式中,雙向開_、雙向開關Q2、雙向開關 Q3和雙向開關Q4均為M0SFET,雙向開關卯和雙向開關㈧ 為 IGBT。 其中’所述第-變壓器腳、4腳、5腳為同名端,第 二變壓器Τ2的2腳與3腳為同名端。 其中,單向半導體元件D7的陽極與電容(:1的&端連接,單 向半V體元件D7的陰極與雙向開關和雙向開削2的漏 〇 轉接’雙向開祕賴極與雙向開哪的漏極連接, 雙向開_2的源極與雙向開關Q4的漏極連接,雙向開關 ⑽、雙向開_4的源極與電容C1的b端連接,由此構成全 橋,路,此時電容C1的電壓極性為3端為正,b端為負。 在*亥全橋電路中,雙向開關Q1、雙向開關Q2為上橋臂, 向開關Q3、雙向開關為下橋臂,該全橋電路通過第 變壓器T1與所述第二電荷記憶元件C2相連;第-變壓 器τι的1腳與第一節點N1連接、2腳與第二節點連接, 3腳和5腳分別連接至單向半導體元件D4和單向半導體元 件D 5的陽極 10014313(^單編號 ΑΟίοι 單向半導體元件D4和單向半導體元件D5的 1013113152-0 第15頁/共56頁 201232996 陰極與電流記憶元件L3的一端連接,電流記憶元件L3的 另一端與第二電荷記億元件C2的d端連接;變屢器T1的4 腳與第二電荷記憶元件C2的c端連接,單向半導體元件])8 的陽極與第二電荷記憶元件C2的d端連接,單向半導體元 件D8的陰極與第一電荷記憶元件ci的b端連接,此時第二 電荷記憶元件C2的電壓極性為c端為負,d端為正。 其中,第二電荷記憶元件C2的c端連接雙向開關Q5的發射 極’雙向開關Q5的集電極與變壓器T2的2腳連接,變壓器 T2的1腳與第一電荷記憶元件C1的a端連接,變麼器T2的 4腳與第一電荷記憶元件C1的a端連接,變壓器T2的3腳連 接單向半導體元件D6的陽極,單向半導體元件])6的陰極 與雙向開關Q6的集電極連接,雙向開關q6的發射極與第 二電荷記憶元件C2的b端連接。 其中,雙向開關Q1、雙向開關Q2、雙向開關q3、雙向開 關Q4、雙向開關Q5和雙向開關Q6分別通過所述開關控制 模組100的控制來實現導通和關斷。 下面對所述第一DC-DC模組2的工作過程進行描述: 1、 在開關裝置1關斷後,所述開關控制模組1〇〇控制雙向 開關Q5、雙向開關Q6關斷,控制雙向開關…和雙向開關 Q4同時導通以構成A相,控制雙向開關q2、雙向開關叩同 時導通以構成B相,通過控制所述人相、B相交替導通以構 成全橋電路進行工作; 2、 當所述全橋電路工作時,第—電荷記憶元件π上的能 量通過第一變壓器T1、單向半導體元件M、單向半導體 元件D5、以及電流記憶元件L3轉移到第二電荷記憶元件 1013113152-0 C2上,此時第二電荷記憶元件C2的電壓極性為c端為負’ 1〇()14313{^單編號A0101 第16頁/共56頁 201232996 d端為正。 3、所述開關控制模組100控制雙向開關Q5導通,第一電 荷記憶元件C1通過第二變壓器T2和單向半導體元件D8與 第二電荷記憶元件C2構成通路,由此,第二電荷記憶元 件C2上的能量向第一電荷記憶元件C1反向轉移,其中, 部分能量將儲存在第二變壓器T2上;此時,所述開關控 制模組100控制雙向開關Q5關斷、雙向開關Q6閉合,通過 第二變壓器T2和單向半導體元件D6將儲存在第二變壓器 T2上的能量轉移至第一電荷記憶元件C1,以實現對第一 電荷記憶元件C1進行反向充電,此時第一電荷記憶元件 C1的電壓極性反轉為a端為負,b端為正,由此達到了將 第一第一電荷記憶元件C1的電壓極性反向的目的。 為了對儲能電路中的能量進行回收利用,根據本發明的 一種優選實施方式,如第14圖所示,本發明提供的加熱 電路可以包括能量轉移單元,所述能量轉移單元與所述 儲能電路連接,用於在開關裝置1導通再關斷後,將儲能 電路中的能量轉移至儲能元件中。所述能量轉移單元目 的在於對存儲電路中的能量進行回收利用。所述儲能元 件可以是外接電容、低溫電池或者電網以及其他用電設 備。 優選情況下,所述儲能元件是本發明提供的電池E,所述 能量轉移單元包括電量回灌單元103,該電量回灌單元 103與所述儲能電路連接,用於在開關裝置1導通再關斷 後,將儲能電路中的能量轉移至所述電池E中,如第15圖 所示。 根據本發明的技術方案,在開關裝置1關斷後,通過能量 1013113152-0 1{){)14313{^單編號 A0101 第 17 頁 / 共 56 頁 201232996 轉移單元將儲能電路中的能量轉移到電池E中,能夠在開 關裝置1再次導通後對被轉移的能量進行迴圈利用,提高 了加熱電路的工作效率。 作為電量回灌單元103的一種實施方式,如第16圖所示, 所述電量回灌單元103包括第二DC-DC模組3,該第二 DC-DC模組3與所述第一電荷記憶元件C1和所述電池E分 別連接,所述開關控制模組100還與所述第二DC-DC模組 3連接,用於通過控制第二DC-DC模組3工作來將第一電荷 記憶元件C1中的能量轉移到所述電池中。 所述第二DC-DC模組3是本領域中常用的用於實現能量轉 移的直流變直流轉換電路,本發明不對第二DC-DC模組3 的具體電路結構作任何限制,只要能夠實現對第一電荷 記憶元件C1的能量進行轉移即可,本領域技術人員可以 根據實際操作的需要對其電路中的元件進行增加、替換 或刪減。 第17圖為本發明提供的第二DC-DC模組3的一種實施方式 ,如第17圖所示,所述第二DC-DC模組3包括:雙向開關 S1、雙向開關S2、雙向開關S3、雙向開關S4、第三變壓 器T3、電流記憶元件L4、以及四個單向半導體元件。在 該實施方式中,所述雙向開關S1、雙向開關S2、雙向開 關S3、雙向開關S4均為MOSFET。 其中,所述第三變壓器T3的1腳和3腳為同名端,所述四 個單向半導體元件中的兩個單向半導體元件負極相接成 組,接點通過電流記憶元件L4與電池E的正端連接,另兩 個單向半導體元件正極相接成組,接點與電池E的負端連 接,且組與組之間的對接點分別與第三變壓器T3的3腳和 10014313^^« A0101 第18頁/共56頁 1013113152-0 201232996 4腳連接,由此構成橋式整流電路。 其中,雙向開關S1的源極與雙向開關S3的漏極連接,雙 向開關S2的源極與雙向開關S4的漏極連接,雙向開關si 、雙向開關S 2的漏極與第一電荷記憶元件c 1的正端連接 ,雙向開關S3、雙向開關S4的源極與第一電荷記憶元件 C1的負端連接,由此構成全橋電路。 在該全橋電路中,雙向開關S1、雙向開關S2為上橋臂, 雙向開關S3、雙向開關S4為下橋臂,第三變壓器了3的1腳 與雙向開關S1和雙向開關S3之間的節點連接、2腳與雙向 〇 開關S2和雙向開關S4之間的節點連接。 其中,雙向開關S1、雙向開關S2、雙向開關S3和雙向開 關S4分別通過所述開關控制模組1 〇 〇的控制來實現導通和 . 關斷。 下面對所述第二DC-DC模組3的工作過程進行描述: 1 '在開關裝置1關斷後,所述開關控制模組1〇〇控制雙向 開關S1和雙向開關S4同時導通以構成八相,控制雙向開關 Q S2、雙向開關S3同時導通以構成b相,通過控制所述八相 、B相交替導通以構成全橋電路進行工作; 2、當所述全橋電路工作時,第一電荷記憶元件C1上的能 量通過第三變壓器T3和整流電路轉移到電池£上,所述整 流電路將輸入的交流電轉化為直流電輸出至電池E,達到 電量回灌的目的。 為了使本發明提供的加熱電路在提高工作效率的同時能 夠對儲能電路中的能量進行回收利用,根據本發明的一 種優選實施方式’如第18圖所示’本發明提供的加熱電 路可以包括能量疊加和轉移單元,該能量疊加和'w 10014313(^單編號ΑΟίοι 第19頁/共56頁 早 1013113152-0 201232996 凡與所述儲能電路連接,用於在開關裝置1導通再關斷後 ’將儲能魏巾的能量轉移至儲能元件巾,之後將儲能 電路中的_能4與電池巾的能量進行疊加。所述能量 疊加和轉移單儿既能夠提高加熱電路的卫作效率,又能 夠對儲能電路中的能量進行回收利用。 犯 將儲月b電路中的剩餘能量與電池中的能量進行疊加可以 通過將第—電荷記憶元件C1的電壓極性進行反轉來實現 ,第一電荷記憶元件C1的電壓極性進行反轉後其極性與 電池E的電壓極性形成串聯相加關係,由此,當下一次導 通開關裝置1時’電池E中的能量能夠與第-電荷記憶元 件C1中的能量進行疊加。 因此,根據一種實施方式,如第19圖所示,所述能量疊 加和轉移單元包括DC-DC模組4,該DC-DC模組4與所述第 電何C憶元件ci和所述電池分別連接,所述開關控制 楔組100還與所述DC—DC模組4連接,用於通過控制DC-DC 模組4工作來將所逑第-電荷記憶元件C1中的能量轉移至 儲犯元件中’之後將所述第-電荷記憶元件C1中的剩餘 能量與電池中的能量進行疊加。 所述K-DC模組4是本領域中常用的用於實現能量轉移和 ♦吐反轉的直流變直流轉換電路,本發明不對DC-DC 模組4的具體電路結構作任何限制只要能夠實現對第一 電荷記憶元件Π的能量轉移和電壓極性反轉即可,本領 域技術人貝可U根據實際操作的需要對其電路中的元件 進行增加、替換或刪減。 10014313(P^ A〇101 ㈣队-DC模组4的-種實施方式,如第_所示, DC DC极組4包括:雙向開關以、雙向開關 10101 ^ on ^ 開關 第20頁/共56頁 1013113152-0 201232996Gate Bipolar Transistor, insulated gate bipolar transistor, etc.; as mentioned below, the term "bidirectional switch" refers to a dual-guide that can be controlled by an electrical signal or with on-off control based on the characteristics of the component itself. a switch, such as a MOSFET or an IGBT with an anti-freewheeling diode; when referred to hereinafter, a unidirectional semiconductor component refers to a semiconductor component having a unidirectional conduction function, such as a diode, etc.; In time, the term "charge memory element" refers to any device that can implement charge storage, such as a capacitor, etc.; as referred to hereinafter, the term "current memory element" refers to any device that can store current, such as an inductor, etc.; The term "forward" refers to the direction in which energy flows from the battery to the tank circuit. The term reverse refers to the direction in which energy flows from the tank circuit to the battery; as referred to hereinafter, the term "battery" includes primary batteries (eg, dry batteries, inspections). Battery, etc.) and secondary batteries (such as lithium-ion batteries, nickel-cadmium batteries, nickel-hydrogen batteries or lead-acid batteries) Pool, etc.); as referred to hereinafter, the term "damping element" refers to any device that, by obstructing the flow of current to achieve energy consumption, such as electrical resistance, etc.; when referred to hereinafter, the term "main circuit" refers to a battery and A circuit consisting of a damping element, a switching device, and a storage circuit in series. It should also be noted here that, in consideration of the different characteristics of different types of batteries, in the present invention, "battery" may refer to an inductance value that does not include internal parasitic resistance and parasitic inductance, or internal parasitic resistance and parasitic inductance. A smaller ideal battery can also be a battery pack that contains internal parasitic resistance and parasitic inductance. Therefore, those skilled in the art should understand that when the "battery" is not containing internal parasitic resistance and parasitic inductance, or the resistance of the internal parasitic resistance and the parasitic inductance inductance value is small, the number is 1013113152-0, page 6 of 56 Page 201232996 When thinking about the battery, the damping element R1 refers to the external damping element of the battery, the first current memory element L1 refers to the current memory element outside the battery; when the "battery" is the battery pack containing the internal parasitic resistance and parasitic inductance The damping element R1 may be referred to as a damping element outside the battery or a parasitic resistance inside the battery pack. Similarly, the first current memory element L1 may be referred to as a current memory element outside the battery or as a battery pack. Parasitic inductance. In the embodiment of the present invention, in order to ensure the service life of the battery, the battery needs to be heated at a low temperature. When the heating condition is reached, the heating circuit is controlled to start working, and the battery is heated, and when the heating condition is stopped, the control is performed. The heating circuit stops working. In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual environmental conditions to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. In order to heat the battery E in a low temperature environment, the present invention provides a heating circuit for the battery E. As shown in FIG. 1, the heating circuit includes a switching device 1, a damping element R1, a switch control module 100, and an energy storage device. a circuit for connecting the battery E in series, the energy storage circuit comprising a first current memory element L1 and a first charge memory element C1, the damping element R1, the switching device 1, the first current memory The component L1 is connected in series with the first charge memory component C1, and the switch control module 100 is connected to the switch device 1, and the switch control module 100 is used to control the switch device 1 to be turned on and off so that when the switch device 1 is turned on The energy reciprocates between the battery E and the energy storage circuit. Considering the different characteristics of different types of battery E, if the internal E1 of the battery E is 1013113152-0 1{)() 14313 (^ single number A0101, page 7 / page 56, 201232996, the parasitic resistance and the parasitic inductance are relatively high, The damping element may also be a parasitic resistance inside the battery, and the first current memory element li may also be a parasitic inductance inside the battery. According to an embodiment of the invention, the first charge storage element C1 and the A plurality of switching devices 1 are provided, and the first charge storage element C1 and the switching device 1-- are connected in series to form a plurality of branches, and the plurality of branches are connected in parallel with the first current memory element L1 and the damping element R1. The switch control module 100 controls the turn-on and turn-off of each of the switch devices i, thereby controlling whether the energy storage circuit connected in series with the switch device i is connected to the battery E. Preferably, the switch control module (10) controls the switch device 1 So that energy flows from the battery E to the plurality of energy storage circuits at the same time, and energy flows from the respective storage 7 circuits to the battery E in sequence. In this embodiment, the battery E discharges when the current flows in the forward direction. The storage circuit is simultaneously connected to the battery to increase the current. When the current flows in the opposite direction, the battery E is charged. At this time, the energy storage circuit can be sequentially connected to the battery E to reduce the current flowing through the battery e. The switch device m storage circuit is connected in series, and the energy reciprocating flow between the battery e and the energy storage circuit can be realized when the switch is turned on. The switch device α has various implementation manners, and the implementation manner of the switch device is not limited. In an embodiment, the switch is spoofed as a first bidirectional switch Κ3, as shown in Fig. 2. The switch control module 100 controls the turning on and off of the first bidirectional switch Κ3 when the battery needs to be twisted. Turn on the first bidirectional switch Κ3, such as suspending heating or turning off the first bidirectional switch Κ3 when heating is not required. Separately using a first bidirectional switch Κ3 to realize a simple switching circuit, occupying a small system area, and being easy to implement , but the circuit function is obviously limited to 10〇14313 (Ρ 施 01 帛 8 pages / total 56 pages 1013113152-0 201232996 limitations, such as the reverse current can not be turned off, etc. The invention also provides a preferred embodiment of the switching device 1 as follows. Preferably, the switching device 1 comprises a first one-way branch for energy flow from the battery to the energy storage circuit and for enabling energy to flow from the energy storage circuit to the battery The second one-way branch, the switch control module 100 is respectively connected to one or both of the first one-way branch and the second one-way branch for controlling the connected branch Turning on and off. When the battery needs to be heated, turning on both the first one-way branch and the second one-way branch, such as suspending heating, may choose to turn off the first one-way branch and the second one-way branch One or both, when the heating is not required, both the first one-way branch and the second one-way branch can be turned off. Preferably, both the first one-way branch and the second one-way branch are controllable by the switch control module 100 such that energy forward flow and reverse flow can be flexibly implemented. As another embodiment of the switching device 1, as shown in FIG. 3, the switching device 1 may include a second bidirectional switch K4 and a third bidirectional switch K5, the second bidirectional switch K4 and the third bidirectional switch K5 being mutually Reversely connected in series to form the first one-way branch and the second one-way branch, the switch control module 100 is respectively connected to the second bidirectional switch K4 and the third bidirectional switch K5 for controlling The two bidirectional switches K4 and the third bidirectional switch K5 are turned on and off to control the on and off of the first one-way branch and the second one-way branch. When the battery needs to be heated, the second bidirectional switches K4 and K5 may be turned on. For example, if the heating is suspended, one or both of the second bidirectional switch K4 and the third bidirectional switch K5 may be turned off, and the heating is not required. The second bidirectional switch K4 and the third bidirectional switch K5 can be broken. The implementation of the switching device 1 is capable of controlling the conduction and deactivation of the first one-way branch and the second one-way branch, respectively, to flexibly realize the forward and reverse energy flow of the circuit. 1001431#Item number deletion 1 Page 9/56 page 1013113152-0 201232996 As another embodiment of the switching device 1, as shown in FIG. 5, the switching device 1 may include a first switch K6, a first one-way The semiconductor element D11 and the second unidirectional semiconductor element 1)12, the first switch Κ6 and the first unidirectional semiconductor element D11 are connected in series to each other to constitute the first unidirectional branch, and the second unidirectional semiconductor element D12 constitutes the first The two-way branch switch control module 100 is connected to the first switch K6 for controlling the on and off of the first one-way branch by controlling the on and off of the first switch Κ6. In the switching device 1 shown in Fig. 5, when heating is required, the first switch Κ6 can be turned on, and when the heating is not required, the _ switch Κ6 can be turned off. The implementation of the switching device 如 as shown in Fig. 5, while realizing the flow of energy back and forth along relatively independent branches, does not enable the shutdown function when the energy is reversed. The present invention also proposes another embodiment of the switch device 2, as shown in FIG. 6, the switch device 丨 may further include a second opening 7 located in the first unidirectional branch towel, the second opening 7 In series with the first unidirectional half V body element D12, the switch control module 1 〇〇 is further connected to the second switch Κ7 for controlling the second unidirectional branch by controlling the conduction and the off of the second switch Κ7. Turn on and off. Thus, in the switching device 1 shown in Fig. 6, since the switches (i.e., the first switch Κ6 and the second switch Κ7) are present on both of the one-way branches, the shutdown function of the forward and reverse flow of energy is provided. . Preferably, the switching device 1 may further comprise a resistor in series with the first one-way branch and/or the second one-way branch for reducing the current of the battery heating circuit and avoiding excessive current in the circuit to the battery Cause damage. For example, a resistor R6 connected in series with the second bidirectional switch Κ4 and the second bidirectional switch Κ5 may be added to the switching device 1 shown in Fig. 3 to obtain a switching device implementation as shown in Fig. 4. Figure 7 also shows the switch-loaded Lina thief brain. 1 S W page/total 56 page 1013113152-0 201232996 An embodiment of the first embodiment is obtained by series-connecting a resistor R2 and a resistor R3 on two unidirectional branches in the switching device 1 shown in FIG. According to the technical solution of the present invention, when it is required to heat the battery E, the switch control module 100 controls the switching device 1 to be turned on, the battery E and the energy storage circuit are connected in series to form a loop, and the battery E charges the first charge storage element C1 as a loop. When the current in the current passes through the current peak and the positive direction is zero, the first charge storage element C1 starts to discharge, and the current flows from the first charge storage element C1 back to the battery E, and the forward and reverse currents in the loop flow through the damping element R1. The purpose of heating the battery E can be achieved by the heat generation of the damping element R1. The charging and discharging process is performed in a loop. When the temperature of the battery E rises to the stop heating condition, the switch control module 100 can control the switching device 1 to be turned off, and the heating circuit stops working. During the above heating process, when current flows from the tank circuit back to the battery E, the energy in the first charge memory element C1 does not completely flow back to the battery E, but some energy remains in the first charge memory element C1. Finally, the voltage of the first charge storage element C1 is finally made close to or equal to the battery voltage, so that the energy flow from the battery E to the first charge storage element C1 cannot be performed, which is disadvantageous for the loop operation of the heating circuit. Therefore, in the preferred embodiment of the present invention, an additional unit that superimposes the energy in the first charge storage element C1 and the energy of the battery E, and transfers the energy in the first charge storage element C1 to other energy storage elements is added. . When a certain time is reached, the switching device 1 is turned off, and the energy in the first charge storage element C1 is superimposed, transferred, and the like. The switching device 1 can be turned off at any time point in one cycle or a plurality of cycles; the turn-off time of the switching device 1 can be any time, for example, when the current in the loop is forward/reverse, zero time/not Shutdown can be implemented at zero hour. According to the required shutdown strategy, you can choose to open 1013113152-0 1 () {) 14313 {^ single number A0101 page 11 / 56 page 201232996 different implementations of the device 1, if only need to achieve forward current flow For the shutdown, the implementation form of the switching device 1 shown in, for example, FIG. 2 and FIG. 5 can be selected. 'If both the forward current and the reverse current are required to be turned off, it is necessary to select FIG. 4 and FIG. The two-way branch controllable switching device shown in Fig. 7 and Fig. 7 is shown. Preferably, the switch control module 100 is used to turn off the switch device 1 when the current flowing through the switch device 1 is zero after the switch device 1 is turned on or zero, so that the loop efficiency is high, and the current in the loop is The zero re-shutdown switching device 1 has less influence on the entire circuit. According to a preferred embodiment of the present invention, as shown in FIG. 8, the heating circuit provided by the present invention may include an energy superimposing unit connected to the energy storage circuit for turning on and off the switching device 1 Thereafter, the energy in the tank circuit is superimposed with the energy in the battery E. The energy superimposing unit enables the battery E to charge the superposed energy into the first charge storage element C1 when the switching device 1 is turned on again, thereby improving the operating efficiency of the heating circuit. According to an embodiment of the present invention, as shown in FIG. 9, the energy superimposing unit includes a polarity inversion unit 102 connected to the energy storage circuit for turning on and off the switching device 1 After the disconnection, the polarity of the voltage of the first charge storage element C1 is reversed, and the polarity of the voltage of the first charge storage element C1 after the polarity inversion is in series with the voltage polarity of the battery E, when the switching device 1 is turned on again. At this time, the energy in the first charge storage element C1 can be superimposed with the energy in the battery E. As an embodiment of the polarity inversion unit 102, as shown in FIG. 10, the polarity inversion unit 102 includes a first single pole double throw switch J1 and a second single pole double throw switch J2, the first single pole double throw switch J1 and the second single pole double throw switch J2 are respectively located at both ends of the first charge memory element C1, and the 1013113152-0 page 12/56 pages 201232996 the first single pole double throw switch ji is connected to the energy storage line. In the circuit, a first output line of the first single-pole double-throw switch J1 is connected to a first plate of the first charge memory element C1, and an i-out line of the first single-pole double-throw switch J1 is connected to the first a second plate of a charge storage element C1, an incoming line of the second single-pole double-throw switch J2 is connected in the energy storage circuit, and a first outgoing line of the second single-pole double-throw switch J2 is connected to the first a second plate of the charge storage device C1, a second outlet of the second single-pole double-throw switch J2 is connected to the first plate of the first charge storage element C1, and the switch control module 100 is also The first single pole double throw switch J1 and the second single pole double throw switch J2 are respectively connected, For reversing the voltage polarity of the first charge storage element C1 by changing the connection relationship between the incoming and outgoing lines of the first single-pole double-throw switch J1 and the second single-pole double-throw switch J2, according to the above implementation In a manner, the connection relationship between the incoming and outgoing lines of the first single-pole double-throw switch J1 and the second single-pole double-throw switch J2 may be set in advance, so that when the switching device K1 is turned on, the first single-pole double-throw switch J1 The incoming line is connected to the first outgoing line, and the incoming line of the second single-pole double-throw switch J2 is connected to the first outgoing line. When the switching device K1 is turned off, the first single-pole double-throw switch J1 is controlled by the switch control module 100. The incoming line is switched to be connected to its second outgoing line, and the incoming line of the second single-pole double-throw switch J2 is switched to be connected to its second outgoing line, thereby achieving the purpose of inverting the polarity of the voltage of the first charge storage element C1. As another embodiment of the polarity inversion unit 102, as shown in FIG. 11, the polarity inversion unit 102 includes a third unidirectional semiconductor element D3, a second current memory element L2, and a third switch K9, A charge memory element C1, a second current memory element L2, and a third switch K9 are sequentially connected in series with 1QQ14313 (^, single number A0101, page 13 / page 56, 1013113152-0 201232996, the third unidirectional semiconductor element D3 and Connected between the first charge storage element C1 and the second current memory element L 2 or the second current memory element L2 and the third switch K9, the switch control module 100 and the third switch K9 The connection is used to invert the voltage polarity of the first charge memory element C1 by controlling the third switch K9 to be turned on. According to the above embodiment, when the switch device 1 is turned off, the switch control module 100 can be controlled. The third switch K9 is turned on, whereby the first charge storage element C1 forms a LC oscillation circuit with the third unidirectional semiconductor element D3, the second current memory element L2, and the third switch K9, and the first charge memory element C1 passes The two current memory element L2 is discharged, and the current flowing through the second current memory element L2 reaches zero after the current flowing through the second current memory element L2 reaches the polarity reverse polarity of the first charge memory element C1. In another embodiment of the unit 102, as shown in FIG. 12, the polarity inversion unit 102 includes a first DC-DC module 2 and a second charge memory element C2, and the first DC-DC module 2 and the The first charge memory element C1 and the second charge memory element C2 are respectively connected, and the switch control module 100 is further connected to the first DC-DC module 2 for controlling the first DC-DC module 2 Working to transfer energy in the first charge storage element C1 to the second charge storage element C2, and to reversely transfer energy in the second charge storage element C2 back to the first charge storage element C1 In order to achieve the inversion of the polarity of the voltage of the first charge memory element C1. The first DC-DC module 2 is a DC-DC converter circuit commonly used in the art for realizing voltage polarity inversion, Invented the specific circuit junction of the first DC-DC module 2 Any limitation is imposed as long as the voltage polarity inversion of the first charge storage element C1 can be reversed, and those skilled in the art can 10014313 (^ single number A0101 page 14/56 pages 1013113152-0 201232996 according to actual operation. It is necessary to add, replace or delete the components in the circuit. Fig. 13 is an embodiment of the first DC-DC module 2 provided by the present invention, as shown in Fig. 13, the first DC- The DC module 2 includes: a bidirectional switch Q1, a bidirectional switch _2, a bidirectional switch Q3, a double (four) _4, a first transformer T1, a unidirectional semiconductor component D4, a unidirectional semiconductor component 卯, a current memory component L3, a bidirectional switch q5, a bidirectional switch Handsome, second transformer τ2, unidirectional semiconductor device 卯, unidirectional semiconductor device, and unidirectional semiconductor device D8. In this embodiment, the bidirectional ON_, bidirectional switch Q2, bidirectional switch Q3, and bidirectional switch Q4 are both MOSFETs, and the bidirectional switch 卯 and the bidirectional switch (8) are IGBTs. Wherein the first transformer pin, the 4 pin and the 5 pin are the same name end, and the 2nd pin and the 3 pin of the second transformer Τ2 are the same name end. Wherein, the anode of the unidirectional semiconductor component D7 is connected to the capacitor (the & terminal of the 1st, the cathode of the unidirectional half V body component D7 and the bidirectional switch and the bidirectional switch of the bidirectional opening 2) Which drain is connected, the source of the bidirectional open_2 is connected to the drain of the bidirectional switch Q4, and the source of the bidirectional switch (10) and the bidirectional open_4 is connected to the b terminal of the capacitor C1, thereby forming a full bridge, a path, and thus The voltage polarity of the capacitor C1 is positive at the 3 terminals and negative at the b terminal. In the *Hai full bridge circuit, the bidirectional switch Q1, the bidirectional switch Q2 is the upper arm, the switch Q3, and the bidirectional switch are the lower arm, the whole The bridge circuit is connected to the second charge storage element C2 through the transformer T1; the first leg of the first transformer τι is connected to the first node N1, the second leg is connected to the second node, and the 3 pin and the 5 pin are respectively connected to the unidirectional semiconductor The element D4 and the anode 10014313 of the unidirectional semiconductor element D 5 are connected to one end of the current storage element L3, and the cathode is connected to one end of the current storage element L3, the single-phase semiconductor element D4 and the 1013113152-0 of the unidirectional semiconductor element D5 are connected. The other end of the current memory element L3 and the second charge The d terminal of the component C2 is connected; the 4 pin of the repeater T1 is connected to the c terminal of the second charge memory element C2, and the anode of the unidirectional semiconductor component]) 8 is connected to the d terminal of the second charge memory component C2, one direction The cathode of the semiconductor element D8 is connected to the b terminal of the first charge memory element ci. At this time, the voltage polarity of the second charge memory element C2 is negative at the c terminal and positive at the d terminal. The c terminal of the second charge memory device C2. The collector of the bidirectional switch Q5 connected to the bidirectional switch Q5 is connected to the pin 2 of the transformer T2, and the pin 1 of the transformer T2 is connected to the a terminal of the first charge memory element C1, and the pin 4 of the T2 is the first charge. The a terminal of the memory element C1 is connected, the 3 pin of the transformer T2 is connected to the anode of the unidirectional semiconductor element D6, the cathode of the unidirectional semiconductor component]6 is connected to the collector of the bidirectional switch Q6, and the emitter and the second charge of the bidirectional switch q6 are connected. The b-end of the memory element C2 is connected. The bidirectional switch Q1, the bidirectional switch Q2, the bidirectional switch q3, the bidirectional switch Q4, the bidirectional switch Q5 and the bidirectional switch Q6 are respectively turned on and off by the control of the switch control module 100. The following describes the working process of the first DC-DC module 2: 1. After the switching device 1 is turned off, the switch control module 1 〇〇 controls the bidirectional switch Q5, the bidirectional switch Q6 is turned off, and the control is performed. The bidirectional switch... and the bidirectional switch Q4 are simultaneously turned on to form the A phase, the bidirectional switch q2 is controlled, and the bidirectional switch 叩 is simultaneously turned on to form the B phase, and the human phase and the B phase are alternately turned on to form a full bridge circuit for operation; When the full bridge circuit is operated, the energy on the first charge storage element π is transferred to the second charge storage element 1013113152 through the first transformer T1, the unidirectional semiconductor element M, the unidirectional semiconductor element D5, and the current memory element L3. 0 C2, at this time, the voltage polarity of the second charge memory element C2 is negative at the c-end '1〇()14313{^单号A0101 Page 16/56 pages 201232996 The d-end is positive. 3. The switch control module 100 controls the bidirectional switch Q5 to be turned on, and the first charge storage element C1 forms a path through the second transformer T2 and the unidirectional semiconductor element D8 and the second charge storage element C2, thereby, the second charge storage element The energy on C2 is reversely transferred to the first charge storage element C1, wherein part of the energy is stored on the second transformer T2; at this time, the switch control module 100 controls the bidirectional switch Q5 to be turned off and the bidirectional switch Q6 to be closed. Transferring the energy stored on the second transformer T2 to the first charge storage element C1 through the second transformer T2 and the unidirectional semiconductor element D6 to achieve reverse charging of the first charge storage element C1, at which time the first charge memory The polarity of the voltage of the element C1 is reversed such that the a terminal is negative and the b terminal is positive, thereby achieving the purpose of reversing the polarity of the voltage of the first first charge storage element C1. In order to recycle energy in the energy storage circuit, in accordance with a preferred embodiment of the present invention, as shown in FIG. 14, the heating circuit provided by the present invention may include an energy transfer unit, the energy transfer unit and the energy storage The circuit is connected to transfer energy in the energy storage circuit to the energy storage element after the switching device 1 is turned on and then turned off. The energy transfer unit aims to recycle energy in the storage circuit. The energy storage component can be an external capacitor, a low temperature battery or a power grid, and other electrical equipment. Preferably, the energy storage component is a battery E provided by the present invention, and the energy transfer unit includes a power recharge unit 103, and the power recharge unit 103 is connected to the energy storage circuit for being turned on at the switch device 1. After turning off again, the energy in the tank circuit is transferred to the battery E as shown in Fig. 15. According to the technical solution of the present invention, after the switching device 1 is turned off, the energy in the energy storage circuit is transferred to the energy transfer unit through the energy 1013113152-0 1{){) 14313 {^ single number A0101 page 17 / 56 page 201232996 In the battery E, the transferred energy can be recirculated after the switching device 1 is turned on again, and the operating efficiency of the heating circuit is improved. As an embodiment of the power recharging unit 103, as shown in FIG. 16, the power recharging unit 103 includes a second DC-DC module 3, the second DC-DC module 3 and the first electric charge. The memory component C1 and the battery E are respectively connected, and the switch control module 100 is further connected to the second DC-DC module 3 for controlling the second DC-DC module 3 to operate the first charge. The energy in the memory element C1 is transferred to the battery. The second DC-DC module 3 is a DC-DC converter circuit commonly used in the art for implementing energy transfer. The present invention does not impose any limitation on the specific circuit structure of the second DC-DC module 3, as long as it can be implemented. The energy of the first charge storage element C1 can be transferred, and those skilled in the art can add, replace or delete the components in the circuit according to the actual operation. FIG. 17 is an embodiment of the second DC-DC module 3 provided by the present invention. As shown in FIG. 17, the second DC-DC module 3 includes: a bidirectional switch S1, a bidirectional switch S2, and a bidirectional switch. S3, a bidirectional switch S4, a third transformer T3, a current memory element L4, and four unidirectional semiconductor elements. In this embodiment, the bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are all MOSFETs. Wherein the 1st pin and the 3rd leg of the third transformer T3 are the same name end, and the negative electrodes of the two unidirectional semiconductor elements of the four unidirectional semiconductor elements are connected in groups, and the contacts pass through the current memory element L4 and the battery E The positive terminal is connected, the other two unidirectional semiconductor elements are connected in a positive group, the contacts are connected to the negative terminal of the battery E, and the connection points between the groups and the third transformer T3 are respectively 3 feet and 10014313^^ « A0101 Page 18 of 56 Page 1013113152-0 201232996 4 feet connected, thus forming a bridge rectifier circuit. The source of the bidirectional switch S1 is connected to the drain of the bidirectional switch S3, the source of the bidirectional switch S2 is connected to the drain of the bidirectional switch S4, the drain of the bidirectional switch si, the bidirectional switch S 2 and the first charge memory element c The positive terminal of 1 is connected, and the source of the bidirectional switch S3 and the bidirectional switch S4 is connected to the negative terminal of the first charge storage element C1, thereby constituting a full bridge circuit. In the full bridge circuit, the bidirectional switch S1, the bidirectional switch S2 is the upper arm, the bidirectional switch S3, the bidirectional switch S4 is the lower arm, and the third transformer has the 1 pin of the 3 and the bidirectional switch S1 and the bidirectional switch S3. Node connection, node connection between pin 2 and bidirectional switch S2 and bidirectional switch S4. The bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are respectively turned on and off by the control of the switch control module 1 〇 . The following describes the working process of the second DC-DC module 3: 1 'After the switching device 1 is turned off, the switch control module 1 〇〇 controls the bidirectional switch S1 and the bidirectional switch S4 to be simultaneously turned on to constitute Eight phases, control bidirectional switch Q S2, bidirectional switch S3 is simultaneously turned on to form b phase, and is controlled by controlling the eight-phase and B-phase alternately conducting to form a full-bridge circuit; 2. when the full-bridge circuit is working, The energy on a charge storage element C1 is transferred to the battery through the third transformer T3 and the rectifying circuit, which converts the input alternating current into a direct current output to the battery E for the purpose of recharging the electric quantity. In order to enable the heating circuit provided by the present invention to recover the energy in the energy storage circuit while improving the working efficiency, according to a preferred embodiment of the present invention, as shown in FIG. 18, the heating circuit provided by the present invention may include Energy superposition and transfer unit, the energy superimposition and 'w 10014313 (^ single number ΑΟίοι page 19 / total page 56 early 1013113152-0 201232996 are connected to the energy storage circuit for after the switch device 1 is turned on and then turned off 'Transfer the energy of the energy storage wipes to the energy storage component towel, and then superimpose the energy of the energy storage circuit with the energy of the battery towel. The energy superposition and transfer single can improve the efficiency of the heating circuit. The energy in the energy storage circuit can be recycled. The superposition of the remaining energy in the circuit of the moon b and the energy in the battery can be achieved by inverting the polarity of the voltage of the first charge storage element C1. When the polarity of the voltage of the charge storage element C1 is reversed, its polarity is in series with the voltage polarity of the battery E, thereby, when the next turn-on switch When set to 1, the energy in the battery E can be superimposed with the energy in the first-charge memory element C1. Therefore, according to an embodiment, as shown in Fig. 19, the energy superimposing and transferring unit includes a DC-DC module. 4. The DC-DC module 4 is respectively connected to the first electrical and C memory component ci and the battery, and the switch control wedge group 100 is further connected to the DC-DC module 4 for controlling DC The -DC module 4 operates to transfer the energy in the first charge-charge memory element C1 to the charge-distributing element' and then superimpose the remaining energy in the first-charge memory element C1 with the energy in the battery. The K-DC module 4 is a DC-DC converter circuit commonly used in the art for implementing energy transfer and DX-reversal. The present invention does not impose any limitation on the specific circuit structure of the DC-DC module 4 as long as the The energy transfer and voltage polarity inversion of a charge memory element 即可 can be performed, and those skilled in the art can add, replace or delete components in the circuit according to the needs of actual operation. 10014313(P^A〇101 (4) The implementation of the team-DC module 4, such as the first _ Shown, DC DC electrode group 4 comprising: bidirectional switching, the bidirectional switch 10101 ^ on ^ switch Page 20/56 Total 201 232 996 1013113152-0
S3、雙向開關S4、雙向開關S5、雙向開關S6、第四變壓 器T4、單向半導體元件D13、單向半導體元件D14、電流 記憶元件L4、以及四個單向半導體元件。在該實施方式 中,所述雙向開關S1、雙向開關S2、雙向開關S3、雙向 開關S4均為M0SFET,雙向開關S5和雙向開關S6為IGBT 其中,第四變壓器T4的1腳和3腳為同名端,所述四個單 向半導體元件中的兩個单向半導體元件負極相接成組’ 接點通過電流記憶元件L4與電池E的正端連接,另兩個單 向半導體元件正極相接成組,接點與電池E的負端連接, 且組與組之間的對接點分別通過雙向開關S5和雙向開關 S6與第三變壓器T3的3腳和4腳連接,由此構成橋式整流 電路。 其中,雙向開關S1的源極與雙向開關S3的漏極連接,雙 向開關S2的源極與雙向開關S4的漏極連接,雙向開關S1 、雙向開關S2的漏極通過單向半導體元件D13與第一電荷 記憶元件C1的正端連接,雙向開關S3、雙向開關S4的源 極通過單向半導體元件D14與第一電荷記憶元件C1的負端 連接,由此構成全橋電路。 在該全橋電路中,雙向開關S1、雙向開關S2為上橋臂, 雙向開關S3、雙向開關S4為下橋臂,第四變壓器14的1腳 與雙向開關S1和雙向開關S3之間的節點連接、2腳與雙向 開關S2和雙向開關S4之間的節點連接。 其中,雙向開關S1、雙向開關S2、雙向開關S3和雙向開 關S4、雙向開關S5和雙向開關S6分別通過所述開關控制 模組100的控制來實現導通和關斷。 1()()14313(^單編號 A0101 第 21 頁 / 共 56 頁 1013113152-0 201232996 下面對所述DC-DC模組4的工作過程進行描述: 1、 在開關裝置1關斷後,當需要對第一電荷記憶元件C1 執行電量回灌以實現能量轉移時,所述開關控制模組100 控制雙向開關S5和S6導通,控制雙向開關S1和雙向開關 S4同時導通以構成A相,控制雙向開關S2、雙向開關S3同 時導通以構成B相,通過控制所述A相、B相交替導通以構 成全橋電路進行工作; 2、 當所述全橋電路工作時,第一電荷記憶元件C1上的能 量通過第四變壓器T4和整流電路轉移到電池E上,所述整 流電路將輸入的交流電轉化為直流電輸出至電池E,達到 電量回灌的目的; 3、 當需要對第一電荷記憶元件C1進行極性反轉以實現能 量疊加時,所述開關控制模組100控制雙向開關S5和雙向 開關S6關斷,控制雙向開關S1和雙向開關S4或者雙向開 關S2和雙向開關S3兩組中的任意一組導通;此時,第一 電荷記憶元件C1中的能量通過其正端、雙向開關S1、第 四變壓器T4的原邊、雙向開關S4反向回到其負端,或者 通過其正端、雙向開關S2、第四變壓器T4的原邊、雙向 開關S3反向回到其負端,利用T4的原邊勵磁電感,達到 對第一電荷記憶元件C1進行電壓極性反轉的目的。 根據另一種實施方式,所述能量疊加和轉移單元可以包 括能量疊加單元和能量轉移單元,所述能量轉移單元與 所述儲能電路連接,用於在開關裝置1導通再關斷後,將 儲能電路中的能量轉移至儲能元件中,所述能量疊加單 元與所述儲能電路連接,用於在所述能量轉移單元進行 能量轉移之後,將儲能電路中的剩餘能量與電池中的能 100143130^^'^^ A〇101 第22頁/共56頁 1013113152-0 201232996 量進行疊加。 其中,所述能量疊加單元和能量轉移單元均可以採用本 發明在前述實施方式中提供的能量疊加單元和能量轉移 單元,其目的在於實現對第一電荷記憶元件ci的能量轉 移和疊加,其具體結構和功能在此不再贅述。 作為本發明的一種實施方式,為了使加熱電路迴圈工作 ,還可以對第一電荷記憶元件C1中的能量進行消耗。因 此,如第20圖所示,所述加熱電路還包括與所述第一電 荷記憶元件C1連接的能量消耗單元,該能量消耗單元用 於在開關裝置1導通再關斷後,對第一電荷記憶元件C1中 的能量進行消耗。 該能量消耗單元可以在加熱電路中單獨使用,在開關裝 置1導通再關斷後,直接對第一電荷記憶元件C1中的能量 進行消耗,也可以與以上多種實施方式相結合,例如, 該能量消耗單元可以與包括能量疊加單元的加熱電路結 合,在開關裝置1導通再關斷後、能量疊加單元進行能量 疊加操作之前對第一電荷記憶元件C1中的能量進行消耗 ,也可以與包括能量轉移單元的加熱電路結合,在開關 裝置1導通再關斷後、能量轉移單元進行能量轉移之前或 者在能量轉移單元進行能量轉移之後對第一電荷記憶元 件C1中的能量進行消耗,同樣可以與包括能量疊加和轉 移單元的加熱電路結合,在開關裝置1導通再關斷後、能 量疊加和轉移單元進行能量轉移之前對第一電荷記憶元 件C1中的能量進行消耗,或者在能量疊加和轉移單元進 行能量轉移之後、進行能量疊加之前對第一電荷記憶元 件C1中的能量進行消耗,本發明不對此進行限定,並且 1QQ14313(^單編號A0101 第23頁/共56頁 1013113152-0 201232996 ,通過以下實施方式可以更清楚地瞭解該能量消耗單元 的工作過程。 根據一種實施方式,如第21圖所示,所述能量消耗單元 包括電壓控制單元101,該電壓控制單元101用於在開關 裝置1導通再關斷時,將第一電荷記憶元件C1兩端的電壓 值轉換成電壓設定值。該電壓設定值可以根據實際操作 的需要進行設定。 如第21圖所示,所述電壓控制單元101包括電阻R5和第四 開關K8,所述電阻R5和第四開關K8彼此串聯之後並聯在 所述第一電荷記憶元件C1的兩端,所述開關控制模組100 還與第四開關K8連接,所述開關控制模組100還用於在控 制開關裝置1導通再關斷後控制第四開關K8導通。由此, 第一電荷記憶元件C1中的能量可以通過電阻R5進行消耗 〇 所述開關控制模組100可以為一個單獨的控制器,通過對 其内部程式的設置,可以實現對不同的外接開關的通斷 控制,所述開關控制模組100也可以為多個控制器,例如 針對每一個外接開關設置對應的開關控制模組100,所述 多個開關控制模組100也可以集成為一體,本發明不對開 關控制模組100的實現形式作出任何限定。 下面結合第22圖-第31圖對電池E的加熱電路的實施方式 的工作方式進行簡單介紹,其中第22、24、26、28、30 圖顯示的是電池E的加熱電路的各種實施方式,第23、25 、27、29圖顯示的是對應的波形圖。需要注意的是,雖 然本發明的特徵和元素參考第22、24、26、28、30圖以 特定的結合進行了描述,但每個特徵或元素可以在沒有 10014313(^^ A〇101 第24頁/共56頁 1013113152-0 201232996 其他特徵和元素的情況下單獨使用,或在與或不與其他 特徵和元素結合的各種情況下使用。本發明提供的電池E 的加熱電路的實施方式並不限於第22、24、26、28、30 圖所示的實現方式。第23、25、27、29圖所示的波形圖 中的網格部分表示在該段時間内可以單次或多次對開關 施加驅動脈衝,並且脈衝的寬度可以根據需要進行調節 在如第22圖所示的電池E的加熱電路中,使用一個第一雙 向開關K3構成開關裝置1,該開關裝置1與阻尼元件R1、 第一電荷記憶元件C1以及第一電流記憶元件L1串聯,第 三單向半導體元件D3、第二電流記憶元件L2和第三開關 K9構成極性反轉單元102,開關控制模組100可以控制第 三開關K9和開關K3的導通和關斷。第23圖示出了第22圖 所示的加熱電路的主回路電流、C1電壓和極性反轉 回路電流119波形圖,第22圖所示的加熱電路的工作過程 L· u 如下: a) 開關控制模組100控制第一雙向開關K3導通,如第23 圖所示的tl時間段,電池E通過第一雙向開關K3、第一電 荷記憶元件C1進行正向放電(如第23圖中的tl時間段的 回路電流的正半週期所示)和反向充電(如第23圖中的 tl時間段的回路電流的負半週期所示); b) 開關控制模組100控制第一雙向開關K3在反向電流為 零時關斷; c) 開關控制模組100控制第三開關K9導通,極性反轉單 元102工作,第一電荷記憶元件C1通過第三單向半導體元 件D3、第二電流記憶元件L2和第三開關K9組成的回路放 1013113152-0 1{)()14313(^單編號 A0101 第 25 頁 / 共 56 頁 201232996 電,並達到電壓極性反轉的目的,之後,開關控制模組 100控制第三開關K9關斷’如第23圖中的t2時間段所示 f d)重複步驟a)至c),電池E不斷通過充放電實現加熱 ’直至電池E達到停止加熱條件為止。 在如第24圖所示的電池E的加熱電路中,使用相互串聯的 第一開關K6、第一單向半導體元件d 11 (第一單向支路) 以及相互串聯的第二開關K7、第二單向半導體元件D12 ( 第一單向支路)構成開關裝置1 ’第二DC-DC模組3構成將 第一電荷記憶元件C1中的能量轉移回電池e的電量回灌單 元10 3,開關控制模組1 〇 〇可以控制第一開關κ 6、第二開 關K7的導通和關斷以及第二DC-DC模組.3的工作與否。第 25圖示出了第24圖所示的加熱電路的主回路電流I主、ci 電壓VC1波形圖’第24圖所示的加熱電路的工作過程如下 a)開關控制模組1〇〇控制第一開關K6、第二開關K7導通 ,如第25圖所示的tl時間段’電池E通過第一開關K6、第 一單向半導體元件D11、第一電荷記憶元件C1進行正向放 電(如第25圖中的tl時間段所示),並且通過第一電荷 記憶元件C1、第二開關K7、第二單向半導體元件D12反向 充電(如第25圖中的t2時間段所示); b) 開關控制模組1〇〇控制第一開關K6、第二開關K7在反 向電流為零時關斷; c) 開關控制模組1〇〇控制第二DC-DC模組3工作,第一電 何記憶元件C1通過第二D C - D C模組3將交流電轉化為直流 ,之後控制第二DC-DC 1013113152-0 電輸出到電池E中,實現電量回灌 10014313产單編號A〇1〇l 第26頁/共56頁 201232996 模組3停止工作,如第25圖中所示的t3時間段; d)重複步驟a)至c),電池e不斷通過放電實現加熱, 直至電池E達到停止加熱條件為止。 如第26圖所示的電池e的加熱電路,使用相互串聯的第_ 開關K6、第一單向半導體元件D11 (第一單向支路)以及 相互串聯的第二開關K7、第二單向半導體元件D12 (第二 單向支路)構成開關裝置i,DC—DC模組4構成將第一電荷 記憶元件C1中的能量轉移回電池£並且之後將第一電荷記 憶元件C1極性反轉以在下一充放電週期與電池E的能量進 〇 行疊加的能量疊加和轉移單元,開關控制模組1〇〇可以控 制第一開關K6、第二開關K7的導通和關斷以及沉—此模 組4的工作與否。第27圖示出了第26圖所示的加熱電路的 主回路電流I主、C1電壓vci波形圖,第26圖所示的加熱 電路的工作過程如下: a )開關控制模組1 〇 〇控制第一開關κ 6、第二開關κ 7導通 ,如第27圖所示的tl時間段,電池ε通過第一開關Κ6、第 一單向半導體元件Dll、第一電荷記憶元件C1進行正向放 〇 電(如第27圖中的tl時間段所示),並且通過第一電荷 記憶元件C1、第二開關K7、第二單向半導體元件di2反向 充電(如第27圖中的t2時間段所示); b) 開關控制模組1〇〇控制第一開關K6、第二開關K7在反 向電流為零時關斷; c) 開關控制模組100控制DC-DC模組4工作,第一電荷記 憶元件C1通過DC-DC模組4將交流電轉化為直流電輸出到 電池E中’實現電量回灌’然後DC-DC模組4將第一電荷記 憶元件C1的極性反轉,在C1極性反轉之後控制dc-DC模 *單煸號A0101 第27頁/共56頁 10014313(Γ 1013113152-0 201232996 組4停止工作,如第27圖中所示的t3、t4時間段; d)重複步驟a)至c) ’電池E不斷通過放電實現加熱, 直至電池E達到停止加熱條件為止。 在第2 8圖所示的電池E的加熱電路中,第一電荷記憶元件 C1和開關裝置1各自都有多個,第一電荷記憶元件C1和開 關裝置1--對應串聯構成多個支路,該多個支路彼此並 聯之後與第一電流記憶元件L1、阻尼元件R1、電池E串聯 ,母個開關裝置1採用的是兩單向支路均可控的方式,極 性反轉單元102可以採用上文所述的任一種極性反轉單元 102的實現方式’例如採用第丨丨圖所示的結構,在第28圖 中未示出極性反轉單元102具體的電路結構。開關控制模 組100可以控制每個開關裝置1的導通和關斷以及極性反 轉單元102的工作與否。第29圖示出了第28圖所示的加熱 電路的波形圖。第28圖所示的加熱電路的工作過程如下 a) 開關控制模組1〇〇控制第一開關K6、K60、K61、K62 導通(第二開關K7、K70、K71、K72仍然閉合),電流 正向流動,電池E放電,分別給第一電荷記憶元件C1、 C12、C13和C14充電’如第29圖中的tl時間段所示;第 一開關K6、K60、K61、K62並聯導通,能夠增大回路中 的電流。 b) 回路電流的正半週期結束後,開關控制模組100控制 第一開關K6、K60、K61、K62關斷,並控制第二開關K7 、K70、K71、K72依次導通,電流反向流動,如t2時間 1013113152-0 段所示’由於第一電荷記憶元件Cl、C12、C13和C14依 次給電池E充電,而不是同時充電,能夠減小反向電流, 1_4313(?單編號鹿〇1 帛28頁/共56頁 201232996 第29圖中’ S卜S4為第二開關Κ7、K70、K71、K72依次 導通時的反向電流波形圖;反向充電結束後,第二開關 Κ7、Κ70、Κ71、Κ72均關斷; c) 開關控制模組1〇〇控制多個極性反轉單元1〇2工作,將 各個電荷記憶元件上的電壓極性反轉,如t3時間段所示 〇 d) 重複步驟a)至c),電池E不斷通過放電實現加熱, 直至電池E達到停止加熱條件為止。 如第30圖所示的電池E的加熱電路,使用相互串聯的第一 開關K6、第一單向半導體元件D11 (第一單向支路)以及 相互串聯的第二開關K7、第二單向半導體元件D12 (第二 單向支路)構成開關裝置1 ’電阻R5和第四開關K8構成電 壓控制單元101,第二電流記憶元件L2、半導體元件D3和 第三開關K9構成極性反轉單元1〇2,開關控制模組1〇〇可 以控制第一開關K6、第二開關K7、第四開關K8和第三開 關K9的導通和關斷。第31圖示出了第30圖所示的加熱電 路的主回路電流I 、C1電壓Vri極性反轉回路電流I波 形圖’第30圖所示的加熱電路的工作過程如下: a) 開關控制模組1〇〇控制第一開關K6、第二開關K7導通 ,如第31圖所示的tl時間段,電池E通過第一開關K6、第 一單向半導體元件D11、第一電荷記憶元件C1進行正向放 電(如第31圖中的tl時間段所示),並且通過第一電荷 記憶元件C1、第二開關K 7、第二單向半導體元件d 12反向 充電(如第31圖中的t2時間段所示); b) 開關控制模組100控制第一開關K6、第二開關K7在反 向電流為零時關斷; 匪似#單編號A0101 第29頁/共56頁 1013113152-0 201232996 C)開關控制模組100控制第四開關K8導通,通過阻尼元 件R8將第一電荷記憶元件C1上的能量進行消耗,如第31 圖的t3時間段所示;然後開關控制模組1〇〇控制第四開關 K8關斷,並且控制第三開關K9導通,通過第二電流記憶 70件L2、半導體元件D3和第三開關Κ9將第一電荷記憶元 件C1的極性反轉,在ci極性反轉之後,控制第三開關“ 關斷,如第31圖中所示的14時間段; d)重複步驟a)至c),電池E不斷通過放電實現加熱, 直至電池E達到停止加熱條件為止。 採用本發明提供的加熱電路,由於儲能電路與電池^聯 ,當給電池E加熱時,由於第-電荷記憶元件⑽存在, 能夠避免開關裝置1失效短路時引起的安全問題,從而有 效地保護電池E。 以上結合附圖詳細描述了本發明的優選實施方式,但是 ’本發明並不限於上述實施方式中的具體細節,在本發 明的技術構思範_,可以對本發明的技術方案進行多 種簡單變型,這些簡單變型均屬於本發明的保護範圍。 另外需要說明較’在上述具體實施方式情描述的各 個具體技術频,在不㈣的情&下,可以通過任何合 適的方式進行组合,為了避免不㈣的重複,本發㈣ 各種可能的組合方式不再另行說明。此外,本發明的各 種不同的實施方式之間也可以進細意組合,只要其不 違背本發明的思想,其同樣應當視為本發明所公開的内 容。 【圖式簡單說明】 步理解’並且構成說明 [〇〇〇5]附圖是用來提供對本發明的進一 10014313(^单編號A0101 第30頁/共56頁 1013113152-0 201232996 書的一部分’與下面的具體實施方式一起用於解釋本發 明’但並不構成對本發明的限制。在附圖中·· 第1圖為本發明提供的電池的加熱電路的示意圖; 弟2圖為第1圖中的開關裝置的一種實施方式的示意圖; 第3圖為第1圖中的開關裝置的一種實施方式的示意圖; 第4圖為第1圖中的開關裝置的一種實施方式的示意圖; 第5圖為第1圖中的開關裝置的一種實施方式的示意圖; 第6圖為第1圖中的開關裝置的一種實施方式的示意圖; 第7圖為第1圖中的開關裝置的一種實施方式的示意圖; 第8圖為本發明提供的電池的加熱電路的一種優選實施方 式的示意圖; 第9圖為第8圖中的能量疊加單元的一種實施方式的示意 圖, 第10圖為第9圖中的極性反轉單元的一種實施方式的示意 Τ£| · 圍, 第11圖為第9圖中的極性反轉单元的一種實施方式的示意 圖, 第12圖為第9圖中的極性反轉单元的一種實施方式的示意 圖; 第13圖為第12圖中的第一 DC-DC模組的一種實施方式的 示意圖; 第14圖為本發明提供的電池的加熱電路的一種優選實施 方式的示意圖; 第15圖為本發明提供的電池的加熱電路的一種優選實施 方式的示意圖, 第16圖為第15圖中的電量回灌單元的一種實施方式的示 顯㈣(Ρ編號麵 第31頁/共56頁 1013113152-0 201232996 意圖; 第17圖為第16圖中的第二dc-DC模組的一種實施方式的 示意圖; 第18圖為本發明提供的電池的加熱電路的一種優選實施 方式的示意圖; 弟19圖為第18圖中的能量疊加和轉移單元的一種優選實 施方式的示意圖; 第20圖為本發明提供的電池的加熱電路的一種優選實施 方式的示意圖; 第21圖為第20圖中的能量消耗單元的一種實施方式的示 意圖; 第22圖為本發明提供的電池的加熱電路的一種實施方式 的不意圖, 第2 3圖為第2 2圖所示的電池的加熱電路所對應的波形時 序圖; 第24圖為本發明提供的電池的加熱電路的一種實施方式 的示意圖; 第25圖為第24圖所示的電池的加熱電路所對應的波形時 序圖; 第26圖為本發明提供的電池的加熱電路的一種實施方式 的示意圖; 第27圖為第26圖所示的電池的加熱電路所對應的波形時 序圖; 第28圖為本發明提供的電池的加熱電路的一種實施方式 的示意圖; 第29圖為第28圖所示的電池的加熱電路所對應的波形時 10014313(^^^ A〇101 第32頁/共56頁 1013113152-0 201232996 序圖, 第30圖為本發明提供的電池的加熱電路的一種實施方式 的不意圖, 第31圖為第28圖所示的電池的加熱電路所對應的波形時 序圖。 【主要元件符號說明】 [0006] 100 :開關控制模組 101 :電壓控制單元 102 :極性反轉單元 103 :電量回灌單元 1 :開關裝置 2、3、4 : DODC模組 LI、L2、L3、L4 :電流記憶元件S3, bidirectional switch S4, bidirectional switch S5, bidirectional switch S6, fourth transformer T4, unidirectional semiconductor element D13, unidirectional semiconductor element D14, current memory element L4, and four unidirectional semiconductor elements. In this embodiment, the bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are all MOSFETs, and the bidirectional switch S5 and the bidirectional switch S6 are IGBTs. The 1st and 3rd pins of the fourth transformer T4 have the same name. The two unidirectional semiconductor elements of the four unidirectional semiconductor elements are connected in a group of contacts. The contacts are connected to the positive terminal of the battery E through the current memory element L4, and the positive electrodes of the other two unidirectional semiconductor elements are connected to each other. The group is connected to the negative terminal of the battery E, and the connection point between the group and the group is connected to the 3rd and 4th pins of the third transformer T3 through the bidirectional switch S5 and the bidirectional switch S6, respectively, thereby forming a bridge rectifier circuit . The source of the bidirectional switch S1 is connected to the drain of the bidirectional switch S3, the source of the bidirectional switch S2 is connected to the drain of the bidirectional switch S4, and the drains of the bidirectional switch S1 and the bidirectional switch S2 are passed through the unidirectional semiconductor component D13 and the The positive terminal of the charge storage element C1 is connected, and the source of the bidirectional switch S3 and the bidirectional switch S4 is connected to the negative terminal of the first charge storage element C1 via the unidirectional semiconductor element D14, thereby constituting a full bridge circuit. In the full bridge circuit, the bidirectional switch S1, the bidirectional switch S2 is the upper arm, the bidirectional switch S3, the bidirectional switch S4 is the lower arm, the node of the fourth transformer 14 and the node between the bidirectional switch S1 and the bidirectional switch S3 Connection, 2 pin and node connection between bidirectional switch S2 and bidirectional switch S4. The bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3 and the bidirectional switch S4, the bidirectional switch S5 and the bidirectional switch S6 are respectively turned on and off by the control of the switch control module 100. 1()()14313(^单单号A0101第21页/共56页1013113152-0 201232996 The following describes the working process of the DC-DC module 4: 1. After the switching device 1 is turned off, when When the first charge storage device C1 needs to perform the power recharging to realize the energy transfer, the switch control module 100 controls the bidirectional switches S5 and S6 to be turned on, and controls the bidirectional switch S1 and the bidirectional switch S4 to be simultaneously turned on to form the A phase, and the control bidirectional. The switch S2 and the bidirectional switch S3 are simultaneously turned on to form the B phase, and the A phase and the B phase are alternately turned on to form a full bridge circuit to operate; 2. When the full bridge circuit operates, the first charge memory element C1 is operated. The energy is transferred to the battery E through the fourth transformer T4 and the rectifying circuit, and the rectifying circuit converts the input alternating current into a direct current output to the battery E for the purpose of recharging the electric quantity; 3. when the first electric charge memory element C1 is needed When polarity reversal is performed to achieve energy superposition, the switch control module 100 controls the bidirectional switch S5 and the bidirectional switch S6 to be turned off, and controls the bidirectional switch S1 and the bidirectional switch S4 or the bidirectional switch S2 and the bidirectional Turning off any one of the S3 groups; at this time, the energy in the first charge memory element C1 is reversed back to its negative terminal through its positive terminal, the bidirectional switch S1, the primary side of the fourth transformer T4, and the bidirectional switch S4. Or through its positive terminal, the bidirectional switch S2, the primary side of the fourth transformer T4, and the bidirectional switch S3 are reversed back to the negative terminal thereof, and the voltage polarity of the first charge storage device C1 is achieved by using the primary excitation inductance of T4. According to another embodiment, the energy superposition and transfer unit may comprise an energy superimposing unit and an energy transfer unit, the energy transfer unit being connected to the energy storage circuit for conducting and reclosing at the switching device 1 After the disconnection, the energy in the energy storage circuit is transferred to the energy storage element, and the energy superposition unit is connected to the energy storage circuit for remaining the energy storage circuit after the energy transfer unit performs energy transfer The energy is superimposed on the energy in the battery, and the energy superimposing unit and the energy transfer unit can both adopt the present invention. The energy superimposing unit and the energy transfer unit provided in the foregoing embodiments are provided for the purpose of realizing energy transfer and superposition of the first charge storage element ci, and the specific structure and function thereof will not be described herein. As an implementation of the present invention In a manner, in order to operate the heating circuit, the energy in the first charge storage element C1 can also be consumed. Therefore, as shown in FIG. 20, the heating circuit further includes connecting to the first charge storage element C1. An energy consuming unit for consuming energy in the first charge storage element C1 after the switching device 1 is turned on and off. The energy consuming unit can be used alone in the heating circuit. After the switching device 1 is turned on and off, the energy in the first charge storage element C1 is directly consumed, and can also be combined with the above various embodiments, for example, the energy. The consuming unit may be combined with a heating circuit including an energy superimposing unit to consume energy in the first charge storage element C1 after the switching device 1 is turned on and off, and before the energy superimposing unit performs an energy superimposing operation, and may also include energy transfer. The heating circuit of the unit is combined to consume energy in the first charge memory element C1 after the switching device 1 is turned on and off, before the energy transfer unit performs energy transfer, or after the energy transfer unit performs energy transfer. The heating circuit of the superimposing and transferring unit combines to consume energy in the first charge storage element C1 after the switching device 1 is turned on and off, before the energy superposition and transfer unit performs energy transfer, or in the energy superposition and transfer unit. After the transfer, before the energy superposition The energy in the first charge storage element C1 is consumed, which is not limited by the present invention, and 1QQ14313 (^, single number A0101, page 23/56, 1013113152-0 201232996, which can be more clearly understood by the following embodiments) The working process of the unit. According to an embodiment, as shown in FIG. 21, the energy consuming unit comprises a voltage control unit 101, and the voltage control unit 101 is configured to store the first charge when the switching device 1 is turned on and off again. The voltage value across the component C1 is converted into a voltage set value. The voltage set value can be set according to the actual operation. As shown in Fig. 21, the voltage control unit 101 includes a resistor R5 and a fourth switch K8, the resistor R5 and the fourth switch K8 are connected in series with each other and then connected in parallel at both ends of the first charge memory element C1. The switch control module 100 is also connected to the fourth switch K8, and the switch control module 100 is also used for control. After the switching device 1 is turned on and then turned off, the fourth switch K8 is controlled to be turned on. Thereby, the energy in the first charge memory element C1 can be consumed by the resistor R5. The switch control module 100 can be a single controller. Through the setting of its internal program, the on/off control of different external switches can be realized. The switch control module 100 can also be multiple controllers, for example, A corresponding switch control module 100 is provided for each external switch, and the plurality of switch control modules 100 can also be integrated into one body. The present invention does not limit the implementation form of the switch control module 100. Figure 31 is a brief introduction to the operation of the embodiment of the heating circuit of the battery E, wherein the 22nd, 24th, 26th, 28th, and 30th views show various embodiments of the heating circuit of the battery E, 23, 25, 27 Figure 29 shows the corresponding waveform. It should be noted that although the features and elements of the present invention are described with reference to the specific combinations of Figures 22, 24, 26, 28, 30, each feature or element may be in the absence of 10014313 (^^ A〇101 24th Pages / Total 56 pages 1013113152-0 201232996 Other features and elements are used alone or in various situations with or without other features and elements. The embodiment of the heating circuit of battery E provided by the present invention is not It is limited to the implementation shown in Figures 22, 24, 26, 28, and 30. The grid portion in the waveform diagrams shown in Figures 23, 25, 27, and 29 indicates that it can be single or multiple times during the period of time. The switch applies a drive pulse, and the width of the pulse can be adjusted as needed. In the heating circuit of the battery E as shown in FIG. 22, the switching device 1 is constructed using a first bidirectional switch K3, the switching device 1 and the damping element R1. The first charge memory element C1 and the first current memory element L1 are connected in series, and the third unidirectional semiconductor element D3, the second current memory element L2 and the third switch K9 form a polarity inversion unit 102, and the switch control module 100 can The third switch K9 and the switch K3 are controlled to be turned on and off. Fig. 23 is a view showing the main circuit current, the C1 voltage, and the polarity inversion loop current 119 of the heating circuit shown in Fig. 22, which is shown in Fig. 22. The working process of the heating circuit L·u is as follows: a) The switch control module 100 controls the first bidirectional switch K3 to be turned on. As in the tl time period shown in FIG. 23, the battery E passes the first bidirectional switch K3, the first charge memory. The element C1 performs forward discharge (as shown by the positive half period of the loop current of the tl period in Fig. 23) and reverse charging (as shown by the negative half period of the loop current of the tl period in Fig. 23) b) The switch control module 100 controls the first bidirectional switch K3 to be turned off when the reverse current is zero; c) the switch control module 100 controls the third switch K9 to be turned on, the polarity inversion unit 102 operates, and the first charge storage element C1 through the third unidirectional semiconductor element D3, the second current memory element L2 and the third switch K9 loop 1013113152-0 1{) () 14313 (^ single number A0101 page 25 / 56 page 201232996 electric, and Reach the purpose of voltage polarity reversal, then open The control module 100 controls the third switch K9 to turn off 'fd as shown in the t2 period in FIG. 23). Steps a) to c) are repeated, and the battery E is continuously heated by charging and discharging until the battery E reaches the stop heating condition. . In the heating circuit of the battery E as shown in Fig. 24, the first switch K6, the first unidirectional semiconductor element d 11 (first one-way branch) and the second switch K7, which are connected in series with each other, are connected in series The two-way semiconductor component D12 (the first one-way branch) constitutes the switching device 1 'the second DC-DC module 3 constitutes a power recharging unit 10 3 that transfers the energy in the first charge memory element C1 back to the battery e, The switch control module 1 〇〇 can control the on and off of the first switch κ 6 and the second switch K7 and the operation of the second DC-DC module .3. Fig. 25 is a view showing the operation of the main circuit current I main and the ci voltage VC1 waveform diagram of the heating circuit shown in Fig. 24, and the operation of the heating circuit shown in Fig. 24 is as follows: a) switch control module 1 A switch K6 and a second switch K7 are turned on, and the battery E is positively discharged through the first switch K6, the first unidirectional semiconductor element D11, and the first charge memory element C1 as shown in FIG. 25 is shown in the time period of tl), and is reversely charged by the first charge storage element C1, the second switch K7, and the second unidirectional semiconductor element D12 (as shown in the time period t2 in FIG. 25); The switch control module 1〇〇 controls the first switch K6 and the second switch K7 to be turned off when the reverse current is zero; c) the switch control module 1〇〇 controls the second DC-DC module 3 to work, first The electric memory component C1 converts the alternating current into a direct current through the second DC-DC module 3, and then controls the second DC-DC 1013113152-0 to be electrically outputted to the battery E, thereby realizing the power recharging 10014313 production order number A〇1〇l Page 26 of 56 201232996 Module 3 stops working, as shown in Figure 25 for the t3 time period; d Repeating steps a) to c), the battery e is continuously heated by the discharge until the battery E reaches the stop heating condition. The heating circuit of the battery e as shown in Fig. 26 uses the first switch K6, the first unidirectional semiconductor element D11 (first one-way branch), and the second switch K7 and the second one in series with each other in series. The semiconductor element D12 (second unidirectional branch) constitutes a switching device i, and the DC-DC module 4 constitutes transferring energy in the first charge storage element C1 back to the battery £ and then reversing the polarity of the first charge storage element C1 The energy superimposing and transferring unit superimposed on the energy of the battery E in the next charging and discharging cycle, the switch control module 1〇〇 can control the turning on and off of the first switch K6 and the second switch K7 and sinking - the module 4 work or not. Figure 27 is a diagram showing the main circuit current I main and C1 voltage vci waveform diagrams of the heating circuit shown in Fig. 26. The operation of the heating circuit shown in Fig. 26 is as follows: a) Switch control module 1 〇〇 control The first switch κ 6 and the second switch κ 7 are turned on. As shown in FIG. 27, the battery ε is forwardly discharged through the first switch Κ6, the first unidirectional semiconductor device D11, and the first charge memory device C1. 〇 (as shown in the time period of tl in FIG. 27), and reversely charged by the first charge storage element C1, the second switch K7, and the second unidirectional semiconductor element di2 (as in the t2 time period in FIG. 27) The switch control module 1 〇〇 controls the first switch K6 and the second switch K7 to turn off when the reverse current is zero; c) the switch control module 100 controls the operation of the DC-DC module 4, A charge memory element C1 converts the alternating current into a direct current output through the DC-DC module 4 to the battery E to achieve the power recharge. Then the DC-DC module 4 reverses the polarity of the first charge storage element C1, at the C1 polarity. Control dc-DC mode after inversion * Single nickname A0101 Page 27 / Total 56 pages 10014313 (Γ 1013113152- 0 201232996 Group 4 stops working, as shown in Figure 27 for the period t3, t4; d) Repeat steps a) to c) 'Battery E is continuously heated by discharge until battery E reaches the stop heating condition. In the heating circuit of the battery E shown in FIG. 28, each of the first charge storage element C1 and the switching device 1 has a plurality of, and the first charge storage element C1 and the switching device 1-- are connected in series to form a plurality of branches. The plurality of branches are connected in parallel with the first current memory element L1, the damping element R1, and the battery E. The parent switching device 1 adopts a manner in which two one-way branches are controllable, and the polarity inversion unit 102 can The implementation of any of the polarity inversion units 102 described above is employed, for example, by the configuration shown in FIG. 28, and the specific circuit configuration of the polarity inversion unit 102 is not shown in FIG. The switch control module 100 can control the turning on and off of each switching device 1 and the operation of the polarity inverting unit 102. Fig. 29 is a view showing the waveform of the heating circuit shown in Fig. 28. The working process of the heating circuit shown in Fig. 28 is as follows: a) The switch control module 1〇〇 controls the first switches K6, K60, K61, K62 to be turned on (the second switches K7, K70, K71, K72 are still closed), the current is positive To the flow, the battery E is discharged, and the first charge storage elements C1, C12, C13, and C14 are respectively charged as shown in the time period of tl in FIG. 29; the first switches K6, K60, K61, and K62 are turned on in parallel, which can be increased. Current in a large loop. b) After the positive half cycle of the loop current ends, the switch control module 100 controls the first switches K6, K60, K61, and K62 to be turned off, and controls the second switches K7, K70, K71, and K72 to be turned on in turn, and the current flows in the opposite direction. As shown in the paragraph t1, time 1013113152-0, 'Because the first charge memory elements Cl, C12, C13, and C14 sequentially charge the battery E instead of simultaneously charging, the reverse current can be reduced, 1_4313 (? single number deer 1 帛28 pages/total 56 pages 201232996 In Fig. 29, 'SBu S4 is the reverse current waveform diagram when the second switch Κ7, K70, K71, K72 are turned on sequentially; after the reverse charging is finished, the second switch Κ7, Κ70, Κ71 Κ72 is turned off; c) The switch control module 1 〇〇 controls the operation of the plurality of polarity inversion units 1 〇 2, and reverses the polarity of the voltage on each of the charge storage elements, as shown in the time period t3 〇 d) repeating steps a) to c), the battery E is continuously heated by the discharge until the battery E reaches the stop heating condition. The heating circuit of the battery E as shown in Fig. 30 uses the first switch K6, the first unidirectional semiconductor element D11 (the first one-way branch) and the second switch K7 and the second one in series with each other in series. The semiconductor element D12 (second unidirectional branch) constitutes the switching device 1 'the resistor R5 and the fourth switch K8 constitute the voltage control unit 101, and the second current memory element L2, the semiconductor element D3 and the third switch K9 constitute the polarity inversion unit 1 〇2, the switch control module 1〇〇 can control the on and off of the first switch K6, the second switch K7, the fourth switch K8, and the third switch K9. Fig. 31 is a view showing the operation of the heating circuit shown in Fig. 30 of the main circuit current I, C1 voltage Vri polarity reversal circuit current I of the heating circuit shown in Fig. 30: a) Switching control mode The group 1〇〇 controls the first switch K6 and the second switch K7 to be turned on. According to the tl period shown in FIG. 31, the battery E is performed by the first switch K6, the first unidirectional semiconductor element D11, and the first charge memory element C1. Forward discharge (as shown in the time period of tl in FIG. 31), and reverse charging by the first charge storage element C1, the second switch K7, and the second unidirectional semiconductor element d12 (as in FIG. 31) The t2 time period is shown); b) The switch control module 100 controls the first switch K6 and the second switch K7 to be turned off when the reverse current is zero; 匪like#单单A0101 page 29/56 page 1013113152-0 201232996 C) The switch control module 100 controls the fourth switch K8 to be turned on, and the energy on the first charge storage element C1 is consumed by the damping element R8, as shown in the t3 time period of FIG. 31; then the switch control module 1〇 〇 controlling the fourth switch K8 to turn off, and controlling the third switch K9 to be turned on The polarity of the first charge storage element C1 is reversed by the second current memory 70 L2, the semiconductor element D3 and the third switch Κ9, and after the ci polarity is reversed, the third switch is controlled to be turned off, as shown in FIG. 14) the period of time shown; d) repeat steps a) to c), battery E is continuously heated by discharge until the battery E reaches the stop heating condition. With the heating circuit provided by the present invention, since the energy storage circuit is connected to the battery, When the battery E is heated, since the first charge storage element (10) is present, the safety problem caused by the failure of the switching device 1 to be short-circuited can be avoided, thereby effectively protecting the battery E. The preferred embodiment of the present invention has been described in detail above with reference to the accompanying drawings. However, the present invention is not limited to the specific details in the above embodiments. In the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention, and these simple modifications are all within the scope of protection of the present invention. 'The specific technical frequency described in the above specific embodiments may be in any suitable manner under the conditions of (4) Combination of lines, in order to avoid repetition of (4), the various possible combinations of the present invention are not further described. In addition, various embodiments of the present invention may be combined in detail as long as they do not contradict the idea of the present invention. It should also be regarded as the disclosure of the present invention. [Simplified illustration of the drawing] Step understanding 'and composition description [〇〇〇5] The drawing is for providing a further 10014313 to the present invention (^单单号A0101第30页A total of 56 pages 1013113152-0 201232996 A portion of the book 'is used to explain the invention' with the following detailed description, but does not constitute a limitation of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a heating circuit of a battery provided by the present invention; FIG. 2 is a schematic view showing an embodiment of the switching device of FIG. 1; and FIG. 3 is a switching device of FIG. 4 is a schematic view of an embodiment of the switching device of FIG. 1; FIG. 5 is a schematic view of an embodiment of the switching device of FIG. 1; FIG. FIG. 7 is a schematic view showing an embodiment of a switching device in FIG. 1; FIG. 8 is a schematic view showing a preferred embodiment of a heating circuit for a battery provided by the present invention; 9 is a schematic diagram of an embodiment of the energy superimposing unit in FIG. 8, and FIG. 10 is a schematic diagram of an embodiment of the polarity inverting unit in FIG. 9 and FIG. FIG. 12 is a schematic diagram of an embodiment of a polarity inversion unit in FIG. 9; and FIG. 13 is a first DC-DC module in FIG. An embodiment Figure 14 is a schematic view of a preferred embodiment of a heating circuit for a battery provided by the present invention; Figure 15 is a schematic view of a preferred embodiment of a heating circuit for a battery provided by the present invention, and Figure 16 is a diagram of Figure 15 An embodiment of an electric power refill unit (4) (Ρ 编号 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 Figure 18 is a schematic view of a preferred embodiment of a heating circuit for a battery provided by the present invention; Figure 19 is a schematic view of a preferred embodiment of the energy superposition and transfer unit of Figure 18; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 21 is a schematic view showing an embodiment of an energy consuming unit in FIG. 20; 2 is a waveform timing diagram corresponding to the heating circuit of the battery shown in FIG. 2; FIG. 24 is a battery provided by the present invention. FIG. 25 is a waveform timing diagram corresponding to the heating circuit of the battery shown in FIG. 24; FIG. 26 is a schematic diagram of an embodiment of the heating circuit of the battery provided by the present invention; 27 is a waveform timing diagram corresponding to the heating circuit of the battery shown in FIG. 26; FIG. 28 is a schematic diagram showing an embodiment of the heating circuit of the battery provided by the present invention; and FIG. 29 is a battery shown in FIG. The waveform corresponding to the heating circuit is 10014313 (^^^ A〇101 page 32/56 pages 1013113152-0 201232996 sequence diagram, FIG. 30 is a schematic diagram of an embodiment of the heating circuit of the battery provided by the present invention, Fig. 31 is a waveform timing chart corresponding to the heating circuit of the battery shown in Fig. 28. [Main Component Symbol Description] [0006] 100: Switch Control Module 101: Voltage Control Unit 102: Polarity Reversal Unit 103: Power Recharge Unit 1: Switching Devices 2, 3, 4: DODC Modules LI, L2, L3 , L4: current memory component
Cl、C2、C12、C13、C14 :電荷記憶元件 R1 :阻尼元件 E :電池 K3 ' K4、K5、Q1 〜Q6、S1 〜S6 :雙向開關 R2、R3 ' R5、R6 :電阻 K6、K7、K8、K9、K60、K61、K62、K70、K71、K72 : 開關 D3、D4、D5、D6、D7、D8、Dll、D12、D13、D14 :單 向半導體元件Cl, C2, C12, C13, C14: Charge memory element R1: Damping element E: Battery K3 ' K4, K5, Q1 ~ Q6, S1 ~ S6: Bidirectional switch R2, R3 ' R5, R6 : Resistance K6, K7, K8 , K9, K60, K61, K62, K70, K71, K72: Switches D3, D4, D5, D6, D7, D8, D11, D12, D13, D14: Unidirectional semiconductor components
Jl、J2 :單刀雙擲開關 ΤΙ、T2、T3、T4 :變壓器Jl, J2: single pole double throw switch ΤΙ, T2, T3, T4: transformer
Nl、N2 :節點 1013113152-0 tl、t2、t3、t4 :時間段 1()()14313(^單編號 A0101 第 33 頁 / 共 56 頁 201232996 i 主回路電流 王· VC1: Cl電壓 II().極性反轉回路電流 L L · 剛143i#單編號A〇101 第34頁/共56頁 1013113152-0Nl, N2: node 1013113152-0 tl, t2, t3, t4: time period 1 () () 14313 (^ single number A0101 page 33 / total 56 page 201232996 i main loop current king · VC1: Cl voltage II () Polarity Reverse Loop Current LL · Just 143i# Single Number A〇101 Page 34 of 56 Page 1013113152-0