201231222 六、發明說明: 【發明所屬之技術領域】 本發明係_-種研紅具及其製造綠,_是一麵 石研磨工具及其製造方法。 【先前技術】 晶圓代工係我國最重要的工業之一’在晶圓代工產業中, 石夕晶圓扮演了相當重要的角色。而在對石夕晶圓進行各種化學或 物理製程前,必須先對其進行精密的表面研磨拋光手續,使石夕 晶圓之表面平坦化。 請參照第1圖,為化學機械研磨襄置示意圖,最普遍之石夕 晶圓研磨製㈣_化學機_磨(Chemieal Meehanicai201231222 VI. Description of the Invention: [Technical Field to Which the Invention Is Applicable] The present invention is a stone grinding tool and a manufacturing method thereof. [Prior Art] Wafer foundry is one of the most important industries in China. In the foundry industry, Shixi Wafer plays a very important role. Before performing various chemical or physical processes on Shixi wafers, it is necessary to perform precise surface polishing and polishing procedures to flatten the surface of Shixi wafer. Please refer to Figure 1, which is a schematic diagram of chemical mechanical polishing, the most common stone etching system (4)_Chemical Machine_磨 (Chemieal Meehanicai
Polishing,簡稱CMP)的方式來進行。所謂化學機械研磨係指 在研磨液1G1中加人可與抑日圓⑽產生化學反應之化學藥 品’以縮短將矽晶圓100研磨至平坦所需的時間,此種結合「化 學」與「機械」原理之研磨方式即稱為「化學機械研磨」。化 學機械研磨製程係將研磨液101分布在研磨墊1〇2表面,然後 透過研磨墊102的旋轉對矽晶圓1〇〇進行研磨拋光手續,其 中,最廣為業者所使用之研磨墊1〇2的材質係為發泡pu(Poly Urethane,聚氨酯)。 由於研磨過程中會不斷產生磨屑,而原先分散良好的研磨 粒子也容易在研磨過程中發生團聚,無論是磨屑或是團聚的研 磨粒子皆會堵塞研磨墊1〇2的氣孔,進而降低研磨拋光功效。 201231222 因此有必要額外透過一種鑽石研磨工具丨(鑽石修整器)對研 磨墊102的表面進行修整,以將研磨墊1〇2修整至良好的表面 狀態。 【發明内容】 因此,本發明提出一種鑽石研磨工具,包含金屬基板、複 數鑽石粒子以及結合層。金屬基板包含至少-佈鑽區,而結合 層係固定鑽石粒子於金屬基板之佈鑽區上。每一鑽石粒子之表 • 面具有一接著區與一裸露區,鑽石粒子之接著區係嵌入結合層 中’裸露區則是凸出於結合層外。結合層包含鈮、磷及錄,鈮 的含量係在G.5 wt%至1〇㈣之細巾,伽含量係在7 5 至15wt°/〇之範圍中,鎳的含量則不大於92加%。 本發明也提出-種鑽石研磨工具的製造方法,包含下列步 驟:提供包含至少-佈鑽區之金屬基板;設置鑽石結合材料於 金屬基板之佈舰上,鑽石結合材料包含銳、姐錄,銳的含 • 量係在〇.5加%至10 之範圍中,填的含量係在7.5 wt〇/〇至 I5 wt°/〇之I已圍中’鎳的含量則不大於92痛;設置複數鑽石 粒子於鑽;5結合㈣上’每—鑽石粒子躲面包含接著區與裸 路區’加鋪;5結合材料至獅溫度以上;以及冷卻鑽石結合 材料。 本發明將鎳、磷、辟元素依·鴨定賴製作賴石結合 材料’所添加敝70素提高了祕擊結合㈣與鑽石粒子之 201231222 間的濁濕性與結合性,使鑽石粒子穩魏結合於金屬基板上, 進而提升鑽石研磨工具的機械性質以及使用壽命。 【實施方式】 睛參照第2圖與第3圖,分別為本發明之鑽石研磨工具俯 視圖(一)與剖面圖(一)’在本發明之第一實施例中,鑽石 研磨工具1包含金屬基板11、複數鑽石粒子12以及結合層 13。金屬基板11具有一佈鑽區η〗,每一鑽石粒子12的表面 具有接著區121與裸露區122,結合層13固定鑽石粒子12於 金屬基板11之佈鑽區111上。此外,鑽石粒子12之接著區121 係嵌入結合層13中,裸露區122係凸出於結合層13外,其中, 結合層13包含鈮、磷及鎳,鈮的含量係在〇.5 wt%至10 wt% 之範圍中’磷的含量係在7.5 wt%至15 wt%之範圍中,鎳的含 量則不大於92 wt%。 在本發明之第二實施例中,結合層13之鈮的含量係在1 wt%至5 wt%之間,璘的含量係在9 wt%至14 wt%之間。除 此之外,本實施例之結合層13可進一步包含換雜元素,所述 摻雜元素係選自组、棚、欽、石夕、錯、铪、鉬、鶴、鐵、鉻、 鋁、錳及其組合所構成之群組,且所述摻雜元素之含量係小於 5 wt% 〇 在本發明之第三實施例中,結合層13之妮的含量係在1.5 wt%至3 wt%之範圍中,填的含量係在9 wt%至14 wt%之範園 中0 201231222 在本發明之第四實施例中,其係於第一實施例之結合層 13中進-步添加摻雜元素,所述摻雜元素係選自组、顯、欽、 矽、錯、給、翻、鶴、鐵、鉻、紹、鍾及其組合所構成之群組, 且所述摻雜元素之含量係小於丨9 。 在本發明之第五實施例中,結合層包含銳元素聚集層 Μ ’鈮元素聚集層14係形成於鑽石粒子12之接著區ΐ2ι上, 且在鈮7G素聚集層14中,鈮的含量係大於2〇wt%。鈮元素聚 ❿ 集層14的生成係由於鈮原子與碳原子有形成碳化鈮以減少自 由能的傾向’故當溫度加熱至880°C至1050°C之間時,結合 層13中的鈮原子會朝鑽石粒子12移動而形成鈮元素聚集層 14’進而強化了鑽石粒子12與結合層13之間的結合力。 在本發明之第六實施例中,如第4圖所示,鑽石研磨工具 2更包含耐腐蝕層15,其披覆於結合層13上,财腐蝕層15係 選自電鍍鎳、陶瓷鍍膜、類鑽碳膜及高分子膜之一。 φ 在本發明之第七實施例中,如第5圖所示’鑽石研磨工具 3之金屬基板η包含複數佈鑽區211,每一佈鑽區2U彼此係 相間隔,其中鑽石粒子22係藉由結合層23固定於佈鑽區211 上0 請參照第6圖,為本發明之鎮石研磨工具之製造方法流程 圖’包含下列步驟: 步驟S1 :提供金屬基板。 本步驟之金屬基板包含至少一佈鑽區。 201231222 步驟S2 ··設置鑽石結合材料。 本步驟係將鑽石結合材料設置於金屬基板之佈鑽區上,所 述鑽石結合材料包含鈮、磷及鎳,鈮的含量係在0.5 wt%至1〇 wt%之範圍中,磷的含量係在7 5加%至15加%之範圍中,鎳 的含量則不大於92 wt%。 步驟S3 :設置鑽石粒子。 本步驟係將鑽石粒子設置於鑽石結合材料上,每一鑽石粒 子的表面包含一接著區與一裸露區,且鑽石粒子可以以預設的 圖案間距進行排列或是隨機排列。當將鑽石粒子以預設的圖案 間距進行排列時,有助於提高化學機械研磨的精確度。 步琢S4 :加熱鑽石結合材料。 本步驟係對鑽石結合材料加熱至88〇〇c至1〇5〇<Jc之間, 使鑽石結合材料熔融而覆蓋鐵石粒子之接著區。 於本步驟巾’鑽絲子之接著區上職—銳元素聚集層。 銘元素聚集層的形成賴如同前述,係合層中敝往鑽曰石 粒子移動並進一步形成碳化鈮所致。 步称S5 :冷卻。 本步驟係將㈣_;S結合㈣和冷卻,鱗鐵石 ^著區雜入槪秘材射,裸_彳裸胁鑽石結合材 本實驗之主要配方及製程條件如下表所示: 201231222 配方 溫度 編號 鈮 磷 鎳 欽 鉻 矽 硼 氣氛 (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (°C) 1 0.5 10.95 88.55 880 —— _» 純n2 2 2.0 10.8 87.2 960 純H2 3 1.5 10.85 87.65 930 真空 10_5torr 4 2.5 10.75 86.75 960 75%N2 25% H2 5 2 10.8 87.2 975 真空 l(T3torr 6 4.5 10.5 85 1050 真空 10_3torr 7 7 10.2 82.8 1050 真空 10_3torr 8 10 9.9 80.1 1050 真空 10_3torr 9 4.5 7.5 88 1050 真空 l(T3torr 10 1.5 15 83.5 1050 真空 l(T3torr 11 1.94 10.48 84.58 3 975 真空 10_5torr 12 1.98 10.69 86.33 1 975 真空 l(T5ton· 13 1.90 10.26 82.84 5 960 75%N2 25% H2 14 1.97 10.64 85.89 1 0.5 960 75%N2 25% H2 請參照第7A圖與第7B圖,第7A圖為使用鎳、填作為 結合層之鑽石研磨工具的掃描式電子顯微鏡(Scanning Electron MiCroscope,SEM)剖面圖,第7B圖為本發明之鑽石 研磨工具的掃描式電子顯微鏡剖面圖。由第7A圖可發現使用 鎳、磷作為結合層之鑽石研磨工具,其鑽石粒子丨2與結合層 93之間並未形成新的顯微組織。再將第7A圖與第7B圖作一 比對,可發現本發明之結合層13與鑽石粒子丨2之間形成一顯 微組織。再請進-步參照第7C圖,為電子微探儀㈤_η PfobeMi.Analyzer’EPMA)分析圖’其係將第7B圖之臟 、,且織進步以ΕΡΜΑ分析。分析結果顯示,結合層與鑽石 201231222 粒子12的接觸面之間的顯微組織係為鈮元素聚集層。鈮元 素聚集層14的生成可提高結合層13與鑽石粒子12間的結合 強度。 13 此外,請參照第8A圖與第8B圖,分別為本發明之鑽石 研磨工具之掃瞄式電子顯微鏡微結構圖(一)、(二)。如圖所 示’可發現結合層13在鑽石粒子12表面間的潤紐非常良 好,其係因為結合層13中含有銳的緣故。 本發明之鑽石研磨玉具的製造方法+所使㈣鑽石結合 材料可製作成預合金粉的形態’其粒徑介於〗师至獅哗 之間。此種方式具有微觀組成均勻的優點,但 成分比例已_定’導致各她成之鑽石結合材二須== 作以及個別備料,因而提高備料成本。 本發明之鑽;5結合材料亦可岐混合粉的鶴,例如先將 魏鎳等二種齡製作顧合金粉,再依配方狀絲末以及 其他少量(少於5 wt%)摻雜元素之粉末;此外,亦可直接將 磷、鎳及銳的單-粉末依據配方予以混合,例如將n痛_ 與89⑽的錄(雜錄的共晶組成)製作成預合金粉,然後再 與適當比綱贿末齡_縣發明之齡結合材料。相較 於預合金粉,此财式所得之鑽石結合材料的域均句度較 低’但因可依照配方調配成不同組成之鑽石結合材料,故備料 成本較為低廉。 本發明所提出之齡研缸具特職合収修整化學機 201231222 械研磨製程中之研磨墊,其可將堵塞研磨墊之氣孔的堵塞物予 以刮除,使研磨墊回復良好的表面型態。 雖然本發明已以前述較佳實施例揭示,然其並非用以限定 本發明,任健習此技藝者’在不麟本發明讀神和範圍 内’虽可作各種之更動與修改。如上述的解釋,都可以作各型 ==化,而不會破壞此發明的精神。因此本發明之保 知圍當魏附之巾料利_所界定者為準。 201231222 【圖式簡單說明】 第1圖為化學機械研磨裝置示意圖。 第2圖為本發明之鑽石研磨工具俯視圖(一)。 第3圖為本發明之鑽石研磨工具剖面圖(―)。 第4圖為本發明之鑽石研磨工具剖面圖(二)。 第5圖為本發明之鑽石研磨工具俯視圖(二)。 第6圖為本發明之伽研磨卫具之製造枝流程圖。 第7A圖為使用鎳、填作為結合層之鑽石研磨工具的掃描式電 子顯微鏡剖面圖。 第7B圖為本發明之鑽辦磨工具的掃描式電子顯微鏡剖面 圖。 第7C圖為電子微探儀分析圖。 第8A圖為本發明之鑽石研磨工具之掃瞒式電子顯微鏡微結構 圖(一)。 第怨圖為本發明之鑽騎磨工具之掃晦式電子顯微鏡微結構 圖(二)。 【主要元件符號說明】 卜2'3 · . ·鑽石研磨工具 100 .....矽晶圓 101 .....研磨液 102 .....研磨塾 11.....金屬基板 12 201231222 111、211 ·.佈鑽區 12.....鑽石粒子 121 .....接著區 122 .....裸露區 13、93 ...結合層 14 .....鈮元素聚集層 15 .···.耐腐餘層Polishing, referred to as CMP), is carried out. The term "chemical mechanical polishing" refers to the process of adding a chemical reaction that can chemically react with the Japanese yen (10) in the polishing liquid 1G1 to shorten the time required to polish the silicon wafer 100 to a flat state. This combination of "chemistry" and "mechanical" The principle of grinding is called "chemical mechanical polishing". The chemical mechanical polishing process distributes the polishing liquid 101 on the surface of the polishing pad 1〇2, and then polishes and polishes the wafer 1 through the rotation of the polishing pad 102. Among them, the polishing pad used most widely by the industry 1〇 The material of 2 is foam pu (Poly Urethane). Since the grinding debris is continuously generated during the grinding process, the originally dispersed abrasive particles are easily agglomerated during the grinding process, and the abrasive particles or the agglomerated abrasive particles may block the pores of the polishing pad 1〇2, thereby reducing the grinding. Polishing effect. 201231222 It is therefore necessary to trim the surface of the polishing pad 102 with a diamond grinding tool (diamond dresser) to trim the polishing pad 1〇2 to a good surface condition. SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a diamond abrasive tool comprising a metal substrate, a plurality of diamond particles, and a bonding layer. The metal substrate comprises at least a diamond-drilling zone, and the bonding layer holds the diamond particles on the diamond-drilling zone of the metal substrate. The table of each diamond particle • The mask has a contiguous zone and a bare zone, and the diamond particle's contiguous zone is embedded in the bond layer. The bare zone is convex outside the bond zone. The bonding layer comprises lanthanum, phosphorus and lanthanum. The content of lanthanum is in the range of G.5 wt% to 1 〇(4), the gamma content is in the range of 75 to 15 wt/〇, and the nickel content is not more than 92 plus. %. The invention also provides a method for manufacturing a diamond grinding tool, comprising the steps of: providing a metal substrate comprising at least a diamond-drilling zone; and providing a diamond-bonding material on the metal substrate of the cloth carrier, the diamond bonding material comprising sharp, sister recording, sharp The content of the system is in the range of 〇.5 plus% to 10, and the content of the filling is in the range of 7.5 wt〇/〇 to I5 wt°/〇 I. The content of nickel is not more than 92 pain; Diamond particles are drilled; 5 combined (four) on the 'each-diamond particle hiding surface contains the adjoining zone and the bare road zone' overlay; 5 bonding material to the lion temperature; and cooling diamond bonding material. The invention adds the sputum 70 element of the nickel, phosphorus, and the element yue yue yue yue yue stone splicing material to improve the turbidity and the binding property between the secret combination (4) and the diamond particle 201231222, so that the diamond particle is stable. Bonded to a metal substrate to enhance the mechanical properties and service life of the diamond abrasive tool. [Embodiment] Referring to Figures 2 and 3, respectively, a top view (a) and a cross-sectional view (a) of a diamond grinding tool of the present invention. In a first embodiment of the present invention, the diamond grinding tool 1 comprises a metal substrate. 11. A plurality of diamond particles 12 and a bonding layer 13. The metal substrate 11 has a diamond-drilling zone η, the surface of each of the diamond particles 12 has a bonding zone 121 and a bare region 122, and the bonding layer 13 fixes the diamond particles 12 on the diamond-drilling zone 111 of the metal substrate 11. In addition, the adhesion region 121 of the diamond particle 12 is embedded in the bonding layer 13, and the exposed region 122 is protruded from the bonding layer 13. The bonding layer 13 contains germanium, phosphorus and nickel, and the content of germanium is 〇.5 wt%. The content of phosphorus in the range of 10 wt% is in the range of 7.5 wt% to 15 wt%, and the content of nickel is not more than 92 wt%. In a second embodiment of the invention, the content of ruthenium in the bonding layer 13 is between 1 wt% and 5 wt%, and the niobium content is between 9 wt% and 14 wt%. In addition, the bonding layer 13 of the embodiment may further comprise a substitution element selected from the group consisting of a group, a shed, a chin, a stone, a scorpion, a samarium, a molybdenum, a crane, an iron, a chrome, an aluminum, a group consisting of manganese and a combination thereof, and the content of the doping element is less than 5 wt%. In the third embodiment of the present invention, the content of the bonding layer 13 is 1.5 wt% to 3 wt%. In the range, the content of the filling is in the range of 9 wt% to 14 wt%. 0 201231222 In the fourth embodiment of the present invention, it is added in the bonding layer 13 of the first embodiment. An element, the doping element is selected from the group consisting of group, Xian, Qin, 矽, 错, 送, 翻, crane, iron, chromium, 绍, 钟, and combinations thereof, and the content of the doping element The system is less than 丨9. In a fifth embodiment of the present invention, the bonding layer comprises a sharp element collecting layer Μ '铌 element collecting layer 14 is formed on the succeeding region 钻石2 of the diamond particle 12, and in the 铌7G pigment collecting layer 14, the 铌 content is More than 2〇wt%. The formation of germanium element cluster 14 is due to the formation of niobium atoms and carbon atoms to reduce the tendency of free energy. Therefore, when the temperature is heated to between 880 ° C and 1050 ° C, the germanium atom in the bonding layer 13 The diamond particle 12 is moved to form a bismuth element aggregation layer 14' to strengthen the bonding force between the diamond particle 12 and the bonding layer 13. In the sixth embodiment of the present invention, as shown in FIG. 4, the diamond grinding tool 2 further comprises a corrosion-resistant layer 15 which is coated on the bonding layer 13, and the corrosion-corrosion layer 15 is selected from the group consisting of electroplated nickel and ceramic coating. One of the diamond-like carbon film and polymer film. φ In the seventh embodiment of the present invention, as shown in Fig. 5, the metal substrate η of the diamond grinding tool 3 includes a plurality of diamond-drilling regions 211, each of which is spaced apart from each other, wherein the diamond particles 22 are borrowed. The fixing layer 23 is fixed to the drilling area 211. Referring to FIG. 6, the flow chart of the manufacturing method of the ballast grinding tool of the present invention includes the following steps: Step S1: providing a metal substrate. The metal substrate of this step comprises at least one diamond drilling zone. 201231222 Step S2 ··Set diamond bonding materials. In this step, the diamond bonding material is disposed on the diamond drilling area of the metal substrate, the diamond bonding material comprises bismuth, phosphorus and nickel, and the content of cerium is in the range of 0.5 wt% to 1 〇 wt%, and the phosphorus content is In the range of 75 to 15% by weight, the content of nickel is not more than 92% by weight. Step S3: Set the diamond particles. In this step, diamond particles are disposed on the diamond bonding material, and the surface of each diamond particle includes a bonding region and a bare region, and the diamond particles can be arranged at a preset pattern pitch or randomly arranged. When the diamond particles are arranged at a preset pattern spacing, it helps to improve the accuracy of chemical mechanical polishing. Step S4: Heat the diamond bonding material. In this step, the diamond bonding material is heated to between 88 〇〇 c and 1 〇 5 〇 < Jc to melt the diamond bonding material to cover the succeeding regions of the iron particles. In this step towel 'the next area of the drilled wire - the sharp element gathering layer. The formation of the aggregate layer of the element is as described above, and the ruthenium layer moves to the diamond particle and further forms the niobium carbide. Step S5: Cooling. This step is to combine (4) _; S with (four) and cooling, the scale stone is mixed with the secret material, the bare 彳 彳 naked diamond combination material The main formula and process conditions of this experiment are shown in the following table: 201231222 Formula temperature number 铌Phosphorus nickel chrome bismuth boron atmosphere (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (°C) 1 0.5 10.95 88.55 880 —— _» pure n2 2 2.0 10.8 87.2 960 Pure H2 3 1.5 10.85 87.65 930 Vacuum 10_5torr 4 2.5 10.75 86.75 960 75% N2 25% H2 5 2 10.8 87.2 975 Vacuum l (T3torr 6 4.5 10.5 85 1050 Vacuum 10_3torr 7 7 10.2 82.8 1050 Vacuum 10_3torr 8 10 9.9 80.1 1050 Vacuum 10_3torr 9 4.5 7.5 88 1050 Vacuum l (T3torr 10 1.5 15 83.5 1050 vacuum l (T3torr 11 1.94 10.48 84.58 3 975 vacuum 10_5torr 12 1.98 10.69 86.33 1 975 vacuum l (T5ton· 13 1.90 10.26 82.84 5 960 75% N2 25% H2 14 1.97 10.64 85.89 1 0.5 960 75% N2 25% H2 Please refer to Figures 7A and 7B. Figure 7A shows a scanning electron microscope (Scanning) using nickel as a diamond grinding tool as a bonding layer. Electron MiCroscope (SEM) sectional view, Fig. 7B is a scanning electron microscope sectional view of the diamond grinding tool of the present invention. From Fig. 7A, a diamond grinding tool using nickel and phosphorus as a bonding layer can be found, and the diamond particle 丨 2 and A new microstructure is not formed between the bonding layers 93. A comparison of the 7A and 7B images reveals that a microstructure is formed between the bonding layer 13 of the present invention and the diamond particles 丨2. Please refer to Figure 7C for the analysis of the electronic micro-detector (5)_η PfobeMi.Analyzer'EPMA). The figure will be dirty, and the weaving progress will be analyzed. The analysis results show that the bonding layer and diamond 201231222 The microstructure between the contact faces of the particles 12 is a ruthenium-concentrated layer. The formation of the agglomerate aggregation layer 14 enhances the bonding strength between the bonding layer 13 and the diamond particles 12. 13 Further, please refer to Figs. 8A and 8B, which are respectively a scanning electron microscope microstructure diagram (1) and (2) of the diamond grinding tool of the present invention. As shown in the figure, it can be found that the bonding layer 13 has a very good balance between the surfaces of the diamond particles 12 because the bonding layer 13 contains sharpness. The method for producing the diamond abrasive jade of the present invention is such that the (four) diamond-bonding material can be formed into a pre-alloyed powder form having a particle size ranging from the teacher to the gryphon. This method has the advantage of uniform microscopic composition, but the proportion of ingredients has been determined to result in the formation of diamond-bonded materials, which are made by each of them, as well as individual preparations, thereby increasing the cost of preparation. The drill of the present invention; 5 combined materials can also be used to mix powdered cranes, for example, firstly, two kinds of ages, such as Wei-nickel, are made of alloy powder, and then according to the formula and other small amount (less than 5 wt%) of doping elements. Powder; in addition, phosphorus, nickel and sharp mono-powder can be directly mixed according to the formula, for example, the n pain _ and 89 (10) recording (the eutectic composition of the miscellaneous composition) is made into a pre-alloyed powder, and then with an appropriate ratio The end of bribery _ county invention age combined materials. Compared with the pre-alloyed powder, the diamond-bonded material obtained from this formula has a lower domain average degree. However, since the diamond-bonding material of different compositions can be formulated according to the formula, the preparation cost is relatively low. The invention relates to a grinding and polishing machine for the ageing cylinder. The polishing pad in the mechanical polishing process can scrape the blockage of the pores of the polishing pad to restore the surface of the polishing pad to a good surface state. Although the present invention has been disclosed in the foregoing preferred embodiments, it is not intended to limit the invention, and various modifications and changes may be made by those skilled in the art. As explained above, various types of == can be made without destroying the spirit of the invention. Therefore, the intent of the present invention is defined as the definition of Wei's towel. 201231222 [Simple description of the diagram] Figure 1 is a schematic diagram of a chemical mechanical polishing device. Fig. 2 is a plan view (I) of the diamond grinding tool of the present invention. Figure 3 is a cross-sectional view (-) of the diamond grinding tool of the present invention. Figure 4 is a cross-sectional view (2) of the diamond grinding tool of the present invention. Figure 5 is a top view (2) of the diamond grinding tool of the present invention. Figure 6 is a flow chart of the manufacture of the gamma grinding fixture of the present invention. Fig. 7A is a cross-sectional view of a scanning electron microscope using a diamond grinding tool as a bonding layer using nickel. Figure 7B is a cross-sectional view of a scanning electron microscope of the drilling tool of the present invention. Figure 7C is an analysis diagram of an electronic micro-survey. Fig. 8A is a view showing the microstructure of a broom-type electron microscope of the diamond grinding tool of the present invention (1). The first blame is the broom-type electron microscope microstructure of the drill tool of the present invention (2). [Major component symbol description] Bu 2'3 · . · Diamond grinding tool 100 ..... 矽 wafer 101 ..... polishing liquid 102 ..... grinding 塾 11... metal substrate 12 201231222 111, 211 ·. Drilling area 12.....Diamond particles 121 .....Next area 122 ..... bare area 13, 93 ... bonding layer 14 ..... 铌 element aggregation Layer 15 .···. Corrosion resistant layer
1313