201229213 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種黃色螢光體的製造方法、及黃色螢 光體。 【先前技術】 白色LED係使放出具有紫外光至藍色之區域的光、 亦即3 80〜500nm左右之波長的光之LED晶片、與被從前 述LED晶片所放出之光激發而發光之螢光體組合所構成 。白色LED係可藉由LED晶片與螢光體之組合而實現各 式各樣的色溫度之白色。 藉由紫外光至藍色之區域的光所激發並發光之螢光體 、·亦即可使用於白色LED之螢光體,例如於特開平 1 0-2425 1 3號公報中已揭示一種以Y3A150丨2: Ce3 +所示之 螢光體,於國際公開第03 /8 0762號手冊、及特開 2006 -23 7 1 1 3號公報中已揭示以Li2SrSi04 : Eu2 +所示之螢 光體。在Y3A15012: Ce3+中,Y3A15012爲螢光體之母體結 晶,Ce3+爲賦予母體結晶之發光離子。在Li2SrSi04 : Eu2+中,Li2SrSi04爲螢光體之母體結晶,Eu2 +爲賦予母體 結晶之發光離子。 以Li2SrSi04 : Eu2 +所示之螢光體係已知可有效率地 吸收從藍色LED晶片所放出之藍色光,顯示於5 70nm附 近具有發光譜峰之寬的黃色發光,同時並即使曝露於高溫 之狀態,具有亦可充分維持發光強度之特性。又,在本案 -5- 201229213 說明書中’所謂黃色發光係意指譜峰波長在 560nm~590nm附近具有發光譜峰。 又’就白色LED用螢光體而言,YAG : Ce3 +等係藉 由所謂約1 500 °C之高溫的燒成而合成,但,Li2SrSi04 : Eu2 +係可藉由在800~900°C之低溫的燒成而合成。因此, Li2SrSi04: Eu2 +係於生產成本之面很有利。 在螢光體中,廣泛使用來作爲發光離子之Eu離子, 已知在空氣中Eu3 +安定地存在。合成含有Eu離子之螢光 體時,就還原環境,若進行例如在1 0 0 0 °c以上之高溫的 燒成,Eu3 +被還原成Eu2+,故可得到含有Eu2 +作爲發光 離子之螢光體。但,以Li2SrSi04 : Eu2 +所示之螢光體係 可藉由在800〜900t之低溫的燒成而合成,故有Eu3 +還原 成Eu2 +未充分進行之問題。 1J 容 內 明 發 本發明之目的在於提供一種即使燒成溫度爲低溫時, 可從Eu3 +有效率地還原成Eu2 +之黃色螢光體的製造方法 、及、黃色螢光體。 本發明係提供下述〈1〉〜〈1 7〉。 <1> 一種黃色螢光體之製造方法,其係具備如下步 驟:燒成金屬鹵化物與含Eu之化合物的第一混合物,製 作固溶體之步驟;與燒成前述固溶體與金屬化合物之第二 混合物的步驟。 <2>如<1>項之方法,其中前述金屬鹵化物爲由鹼金 201229213 屬鹵化物、鹼土族金屬鹵化物及稀土族鹵化物所構成之群 中選出的至少1種之化合物。 <3 >如<2 >項之方法,其中前述金屬鹵化物爲鹼金屬 鹵化物及/或鹼土族金屬鹵化物。 <4>如<3>項之方法,其中前述金屬鹵化物爲鹵化緦 〇 <5>如<4>項之方法’其中前述鹵化緦爲氯化緦。 <6>如<1>〜<5>項中任一項之方法,其中前述金屬化 合物爲含有(i) Si化合物及/或Ge化合物、與(ii)鹼 金屬化合物及驗土族金屬之化合物中,至少含有與前述金 屬鹵化物所含有之金屬相異的金屬之化合物。 <7>如<6>項之方法,其中前述金屬化合物進—步含 有(:iii )由稀土族元素化合物、Zn化合物、Bi化合物及 Μη化合物所構成之群中選出的至1種的化合物。 <8>如<1>〜<7>項中任一項之方法,其中前述金屬鹵 化物中所含有之金屬元素對前述含Eu的化合物中所含有 之Eu的莫耳比(金屬鹵化物中所含有之金屬元素/含Eu 的化合物中所含有之Eu )爲0.05以上、20以下。 <9> 一種黃色螢光體,其係依如<1;>〜<8>項中任一項 之方法而製造。 <10> —種黃色螢光體,其係以式 M1^ ( M2bLc ) M3d〇4所示; 式中,Μ1爲由鹼金屬所構成之群中選出的至少一種 元素; 201229213 Μ爲由鹼土族金屬及Zn所構成之群中選出的至少一 種元素; M3爲由Si及Ge所構成之群中選出之至少一種元素 » L爲由稀土族元素,Bi及Μη所構成之群中選出的至 少一種元素,且,L至少含有Eu, 前述Eu之中,2價的Eu之比率爲25莫耳%以上、 1〇〇莫耳%以下, a爲〇 · 9以上、1 . 1以下, b爲0 · 8以上、1 .2以下, c爲0.005以上、0.2以下, d爲0.8以上、1 .2以下。 <11>如<10>項之黃色螢光體,其中M1爲Li,M3爲201229213 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method for producing a yellow phosphor and a yellow phosphor. [Prior Art] A white LED is an LED chip that emits light having a region of ultraviolet light to blue, that is, light having a wavelength of about 380 to 500 nm, and a fluorescent light that is excited by light emitted from the LED chip. The combination of light bodies. White LEDs are capable of achieving a wide variety of color temperature whites by combining LED wafers with phosphors. A phosphor that is excited by the light of the ultraviolet light to the blue region and which emits light can also be used for the phosphor of the white LED. For example, it is disclosed in Japanese Laid-Open Patent Publication No. Hei. No. Hei. Y3A150丨2: a phosphor represented by Ce3+, which is disclosed in the publication of International Publication No. 03/8 0762, and Japanese Patent Laid-Open Publication No. Hei. No. 2006-23 No. . In Y3A15012: Ce3+, Y3A15012 is the parent crystal of the phosphor, and Ce3+ is the luminescent ion imparted to the parent crystal. In Li2SrSi04: Eu2+, Li2SrSi04 is the parent crystal of the phosphor, and Eu2+ is a luminescent ion that imparts crystals to the matrix. A fluorescent system represented by Li2SrSi04: Eu2+ is known to efficiently absorb blue light emitted from a blue LED wafer, and exhibits a yellow light having a broad spectrum peak near 5 70 nm, and is exposed to high temperature even at a high temperature. The state has a characteristic that the luminescence intensity can be sufficiently maintained. Further, in the specification -5-201229213, the term "yellow light-emitting system" means that the peak wavelength has a spectrum peak near 560 nm to 590 nm. Further, in the case of a white LED phosphor, YAG: Ce3 + or the like is synthesized by firing at a high temperature of about 1 500 ° C, but Li 2 SrSi 04 : Eu 2 + can be used at 800 to 900 ° C. It is synthesized by firing at a low temperature. Therefore, Li2SrSi04: Eu2+ is advantageous in terms of production cost. In the phosphor, Eu ions which are luminescent ions are widely used, and it is known that Eu3 + exists in the air in a stable manner. When a phosphor containing Eu ions is synthesized, the environment is reduced, and if Eu3 + is reduced to Eu2+ by firing at a high temperature of, for example, 1000 ° C or higher, it is possible to obtain a fluorescent material containing Eu 2 + as a luminescent ion. body. However, the fluorescent system represented by Li2SrSi04: Eu2 + can be synthesized by firing at a low temperature of 800 to 900 t, so that the problem that Eu3 + is reduced to Eu 2 + is not sufficiently performed. 1J 容内明发 An object of the present invention is to provide a method for producing a yellow phosphor which can be efficiently reduced from Eu3 + to Eu2+ while the firing temperature is low, and a yellow phosphor. The present invention provides the following <1> to <17>. <1> A method for producing a yellow phosphor, comprising the steps of: firing a first mixture of a metal halide and a compound containing Eu to form a solid solution; and firing the solid solution and the metal The step of a second mixture of compounds. The method of the above-mentioned item, wherein the metal halide is at least one selected from the group consisting of a halide of the alkali gold 201229213, an alkaline earth metal halide, and a rare earth halide. <3> The method of <2>, wherein the metal halide is an alkali metal halide and/or an alkaline earth metal halide. The method of the above item, wherein the metal halide is a ruthenium halide (5), wherein the ruthenium halide is ruthenium chloride. The method of any one of <1>, wherein the metal compound is (i) a Si compound and/or a Ge compound, and (ii) an alkali metal compound and a soil test group metal. The compound contains at least a compound of a metal different from the metal contained in the metal halide. The method of the item <6>, wherein the metal compound further comprises (:iii) one selected from the group consisting of a rare earth element compound, a Zn compound, a Bi compound, and a Μη compound. Compound. The method of any one of the above-mentioned metal halides, wherein the metal element contained in the metal halide has a molar ratio of Eu contained in the Eu-containing compound (metal) The Eu element contained in the metal element/eu-containing compound contained in the halide is 0.05 or more and 20 or less. <9> A yellow phosphor produced by the method of any one of <1;> to <8>. <10> - a yellow phosphor represented by the formula M1^(M2bLc) M3d〇4; wherein Μ1 is at least one element selected from the group consisting of alkali metals; 201229213 Μ is a base At least one element selected from the group consisting of a group of earth metals and Zn; M3 is at least one element selected from the group consisting of Si and Ge » L is at least one selected from the group consisting of rare earth elements, Bi and Μη An element, wherein L contains at least Eu, and among the Eu, the ratio of the divalent Eu is 25 mol% or more and 1 mol% or less, and a is 〇·9 or more and 1.1 or less, and b is 0 · 8 or more and 1.2 or less, c is 0.005 or more and 0.2 or less, and d is 0.8 or more and 1.2 or less. <11> A yellow phosphor of the item <10>, wherein M1 is Li and M3 is
Si ° <12>如<1〇>或<11>項之黃色螢光體,其中a爲0.9 以上、1 . 1以下。 <13>如<10>〜<12>項中任一項之黃色螢光體,其中 b、c及d爲滿足b + c= l且d=l之關係。 <14>如<10>~<13>項中任一項之黃色螢光體,其中 M2爲Ca、Ba、Mg或Zn所構成之群,或Ca、Sr、Ba、 Mg及Ζιι所構成之群中選出的至少2種元素。 <15>如<1〇>〜<14>項中任一項之黃色螢光體,其中 黃色螢光體的結晶系爲六方晶。 <16> —種發光裝置,其係使用如<1〇>〜<15>項中任 -8- 201229213 一項之黃色螢光體。 <17> —種白色LED,其係使用如<1〇>〜<15>項中任 一項之黃色螢光體。 【實施方式】 用以實施發明之最佳形態 〈黃色螢光體之製造方法〉 本發明之黃色螢光體的製造方法係具有如下步驟:燒 成金屬鹵化物與成爲Eu源之含Eu之化合物的第一混合 物,製作固溶體之步驟;與燒成其固溶體與金屬化合物之 第二混合物的步驟。在以往之方法中係爲使目的之螢光體 成爲所希望的組成,混合成爲所秤量的原料之化合物,燒 成所得到之混合物,而製造螢光體。然而,在本發明之方 法中,係首先藉由燒成金屬鹵化物與含Eu之化合物的第 一混合物而得到固溶體,進一步燒成所得到之固溶體與金 屬化合物之第二混合物,來製造螢光體。 前述金屬鹵化物宜爲由鹼金屬鹵化物、鹼土族金屬鹵 化物及稀土族鹵化物所構成之群中選出的至少1種,更宜 爲鹼金屬鹵化物及/或鹼土族金屬齒化物,更宜爲鹼土族 鹵化物,尤宜爲鹼土族氯化物。鹼土族氯化物可舉例如鹵 化緦等,鹵化緦可舉例如氯化緦(SrCl2 )等。 金屬鹵化物與含Eu的化合物之莫耳比(金屬鹵化物/ 含Eu的化合物)爲0.05以上、20以下,更宜爲0.1以上 、1 〇以下,最宜爲〇. 5以上、5以下。 -9 - 201229213 金屬鹵化物中所含有之金屬元素與含Eu 所含有之Eu的莫耳比(金屬鹵化物中所含有; 含Eu的化合物中所含有之Eu)宜爲0.05以_ ’更宜爲0.1以上、10以下,最宜爲0.5以上 例如使用SrCl2作爲金屬鹵化物時係宜使Sr與 比(Sr/Eu)成爲〇.5〜3,更宜成爲1.0,決定 Eu的化合物(例如Eu2 03 )之混合比率。 金屬鹵化物與含有Eu之化合物的混合係 行,亦可以乾式進行。於混合中,係可使用球 混合機、攪拌機等之一般的裝置。 第一混合物之燒成(以下,亦稱爲「第一 宜在還原環境下進行。 第一燒成之環境、溫度及時間係可依金屬 成、金屬鹵化物與含有Eu之化合物的混合比 變更β 第一燒成之環境係可形成還原性氣體環境 含有氫0.1 ~ 1 0體積%之惰性氣體(氮氣、氬 。第一燒成之環境宜含有5體積%之}12的Ν2 燒成之燒成溫度例如爲500~700°C,第一燒成 例如爲1~24小時。 其次,燒成固溶體與金屬化合物之第二混 ,亦稱爲「第二燒成」)。 前述金屬化合物係可舉例如氧化物、氫氧 鹽、硝酸鹽、鹵化物、草酸鹽等以高溫進行分 的化合物中 艺金屬元素/ h、2 0以下 、5以下。 Eu之莫耳 SrCl2與含 可以濕式進 磨機、V型 燒成」)係 鹵化物之組 率等而適當 ,可舉例如 氣等)、氨 環境。第一 之燒成時間 合物(以下 化物、碳酸 解及/或氧 -10- 201229213 化而成爲氧化物之化合物。又,在本說明書中所謂「金屬 化合物」謂含有金屬元素作爲構成元素之化合物。 前述金屬化合物宜爲含有(i) Si化合物及/或Ge化 合物、與(Π)鹼金屬及鹼土族金屬之化合物中,至少含 有與前述金屬鹵化物所含有之金屬相異的金屬之化合物。 又,在本說明書中所謂「金屬」係含有Si、Ge等之 半金屬。 有關前述(i i ) ’例如使用鹼金屬鹵化物作爲前述金 屬鹵化物時,金屬化合物係鹼金屬化合物及鹼土族金屬之 化合物中’宜至少含有鹼土族金屬化合物,又,使用鹼土 族金屬鹵化物作爲前述金屬鹵化物時,金屬化合物係鹼金 屬化合物及鹼土族金屬之化合物中,宜至少含有鹼金屬化 合物。前述金屬化合物係更宜(Hi )由稀土族元素化合物 、Zn化合物、Bi化合物及Μη化合物所構成之群中選出 的至少一種之化合物。 金屬化合物之混合及金屬化合物與固溶體的混合係可 以濕式進行,亦可以乾式進行。於混合中,係可使用球磨 機、V型混合機、攪拌機等之一般的裝置。 第二燒成之環境、溫度及時間係可依金屬固溶體之組 成、金屬化合物之組成、固溶體與金屬化合物的混合比率 等而適當變更。 第二燒成之燒成環境係可爲惰性氣體環境、氧化性氣 體環境、還原性氣體環境之任一者。惰性氣體可舉例如氮 、氬。氧化性氣體可舉例如空氣、氧、含有氧〇體積%以 -11 - 201229213 上、未達100體積%之惰性氣體(氮、氬等)。還原性氣 體可舉例如含有氫0.1〜10體積%之惰性氣體(氮、氬等 )、氨。燒成環境宜爲含有5體積%之h2的n2環境。又 ,以很強之還原性環境燒成時,係亦可於金屬化合物中添 加適量的碳而燒成。 第二燒成之燒成溫度例如可爲700〜1 000 °C,第二燒 成之燒成時間例如可爲1〜1 〇〇小時。第二混合物含有氫氧 化物、碳酸鹽、硝酸鹽、鹵化物、草酸鹽等以高溫進行分 解及/或氧化而成爲氧化物之化合物時,在第一燒成後, 第二燒成前,使第二混合物以低於第二燒成溫度之溫度( 例如500〜800°c )保持特定時間(例如1〜100小時)而锻 燒,亦可使此等之化合物形成氧化物,或從此等之化合物 除去結晶水。又,在鍛燒後亦可進行粉碎。 依本發明之方法所得到的黃色螢光體係含有Eu作爲 賦活劑。依本發明之方法所得到的黃色螢光體含有的Eu 係源自於含Eu的化合物。使用Eu鹵化物作爲金屬鹵化 物時’及/或,使用Eu化合物作爲金屬化化物時,依本 發明之方法所得到的黃色螢光體含有的Eu係源自含有Eu 的化合物、Eu鹵化物及/或Eu化合物。 依本發明之方法所得到的黃色螢光體係就賦活劑而言 除Eu外’尙宜含有由稀土族元素、Mn及Bi所構成之群 中選出的至少一種元素(以下,亦稱爲其他之賦活劑元素 )。此時’金屬鹵化物及/或金屬化合物爲含有其他之賦 活劑元素。 -12- 201229213 依本發明之方法所得到的黃色螢光體係宜具有 結晶相。因此,锻燒時或第二燒成時,宜於第二混 加反應促進劑。藉由添加反應促進劑,可更提高所 黃色螢光體的發光強度。反應促進劑係可舉例如 NaF、KF、LiCl、NaCl、KC1等之鹼金屬鹵化物、 、Na2C03、K2C03等之鹼金屬碳酸鹽、NaHC03等 屬碳酸氫鹽、nh4ci ' nh4i等之鹵化銨、b2o3等 金屬的氧化物、Η3Β03等之土族金屬的氧酸等。 依本發明之方法所得到的黃色螢光體係亦可含 於金屬鹵化物、反應促進劑等之原料的幽元素、亦 Cl、Br及I所構成之群選出的至少一種之元素。依 之方法所得到的黃色螢光體含有的鹵素元素的合計 只要爲原料中所含有的鹵素元素之合計量爲同量以 ,宜爲50%以下,更宜爲25%以下。 鍛燒後之第二混合物、及/或本發明之黃色螢 可使用例如球磨機、噴射硏磨機等而粉碎,亦可洗 可分級。 依本發明之方法,可製造以式MSa ( M2bLc ) 所示之本發明的黃色螢光體。 〈黃色螢光體〉 本發明之黃色螢光體係以式 示。 式中,M1爲由鹼金屬所構成之群中選出的至 單一之 合物添 得到之 LiF、 Li2C03 之鹼金 之土族 有源自 即 F、 本發明 含量係 下即可 光體係 淨,亦 M3d〇4 -13- 201229213 元素,Μ2爲由鹼土族金屬及Zn所構成之群中選出的至少 一種元素,M3爲由Si及Ge所構成之群中選出之至少一 種元素。M1宜由Li、Na及K所構成之群中選出之至少一 種元素,更宜爲Li。M3宜爲Si。M2宜不只Sr。亦即, M2 宜爲 Ca、Ba、Mg 或 Zn’ 或,由 Mg、Ca、Sr、Ba 及 Zri所構成之群中選出的至少2種元素,更宜爲Ca及Sr。 L係賦活母體結晶之發光離子。L亦可至少含有Eu, 進一步亦可含有由稀土族元素、Bi及Μη所構成之群中選 出的至1種的元素。 L中所含有之Eu中,2價之Eu的比率爲25莫耳% 以上1 〇〇莫耳%以下。2價之Eu的比率宜爲3 0莫耳%以 上,更宜爲40莫耳%以上,最宜爲50莫耳%以上。 a爲0.1以上、1.5以下,b爲0.8以上、1.2以下,c 爲〇·〇〇5以上、0·2以下,d爲0.8以上、1.2以下。a宜 爲0.8以上、1.2以下,更宜爲0.9以上、1.1以下。b及 d任一者均爲0.8以上、1.0以下,最宜爲0_9以上、1.0 以下。c宜爲〇 . 〇 1以上、〇 . 1以下。 b、c及d宜滿足b + c= l、且d=l之關係。本發明之黃 色螢光體的結晶系宜爲六方晶。 爲製造以式所示之本發明的黃 色螢光體,係在本發明之方法中,固溶體與金屬化合物之 混合比例係規定成(M1元素):(M2元素):(Eu及其 他之賦活劑元素):(M3元素)之比率爲2a:b:c:d。 亦即,例如爲得到本發明之黃色螢光體較佳的組成之一即 -14 - 201229213 以式 Lii.96 Sr〇.98 Eu〇.〇2 Si〇4所示之螢光體,例如使用 SrCh作爲金屬鹵化物’使用Eu2〇3作爲含eu的化合物, 得到含有SrCl2與Eu203之固溶體,使用SrC〇3、Li2C03 、Si〇2及Eu:!〇3作爲金屬化合物時,只要決定固溶體與金 屬化合物之混合比率成Li: Sr: Eu: Si之莫耳比爲1.96 :0·98: 0.02: 1·0 即可。 本發明之黃色螢光體係可適宜使用於發光裝置。 〈發光裝置〉 本發明之發光裝置係包含本發明之黃色螢光體。發光 裝置係可舉例如白色LED。 白色LED —般例如可藉由於特開平11-31845號公報 、特開20〇2-22 68 46號公報等揭示之方法來製造。亦即, 藉由使發出200nm以上、5 5 0nm以下之波長的光之發光 元件以環氧樹脂、聚矽氧樹脂等之透光性樹脂密封,配置 螢光體以覆蓋其密封體表面,可製造白色LED。爲使白色 LED發出所希望的白色,只要適當設定螢光體之量即可。 在本發明之發光裝置中,就螢光體而言,可單獨使用 本發明之黃色螢光體,亦可倂用本發明之黃色螢光體與其 他之螢光體。其他之螢光體係可舉例如BaMgAl1Q017: EU 、(Ba, Sr, Ca ) ( Al, Ga ) 2S4 : Eu ' BaMgAl10O17 :(Si ° <12> The yellow phosphor of the item <1〇> or <11>, wherein a is 0.9 or more and 1.1 or less. <13> The yellow phosphor of any one of <10> to <12>, wherein b, c and d are in a relationship satisfying b + c = l and d = 1. <14> The yellow phosphor of any one of <10>, wherein the M2 is a group of Ca, Ba, Mg or Zn, or Ca, Sr, Ba, Mg and Ζ ι At least two elements selected from the group consisting of. The yellow phosphor of any one of <1>, wherein the crystal of the yellow phosphor is hexagonal. <16> A light-emitting device, which is a yellow phosphor of any one of -8 to 201229213, for example, in <1>>~<15>. <17> A white LED using a yellow phosphor according to any one of <1〇>~<15>. [Embodiment] The best mode for carrying out the invention <Method for producing yellow phosphor> The method for producing a yellow phosphor of the present invention has the following steps: firing a metal halide and a Eu-containing compound which is an Eu source a first mixture, a step of preparing a solid solution; and a step of firing a second mixture of the solid solution and the metal compound. In the conventional method, a fluorescent material having a desired composition is mixed with a compound which is a raw material to be weighed, and the obtained mixture is fired to produce a phosphor. However, in the method of the present invention, a solid solution is first obtained by firing a first mixture of a metal halide and a compound containing Eu, and further firing a second mixture of the obtained solid solution and the metal compound. To make a phosphor. The metal halide is preferably at least one selected from the group consisting of an alkali metal halide, an alkaline earth metal halide, and a rare earth halide, and is more preferably an alkali metal halide and/or an alkaline earth metal tooth. It is preferably an alkaline earth halide, especially an alkaline earth chloride. The alkaline earth chloride may, for example, be a ruthenium halide or the like, and the ruthenium halide may, for example, be ruthenium chloride (SrCl2). The molar ratio (metal halide/ Eu-containing compound) of the metal halide to the Eu-containing compound is 0.05 or more and 20 or less, more preferably 0.1 or more and 1 or less, and most preferably 5% or more and 5 or less. -9 - 201229213 The molar ratio of the metal element contained in the metal halide to the Eu contained in Eu (containing in the metal halide; Eu contained in the Eu-containing compound) is preferably 0.05 to _ ' When it is 0.1 or more, 10 or less, and it is more preferably 0.5 or more, for example, when SrCl2 is used as the metal halide, it is preferable to make Sr and the ratio (Sr/Eu) become 〇5 to 3, more preferably 1.0, and a compound which determines Eu (for example, Eu2). 03) The mixing ratio. The mixing of the metal halide with the compound containing Eu can also be carried out in a dry manner. In the mixing, a general device such as a ball mixer or a mixer can be used. The first mixture is fired (hereinafter, also referred to as "the first is preferably carried out in a reducing environment. The environment, temperature and time of the first firing may vary depending on the metal composition, the metal halide and the compound containing Eu. β The first firing environment can form an inert gas (nitrogen or argon) containing 0.1 to 10% by volume of hydrogen in a reducing atmosphere. The first firing environment should contain 5% by volume of 122. The formation temperature is, for example, 500 to 700 ° C, and the first baking is, for example, 1 to 24 hours. Next, the second mixing of the solid solution and the metal compound is also referred to as "second firing". For example, an oxide, a hydroxide, a nitrate, a halide, an oxalate or the like can be classified as a metal element at a high temperature, h, 20 or less, or 5 or less. Eu's SrCl2 and can be wet The type of grinding machine, V-type firing, and the like are appropriate, and may be, for example, a gas or the like, or an ammonia atmosphere. The first calcination time compound (the following compound, carbonic acid solution, and/or oxygen -10-201229213) is a compound of an oxide. Further, in the present specification, a "metal compound" is a compound containing a metal element as a constituent element. The metal compound is preferably a compound containing (i) a Si compound and/or a Ge compound, and a compound of an alkali metal and an alkaline earth metal, and at least a metal different from the metal contained in the metal halide. In the present specification, the term "metal" includes a semimetal such as Si or Ge. In the case of the above (ii) ', for example, an alkali metal halide is used as the metal halide, the metal compound is an alkali metal compound and an alkaline earth metal. In the compound, it is preferable to contain at least an alkaline earth metal compound, and when an alkaline earth metal halide is used as the metal halide, the metal compound is an alkali metal compound and an alkaline earth metal compound, and at least an alkali metal compound is preferably contained. More preferably (Hi) from rare earth element compounds, Zn compounds, Bi compounds and Μη A compound selected from the group consisting of a compound. The mixing of the metal compound and the mixing of the metal compound and the solid solution may be carried out in a wet manner or in a dry manner. In the mixing, a ball mill or a V-type mixer may be used. A general apparatus such as a stirrer. The environment, temperature, and time of the second firing can be appropriately changed depending on the composition of the metal solid solution, the composition of the metal compound, the mixing ratio of the solid solution and the metal compound, and the like. The firing environment may be any of an inert gas atmosphere, an oxidizing gas atmosphere, and a reducing gas atmosphere. Examples of the inert gas include nitrogen and argon. Examples of the oxidizing gas include air, oxygen, and oxygen containing oxime. In the case of -11 - 201229213, an inert gas (nitrogen, argon, etc.) of less than 100% by volume is used. The reducing gas may, for example, be an inert gas (nitrogen, argon or the like) containing 0.1 to 10% by volume of hydrogen, or ammonia. It is preferably an n2 environment containing 5% by volume of h2. Further, when it is fired in a strong reducing environment, an appropriate amount of carbon may be added to the metal compound to be fired. The firing temperature may be, for example, 700 to 1 000 ° C, and the firing time of the second firing may be, for example, 1 to 1 Torr. The second mixture contains hydroxide, carbonate, nitrate, halide, grass. When a salt or the like is decomposed and/or oxidized to form an oxide compound at a high temperature, the second mixture is subjected to a temperature lower than the second firing temperature after the first firing (for example, 500~). 800 ° c ) calcination for a specific period of time (for example, 1 to 100 hours), or the formation of oxides of these compounds, or the removal of crystal water from such compounds. Further, it may be pulverized after calcination. The yellow fluorescent system obtained by the method of the present invention contains Eu as an activator. The yellow phosphor contained in the yellow phosphor obtained by the method of the present invention is derived from Eu-containing compound. When an Eu halide is used as the metal halide, and/or when an Eu compound is used as the metal compound, the yellow phosphor contained in the yellow phosphor obtained by the method of the present invention is derived from Eu-containing compound, Eu halide, and / or Eu compound. The yellow fluorescent system obtained by the method of the present invention contains at least one element selected from the group consisting of rare earth elements, Mn and Bi in addition to Eu in the activator (hereinafter, also referred to as other Revitalizing element). At this time, the metal halide and/or metal compound contains other activating agent elements. -12- 201229213 The yellow fluorescent system obtained by the method of the present invention preferably has a crystalline phase. Therefore, it is preferable to use a second mixed reaction accelerator at the time of calcination or the second calcination. By adding a reaction accelerator, the luminescence intensity of the yellow phosphor can be further improved. Examples of the reaction accelerator include alkali metal halides such as NaF, KF, LiCl, NaCl, and KC1, alkali metal carbonates such as Na2CO3 and K2C03, hydrogencarbonates such as NaHC03, ammonium halides such as nh4ci'nh4i, and b2o3. An oxide of a metal, an oxyacid of a terrogenous metal such as Η3Β03, or the like. The yellow fluorescent system obtained by the method of the present invention may also contain at least one element selected from the group consisting of a metal halide, a reaction accelerator, and the like, and a group selected from the group consisting of Cl, Br, and I. The total amount of the halogen elements contained in the yellow phosphor obtained by the method is preferably 50% or less, and more preferably 25% or less, as long as the total amount of the halogen elements contained in the raw material is the same amount. The second mixture after calcination, and/or the yellow flakes of the present invention may be pulverized using, for example, a ball mill, a jet honing machine, or the like, or may be washed and classified. According to the method of the present invention, the yellow phosphor of the present invention represented by the formula MSa (M2bLc) can be produced. <Yellow Phosphor> The yellow fluorescent system of the present invention is represented by the formula. In the formula, M1 is a group of alkali metals selected from a group consisting of alkali metals and added to a single compound. The family of alkali gold of LiF and Li2C03 is derived from F, and the content of the present invention is light, and M3d is also 〇4 -13- 201229213 Element, Μ2 is at least one element selected from the group consisting of an alkaline earth metal and Zn, and M3 is at least one element selected from the group consisting of Si and Ge. M1 is preferably at least one element selected from the group consisting of Li, Na and K, more preferably Li. M3 should be Si. M2 should not only be Sr. That is, M2 is preferably Ca, Ba, Mg or Zn' or at least two elements selected from the group consisting of Mg, Ca, Sr, Ba and Zri, more preferably Ca and Sr. The L system activates the luminescent ions of the parent crystal. L may contain at least Eu, and may further contain one element selected from the group consisting of a rare earth element, Bi, and Μη. In the Eu contained in L, the ratio of the divalent Eu is 25 mol% or more and 1 mol% or less. The ratio of the divalent Eu is preferably more than 30% by mole, more preferably 40% by mole or more, and most preferably 50% by mole or more. a is 0.1 or more and 1.5 or less, b is 0.8 or more and 1.2 or less, and c is 〇·〇〇5 or more and 0·2 or less, and d is 0.8 or more and 1.2 or less. a is preferably 0.8 or more and 1.2 or less, more preferably 0.9 or more and 1.1 or less. Any of b and d is 0.8 or more and 1.0 or less, and most preferably 0 to 9 or more and 1.0 or less. c should be 〇. 〇 1 or more, 〇. 1 or less. b, c and d should satisfy the relationship of b + c = l and d = l. The crystal of the yellow phosphor of the present invention is preferably hexagonal. In order to produce the yellow phosphor of the present invention represented by the formula, in the method of the present invention, the mixing ratio of the solid solution and the metal compound is defined as (M1 element): (M2 element): (Eu and others Activator element): The ratio of (M3 element) is 2a:b:c:d. That is, for example, a phosphor represented by the formula Lii.96 Sr〇.98 Eu〇.〇2 Si〇4 which is one of the preferred compositions of the yellow phosphor of the present invention, for example, is used. SrCh is used as a metal halide to use Eu2〇3 as a compound containing eu to obtain a solid solution containing SrCl2 and Eu203. When SrC〇3, Li2C03, Si〇2, and Eu:!〇3 are used as the metal compound, the solid is determined. The mixing ratio of the solution to the metal compound is such that the molar ratio of Li:Sr: Eu: Si is 1.96:0·98: 0.02:1·0. The yellow fluorescent system of the present invention can be suitably used in a light-emitting device. <Light-emitting device> The light-emitting device of the present invention comprises the yellow phosphor of the present invention. The illuminating device may be, for example, a white LED. For example, the white LED can be manufactured by a method disclosed in, for example, JP-A-H11-31845, JP-A-20-22-2646. In other words, the light-emitting element that emits light having a wavelength of 200 nm or more and 550 nm or less is sealed with a light-transmitting resin such as epoxy resin or polyoxyn resin, and the phosphor is disposed to cover the surface of the sealing body. Manufacturing white LEDs. In order to make the white LED emit the desired white color, it is only necessary to appropriately set the amount of the phosphor. In the light-emitting device of the present invention, the yellow phosphor of the present invention can be used alone for the phosphor, and the yellow phosphor of the present invention and other phosphors can be used. Other fluorescent systems include, for example, BaMgAl1Q017: EU, (Ba, Sr, Ca) (Al, Ga ) 2S4 : Eu ' BaMgAl10O17 :(
Eu, Mn ) ' B a A112 〇 19 : ( Eu, Mn ) 、 (Ba, Sr, Ca) S: (Eu, Mn) 、YB03 : ( Ce, Tb ) 、Y2〇3 : Eu、Y202S : Eu 、YV04 : Eu、 ( Ca, Sr) S : Eu、S r Y 2 〇 4 : Eu、C a - Al - S i - 201229213 O-N : Eu、Li- ( Ca,Mg) -Ln-Al-O-N : Eu ' )Si202N2 : Eu、/3 -SiAlON、CaSc204 : Ce ( Eu以外之稀土族金屬元素)等。 發出200nm以上、550nm以下之波長的 件,可舉例如紫外光LED、藍色LED等。紫 藍色LED中係就發光層而言可使用具有GaN (0<i< 1 ) 、Ini Alj Ga, .j.j N ( 0<i<l、0<j< 1 之層的半導體。藉由改變發光層之組成,可忍 〇 本發明之發光裝置係除了白色LED以 PDP等之螢光體激發源爲真空紫外線之發光裝 示器用背光、三波長形螢光燈等之螢光體激發 的發光裝置、CRT、FED等之螢光體激發源爲 光裝置。 實施例 以下,舉出實施例而更具體地說明本發曰J 不限定於以下之實施例。 螢光體之發光強度的測定係使用螢光分另 日本分光(股)製FP-6500)而進行。螢光體 (XRD )測定係使用X線繞射裝置(Rigaku | )而進行。螢光體中之Eu的價數比例評估係 微細構造(XAFS )測定。 X A F S測定係在S p r i n g - 8中,使用束線 (Ba, Sr, Ca 但,Ln表示 丨光之發光元 外光LED及 • In; Ga 1 .j N 、i+j<l )等 :變發光波長 外,亦包含 ί置、液晶顯 ί源爲紫外線 丨電子束之發 丨。本發明係 ;測定裝置( 之X線繞射 i RINT 2000 藉X線吸收 BL14B2 ,藉 -16 - 201229213 透過法測定。就Eu-L3吸收端的66 50〜7600eV測定區域 而進行測定。就Eu2+ ( 6972eV )之標準試料而言,使用Eu, Mn ) ' B a A112 〇19 : ( Eu, Mn ) , (Ba, Sr, Ca) S: (Eu, Mn) , YB03 : ( Ce, Tb ) , Y2〇3 : Eu, Y202S : Eu , YV04 : Eu, ( Ca, Sr) S : Eu, S r Y 2 〇 4 : Eu, C a - Al - S i - 201229213 ON : Eu, Li- ( Ca, Mg) -Ln-Al-ON : Eu ' )Si202N2 : Eu, /3 -SiAlON, CaSc204 : Ce (a rare earth metal element other than Eu). Examples of the light emitting element having a wavelength of 200 nm or more and 550 nm or less include an ultraviolet light LED and a blue LED. In the violet blue LED, a semiconductor having a layer of GaN (0<i<1), Ini Alj Ga, .jj N (0<i<1, 0<j<j<1) can be used as the light-emitting layer. The light-emitting layer of the present invention can be used for the light-emitting device of the present invention. In addition to the white LED, the phosphor excitation source of the PDP or the like is a vacuum ultraviolet light emitting device backlight, a three-wavelength fluorescent lamp, or the like. The phosphor excitation source of the device, CRT, FED, etc. is an optical device. EXAMPLES Hereinafter, the present invention will be described more specifically by way of examples. The measurement of the luminous intensity of the phosphor is not limited to the following examples. It was carried out using FP-6500 manufactured by Japan Spectrophotometer. The phosphor (XRD) measurement was carried out using an X-ray diffraction apparatus (Rigaku | ). The valence ratio evaluation of Eu in the phosphor was measured by a fine structure (XAFS). The XAFS measurement system is used in Spring-8, using a beam line (Ba, Sr, Ca, but Ln is a light-emitting external light LED and • In; Ga 1 .j N , i+j <l ); In addition to the wavelength of the light, it also contains the ί, liquid crystal display source is the UV 丨 electron beam. The present invention is a measuring device (the X-ray diffraction i RINT 2000 is measured by the X-ray absorption BL14B2 by the transmission method of -16 - 201229213. The measurement is performed on the measurement range of 66 50 to 7600 eV of the Eu-L3 absorption end. As for the Eu2+ (6972eV) ) for the standard sample, use
Ba Mg Α110 Οι; : Eu2+ ( BAM),就 Eu3+ ( 698 OeV )之標 準試料而言使用氧化銪(信越化學工業股份公司製、純度 99.99% ) 〇 使用解析程式(Rigaku製REX 2000 ),依據背景處 理各試料之XAFS數據,得到X線吸收端附近構造( XANES)光譜後,使用Eu2 +標準試料及Eu3 +標準試料之 XANES光譜’進行各試料之XANES光譜之圖型比對,從 Eu2 +光譜之比率算出試料中之Eu2 +的比率。 比較例1 秤量碳酸鋰(關東化學股份公司製、純度99%)、 碳酸緦(堺化學工業股份公司製、純度99 %以上)、氧 化銪(信越化學工業股份公司製、純度99.99 % )、及二 氧化矽(日本Aerosil股份公司製:純度99.99% )之各 原料以使Li : Sr : Eu ·· Si之莫耳比成爲1.96 ·· 0.98 ·· 0.02 :1 .(),藉乾式球磨機混合此等6小時而得到金屬化合物 混合物。 使前述金屬化合物混合物在含有5體積%之112的N2 環境中,以800°C之溫度保持24小時而燒成’其後徐冷 至室溫,得到含有以式LiK96 ( Sr〇.98 Eu〇.〇2 ) Si04所示之 化合物的螢光體。 所得到之螢光體的全Eu中之2價Eu ( Eu2+)之比率 -17- 201229213 爲14莫耳%。 比較例2 秤量碳酸鋰(關東化學股份公司製、純度99%)、 碳酸緦(堺化學工業股份公司製、純度99 %以上)、氧 化銪(信越化學工業股份公司製、純度99.99% )、及二 氧化矽(日本Aerosil股份公司製:純度99.99 % )之各 原料以使Li: Sr: Eu: Si之莫耳比成爲1.96: 0.98: 0.02 :1 〇,藉乾式球磨機混合此等6小時而得到金屬化合物 混合物。 使前述金屬化合物混合物在含有5體積%之1^2的N2 環境中,以8 00°C之溫度保持24小時而燒成,其後徐冷 至室溫,得到燒成物。粉碎所得到之燒成物,將粉碎物進 —步在含有5體積%之H2的N2環境中,在800°C之溫度 下保持2 4小時而再燒成,其後冷卻至室溫,得到含有以 式Lili96 ( Sr〇.98 EuQ.〇2) Si04所示之化合物的螢光體。 所得到之螢光體的全Eu中之2價Eu ( Eu2+ )之比率 爲17莫耳%。 實施例1 秤量氯化緦(堺化學工業股份公司製、純度99 %以 上)、及氧化銪(信越化學工業股份公司製、純度99.99 % )以使Sr/Eu的莫耳比成爲1而混合(SrCl2/Eu203的 莫耳比=2 ),使所得到之第一混合物在含有5體積%之 •18- 201229213Ba Mg Α110 Οι; : Eu2+ (BAM), for the standard sample of Eu3+ (698 OeV), yttrium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%) 解析 Analytical program (RX 2000 made by Rigaku), depending on the background The XAFS data of each sample was processed to obtain a XANE spectrum of the vicinity of the X-ray absorption end, and the XANES spectrum of the Eu3 + standard sample and the XANES spectrum of the Eu3 + standard sample were used to perform pattern comparison of the XANES spectrum of each sample from the Eu2 + spectrum. The ratio is calculated as the ratio of Eu2+ in the sample. Comparative Example 1 Weighed lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity 99% or more), cerium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and Each raw material of cerium oxide (made by Japan Aerosil Co., Ltd.: purity: 99.99%) so that the molar ratio of Li:Sr: Eu··Si becomes 1.96 ··0.98 ·· 0.02 :1 (), mixed by a dry ball mill A mixture of metal compounds was obtained by waiting for 6 hours. The metal compound mixture was allowed to stand at a temperature of 800 ° C for 24 hours in an N 2 atmosphere containing 5% by volume of 112, and then fired to 'after cooling' to room temperature to obtain a formula containing LiK96 (Sr〇.98 Eu〇). .〇2) A phosphor of a compound represented by Si04. The ratio of the divalent Eu (Eu2+) in the total Eu of the obtained phosphor was -17-201229213, which was 14 mol%. Comparative Example 2 Weighed lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity 99% or more), cerium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99%), and Each raw material of cerium oxide (manufactured by Nippon Aerosil Co., Ltd.: purity: 99.99%) was obtained so that the molar ratio of Li:Sr: Eu: Si was 1.96: 0.98: 0.02:1 Torr, and the dry ball mill was mixed for 6 hours. a mixture of metal compounds. The metal compound mixture was baked in a N2 atmosphere containing 5% by volume of 1 ^ 2 at a temperature of 800 ° C for 24 hours, and then cooled to room temperature to obtain a fired product. The obtained calcined product was pulverized, and the pulverized product was further stirred in an N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C for 24 hours, and then cooled to room temperature to obtain a pulverized product. A phosphor containing a compound represented by the formula Lili96 (Sr〇.98 EuQ.〇2) Si04. The ratio of the divalent Eu (Eu2+) in the total Eu of the obtained phosphor was 17 mol%. Example 1 Weighing cerium chloride (manufactured by Sigma Chemical Industry Co., Ltd., purity: 99% or more), and cerium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity: 99.99%) to mix the molar ratio of Sr/Eu to one ( The molar ratio of SrCl2/Eu203 = 2), so that the first mixture obtained contains 5% by volume • 18-201229213
Hz的A環境中650°C燒成12小時,以得到固溶體。 秤量所得到之固溶體、碳酸鋰(關東化學股份公司製 、純度99 % )、碳酸緦(堺化學工業股份公司製、純度 99%以上)、二氧化矽(日本Aerosil股份公司製:純度 99.99%)以使 Li: Sr: Eu: Si 之莫耳比成爲 1.96: 0.98 :0.02 : 1.0 ’藉乾式球磨機混合此等6小時而得到第二 混合物。 使所得到之第二混合物在含有5體積%之H2的仏環 境中’以800 °C之溫度保持24小時而燒成,其後徐冷至 室溫,得到含有以式Lh.96 ( SrG 98 EuG ()2 ) Si04所示之化 合物的螢光體。 所得到之螢光體係確認出於5 7 1 nm具有發光譜峰。 所得到之螢光體的全Eu中之2價Eu ( Eu2+ )之比率爲25 莫耳%。 實施例2 秤量於實施例1所得到之固溶體、碳酸鋰(關東化學 股份公司製、純度99 % )、碳酸緦(堺化學工業股份公 司製、純度99%以上)、二氧化矽(日本Aerosil股份公 司製:純度99.99%)以使Li: Sr: Eu: Si之莫耳比成爲 1·96: 0.98: 0.02: 1.0,藉乾式球磨機混合此等6小時而 得到第二混合物。 使所得到之第二混合物在含有5體積%之Η2的Ν2環 境中,以800t之溫度保持24小時而燒成,其後徐冷至 -19- 201229213 室溫,得到燒成物。粉碎所得到之燒成物,進一步在含有 5體積%之H2的N2環境中,在800 °C之溫度下保持24小 時而再燒成,徐冷至室溫,得到含有以式L i κ 9 6 (SrG.98 Eug.02) Si04所示之化合物的螢光體。 所得到之螢光體係確認出於571rim具有發光譜峰。 所得到之螢光體的全Eu中之2價Eu ( Eu2+ )之比率爲 46.3莫耳%。 實施例3 秤量於實施例1所得到之固溶體、碳酸鋰(關東化學 股份公司製、純度99 % )、碳酸緦(堺化學工業股份公 司製、純度99%以上)、二氧化矽(日本Aerosil股份公 司製:純度99.99% )以使Li : Sr : Eu : Si之莫耳比成爲 1.96: 0.98: 0.02: 1.0,藉乾式球磨機混合此等6小時而 得到第二混合物。 使所得到之第二混合物在含有5體積%之H2的N2環 境中,以8 0 0 °C之溫度保持2 4小時而燒成,其後徐冷至 室溫,得到含有以式Lh.96 ( SrQ.98 Eu〇.«)2 ) Si04所示之化 合物的螢光體。 所得到之螢光體係確認出於5 7 1 nm具有發光譜峰。 所得到之螢光體的全Eu中之2價Eu ( Eu2+ )之比率爲 54.1莫耳%。 實施例4 -20- 201229213 秤量於實施例1所得到之固溶體、碳酸鋰(關東化學 股份公司製、純度99%)、碳酸緦(堺化學工業股份公 司製、純度99%以上)、二氧化矽(日本Aerosil股份公 司製:純度99.99% )以使Li : Sr ·· Eu : Si之莫耳比成爲 1.96: 0.97: 0.03: 1.0,藉乾式球磨機混合此等6小時而 得到第二混合物。 使所得到之第二混合物在含有5體積%之H2的N2環 境中,以800 °C之溫度保持24小時而燒成,其後徐冷至 室溫’得到含有以式Lii.96(Sr〇.98 EUq.02) Si〇4所示之化 合物的螢光體。 所得到之螢光體係確認出於5 7 1 nm具有發光譜峰。 所得到之螢光體的全Eu中之2價Eu ( Eu2+ )之比率爲 54.0莫耳%。 實施例5 坪量於實施例1所得到之固溶體、碳酸鋰(關東化學 股份公司製、純度99%)、碳酸緦(堺化學工業股份公 司製、純度99%以上)、二氧化矽(日本.Aerosil股份公 司製:純度99.99 % )以使Li : Sr : Eu : Si之莫耳比成爲 1.96 : 0.9 5 : 0.05 : 1.0,藉乾式球磨機混合此等6小時而 得到第二混合物。 使所得到之第二混合物在含有5體積%之h2的&環 境中,以800t之溫度保持24小時而燒成,其後徐冷至 室溫,得到含有以式Lii.96(SrQ.95 Euq.os) Si04所示之化 -21 - 201229213 合物的螢光體。 所得到之螢光體係確認出於57 1 ηηι具有發光譜峰》 所得到之螢光體的全Eu中之2價Eu(Eu2+)之比率爲 28.0莫耳%。 實施例6 秤量於實施例1所得到之固溶體、碳酸鋰(關東化學 股份公司製、純度99 % )、碳酸緦(堺化學工業股份公 司製、純度99%以上)、二氧化矽(日本Aerosil股份公 司製:純度99.99% )以使Li : Sr : Eu : Si之莫耳比成爲 1.96: 0.97: 0.03: 1.0,藉乾式球磨機混合此等6小時而 得到第二混合物。 使所得到之第二混合物在含有5體積%之H2的比環 境中,以8 00 °C之溫度保持24小時而燒成,其後徐冷至 室溫,得到含有以式LiK96 ( SrQ.97 EuQ.Q3 ) Si04所示之化 合物的螢光體。 所得到之螢光體係確認出於57 1 ηηι具有發光譜峰。 所得到之螢光體的全Eu中之2價Eu(Eu2+)之比率爲 64.3莫耳%。 實施例7 秤量於實施例1所得到之固溶體、碳酸鋰(關東化學 股份公司製、純度9 9 % )、碳酸緦(堺化學工業股份公 司製、純度99%以上)、二氧化矽(日本Aerosil股份公 -22- 201229213 司製:純度99.99%)以使Li: Sr: Eu: Si之莫耳比成 1.96:0.95: 0.05: 1.0,藉乾式球磨機混合此等6小時 得到第二混合物。 使所得到之第二混合物在含有5體積%之H2的N2 境中,以80(TC之溫度保持24小時而燒成,其後徐冷 室溫,得到含有以式Line ( SrQ.95 EUo.05 ) Si04所示之 合物的螢光體。 所得到之螢光體係確認出於57 1 nm具有發光譜峰 所得到之螢光體的全Eu中之2價Eu ( Eu2+ )之比率爲 莫耳%。 實施例8 秤量於實施例1所得到之固溶體、碳酸鋰(關東化 股份公司製、純度99%)、碳酸緦(堺化學工業股份 司製、純度99%以上)、二氧化矽(日本Aerosil股份 司製:純度99.99 % )以使Li : Sr : Eu : Si之莫耳比成 1.96: 0.93: 0.07: 1.0,藉乾式球磨機混合此等6小時 得到第二混合物。 使所得到之第二混合物在含有5體積%之H2的N2 境中,以8 0 0 °C之溫度保持2 4小時而燒成,其後徐冷 室溫,得到含有以式Lh.96 ( Sr〇.93 EuQ.Q7 ) Si04所示之 合物的螢光體。 所得到之螢光體係確認出於5 7 1 nm具有發光譜峰 所得到之螢光體的全Eu中之2價Eu ( Eu2+ )之比率 爲 而 xm 壞 至 化 56 學 公 公 爲 而 環 至 化 爲 -23- 201229213 50.0莫耳%。 又,XRD測定之結果,在實施例1〜8所得到 體係確認出任一者均爲六方晶。 產業上之利用可能性 若依本發明之方法,燒成金屬鹵化物與含Eu 物之第一混合物,製作固溶體後,爲燒成前述固溶 屬化合物之第二混合物,即使在低溫還原燒成中亦 地生成Eu2+。因此,可得到Eu2 +之含有比率高的 光體。 亦即’若依本發明之方法,即使燒成溫度低時 Eu原料有效率地還原,可提昇所得到之螢光體的全 的Eu2 +之比率’可以低環境負荷且低成本製造螢光 之螢光 之化合 體與金 可安定 黃色螢 ,可使 Eu中 體。 -24-The mixture was fired at 650 ° C for 12 hours in an Hz A environment to obtain a solid solution. Weighed solid solution, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity 99% or more), cerium oxide (made by Japan Aerosil Co., Ltd.: purity 99.99) %) The molar ratio of Li:Sr: Eu: Si was 1.96: 0.98:0.02:1.0'. The second mixture was obtained by mixing these 6 hours in a dry ball mill. The obtained second mixture was fired at a temperature of 800 ° C for 24 hours in an atmosphere containing 5% by volume of H 2 , and then cooled to room temperature to obtain a composition containing the formula Lh.96 (SrG 98 EuG () 2 ) A phosphor of a compound represented by Si04. The resulting fluorescent system confirmed the presence of a spectral peak at 517 nm. The ratio of the divalent Eu ( Eu2+ ) in the total Eu of the obtained phosphor was 25 mol%. Example 2 The solid solution obtained in Example 1 was weighed, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity: 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity: 99% or more), cerium oxide (Japan) Produced by Aerosil Co., Ltd.: purity 99.99%) so that the molar ratio of Li:Sr: Eu: Si becomes 1.96: 0.98: 0.02: 1.0, and the mixture was mixed by a dry ball mill for 6 hours to obtain a second mixture. The obtained second mixture was baked in a Ν2 atmosphere containing 5% by volume of ruthenium 2 at a temperature of 800 t for 24 hours, and then cooled to room temperature of -19 to 201229213 to obtain a fired product. The obtained calcined product was pulverized, further heated in an N 2 atmosphere containing 5% by volume of H 2 at a temperature of 800 ° C for 24 hours, and then calcined, and then cooled to room temperature to obtain a formula L i κ 9 . 6 (SrG.98 Eug.02) A phosphor of a compound represented by Si04. The resulting fluorescent system confirmed that the 571rim had a spectral peak. The ratio of the divalent Eu (Eu2+) in the total Eu of the obtained phosphor was 46.3 mol%. Example 3 The solid solution obtained in Example 1 was weighed, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity: 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity: 99% or more), cerium oxide (Japan) Produced by Aerosil Co., Ltd.: purity 99.99%) so that the molar ratio of Li : Sr : Eu : Si becomes 1.96: 0.98: 0.02: 1.0, and the mixture was mixed by a dry ball mill for 6 hours to obtain a second mixture. The obtained second mixture was calcined in an N 2 atmosphere containing 5% by volume of H 2 at a temperature of 80 ° C for 24 hours, and then cooled to room temperature to obtain a formula Lh.96. (SrQ.98 Eu〇.«) 2 ) A phosphor of a compound represented by Si04. The resulting fluorescent system confirmed the presence of a spectral peak at 517 nm. The ratio of the divalent Eu ( Eu2+ ) in the total Eu of the obtained phosphor was 54.1 mol %. Example 4 -20- 201229213 Weighed the solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity: 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity: 99% or more), Yttrium oxide (manufactured by Nippon Aerosil Co., Ltd.: purity: 99.99%) so that the molar ratio of Li:Sr·· Eu : Si becomes 1.96: 0.97: 0.03: 1.0, and the mixture was mixed by a dry ball mill for 6 hours to obtain a second mixture. The obtained second mixture was calcined at a temperature of 800 ° C for 24 hours in an N 2 atmosphere containing 5% by volume of H 2 , and then cooled to room temperature to obtain a formula containing Lii.96 (Sr〇). .98 EUq.02) Phosphor of the compound shown by Si〇4. The resulting fluorescent system confirmed the presence of a spectral peak at 517 nm. The ratio of the divalent Eu ( Eu2+ ) in the total Eu of the obtained phosphor was 54.0 mol%. Example 5 The amount of the solid solution obtained in Example 1, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity: 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity: 99% or more), cerium oxide ( Made by Japan Aerosil Co., Ltd.: purity 99.99%) so that the molar ratio of Li : Sr : Eu : Si becomes 1.96 : 0.9 5 : 0.05 : 1.0, and the second mixture is obtained by mixing these 6 hours in a dry ball mill. The obtained second mixture was baked in an & ambience containing 5% by volume of h2 at a temperature of 800 t for 24 hours, and then cooled to room temperature to obtain a formula containing Lii.96 (SrQ.95). Euq.os) Phosphor of Compound-21 - 201229213 compound represented by Si04. The obtained fluorescent system confirmed that the ratio of the divalent Eu (Eu2+) in the total Eu of the phosphor obtained from the 57 1 ηηι having the emission peak was 28.0 mol%. Example 6 The solid solution obtained in Example 1 was weighed, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity: 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity: 99% or more), cerium oxide (Japan) Produced by Aerosil Co., Ltd.: purity 99.99%) so that the molar ratio of Li : Sr : Eu : Si becomes 1.96: 0.97: 0.03: 1.0, and the second mixture was obtained by mixing these 6 hours in a dry ball mill. The obtained second mixture was fired at a temperature of 800 ° C for 24 hours in a ratio of 5% by volume of H 2 , and then cooled to room temperature to obtain a formula containing LiK96 (SrQ.97). EuQ.Q3) A phosphor of a compound represented by Si04. The resulting fluorescent system was confirmed to have a spectral peak from 57 1 ηηι. The ratio of the divalent Eu (Eu2+) in the total Eu of the obtained phosphor was 64.3 mol%. Example 7 The solid solution obtained in Example 1 was weighed, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity: 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity: 99% or more), cerium oxide ( Japan Aerosil Corporation -22-201229213 system: purity 99.99%) so that the molar ratio of Li:Sr: Eu: Si is 1.96:0.95:0.05:1.0, which is mixed by a dry ball mill for 6 hours to obtain a second mixture. The obtained second mixture was allowed to stand in an N2 atmosphere containing 5% by volume of H2 at 80 °C for 24 hours, and then cooled to room temperature to obtain a formula containing Line (SrQ.95 EUo. 05) A phosphor of a compound represented by Si04. The obtained fluorescence system confirmed that the ratio of the divalent Eu (Eu2+) in the total Eu of the phosphor obtained from the spectrum peak at 57 1 nm was Mo. Example 8 The solid solution obtained in Example 1 was weighed, lithium carbonate (manufactured by Kanto Chemical Co., Ltd., purity: 99%), cesium carbonate (manufactured by Sigma Chemical Industry Co., Ltd., purity: 99% or more), and dioxide矽 (made by Japan Aerosil Co., Ltd.: purity 99.99%) so that the molar ratio of Li : Sr : Eu : Si is 1.96: 0.93: 0.07: 1.0, and the second mixture is obtained by mixing these 6 hours in a dry ball mill. The second mixture is calcined in a N2 atmosphere containing 5% by volume of H2 at a temperature of 80 ° C for 24 hours, and then cooled to room temperature to obtain a formula Lh.96 (Sr〇. 93 EuQ.Q7) Phosphor of the compound shown by Si04. The obtained fluorescent system was confirmed to have a spectral peak at 517 nm. The ratio of the divalent Eu ( Eu2+ ) in the total Eu of the light body is xm is as low as 56 gram, and the ring is -23 - 201229213 50.0 mol %. Further, the result of XRD measurement is in Example 1. It is confirmed that all of the obtained systems are hexagonal crystals. Industrial Applicability According to the method of the present invention, the first mixture of the metal halide and the Eu-containing material is fired to prepare a solid solution, and then fired. In the second mixture of the solid solution compound, Eu2+ is formed even in the low-temperature reduction baking. Therefore, a light body having a high content ratio of Eu2+ can be obtained. That is, if the firing temperature is obtained according to the method of the present invention. When the low-time Eu raw material is efficiently reduced, the ratio of the total Eu2+ of the obtained phosphor can be increased, and the phosphorescent fluorescent compound and the golden stable yellow fluorescent can be produced at a low environmental load and at a low cost. Eu medium. -24-