201225330 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種半導體裝置及其相關方法。因此, 本發明涉及電子以及材料科學領域。 【先前技術】 在許多已開發國家,大部份居民認為能將電子農置整 合於他們的生活中。如此對電子裝置越來越多使用以及依 賴使得人們要求電子裝置越來越小並且越來越快。當電子 裝置的電路增進了速度且減少了尺寸,對於這類裝置的散 熱便成了棘手的問題。 電子裝置一般包含印刷電路板’在印刷電路板上整合 連接有電子元件以便讓電子裝置能執行所有功能。這些電 子元件,例如處理器、電晶體、電阻、電容以及發光二極201225330 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor device and related methods. Accordingly, the present invention relates to the field of electronics and materials science. [Prior Art] In many developed countries, most residents believe that they can integrate electronic farming into their lives. The increasing use and dependence of electronic devices in this way has led to the demand for electronic devices to become smaller and faster. When the circuitry of an electronic device increases speed and reduces size, heat dissipation for such devices becomes a thorny issue. Electronic devices typically include a printed circuit board that is electronically coupled to the printed circuit board to enable the electronic device to perform all functions. These electronic components, such as processors, transistors, resistors, capacitors, and light-emitting diodes
。舉例而言,風 必須供給電力,以便能夠有效地進行散熱。 201225330 扇必須增加其尺寸以及速度以便增加風量,散熱器必須増 加其尺寸以便增加熱容量以及表面積。然而對於小型電子 裝置而言’其不僅要求避免這些散熱裝置的體積增加,更 可能要大量地縮小其體積。 因此’本發明提供方法以及其裝置以在對電子裝置提 供適當的散熱功效時,能同時將此類裝置上的散熱裝置的 體積以及耗電最小化。 【發明内容】 因此,本發明提供一種具有增進散熱功效的鑽石底半 導體裝置以及製造這類裝置的方法。在一方面中,舉例而 言,提供一種半導體裝置,且該半導體裝置具有一鑽石底 基材,一透明鑽石層係平行設置於該鑽石底基材,以及該 透明鑽石層與該鑽石底基材之間耦合有複數個半導體層。 在一特定的方面中,該半導體裝置為一種發光二極體裝 置,且該複數個半導體層為複數個發光二極體氮化物層 (LED nitride layer)。可以將該複數個半導體層配置成各種 結構型態,然而在一方面中,該複數個半導體層可於該鑽 石底基材與該透明鑽石層之間串聯設置。 在本發明的各種方面中,提供一半導體裝置,且該半 導體裝置在材料層之間具有相當低的晶格錯配,這類低晶 格錯配可藉由使用高品質的碳化矽層來達成。在一方面 中舉例而έ,該裝置進一步包含有一耦合於該透明鑽石 層並且朝向該複數個半導體層的碳化矽層,以使該碳化矽 層耦合於至少一半導體層。在另一方面中,該碳化矽層為 —單晶碳化矽層。又在另一方面中,該碳化矽層具有大致 201225330 -為晶匹配於該透明鑽石層的晶格。在又一方面中,該碳化 石夕層具有一大致遙晶匹配於至少其中一半導體層的晶格。 根據本發明的態樣,該裝置亦可包含有各種電極。在 方面中,S亥裝置包含有至少_ p型電極或至少一 N型電 極且係電性耦合於至少其中一半導體層。在另一方面中, 該鑽石底基材可為P型摻雜,且該P型電極為該P型推雜 鑽石底基材。在-特定的方面中,該鑽石基材係換雜蝴以 形成該P型摻雜鑽石底基材。 在本發明的各種態樣中,可根據半導體裝置所預計的 用途而利用多種半導體材料來建構此—半導體裝置。舉例 而言,該半導體層可包含至少一矽化鍺、砷化鎵、氮化鎵、 鍺、硫化鋅、磷化鎵、銻化鎵、磷砷化銦鎵、磷化鋁、砷 化鋁、砷化鎵鋁、氮化鎵、氮化硼、氮化鋁以及其混合物。 在—特定方面中,該半導體層為氮化鎵。在另一特定方面 中’該半導體層可包含有氮化鋁。 本發明亦提供製造半導體裝置的方法。在一方面中, 這類方法可包含:形成一透明鑽石層,其上耦合有一碳化 石夕層’且其中該碳化矽層具有大致磊晶匹配於該透明鑽石 層的晶格結構;於該碳化矽層上磊晶形成有複數個半導體 層;以及將一鑽石底基材耗合於至少其中一半導體層上, 以使該鑽石支持物平行於該透明鑽石層。在另一方面中, 這類方法可進一步包括將至少一 P型電極或至少一 N型電 極電性耦合至少一半導體層。 在此先以較寬廣的方式描述本發明各項特徵,以使讀 者能更了解之後本發明的詳細描述,本發明其餘特徵將透 201225330 過下列的本發明詳細說明與所附的申請專利範圍,或者透 過實施本發明來清楚呈現。 【實施方式】 定義 在敘述與主張本發明時,將會根據下列所提出的定義 來使用下列的用詞。 「一」以及「該」等單數冠詞包含複數的意義,除非 文中明確指出不同的使用方法。因此,舉例而t, 「_熱 源」一詞包含了一或多個這類的熱源,且「該鑽石層」: 詞包含了一或多個這樣的層結構。 熱轉移」、「熱運動」以及「熱傳輸」等用詞可相 互交替使用,是指熱量從—高溫區域轉移到—低溫區域。 熱量轉移可包含任何本發明所屬領域中具有通常知識者已 知的熱量傳輸機制,例如而;;5;受限於料性、對流性 輻射性等等。 文中所使用的「散發,一句β1 α 欺赞」4疋指自熱或光從固態材料 中轉移到空氣中的程序。 π 文中所使用的「發光表面 锭番斗此 」。°』疋指一裝置或物體的 表面,光自該表面散發。朵死勹人 , 包含可見光或者在紫外線 曰内的光。發光表面的例子可包含而不限制於一發光-^上的氮化物層’或者—個將與發光二極體結合之= 祖曰結構上的氮化物層’光則自該氮化物層發出。 文中所使用的「氣相沉積 枯供品π a δ1疋指透過使用氣相沉積 技術而形成的材料。「氣相沉積 U « ^ ^ 」疋彳日透過一氣相環境將一 材枓形成或》儿積於一基材上。氣相 匕積程序可包含任何而不 201225330 受限於化學氣相沉積(Chemical Vapor Deposition, CVD)以 及物理氣相沉積(Physical Vapor Deposition, PVD)等程 序。本發明所屬技術領域具有通常知識者可實施各個氣相沉 積方法的廣泛的各種不同態樣》氣相沉積方法的例子包含熱 燈絲化學氣相沉積、RF化學氣相沉積、雷射化學氣相沉積 (LCVD)、雷射脫落(Laser Ablation)、同構形鑽石塗佈程序 (Conformal Diamond Coating Processes)、有機金屬化學 氣相沉積(Meta卜Organic CVD, MOCVD)、濺鍍、熱蒸發物 理氣相 >儿積、電離金屬物理氣相沉積(l〇njzecj Metal PVD, IMPVD)、電子束物理氣相沉積(E丨ectr〇n Beam pVD, EBPVD)、反應性物理氣相沉積等方法。 文中所使用的「化學氣相沉積」或是「CVD」等用詞是 指任透過化學方式將蒸氣中的鑽石粒子沉積於一表面上^ 方法。此領域中有多種已知的化學氣相沉積技術。 文中所使用的「物理氣相沉積」或是「pVD」等用詞是 指任透過物理方式將蒸氣中的鑽石粒子沉積於—表面上的 方法。此領域中有多種已知的物理氣相沉積技術。 文中所使用的「鑽石」—詞是指一種碳原子的結晶駕 構該、。構中石厌原子與碳原子透過四面體配位晶格方式錢 結’該四面體配位鍵結即是已知^p3鍵結。具體而言,名 奴原子受到其他四個碳原子所環繞而鍵結, 子分別位於正四面俨的頂科 7 體的頂點。此外,在室溫下,任兩碳原子 之間的鍵長為1.54埃,& v H。 且任兩鍵之間的夾角為1 09度2ί 與性質,包括其差異但可忽略。鑽石的結榍 、電乳f·生質,均為該本發明所屬技術等 7 201225330 域具有通常知識者所知悉。 文中所使用的「扭曲四面體配位」—詞是指碳原子的四 面體配位鍵結為不規則狀,或者偏離前述鑽石的正常四面體 結構。此種扭曲型態通常導致其中一些鍵長加長而其餘的鍵 長縮短,並且使得鍵之間的角度改變。此外,扭曲四面體改 變了碳的特性與性f,使其特性與性質實際上介於以叩3配 位鍵結的碳結構(例如鑽石)與以sp2配位鍵結的碳結構(例 如石墨)之間。其中一個具有以扭曲四面體鍵結的碳原子的 材料便是無晶鑽石。 文中所使用的「類鑽碳」一詞是指一以主碳原子為主要 成分的含碳材料,該含碳材料中的大量碳原子以扭曲四面體 配位鍵結。儘管化學氣相沉積程序或其他程序可用於形成類 鑽碳,類鑽碳亦可透過物理氣相沉積程序而形成。尤其,類 鑽碳材料中可含有各種作為雜質或摻雜物的元素’這些元素 可包含而不受限於氫、硫、磷、硼、氮、矽以及鎢等等。 文中所使用的「無晶鑽石」一詞是指一種類鑽碳,該類 鑽碳主要70素為碳原子,且大多數的碳原子以扭曲四面體配 位鍵結。在一方面,無晶鑽石中的碳原子數量可為佔總量的 至少大約90%,且這些碳原子之中的至少2〇%以扭曲四面 體配位鍵結。無晶鑽石具有高於鑽石的原子密度(鑽石密度 為176原子/每立方公分(at〇ms/cm3))。此外’無晶鑽石以 及鑽石材料在溶化時體積收縮。 文中所使用的「無支撐力(Adynamic)」一詞是指一種層 結構,該層結構無法獨立維持其結構以及/或是強度。舉例 而5,在缺乏一模具層或一支撐層的情況下,一無支撐力鑽 201225330 石層將會在移該除模具面或是鑽石面之後捲曲或是變形。儘 管有許多原因導致-層結構具有無支樓力的性質,在一方 面導致…、支禮力性質的原因在於該層結構非常的薄。 ▲文中斤使用的「生長側」以及「生長表面」等用詞可相 互乂替使s ’並且是指在—化學氣相沉積程序之中,一薄膜 或是一層結構上生長的表面。 文中所使用的「基材」—詞是指__種支擇表面,該支樓 表面可連接各種材料以藉此形成一半導體裝置或一鑽石底 半導體裝置。該基材可具有任何㈣達料定結果的外形、 厚度或材料’且包含而不限制於金屬、合金、陶究以及其混 j /外’在某些方面,該基材可為—現有的半導體裝置 s曰曰圓’或者可為-種能夠結合-適當裝置的材料。 文中所使用的「大致上」一詞是指一作用、特徵、性質、 2態與結構、物品或結果之完全或近乎完全的範圍或是程 :潛“列而言’一物體「大致上」被包覆,其意指被完全地 匕覆,或者被幾乎完全地包覆。與絕對完対度相差之卻雄 可允命偏差程度,係、可在某些例子中取決料明書内文。然 一般而言,接近完全時所㈣的結果將㈣在絕對且徹 時㈣的全部結果—般。當「大致上」被使用於描述 元㈣近乎完全地缺乏—作用、特徵、性質、狀態、結構、 物σ 口或結果時,該作用古斗、 a使用方式亦是如前述方式而同等地應用 例而-5 ’一「大致上不包含」粒子的組成物,係可完 =乏^子,或是近乎完全缺乏粒子而到達如同其完全缺乏 二,度。換言之,只要一「大致上不包含」原料或元件 I且成物不具有可被量測得的效果,該組成物實際上仍可包 201225330 含這些原料或是元件。 文中所使用的「大約」是指給予一數值範圍之端點彈 性,所給予的數值可高於該端點少許或是低於該端點少許。 文中所使用的複數物品、結構元件、組成員件以及/或 材料,可以一般列表方式呈現以利方便性。然而,這些列表 應被解釋為:該列表的各成員係被獨立的視為分離且獨特的 成員。因此,基於此列表的成員出現在同一群組中而沒有其 他反面的指示,此列表中的各成員均不應被解釋為與同列表 中的任何其他成員相同的。 濃度、數量以及其他數值資料可以一範圍形式表達或呈 現。要了解的是,此範圍形式僅僅為了方便與簡潔而使用, 因此該範圍形式應該被彈性地解釋為不僅包含了被清楚描 述以作範圍限制的數值,亦包含在該範圍中的所有獨立數值 以及子範圍。因此’在此數值範圍中分別包含了獨立數值, 例如2,3及4’子範圍’例如及3_5等等,以及,、 2、3、4 及 5。 此相同的原則適用於作為最小值或最大值的單一數 j。此外’不論所描述範圍或特徵的幅度為何,都應該採用 這樣的解釋。 本發明係提供整合有鑽石;沾主 買七層的+導體裝置以及製造這 類裝置的方法。半導體裝置诵堂料 丁守腥衣直逋*對於散熱有报高的挑戰性’ 尤其是那些發光的半導體裝置。應注意的I即使下列敘述 大部份係針對於例如發光:極料發光裝置,但本發明所主 張的範圍並非侷限於此,且文中 甲所教不的内容亦同樣能夠適 用於其他類型的半導體裝置。 201225330 半導體裝置所產生的大部份熱量是在半導體層之中增 長,也因而影響了半導體裝置的效率。舉例而言,一發光二 極體可具有複數個氮化物,這些氮化物層被配置為可由一發 光表面發出光線。由於發光二極體在電子裝置以及發光裝^ 中變得越來越重要,發光二極體持續發展而不斷增加電力需 求這些裝置典型的微小體積令散熱問題惡化,使得具有傳 統鋁鰭片的散熱器因為自身笨重的性質而無法對這些裝置 有效地發揮散熱功效。此外,此類傳統散熱器,若應用在發 光二極體的發光表面,則會阻礙了光線的發散。由於散熱器 無法干涉氮化物層或是發光表面的功能,它們通常會被設置 在發光一極體以及一支標結構(例如電路板)之間。這樣的 散熱器位置相對於熱源累積處(意即該發光表面與該氮化物 層)的位置較遠。 目前已發現在發光二極體封裝中形成一鑽石層後,即便 在鬲功率狀況下’仍能有效對發光二極體進行散熱,同時維 持發光二極體封裝的小巧體積。此外,在一方面中,一發光 二極體的最大運作瓦數可能會低於自該具有一鑽石層之發 光二極體中的半導體層吸熱的吸熱率,以便藉此令該發光二 極體在高於其自身最大運作瓦數的運作瓦數下運作。 此外’在會發光以及不發光的半導體裝置之中,由於製 造這些半導體裝置的材料具有相對差的導熱率,熱量會被阻 塞於半導體層之中。此外,半導體層之間的晶格錯配降低了 導熱率’也因此進一步提高增熱率。本發明人已發展出整合 有鑽石層的半導體裝置’該鑽石層除了其他以外的特性,還 對該半導體裝置提供了增進的散熱性。此鑽石層增加了橫向 11 201225330 f,半¥體裝置的熱流動性以減少阻塞於半導體層之中的 :置。此橫向的熱傳遞可有效地增進許多半導體裝置的散熱 纟㈣本發明某些方面’半導體裝置的晶格匹配程 B加’因而進—步增進了半導體裝置的散熱性。此外,應 〆主意的是鑽石層所提供的有益特性不僅在於較好的散执性 而已’因此本發明的範嘴不應僅侷限於在散敎性之上。 於半導體裝置中若鑽石層緊密結合於該 層,則可達到更有效的冷卻效果,其整合上的阻礙係與鑽石 f4的高介電㈣特別是與具有大致單-晶格結構型 I、的鑽石材料相關。若該鑽石層設置於該半導體裝置的導電 路輕令,則可達到最適當的冷卻環境,然㈣於鑽石的介電 性質、’使這類組合型態難以達成。已發現導電鑽石層可作為 電極並且可麵合於半導體層而位於該裝置的傳導路徑中。 此外,透過利用導.電鐵石層作為電極,可建構出具有線 性傳導路徑的發光二極體裝置,且其線性傳導路徑係通過位 於電極之間的該複數半導體層。先前已建構許多發光二極體 裂置以使該〇型電極的導電路徑與該p型電極的傳導路徑之 間的夾角係m這類呈” L”型的傳導路徑使得電子 與電洞相互形成直角狀態’因而降低該裝置的效率。根據本 發明之方面該線性傳導路徑使得電子與電洞的方向 沿著該線性傳導路徑之方向,因此可提升該發光二極體裝置 的效率。 、 進一步而言’已發現將發熱的半導體層以三明治姓構 (SandWiCh-Nke)的形式定位於鑽石材料的層結構之間可 大幅提升半導體裝置的冷卻效果,特別是高功率發光二_ 12 201225330 -(_ W LED)。利用至少其卜鑽石層作為—導電鑽石 層在-些方面中可能有其效益,例如—高級的蟲晶晶格匹配 於該導電鑽石層以及—相關的半導體裝置是較為理想的。雖 然所有相關之鑽^層的晶格匹配對熱量的冷卻是有錢,但 這類晶格匹配對於不具導電性的鑽石層結構則並非必要。 因此,在本發明的-方面中,本發明係提供—種發光二 極體裝置。如圖i所示,此裝置可包含有一鑽石基材12、 -平仃設置於該鑽石基材12的透明鑽石層14;以及複數個 鶴合於該透明鑽石層14與該鑽石基材12之間的半導體層 »亥複數半導體層16所產生的光係通過該透明鑽石層14 散發15;可佈設一反光層13於該鑽石基材12以將朝該鑽 石基材12散發的光反射回該複數半導體層16以及該透明鑽 層14從而增進發光二極體襄置的效率。這類反光層可 用許多本發明所屬領域具通常知識者所熟知的的各種反光 材料所構成’其中一例子係利用鉻金屬或其他反光金屬所形 成的層結構作為反光材料。 在-方面中’如圖2所示,可令一碳化矽層18耦合於 該透明鑽石g 14以提升該透明鑽石| 14與該複數半導體層 16之間的晶格匹配。在一方面該透明鑽石層14亦可具導電 性,因此可作為用於該半導體裝置的電極。在此情形下,一 具相反極性之電極(圖中未示)可輕合於該複數半導體層 1 6且相對於該具導電性的透明鑽石層1 4。 圖3顯示一根據本發明特定方面來製造一半導體基材 的方法的部分步驟。提供—單晶珍生長基材以供其他材料沉 積於該單晶矽生長基材。雖然該矽生長基材不必要是單晶結 13 201225330 構’此種單晶晶格構造相較於非單晶基材而言,可使所附加 上的材料在沉積時有相對較少的晶格的錯配(Mjsmatch)問 題在/儿積之前徹底的清潔矽生長基材以在沉積之前,自晶 圓上移除非結晶狀的矽或是非矽粒子是有益的,這些非結晶 狀的石夕或是㈣粒子可能會導时生長基材以及其上的沉 積層之間的晶格錯配。本發明範疇包含任何可清理該矽生長 基材的方法u,在-方面,該基材可浸泡於氫氧化鉀之 中並以蒸餾水透過超音波方式對該基材進行清洗。. For example, the wind must be powered to be able to dissipate heat efficiently. 201225330 Fans must increase their size and speed to increase air volume, and heat sinks must be sized to increase heat capacity and surface area. However, for small electronic devices, it is not only required to avoid an increase in the volume of these heat sinks, but is also more likely to be reduced in size. Thus, the present invention provides a method and apparatus thereof that minimizes the volume and power consumption of the heat sink on such devices while providing appropriate heat dissipation to the electronic device. SUMMARY OF THE INVENTION Accordingly, the present invention provides a diamond bottom semiconductor device having improved heat dissipation efficiency and a method of manufacturing such a device. In one aspect, for example, a semiconductor device is provided, and the semiconductor device has a diamond base substrate, a transparent diamond layer disposed in parallel to the diamond base substrate, and the transparent diamond layer and the diamond base substrate A plurality of semiconductor layers are coupled between each other. In a specific aspect, the semiconductor device is a light emitting diode device, and the plurality of semiconductor layers are a plurality of LED nitride layers. The plurality of semiconductor layers may be arranged in a variety of structural forms, however in one aspect, the plurality of semiconductor layers may be disposed in series between the diamond bottom substrate and the transparent diamond layer. In various aspects of the invention, a semiconductor device is provided, and the semiconductor device has a relatively low lattice mismatch between material layers, such low lattice mismatch can be achieved by using a high quality tantalum carbide layer . In one aspect, the apparatus further includes a tantalum carbide layer coupled to the transparent diamond layer and facing the plurality of semiconductor layers to couple the tantalum carbide layer to the at least one semiconductor layer. In another aspect, the tantalum carbide layer is a single crystal tantalum carbide layer. In still another aspect, the tantalum carbide layer has a substantially 201225330 - crystal lattice matched to the transparent diamond layer. In yet another aspect, the carbonized stone layer has a lattice that is substantially telecrystalline to match at least one of the semiconductor layers. According to aspects of the invention, the device may also include various electrodes. In one aspect, the S-H device includes at least a p-type electrode or at least one N-type electrode and is electrically coupled to at least one of the semiconductor layers. In another aspect, the diamond base substrate can be P-type doped, and the P-type electrode is the P-type push-mixed diamond base substrate. In a particular aspect, the diamond substrate is woven to form the P-type doped diamond base substrate. In various aspects of the invention, the semiconductor device can be constructed using a variety of semiconductor materials depending on the intended use of the semiconductor device. For example, the semiconductor layer may comprise at least one germanium, gallium arsenide, gallium nitride, germanium, zinc sulfide, gallium phosphide, gallium antimonide, indium gallium arsenide, aluminum phosphide, aluminum arsenide, arsenic. Gallium aluminum, gallium nitride, boron nitride, aluminum nitride, and mixtures thereof. In a particular aspect, the semiconductor layer is gallium nitride. In another particular aspect the semiconductor layer can comprise aluminum nitride. The present invention also provides a method of fabricating a semiconductor device. In one aspect, such a method can include: forming a transparent diamond layer having a carbonized carbide layer coupled thereto and wherein the tantalum carbide layer has a lattice structure substantially epitaxially matched to the transparent diamond layer; Deuterium on the germanium layer is formed with a plurality of semiconductor layers; and a diamond base substrate is consumed on at least one of the semiconductor layers such that the diamond support is parallel to the transparent diamond layer. In another aspect, such methods can further include electrically coupling at least one P-type electrode or at least one N-type electrode to at least one semiconductor layer. The features of the present invention are described in the broader aspects of the embodiments of the invention, Or it can be clearly presented by implementing the invention. [Embodiment] Definitions In describing and claiming the present invention, the following terms will be used in accordance with the definitions set forth below. The singular articles "a" and "the" are used in the plural unless the meaning Thus, by way of example, t, the term "heat source" includes one or more of such heat sources, and the "diamond layer": the word contains one or more such layer structures. The terms “heat transfer”, “thermal motion” and “heat transfer” can be used interchangeably to mean that heat is transferred from the high temperature zone to the low temperature zone. The heat transfer can comprise any heat transfer mechanism known to those of ordinary skill in the art to which the present invention pertains, for example; 5; limited by the nature of the material, convective radiation, and the like. The term “distribution, a β1 α bully” 4 used in the text refers to the process of transferring heat or light from solid materials into the air. The "light-emitting surface ingots" used in the π text. °疋 refers to the surface of a device or object from which light is emitted. A dead man, containing visible light or light in the ultraviolet ray. Examples of the light-emitting surface may include, without limitation, a nitride layer on a light-emitting layer or a nitride layer bonded to the light-emitting diode = a nitride layer on the ancestor structure, from which light is emitted. The "gas phase deposition supply π a δ1 疋" used in the text refers to a material formed by using a vapor deposition technique. "Vapor deposition U « ^ ^ " is formed by a gas phase environment on the next day. Accumulated on a substrate. The gas phase accumulation procedure can include any process other than 201225330 limited to Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD). The present invention pertains to a wide variety of different aspects of the various vapor deposition methods that can be implemented by a person skilled in the art. Examples of vapor deposition methods include hot filament chemical vapor deposition, RF chemical vapor deposition, and laser chemical vapor deposition. (LCVD), Laser Ablation, Conformal Diamond Coating Processes, Organic Metal Chemical Vapor Deposition (MCVD), Sputtering, Thermal Evaporation, Physical Vapor ; methods of ion deposition, ionization metal physical vapor deposition (l〇njzecj Metal PVD, IMPVD), electron beam physical vapor deposition (E丨ectr〇n Beam pVD, EBPVD), reactive physical vapor deposition. The terms "chemical vapor deposition" or "CVD" as used herein refer to the method of chemically depositing diamond particles in a vapor onto a surface. There are many known chemical vapor deposition techniques in this field. The terms "physical vapor deposition" or "pVD" as used herein refer to a method of physically depositing diamond particles in a vapor onto a surface. There are many known physical vapor deposition techniques in this field. The term "diamond" as used in the text refers to the crystallization of a carbon atom. In the structure, the anatomical atom and the carbon atom pass through the tetrahedral coordination lattice. The tetrahedral coordination bond is known as the ^p3 bond. Specifically, the slave atom is bound by the other four carbon atoms, and the sub-nodes are located at the apex of the top-six body of the tetrahedral. Further, at room temperature, the bond length between any two carbon atoms is 1.54 angstroms, & v H . And the angle between any two keys is 1 09 degrees 2 ί with properties, including the difference but can be ignored. The knot of the diamond, the electric frit, and the raw material are all known to those skilled in the art. The term "distorted tetrahedral coordination" as used herein means that the tetrahedral coordination bond of a carbon atom is irregular or deviates from the normal tetrahedral structure of the aforementioned diamond. Such a twisted pattern typically results in some of the bond lengths being lengthened while the remaining bond lengths are shortened and the angle between the keys is changed. In addition, the twisted tetrahedron changes the properties and properties of carbon, so that its properties and properties are actually between the carbon structure (eg, diamond) coordinated by 叩3 and the carbon structure (eg, graphite) coordinated by sp2. )between. One of the materials with a twisted tetrahedral carbon atom is an amorphous diamond. The term "diamond-like carbon" as used herein refers to a carbonaceous material having a main carbon atom as a main component, and a large number of carbon atoms in the carbonaceous material are coordinately bonded by a twisted tetrahedron. Although chemical vapor deposition procedures or other procedures can be used to form diamond-like carbon, diamond-like carbon can also be formed by physical vapor deposition procedures. In particular, the diamond-like carbon material may contain various elements as impurities or dopants. These elements may include, without limitation, hydrogen, sulfur, phosphorus, boron, nitrogen, ruthenium, tungsten, and the like. The term "amorphous diamond" as used herein refers to a diamond-like carbon that is predominantly carbon atoms and most of which are coordinated by a twisted tetrahedron. In one aspect, the number of carbon atoms in the amorphous diamond can be at least about 90% of the total, and at least 2% of these carbon atoms are coordinated by a twisted tetrahedral coordination. Amorphous diamonds have a higher atomic density than diamonds (diamond density is 176 atoms per cubic centimeter (at 〇ms/cm3)). In addition, the amorphous diamond and the diamond material shrink in volume during melting. The term "Adynamic" as used herein refers to a layer structure that does not independently maintain its structure and/or strength. For example, in the absence of a mold layer or a support layer, a non-supporting drill 201225330 stone layer will curl or deform after moving the mold surface or the diamond surface. Although there are many reasons for the fact that the layer structure has the property of no branching, the cause of the ... and the nature of the ritual force is that the layer structure is very thin. ▲The words “growth side” and “growth surface” used in Wenzhongjin can replace each other with s ' and refer to a thin film or a layer of structurally grown surface in the chemical vapor deposition process. As used herein, "substrate" - the term refers to a stencil surface to which various materials may be attached to thereby form a semiconductor device or a diamond-bottom semiconductor device. The substrate may have any (four) shape, thickness or material of the desired result and include and is not limited to metals, alloys, ceramics, and the like. In some aspects, the substrate may be an existing semiconductor. The device may be rounded or may be a material that can be combined with a suitable device. The term "substantially" as used herein refers to a full or near-complete range or course of action, characteristics, nature, state and structure, article or result: substantially "column" an object "substantially" Wrapped, which means completely covered or completely covered. The degree of deviation of the allowable deviation from the absolute degree of completeness can be determined in some examples. In general, the result of (4) close to complete will be (iv) all the results in absolute and thorough (four). When "substantially" is used in the description element (4) to almost completely lack - action, feature, nature, state, structure, matter σ mouth or result, the effect of the use of the ancient, a use is also the same as the above-mentioned way For example, a composition of -5 "approximately does not contain" particles can be finished = lack of ^, or almost completely lacking particles and arrive as if it were completely lacking. In other words, as long as a "substantially does not contain" material or component I and the product does not have a measurable effect, the composition can actually contain these materials or components in 201225330. As used herein, "about" refers to the endpoint elasticity imparted to a range of values, which can be given a value that is a little above the endpoint or a little below the endpoint. The plural articles, structural elements, group members, and/or materials used herein may be presented in a general list for convenience. However, these lists should be interpreted as: Each member of the list is considered to be a separate and distinct member. Therefore, based on the fact that members of this list appear in the same group without other negatives, each member of this list should not be interpreted as being the same as any other member in the same list. Concentrations, amounts, and other numerical data can be expressed or presented in a range. It is to be understood that the scope of the present invention is to be construed as being limited in the scope of the Subrange. Thus, 'in this numerical range, separate values are included, such as 2, 3, and 4' sub-ranges', for example, and 3_5, etc., and, 2, 3, 4, and 5. This same principle applies to a single number j as a minimum or maximum. In addition, this interpretation should be used regardless of the extent of the range or features described. The present invention provides a + conductor assembly incorporating integrated diamonds; and a method of manufacturing such devices. Semiconductor device 丁 料 丁 丁 腥 腥 逋 逋 逋 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于 对于It should be noted that although the following description is mostly directed to, for example, illuminating: a polar light-emitting device, the scope of the present invention is not limited thereto, and the content taught by A can be applied to other types of semiconductors as well. Device. 201225330 Most of the heat generated by semiconductor devices is increased in the semiconductor layer, which in turn affects the efficiency of semiconductor devices. For example, a light emitting diode can have a plurality of nitrides that are configured to emit light from a light emitting surface. As light-emitting diodes become more and more important in electronic devices and illuminating devices, light-emitting diodes continue to develop and continuously increase power demand. The typical small volume of these devices deteriorates heat dissipation problems, resulting in heat dissipation with conventional aluminum fins. Due to its cumbersome nature, the device cannot effectively dissipate heat for these devices. In addition, such conventional heat sinks, if applied to the light-emitting surface of the light-emitting diode, hinder the divergence of light. Since the heat sink cannot interfere with the function of the nitride layer or the light emitting surface, they are usually disposed between the light emitting body and a standard structure such as a circuit board. Such a heat sink position is relatively far from the location of the heat source accumulation (i.e., the light emitting surface and the nitride layer). It has been found that after forming a diamond layer in a light-emitting diode package, the light-emitting diode can be effectively dissipated even under the power condition, while maintaining the compact size of the light-emitting diode package. In addition, in one aspect, the maximum operating wattage of a light-emitting diode may be lower than the heat absorption rate of the semiconductor layer in the light-emitting diode having a diamond layer, thereby thereby making the light-emitting diode Operates at operating wattages above its maximum operating wattage. Further, among semiconductor devices which emit light and which do not emit light, since materials for fabricating these semiconductor devices have relatively poor thermal conductivity, heat is blocked in the semiconductor layer. In addition, the lattice mismatch between the semiconductor layers lowers the thermal conductivity' and thus further increases the heat gain rate. The inventors have developed a semiconductor device incorporating a diamond layer. The diamond layer provides, among other things, improved heat dissipation to the semiconductor device. This diamond layer increases the thermal mobility of the lateral layer 11 201225330 f to reduce the blockage in the semiconductor layer. This lateral heat transfer is effective to enhance the heat dissipation of many semiconductor devices. (4) Certain aspects of the present invention 'the lattice matching process B of the semiconductor device' thus advances the heat dissipation of the semiconductor device. In addition, it should be borne in mind that the beneficial properties provided by the diamond layer are not only due to better dispersality, so the scope of the invention should not be limited to divergence. In the semiconductor device, if the diamond layer is tightly bonded to the layer, a more effective cooling effect can be achieved, and the integration hindrance is high dielectric (IV) of the diamond f4, especially with a substantially single-lattice structure type I. Related to diamond materials. If the diamond layer is placed on the conductive path of the semiconductor device, the most suitable cooling environment can be achieved, and (4) the dielectric properties of the diamond, 'making such a combination type difficult to achieve. The conductive diamond layer has been found to act as an electrode and can be planarized to the semiconductor layer in the conduction path of the device. Further, by using the conductive iron layer as an electrode, a light-emitting diode device having a linear conduction path can be constructed, and its linear conduction path passes through the plurality of semiconductor layers located between the electrodes. A plurality of light-emitting diode splits have been previously constructed such that the conduction path between the conductive path of the germanium electrode and the conductive path of the p-type electrode is an "L"-type conductive path such that electrons and holes form each other. The right angle state 'thus reduces the efficiency of the device. According to an aspect of the invention, the linear conduction path causes the direction of electrons and holes to follow the direction of the linear conduction path, thereby improving the efficiency of the light-emitting diode device. Further, it has been found that positioning the heat-generating semiconductor layer in the form of a sandwich structure (SandWiCh-Nke) between the layer structures of the diamond material can greatly improve the cooling effect of the semiconductor device, especially the high-power light-emitting diode _ 12 201225330 -(_ W LED). The use of at least a diamond layer as a conductive diamond layer may have benefits in some respects, for example, a superior insect crystal lattice matching the conductive diamond layer and associated semiconductor devices is preferred. Although the lattice matching of all relevant drill layers is rich in heat cooling, such lattice matching is not necessary for a non-conductive diamond layer structure. Accordingly, in an aspect of the invention, the invention provides a light emitting diode device. As shown in FIG. 1, the apparatus may include a diamond substrate 12, a transparent diamond layer 14 disposed on the diamond substrate 12, and a plurality of cranes in the transparent diamond layer 14 and the diamond substrate 12. The light generated by the inter-semiconductor layer » the radix semiconductor layer 16 is emitted 15 through the transparent diamond layer 14; a reflective layer 13 may be disposed on the diamond substrate 12 to reflect the light emitted toward the diamond substrate 12 back to the The plurality of semiconductor layers 16 and the transparent drill layer 14 enhance the efficiency of the light-emitting diode arrangement. Such reflective layers can be constructed from a variety of reflective materials well known to those of ordinary skill in the art. One example is a layered structure formed from chrome or other reflective metal as the retroreflective material. In the aspect of Fig. 2, a tantalum carbide layer 18 can be coupled to the transparent diamond g 14 to enhance lattice matching between the transparent diamond | 14 and the plurality of semiconductor layers 16. In this aspect, the transparent diamond layer 14 can also be electrically conductive, and thus can be used as an electrode for the semiconductor device. In this case, an electrode of opposite polarity (not shown) can be lightly coupled to the plurality of semiconductor layers 16 and to the transparent diamond layer 14 having conductivity. Figure 3 shows a portion of the steps of a method of fabricating a semiconductor substrate in accordance with certain aspects of the present invention. A single crystal growth substrate is provided for deposition of other materials on the single crystal germanium growth substrate. Although the ruthenium growth substrate is not necessarily a single crystal junction 13 201225330 structure, such a single crystal lattice structure can provide relatively less crystals during deposition than a non-single crystal substrate. Mjsmatch Problem It is beneficial to thoroughly clean the substrate before the deposition to remove amorphous or non-antimony particles from the wafer before deposition. These amorphous stones are beneficial. Either or (iv) particles may lead to lattice mismatch between the substrate and the deposited layer thereon. The scope of the present invention encompasses any method u for cleaning the growth substrate of the crucible. In the aspect, the substrate can be immersed in potassium hydroxide and the substrate is ultrasonically cleaned by distilled water.
在清洗該矽生長基材34之後,矽生長基材34上可沉積 單阳碳化矽32的磊晶層以及一磊晶透明鑽石層36,並使 該單晶碳化矽層32位於該矽生長基材34以及該鑽石層之間 36。該碳化矽層32可於沉積時與該鑽石層36相分離,或 是可為該鑽石層36沉積的結果,亦或是可於沉積時與該沉 績的鑽石層36相互結合。舉例而言,該碳化矽層32可為由 矽逐漸變化為鑽石的程序的沉積結果,此例子會在稍後敘 述。此外,可藉由在該矽生長基材34上沉積一無晶鑽石層 而在内部創造該碳化矽層32,此例子亦會在稍後敘述。S 承前述,可在該透明鑽石層36上沉積一矽層38 ^該石夕 層38增進該矽載具基材42結合到該透明鑽石層36的結合 強度。該矽载具基材42具有一可結合到該矽層38的二氧2 石夕表面4L在石夕載具基材42以晶圓結合方式結合到:石夕: 38之後,可移除該矽生長基材34而露出該碳化矽層32γ 如上所述,該碳化矽層32可作為一生長表面 材料(圖中未示)沉積在該生長表面上。在— 發光二極體層於該碳化矽層32上形成之前, 以便令半導體 方面中,於該 可移除該矽載 14 201225330 具基材42與該石夕層38以晨♦兮、未 _ 層加以暴路該透明鑽石層36。該鑽石基 材圖中未不)可以如前所述之方式麵合於該半導體層。 鑽石材料具有優異的導熱性,此則使其成為整合到半導 體裝:的理想材料。透過鑽石材料可加速自半導體裝置中轉 移熱里的速度。應注意的是,本發明不揭限於特定的熱量轉 移理論。因此,在一方面中可$卜 乃卸1fT至> 一部份透過將熱量轉移進 入以及通過一鑽石|來加速自I導體^内部轉移熱量的 速度。由於鑽石優異的熱傳導性f,熱量可快速地橫向傳播 通過鑽石層以及到達一半導體裝置的邊緣。在邊緣的熱量可 更快速地排散到空氣之中或者排散到周圍的散熱器或者半 導體裝置的支撑架等結構之中。此外,具有大部份面積暴露 於空氣之中的鑽石層將會更快速地排散一.整合有此鑽石層 之裝置的熱量。由於鑽石的熱傳導性大於一與該鑽石層熱耦 合的半導體裝置層或其他結構的熱傳導性,因此該鑽石層成 為一散熱器。因此,該鑽石層吸取了該半導體裝置層内所產 生的熱量,並且這些熱量以橫向方式傳播並排散於該半導體 裝置之外。此種加速熱轉移的方式可導致半導體裝置具有更 低的運作溫度。此外,熱轉移的加速不僅冷卻半導體裝置, 更能降低在空間上位於該半導體裝置附近的許多電子元件 的熱負載。 在本發明的某些方面中,可將鑽石層的一部份暴露於六 氣之中。在某些情況下,此種暴露的狀態限制在只暴露鑽石 層的邊緣,或者可暴露該鑽石層大比例的表面積,例如暴露 鑽石層的其中一側。在此方面中,至少一部份透過將熱量自 鑽石層轉移到空氣中的方式,可達成半導體裝置的熱量移除 15 201225330 的加速效果。舉例而言,鑽石材料,例如類鑽碳(diam〇nd_丨 carbon,DLC)等,即便在低於1〇(rc的溫度,亦具有優異的 熱發射率特性,因此鑽石材料能直接輻射熱量到空氣中。含 半導體裝置在内的多數其他材料的導熱性優&熱輕射性。因 此,半導體裝置可傳導熱量到類鑽碳層,將熱量在類鑽碳層 中橫向傳播,且接著沿著類鑽碳層的邊緣或是其他外露的表 面將熱量輻射到空氣之中。由於類鑽碳的高導熱性以及高熱 輻射陧,由類鑽碳到空氣中的熱量轉移效果可優於由半導體 裝置到二氣中的熱量轉移效果。因此,類鑽碳層可用以加快 熱量自該半導體層移除的速度,使得透過半導體層的熱量轉 移速度高於半導體本身的熱量轉移速度,或者高於由半導體 裝置到空氣中的熱量轉移速度。 如上所建議的,可使用各種鑽石材料來對一半導體裝置 提供量轉移速率的加速特性。這類鑽石材料的例子可包含 ^不受限於鑽石、類鑽碳、無晶鑽石以及其組合·>應注意的 是,任何可用於對—半導體裝置降溫的天然或人造鑽石材料 均在本發明的範疇之内。 應了解的疋,下列敘述事關於鑽石沉積技術中相當一般 的。寸'’延些鑽石沉積技術可廣泛的介於本發明的各種不同 方面。-般而言,可用各種已知方法來形成鑽石,這些方法 包含各種氣相沉積技術。可使用任何已知的氣相沉積技術來 《成鑽石|儘官可使用與氣相沉積法之特性及產物相近的 任何方法來形成鑽石,最常見的氣相沉積技術包含化學氣相 沉積技術’例如熱燈絲、微波電聚、氫氧焰(oxyacety丨ene e) RF化學氣相沉積(RF_CVD)、雷射化學氣相沉積 16 201225330 (lase「CVD)、雷射脫落(丨aserab丨ation)、同構形鑽石圖佈程 序(conformal diamond coating p「〇cesses)、有機金屬化學 氣相沉積(metahorganic CVD,MOCVD)以及直流電弧技術 (direct current arc technologies)等技術。典型的化學沉積 技術使用氣態反應物來將鑽石或類鑽碳材料沉積為一層辞 構或一膜結構。前述氣體可包含少量(大約少於5%的含碳 材料,例如以氫氣稀釋的曱烷卜本發明所屬技術領域具^ 通常知識者知悉各種化學氣相沉積程序的設備與條件,亦知 悉特別適用於氮化硼層的程序。在另一方面中,可使用物理 氣相沉積技術,例如濺鍍、陰極電弧以及熱蒸發等等。此外, 可使用特定的沉積條件以調整類鑽碳、無晶鑽石或是純鑽石 等所沉積材料的確切型態。應注意的是,高溫會降低例如發 光二極體等許多半導體裝置的品f。必須小心翼翼以便能確 保鑽石以低溫方式沉積,藉此避免鑽石於沉積時損壞的問 題。舉例而言’若半導體包含有氧化銦,可使用最多到6〇〇 t的沉積溫度。在氮化鎵的例子中,最多到大約⑽代均 能保持層結構的熱狀性。此外,可使用不過度干涉鑽石声 ,熱轉移或半導體裝置之功能的方法,透過硬焊、膠合、或 是貼合等方式將預先形成的複數層結構固定於半㈣層或 是半導體層的支撐基材上。 可在一基材上的生長表面上形成一選用的成核加強層 以增進鑽石層的沉積品質以及減少沉積時間。特別是,可以 透過沉積適用的晶核,例如,在—基材的鑽石生長表面上沉 積-鑽石晶核’接著透過氣相沉積技術令該晶核生長成一薄 膜或層結構。在本發明的一方面中,在該基材上可塗佈一薄 17 201225330 狀的成核加強層以增強鑽石層的生長。接著將鑽石晶核置放 在該成核加強層上’且透過化學氣相沉積來進行鑽石層的生 長程序。 本發明所屬技術領域具有豸常知冑者可知曉各種可作 為成核加強材料的適用材料。在本發明的一方面中,該成核 加強材料可為-選自於金屬、金屬合金、金屬化合物、碳化 物、碳化物形成元素(carbide f0「mer)以及其組合。碳化物 形成材料的例子可為鎢、组、 鈦、結、鉻、鉬、矽以及猛。 碳化物的例子可包含碳化鶴、碳切、碳化鈦、碳化錯及其 組合。 當使用時,該成核加強層為一足夠薄的層結構以致於盆 不會不利地影響該鑽石層的熱傳導性。在本發明地一方面 中,該成核加強層的厚度可小於大約G1微米。在本發明的 另-方面令,該厚度可至少小於大约1〇奈米。在本發明的 又一方面中’該成核加強層的厚度可小於大約5奈米。在本 發明另一方面,該成核加強層的厚度可少於大約3奈米。 可使用各種方法來增加在透過氣相沉積技術所形成的 鑽石層之成核表面的鑽石品f。舉例而言,可在鑽石沉積的 &早階段時’減少K流量並且增加總氣體I力來增進鑽石 粒子的品質。這樣的措施能減少碳的分解率,並且能增加氯 子;農度因此,將會使非常高比例的碳以Sp3鍵結配置狀 悲。儿積’且能增進所形成的鑽石晶核的品質。此外,可增加 鑽石例子的成核率的方法可包含而不限制於下列例子·㈣ 生長表面提供_適量的負偏虔,通常大約是觸伏H 細鑽石膠或是鑽石粉末對該生長表面進行拋光,該精細鑽石 18 201225330 膠或粉末可部份留存於該生長表面,以及透過物理氣相沉積 或疋電㈣助式化學沉積(PECVD)的程序來植入如碳、石夕、 鉻、錳、鈦、釩、銼、鎢、鉬、鈕以及類似的離子,來控制 生長表面的成分。物理氣相沉積程序的實施溫度_般低於化 學氣相沉積的溫度,且在某些例子中可低於大約·。。而在 大約150 C»其他增進鑽石成核的方法對於本發明所屬技術 領域具有通常知識者是顯而易見的。 在本發明的一方面中,該鑽石層可為一同構形鑽石層的 型態。可透過歧的各種基材,例如包括料面基材,來實 施同構形鑽石塗佈程序。同構形鐵石塗佈程序相較於傳統的 鑽石薄膜程序能具有許多優點。可透過不利用偏壓的鑽石生 長條件來減處理生長表面形成—碳膜。鑽石生長條件可為 傳統適用鑽石的化學氣相沉積條件並且不使用偏壓。因此, 所形成的碳薄膜大多小於埃的厚度。預先處理步驟可在 大約2(KTC到大約議。c的生長溫度,而較佳的低溫在大 約50(TC卩下。無須任何特殊理論,碳薄膜在少於一小時 的時間形成,且該碳薄膜為―種氫端(HydrQgentenTiinated) 旦r甴 。 在形成該薄碳膜之後’該生長表面可接著在鑽石生長條 件下形成-同構型鑽石層。該鑽石生長條件可為通常使用傳 統化學氣相沉積式鑽石生長方式的條件。然而,不同於傳統 鑽石膜生&,由丨述預先處^步驟所產生的鑽石冑是一種同 構形鑽石膜,其典型地在大致整個生長表面上開始生長,且 大致上完全沒有孕核期(incubation time)。再者,可生長到 在大約80nm以内厚度之連續性(例如:無紋理邊界)的鑽石 201225330 膜。大致上無纹理邊界的鑽石層相較有紋理邊界的鑽石層可 更有效地進行散熱。 可利用各種技術賦予鑽石層導電性質,這類技術已為本 發明所屬領域具通常知識者所熟知。舉例而言,鑽石層的晶 格中可能摻雜各種雜質,這類雜質可包括例如矽、硼、磷、 氮、鋰、鋁、鎵等元素。在-特定的方面中,舉例而言,該 鑽石層可摻雜硼。雜質亦可包括在晶格中的金屬粒子,若該 複數雜質並不干涉該裝置的功能(例如阻礙發光二極 發的光 對於某些鑽石層’特別是那些即將沉積有半導體層的鑽 石層’創造-個生長基材而令該半導體材料可以最少的晶格 錯位結W例如大致上為單晶體的結構)沉積形成於該生長 基材上是有益的。大致上為單晶體結構的生長表面與半導體 材料之間有強大的鍵結效應,因此制大致上為單晶體結構 的生長表面可促進將晶格錯位的情形降到最低。在本發明一 方面’此種基材包含-大致上為單晶體結構的鑽石層,在該 鑽石層耗合有-大致上為單晶體結構的碳切層。該碳化層 單晶體結構的特性有利於一例如氣化錄或是氮化 , A致上>儿積為一單晶體。此外,由該鑽石層到該 奴化石夕層以及由該鑽石層到該半導體層的蠢晶關係,辦加了 鑽石層的熱傳導性,因此增進了半導體裝置的散熱,二 可使用各種可能的方法來建造此種鑽石/碳化石夕合成 土^。任何运類方法均被視為是屬於本發明範嘴之内。舉例 在-方面可透過將—單晶碎晶圓逐漸變化為—單晶石夕 式來創4 一基材。換言之,該石夕晶圓能由石夕逐漸 20 201225330 的轉化為碳化矽並接著逐漸轉化為鑽石。逐漸變化的技術發 明人於2007年5月31日提出申請,代理人第 00802-32733,ΝΡ號的美國專利申請案「漸變式結晶材料及 其相關方法」’作進一步的探討,該申請案載明於本文之中 以供參考。除了上述對晶格錯位最小化的優點大致上為單 晶體的鑽石層可為透明而透光,以利建造一發光半導體裝 置,例如發光二極體以及雷射二極體。 所形成的結構包括-大致上單一晶格之鑽石層,其磊晶 箱合有-大致上單-晶格之碳切層。半導體層可藉由本發 明所屬領域具通常知識者所熟知的任何方法而蟲晶形成於 該碳切層上。在-方面巾,此類沉積可發生在—漸變程序 =中,該漸變程序類似於切晶圓上形成鐵石層所使用的技 :。形成該半導體層之後’可再耦合一鑽石支撐材。許多耦 口曰方,已為本發明所屬領域具通常知識者所熟知,例如硬 2 $火料。應注意的是若對於該鑽石支樓材的功 Γ不會有實質上的影響,則任何耗合方法均可0。在-特 .面中 與金屬結合所形成的碳化物(carbide —ng meta丨)的反光層可設置於半導體層的一表面。在一 此類金屬係為鈦。該鑽石支撐材接著可形成於該欽 #且攸而藉由形成於該反光層與該鑽石基材之間的碳 化鈦鍵結而耦合於該半導體層。 進行=本發明某些方面’該鑽石層可具有供—半導體裝置 裝i結構厚度。鑽石層的厚度可根據應用以及半導體 要較厚的-R而改變。舉例而言,較大的散熱需求將會需 石層。鑽石層厚度亦會隨著該鑽石層内所使用的 21 201225330 材料的不同而有所變化。換言之, 可由大約1。到大約5。微米。在另子面中:鑽= 度可等於或小於大約1G微米,又—例子中,j石層的厚 可由大約50微米到大約1〇〇微米,在另_例子中石=度 層的厚度可大於大約50微米。在又-例子中,一鑽石:: 為無支撐力鑽石層。 ’層可 根據本發明的某歧方面φ 干—万面中5亥蚨化矽層可依據碳化矽層 積方法以及半導體裝置的用途而具有不同的厚度。在某 些方面中’該碳切層可齡夠厚到能排列沉積於碳化石夕層 上的層結構的晶格方向。在其他方面中,較厚的碳化矽層較 為有利。根據這些變化’在—方面該碳化發層的厚度可等於 或小於大約i微米。在另一方面中,該碳切的厚度可等於 或J於大約500奈米。在又—方面,該碳化碎的厚度可等於 或J於大約1奈米。在又另—方面,該碳化碎的厚度可大於 大約1微米。 ' 如上所述,根據本發明某些方面,該半導體裝置包含複 數連接到一個或多個鑽石層的半導體層。這些半導體層可透 過本發明所屬技術領域具有通常知識者所知曉的各種方法 連接到一鑽石層。在本發明的一方面中,可在一鑽石層上沉 積一個或多個半導體層,或者如上所述,可在一耦合到鑽石 層的碳化矽層上沉積一個或多個半導體層。 可利用本發明所屬技術領域具有通常知識者已知的各 種技術在一例如碳化矽層的基材上沉積一半導體層。這類技 術的其中一個例子是有機金屬化學氣相沉積(Meta卜organicAfter cleaning the crucible growth substrate 34, an epitaxial layer of mono-positive antimony carbide 32 and an epitaxial transparent diamond layer 36 may be deposited on the crucible growth substrate 34, and the monocrystalline niobium carbide layer 32 is located on the crucible growth substrate. The material 34 and the diamond layer are 36. The tantalum carbide layer 32 may be separated from the diamond layer 36 during deposition, or may be deposited as a result of the diamond layer 36, or may be bonded to the deposited diamond layer 36 during deposition. For example, the tantalum carbide layer 32 may be a deposition result of a procedure in which the crucible is gradually changed into a diamond, which will be described later. Further, the tantalum carbide layer 32 can be internally formed by depositing a layer of amorphous diamond on the tantalum growth substrate 34, which will be described later. In the foregoing, a layer 38 of tantalum 38 can be deposited on the transparent diamond layer 36. The layer 38 enhances the bond strength of the tantalum carrier substrate 42 to the transparent diamond layer 36. The crucible carrier substrate 42 has a dioxin 2 surface 4L that can be bonded to the enamel layer 38. After the zea carrier substrate 42 is bonded in a wafer bonding manner to: Shi Xi: 38, the The crucible is grown on the substrate 34 to expose the tantalum carbide layer 32γ. As described above, the tantalum carbide layer 32 can be deposited as a growth surface material (not shown) on the growth surface. Before the light-emitting diode layer is formed on the tantalum carbide layer 32, in order to make the semiconductor, the removable substrate 14201225330 has a substrate 42 and the layer 38 is in the morning, 未, _ layer The transparent diamond layer 36 is blasted. The diamond substrate is not included in the diamond substrate to be bonded to the semiconductor layer as described above. The excellent thermal conductivity of the diamond material makes it an ideal material for integration into semiconductor packages. The use of diamond materials accelerates the transfer of heat from semiconductor devices. It should be noted that the invention is not limited to a particular heat transfer theory. Therefore, in one aspect, it is possible to unload 1fT to > to accelerate the transfer of heat from the inside of the I conductor by transferring heat into and through a diamond. Due to the excellent thermal conductivity f of the diamond, heat can travel laterally through the diamond layer and to the edge of a semiconductor device. The heat at the edges can be dissipated into the air more quickly or discharged into the surrounding heat sink or the support frame of the semiconductor device. In addition, a diamond layer with most of the area exposed to the air will dissipate more quickly the heat of the device incorporating the diamond layer. The diamond layer acts as a heat sink because the thermal conductivity of the diamond is greater than the thermal conductivity of a semiconductor device layer or other structure that is thermally coupled to the diamond layer. Therefore, the diamond layer absorbs heat generated in the semiconductor device layer, and the heat is transmitted in a lateral manner and is dispersed outside the semiconductor device. This manner of accelerating heat transfer can result in semiconductor devices having lower operating temperatures. In addition, the acceleration of heat transfer not only cools the semiconductor device, but also reduces the thermal load of many electronic components that are spatially located near the semiconductor device. In some aspects of the invention, a portion of the diamond layer can be exposed to six gases. In some cases, the state of such exposure is limited to exposing only the edges of the diamond layer, or may expose a large proportion of the surface area of the diamond layer, such as one side of the exposed diamond layer. In this aspect, at least a portion of the heat removal of the semiconductor device can be achieved by transferring heat from the diamond layer to the air. For example, diamond materials, such as dimm〇nd_丨carbon (DLC), have excellent thermal emissivity characteristics even at temperatures below 1 〇 (rc), so diamond materials can directly radiate heat. In the air, most other materials, including semiconductor devices, have excellent thermal conductivity and thermal lightness. Therefore, the semiconductor device can conduct heat to the diamond-like carbon layer, laterally propagating heat in the diamond-like carbon layer, and then Heat is radiated into the air along the edge of the diamond-like carbon layer or other exposed surfaces. Due to the high thermal conductivity of the diamond-like carbon and high heat radiation, the heat transfer from the diamond-like carbon to the air is better than The heat transfer effect of the semiconductor device to the second gas. Therefore, the diamond-like carbon layer can be used to accelerate the removal of heat from the semiconductor layer, so that the heat transfer rate through the semiconductor layer is higher than the heat transfer speed of the semiconductor itself, or higher. Heat transfer rate from semiconductor device to air. As suggested above, various diamond materials can be used to provide an acceleration characteristic of the amount transfer rate of a semiconductor device. Examples of such diamond materials may include, without limitation, diamonds, diamond-like carbons, amorphous diamonds, and combinations thereof. It should be noted that any natural or synthetic diamond material that can be used to cool a semiconductor device is Within the scope of the invention. It should be understood that the following statements are quite general in diamond deposition techniques. The technique of depositing diamonds can be widely varied in various aspects of the invention. Known methods for forming diamonds, these methods include various vapor deposition techniques. Any known vapor deposition technique can be used to form a diamond. Any method that is similar to the characteristics and products of vapor deposition can be used. Diamond, the most common vapor deposition technique involves chemical vapor deposition techniques such as hot filament, microwave electropolymerization, oxyacety 丨ene RF chemical vapor deposition (RF_CVD), laser chemical vapor deposition 16 201225330 (lase "CVD", laser shedding (丨aserab丨ation), conformal diamond coating p "〇cesses", organometallic chemical vapor deposition ( Metahorganic CVD (MOCVD) and direct current arc technologies, etc. Typical chemical deposition techniques use gaseous reactants to deposit diamond or diamond-like carbon materials into a layer of lexical or membrane structure. (About less than 5% of carbonaceous material, such as decane diluted with hydrogen. The art is known to those skilled in the art to know the equipment and conditions of various chemical vapor deposition procedures, and is also known to be particularly suitable for boron nitride layers. In another aspect, physical vapor deposition techniques such as sputtering, cathodic arcing, and thermal evaporation can be used. In addition, specific deposition conditions can be used to adjust the exact type of material deposited, such as diamond-like carbon, amorphous diamond, or pure diamond. It should be noted that high temperatures may reduce the number of products f of many semiconductor devices such as light-emitting diodes. Care must be taken to ensure that the diamond is deposited in a low temperature manner to avoid damage to the diamond during deposition. For example, if the semiconductor contains indium oxide, a deposition temperature of up to 6 〇〇 t can be used. In the case of gallium nitride, the thermal properties of the layer structure can be maintained up to about (10) generations. In addition, the pre-formed plurality of layers can be fixed to the half (four) layer or the support of the semiconductor layer by means of brazing, gluing, or laminating without excessive interference with the function of the diamond sound, heat transfer or semiconductor device. On the substrate. An optional nucleation enhancing layer can be formed on the growth surface on a substrate to enhance the deposition quality of the diamond layer and reduce deposition time. In particular, the nucleus can be grown into a thin film or layer structure by depositing a suitable crystal nucleus, for example, by depositing a diamond nucleus on the diamond growth surface of the substrate. In one aspect of the invention, a thin 17 201225330 nucleation enhancing layer may be applied to the substrate to enhance the growth of the diamond layer. The diamond nucleus is then placed on the nucleation enhancing layer' and the diamond layer growth process is performed by chemical vapor deposition. It is well known in the art to which the present invention pertains that various materials are available as nucleating reinforcing materials. In one aspect of the invention, the nucleating reinforcing material may be selected from the group consisting of metals, metal alloys, metal compounds, carbides, carbide forming elements (carbide f0 "mers", and combinations thereof. Examples of carbide forming materials It may be tungsten, group, titanium, knot, chromium, molybdenum, niobium and fission. Examples of carbides may include carbonized cranes, carbon cuts, titanium carbides, carbonization faults, and combinations thereof. When used, the nucleation strengthening layer is one. A sufficiently thin layer structure that the pot does not adversely affect the thermal conductivity of the diamond layer. In one aspect of the invention, the nucleation enhancing layer may have a thickness of less than about G1 micron. In another aspect of the invention, The thickness can be at least less than about 1 nanometer. In yet another aspect of the invention, the thickness of the nucleation enhancing layer can be less than about 5 nanometers. In another aspect of the invention, the thickness of the nucleation enhancing layer can be less. At approximately 3 nm, various methods can be used to increase the diamond product f on the nucleation surface of the diamond layer formed by vapor deposition techniques. For example, the K flow can be reduced during the early stage of diamond deposition & And increase The total gas I force enhances the quality of the diamond particles. Such measures can reduce the carbon decomposition rate and increase the chlorine; the agronomic degree will therefore make a very high proportion of carbon in the form of Sp3 bond configuration. Moreover, the quality of the formed diamond nuclei can be improved. In addition, the method of increasing the nucleation rate of the diamond example can include, but is not limited to, the following examples. (4) The growth surface provides an appropriate amount of negative hemiplegia, usually about Hit H Polishing the growth surface with fine diamond or diamond powder. The fine diamond 18 201225330 gel or powder can be partially retained on the growth surface, as well as through physical vapor deposition or electrothermal (4) assisted chemical deposition (PECVD) procedures. To implant ions such as carbon, sapphire, chromium, manganese, titanium, vanadium, niobium, tungsten, molybdenum, knobs, and the like to control the composition of the growth surface. The implementation temperature of the physical vapor deposition process is generally lower than that of chemical gas. The temperature of the phase deposition, and in some instances may be less than about.. At about 150 C» other methods of enhancing diamond nucleation are apparent to those of ordinary skill in the art to which the present invention pertains. In one aspect of the invention, the diamond layer can be in the form of a homogenous diamond layer. The various configurations of the dispersible substrate, including, for example, a matstock substrate, are used to perform the isomorphic diamond coating procedure. The iron coating procedure has many advantages over the conventional diamond film procedure. The growth surface formation can be reduced by the diamond growth conditions without biasing. The diamond growth conditions can be chemical vapor deposition of conventionally applied diamonds. Conditions and no bias is used. Therefore, the carbon film formed is mostly less than the thickness of angstroms. The pre-treatment step can be at a growth temperature of about 2 (KTC to about cc, and preferably at a low temperature of about 50 (TC 卩). Without any special theory, the carbon film is formed in less than one hour, and the carbon film is HydrQgentenTiinated. After forming the thin carbon film, the growth surface can then form a layer of isomorphic diamond under the diamond growth conditions. The diamond growth conditions may be those in which a conventional chemical vapor deposition type diamond growth mode is generally used. However, unlike conventional diamond membranes, the diamond enamel produced by the pre-processing steps is an isomorphic diamond membrane that typically begins to grow on substantially the entire growth surface and is substantially completely free of pregnancy. Period (incubation time). Furthermore, diamond 201225330 film can be grown to a thickness of about 80 nm (eg, no texture boundary). A diamond layer with substantially no texture boundaries can dissipate heat more efficiently than a diamond layer with a textured boundary. Various techniques can be utilized to impart conductive properties to the diamond layer, and such techniques are well known to those of ordinary skill in the art to which the invention pertains. For example, the crystals of the diamond layer may be doped with various impurities, such impurities such as germanium, boron, phosphorus, nitrogen, lithium, aluminum, gallium, and the like. In a particular aspect, for example, the diamond layer can be doped with boron. Impurities may also include metal particles in the crystal lattice if the complex impurities do not interfere with the function of the device (eg, hinder light from the illuminating dipoles for certain diamond layers 'especially those that are to be deposited with a semiconductor layer' It is beneficial to create a growth substrate that allows the semiconductor material to be deposited on the growth substrate with a minimum of lattice misalignment, such as a substantially monocrystalline structure. There is a strong bonding effect between the growth surface of the single crystal structure and the semiconductor material, so that a growth surface having a substantially single crystal structure can promote the case of lattice misalignment to a minimum. In one aspect of the invention, the substrate comprises a diamond layer having a substantially single crystal structure in which a carbon cut layer having a substantially single crystal structure is consumed. The characteristics of the single crystal structure of the carbonized layer are favorable for, for example, gasification or nitridation, and the product is a single crystal. In addition, the thermal conductivity of the diamond layer is increased from the diamond layer to the enamel layer and the stupid relationship between the diamond layer and the semiconductor layer, thereby improving the heat dissipation of the semiconductor device, and various possible methods can be used. To build this diamond/carbonized stone synthetic soil ^. Any method of operation is considered to belong to the scope of the invention. For example, the substrate can be created by gradually changing the single crystal chip into a single crystal. In other words, the Shixi wafer can be converted from tantalum 20 201225330 to tantalum carbide and then gradually converted into diamonds. The gradual change of the inventor's application was filed on May 31, 2007, attorney 00802-32733, nicknamed U.S. Patent Application "Fractal Crystallized Materials and Related Methods", for further discussion. It is hereby incorporated by reference. In addition to the above-described advantages of minimizing lattice misalignment, the diamond layer of a single crystal can be transparent and transparent to facilitate the construction of a light-emitting semiconductor device such as a light-emitting diode and a laser diode. The resulting structure comprises a substantially monolithic diamond layer having an epitaxial box with a substantially single-lattice carbon cut. The semiconductor layer can be formed on the carbon cut layer by any method known to those skilled in the art to which the present invention pertains. In the -face towel, such deposition can occur in the -gradient procedure = which is similar to the technique used to form a layer of iron on a wafer: . After forming the semiconductor layer, a diamond support material can be recoupled. Many of the couplings are well known to those of ordinary skill in the art to which the invention pertains, such as hard 2 fire materials. It should be noted that if the skill of the diamond branch does not have a substantial effect, any method of consumption can be zero. A reflective layer of a carbide (ng meta- ng meta 丨) formed by bonding with a metal in the surface may be provided on a surface of the semiconductor layer. In such a metal system is titanium. The diamond support material can then be formed on the substrate and coupled to the semiconductor layer by a titanium carbide bond formed between the reflective layer and the diamond substrate. Conduction = Certain Aspects of the Invention The diamond layer can have a semiconductor structure thickness. The thickness of the diamond layer can vary depending on the application and the thicker -R of the semiconductor. For example, a larger heat dissipation requirement would require a stone layer. The thickness of the diamond layer will also vary with the 21 201225330 material used in the diamond layer. In other words, it can be about 1. To about 5. Micron. In the other subsurface: the drill = degree may be equal to or less than about 1 G micrometer, and in another example, the thickness of the j stone layer may be from about 50 micrometers to about 1 micrometer, and in another example, the thickness of the stone layer may be greater than About 50 microns. In another example, a diamond:: is a layer of unsupported diamonds. The layer may have a different thickness according to a certain aspect of the present invention. The 蚨 — 万 万 中 5 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 。 In some aspects, the carbon cut layer can be thick enough to align the lattice orientation of the layer structure deposited on the carbonized stone layer. In other aspects, a thicker layer of tantalum carbide is advantageous. The thickness of the carbonized layer may be equal to or less than about i microns in terms of these variations. In another aspect, the thickness of the carbon cut can be equal to or J to about 500 nanometers. In still another aspect, the carbonized cullet may have a thickness equal to or J of about 1 nanometer. In still another aspect, the carbonized cullet can have a thickness greater than about 1 micron. As described above, in accordance with certain aspects of the present invention, the semiconductor device includes a plurality of semiconductor layers connected to one or more diamond layers. These semiconductor layers can be joined to a diamond layer by a variety of methods known to those skilled in the art to which the present invention pertains. In one aspect of the invention, one or more semiconductor layers may be deposited on a diamond layer or, as described above, one or more semiconductor layers may be deposited on a layer of tantalum carbide coupled to the diamond layer. A semiconductor layer can be deposited on a substrate such as a tantalum carbide layer using various techniques known to those skilled in the art to which the present invention pertains. An example of such a technique is organometallic chemical vapor deposition (Meta Buorgan)
Chemical Vapor Deposition, M0CVD)程序》 22 201225330 - 該半導體層可包含任何適用於形成電子裝置、半導體裝 置或是其他類似裝置的材料。許多半導體是基於⑦、錄、姻 以及鍺。然而,適用於半導體層的材料可包含而不限制於 石夕、碳切1化鍺、坤化鎵、氮化鎵、錯、硫化鋅、碟化 鎵、録化鎵、磷#化銦鎵、魏㉝、耗㉟、_化鎵結 '氮 化鎵、氮㈣、I仙、坤化銦、磷化銦、絲銦、氮化姻 以及其混合物^在另-方面中,該半導體層可包含碎碳化 石夕、珅化鎵、氮化鎵、填化鎵、氮化紹、氮化銦、氣化錄姻、 氮化鎵鋁或是其混合物。 在某些額外的實施例之中,可形成例如基於砷化鎵、氮 化鎵、鍺、氮化硼、氮化鋁、銦基材料以及其混合物等非含 石夕的半導體裝置。在另—實施例中,該半導體層可包含氮化 鎵、氮化鎵銦、氮化銦以及其混合物。在一特定的方面中, 該半導體材料為氮化鎵。在另一特定的方面中,該半導體材 料為氮化鋁。其餘可使用的半導體材料包含氧化鋁、氧化 皱、鎢、翻、c-Y2〇3、(Y0 gLacMhCV C-ai23〇27N5、c_MgA|2〇4、 t-MgF2、石墨以及其混合物。應了解的是,該半導體層可包 3任何已知的半導體材料,且不應限制於文中所述的這些材 料。此外’半導體材料可為任何已知的結構配置,例如而不 限制於立方體閃鋅礦(zincblende or sphalerite)結構、六 方晶系閃鋅礦結構(Wurtzitic)、菱形六面體結構 (rhombohedral)、石墨結構、亂層(Turb〇stratjc)結構、裂 解(Pyrolytic)結構、六角形結構(Hexagonal)、無晶結構 或是其組合。如上所述’可利用本發明所屬技術領域具有通 韦知識者已知的方法來沉積該半導體層14。可使用各種已 23 201225330 知的氣相沉積方法來沉積這些半導體層,並且允許這些沉積 程序在一漸變方法中進行。此外,可在所述的兩沉積步驟之 間實行一表面處理以便能提供一平滑表面而供進行後續的 沉積步驟。可透過任何已知的方法,例如化學蝕刻、拋光、 皮輪拋光(Buffing)以及研磨等方法來進行前述表面處理程 序。 在本發明的一方面中,至少一半導體層可為氮化鎵。氮 化鎵半導體層有利於建造發光二極體或是其他半導體裝 置。在某些例子中,將碳化石夕或是其他基材逐漸轉化為該半 導體層是有益的。舉例而言,可透過固定氣相沉積的氮濃度 並且改變鎵以及銦的沉積濃度,使鎵:銦的濃度比例由0^ 逐漸變化為1:0’藉此將-氮化銦半導體基材逐漸轉化為一 氮化紹半導體;換言之,鎵與銦的供給產生變化以使得當 銦的濃度減少的同時,鎵的濃度增加。該逐漸轉化的功能為 大幅減少在氮化鎵直接形成於氮化料所觀察到的晶格錯 配現象。 在本發明的另_方面中,至少_半導體層可為—氮化紹 層。該氮化㈣可透過本發明所屬技術領域具有通常知識者 已知的任何方法沉積到一基材上。如上述氮化鎵層一般兩 半導體層《間的|漸轉化程序可增進半導體裝置的功能 I·生舉例而吕,在一方面可透過將氮化銦層逐漸轉化為氮化 銘層的方式來將氮偏沉積到—氮化 逐漸轉化程序可包含例如透過固定所沉積的氮濃度並= 變銦以及紹的沉積濃度,使銦:銘的濃度比例由0:1逐漸變 化為1:0,藉此將-氮錢半導體基材逐漸轉化為—氮化嫁 24 201225330 半導體層。此逐漸轉化的程序大幅減少在氮化紹直於 ^姻時所觀察到的晶格錯配現象。可在所述的任何兩沉積 ::之間實行一表面處理以便能提供-平滑表面而供進行 後續的沉積步驟。可透過任何已知的方法,例如化學姓列、 拋光、皮輪拋光以及研磨等方法來進行前述表面處理程序。 如上所述,可於-發光二極體裝置中結合有電極以 該複數半導體層的電性接觸。各種電極,特別是口型與。型 電極’包括其料與形成,均為本發明所屬領域具通常知識 者所熟知’而不於本文中作討論。 在本發明的-特定方面中,如圖4所示,其描述一種針 對發光二極體裝置的覆晶(fhp_chip)設計。一半導體基材42 以如上所述的方式製備且係如圖3所示一種门型半導體材 料(例如n-GaN)形成於該半導體基材42之上,隨後形成 MQW層46以及-p型半導體材料48 (例如pGaN)。該n 型半導體材料44係電性輕合於_ η型電極5Q,且該ρ型半 導體材料48係電性耦合於一 p型電極52。一反光層54以 及與其連結的鑽石基材56接著可為覆晶鍵結於該/型電極 以及該p型電極。若該反光層54係為半導體,則其可能需 要分割成電性隔絕的兩部分,以促進該裝置的功能(圖 示)。 如圖5所不,該半導體基材的非透明層結構需要移除而 暴露該透明鑽石層58材以發出光。該發光二極體裝置受到 活化時,該複數半導體層產生光線,且光線透過該碳化矽層 6〇與該透明鑽石層58散發62。此外,傳遞至該鑽石心 的光由該反光層54反射而反向傳遞,並穿透該複數半導 25 201225330 體層而透過該透明鑽石層58散發。 範例 下列範例顯示製造一本發明半筹體裝置的各種技術。然 而應/主意的疋,下列範例僅是示範或顯示本發明的原理。 在不違反本發明範疇與精神下,本發明所屬技術領域具有通 吊知識者可構想出各種修改與不同的组合'方法以及系統。 所附上的申請專利範圍是欲涵蓋這些修改與佈局。因此,雖 然上述内容已詳細敘述本發明,下列範例以本發明複數實施 例來提供進一步的詳細說明。 範例1 可根據下列所述形成一半導體基材: 取得一單晶矽晶圓,將該單晶矽晶圓浸泡於氫氧化鉀之 中,並且利用蒸餾水進行超音波清潔的方式來清洗單晶矽晶 圓,去除其上的非單晶矽以及外部碎屑。透過將該矽晶圓暴 露在化學氣相沉積狀態而不提供任何偏壓的方式,在該矽晶 圓的’月泳表面上設置一同構型無晶碳塗佈層。在對該表面進 行碳化之後,在8GCTC下,1%甲烧以及99%氫氣的條件下, 進仃大約30分鐘的無晶鑽石沉積程序。接著可在9〇〇。◦的 條件下,利用氫氣或是氟氣進行大約6〇分鐘的處理程序來 去除該無晶碳塗佈^。去除無晶石炭塗佈I之後則露出一蟲晶 石反化矽層,該碳化矽層則是曾經介於矽晶圓以及無晶碳塗佈 層之間。該碳化矽層的厚度大約為彳〇奈米。 接著使用曱烷進行化學氣相沉積約10小時,以在該碳 化矽層上沉積一厚度為1〇微米的透明鑽石塗佈層◊在1〇 小時之後,該原本供給的甲烷改為持續供給氫化矽約 26 201225330 10分鐘以沉積-層厚度約1微米的矽層。 在該1微米厚度矽層上晶圓結合一矽載具基材,該矽載 具基材具#結合或石夕層的二氧化石夕表面。在晶圓結合程序 之後ii過利用一份氫氟酸、三份亞硝酸以及一份水的 (ΙΗΡ + ^ΝΟζ + Η^Ο)溶液進行蝕刻以去除該單晶矽晶圓,並且 露出碳化矽層。關於蝕刻矽材料的細節記載於美國第 4,981,818號專利案之中,該專利記載於本文中以供參考。 範例2 可依下列程序製造一半導體裝置: 可依據範例1取得—半導體基材。透過有機金屬化學氣 相沉積程序並且利用氫化鎵(GaH3)以及氨氣材料,在該暴露 的碳化矽層上沉積一氮化鎵半導體層。 應了解的是,上述内容僅供說明本發明原理的應用。在 不違背本發明料及精神的前提下,本發明所屬技術領域具 有通常知識者可做出多種修改及不同的配置,且依附在後的 申請專利範圍則意圖涵蓋這些修改與不同的配置。因此,當 本,明中目前被視為是最實用且較佳之實施例的細節已: 揭露如上時,對於本發明所屬技術領域具有通常知識者而 言,可依據本文中所提出的概念與原則來作出而不受限於多 種包含了尺寸、材料、外形、形態、功能、操作方法、組裝 及使用上的改變。 【圖式簡單說明】 圖1為本發明之一實施例甲之半導體裝置的剖視圖。 圖2為本發明之一實施例中之半導體裝置的另一剖視 圖0 27 201225330 圖3為本發明之一實施例中之半導體裝置的製造流程 剖視圖。 圖4為本發明之一實施例中之發光二極體裝置的剖視 圖。 圖5為本發明之一實施例中之發光二極體裝置的另_ 剖視圖。 【主要元件符號說明】 12鑽石基材 13反光層 14透明鑽石層 15散發 • 1 6半導體層 1 8碳化石夕層 3 2碳化石夕層 34矽生長基材 36鑽石層 38妙層 4〇 -一氧化碎表面 42矽載具基材 44 η型半導體材料 46 MQW 層 48 ρ型半導體材料 5〇 η型電極 52 ρ型電極 54反光層 56鑽石基材 58透明鑽石層 6 0碳化《5夕層 62散發 28Chemical Vapor Deposition, M0CVD) Procedure 22 201225330 - The semiconductor layer can comprise any material suitable for forming electronic devices, semiconductor devices or other similar devices. Many semiconductors are based on 7, recorded, and married. However, materials suitable for the semiconductor layer may include, but are not limited to, Shi Xi, carbon cut, ruthenium gallium, gallium nitride, gallium, zinc sulfide, gallium gallium, germanium, phosphorous, indium gallium, Wei 33, consuming 35, _ gallium junction 'gallium nitride, nitrogen (four), Ixian, indium phosphide, indium phosphide, indium, nitriding and mixtures thereof. In another aspect, the semiconductor layer may comprise Crushed carbon fossils, gallium antimonide, gallium nitride, gallium-filled gallium, nitrided, indium nitride, gasification, aluminum gallium nitride or a mixture thereof. In certain additional embodiments, non-inclusive semiconductor devices such as gallium arsenide, gallium nitride, germanium, boron nitride, aluminum nitride, indium based materials, and mixtures thereof may be formed. In another embodiment, the semiconductor layer can comprise gallium nitride, indium gallium nitride, indium nitride, and mixtures thereof. In a particular aspect, the semiconductor material is gallium nitride. In another specific aspect, the semiconductor material is aluminum nitride. The remaining semiconductor materials that can be used include alumina, oxidized wrinkles, tungsten, turn, c-Y2〇3, (Y0 gLacMhCV C-ai23〇27N5, c_MgA|2〇4, t-MgF2, graphite, and mixtures thereof. It should be understood Yes, the semiconductor layer can comprise any known semiconductor material and should not be limited to those materials described herein. Further, the 'semiconductor material can be any known structural configuration, such as without limitation to cubic sphalerite ( Zincblende or sphalerite structure, hexagonal wurtzitic structure, rhombohedral structure, graphite structure, Turb〇stratjc structure, Pyrolytic structure, Hexagonal structure , amorphous structure or a combination thereof. As described above, the semiconductor layer 14 can be deposited by a method known to those skilled in the art to which the present invention pertains. It can be deposited using various vapor deposition methods known in Japanese Patent Application No. 23 201225330. These semiconductor layers, and allowing these deposition procedures to be performed in a grading process. Further, a surface treatment can be performed between the two deposition steps to provide a Smoothing the surface for subsequent deposition steps. The foregoing surface treatment procedure can be performed by any known method, such as chemical etching, polishing, buffing, and grinding. In one aspect of the invention, at least A semiconductor layer can be gallium nitride. The gallium nitride semiconductor layer facilitates the construction of a light-emitting diode or other semiconductor device. In some instances, it is beneficial to gradually convert carbon carbide or other substrate into the semiconductor layer. For example, the concentration of gallium: indium can be gradually changed from 0^ to 1:0 by the concentration of nitrogen in the fixed vapor deposition and changing the deposition concentration of gallium and indium. The material is gradually converted into a nitriding semiconductor; in other words, the supply of gallium and indium is changed so that the concentration of gallium is increased while the concentration of indium is decreased. The function of the gradual conversion is to substantially reduce the formation of gallium nitride directly in the nitrogen. The lattice mismatch phenomenon observed in the chemical composition. In another aspect of the invention, at least the semiconductor layer may be a nitride layer. The nitride (4) may be transparent to the present invention. Any method known to those skilled in the art is deposited on a substrate. For example, the above-mentioned gallium nitride layer generally has a function of increasing the function of the semiconductor device. In the aspect, the nitrogen inversion layer can be deposited by gradually converting the indium nitride layer into a nitride layer. The gradual conversion process can include, for example, the concentration of nitrogen deposited by fixation and the concentration of indium and the deposition concentration. Indium: The concentration ratio of Ming gradually changes from 0:1 to 1:0, thereby gradually converting the -nitrogen semiconductor substrate into the nitride layer of 201225330. This gradual conversion process is greatly reduced in nitriding. The phenomenon of lattice mismatch observed during the marriage. A surface treatment can be applied between any two deposits :: to provide a smooth surface for subsequent deposition steps. The foregoing surface treatment procedure can be carried out by any known method such as chemical surging, polishing, pick-up polishing, and grinding. As described above, an electrode can be combined with the electrical contact of the plurality of semiconductor layers in the light-emitting diode device. Various electrodes, especially lip shape. Type electrodes 'including materials and formations are well known to those of ordinary skill in the art to which the invention pertains' and are not discussed herein. In a particular aspect of the invention, as shown in Figure 4, a flip-chip design for a light-emitting diode device is described. A semiconductor substrate 42 is prepared in the manner described above and is formed on the semiconductor substrate 42 as shown in FIG. 3, followed by formation of an MQW layer 46 and a -p semiconductor. Material 48 (eg pGaN). The n-type semiconductor material 44 is electrically coupled to the η-type electrode 5Q, and the p-type semiconductor material 48 is electrically coupled to a p-type electrode 52. A reflective layer 54 and a diamond substrate 56 coupled thereto can then be flip-chip bonded to the /-type electrode and the p-type electrode. If the reflective layer 54 is a semiconductor, it may need to be split into two portions that are electrically isolated to facilitate the functioning of the device (illustrated). As shown in Figure 5, the non-transparent layer structure of the semiconductor substrate needs to be removed to expose the transparent diamond layer 58 to emit light. When the light emitting diode device is activated, the plurality of semiconductor layers generate light, and the light is transmitted through the tantalum carbide layer 6 and the transparent diamond layer 58 to emit 62. In addition, light transmitted to the diamond core is reflected by the light reflecting layer 54 and transmitted in the reverse direction, and penetrates through the transparent semiconductor layer 58 through the plurality of semiconductor layers 25 201225330. EXAMPLES The following examples show various techniques for making a semi-finished device of the present invention. However, the following examples are merely illustrative or illustrative of the principles of the invention. Without departing from the spirit and scope of the invention, those skilled in the art will be able to conceive various modifications and various combinations and methods. The scope of the patent application attached is intended to cover these modifications and arrangements. Accordingly, the present invention has been described in detail by reference to the embodiments of the present invention Example 1 A semiconductor substrate can be formed as follows: A single crystal germanium wafer is obtained, the single crystal germanium wafer is immersed in potassium hydroxide, and the single crystal germanium is cleaned by ultrasonic cleaning using distilled water. The wafer is removed from non-single crystal ruthenium and external debris. A conformal amorphous carbon coating layer is disposed on the 'moon surface of the twin crystal' by exposing the germanium wafer to a chemical vapor deposition state without providing any bias. After the surface was carbonized, an amorphous diamond deposition procedure of about 30 minutes was carried out under conditions of 8GCTC, 1% formazan and 99% hydrogen. Then at 9 〇〇. Under the conditions of ruthenium, the process of removing the amorphous carbon coating is removed by using hydrogen or fluorine gas for about 6 minutes. After the removal of the smectite coating I, a smectite retorting layer is exposed, which is once between the ruthenium wafer and the amorphous carbon coating layer. The thickness of the tantalum carbide layer is approximately 彳〇 nanometer. Then, chemical vapor deposition was performed using decane for about 10 hours to deposit a transparent diamond coating layer having a thickness of 1 μm on the tantalum carbide layer. After 1 hour, the originally supplied methane was changed to continuously supplied hydrogenation.矽 26 26 201225330 10 minutes to deposit a layer of ruthenium with a layer thickness of about 1 micron. The wafer is bonded to a carrier substrate on the 1 micron thick layer of tantalum, the tantalum substrate having a #bonded or a layer of a diatom dioxide surface. After the wafer bonding process, ii is etched by using a solution of hydrofluoric acid, three parts of nitrous acid, and one part of water (ΙΗΡ + ^ΝΟζ + Η^Ο) to remove the single crystal germanium wafer, and expose the tantalum carbide Floor. The details of the etched ruthenium material are described in U.S. Patent No. 4,981,818, the disclosure of which is incorporated herein by reference. Example 2 A semiconductor device can be fabricated according to the following procedure: A semiconductor substrate can be obtained according to Example 1. A gallium nitride semiconductor layer is deposited on the exposed tantalum carbide layer by an organometallic chemical vapor deposition process and using gallium hydride (GaH3) and an ammonia gas material. It should be understood that the foregoing is merely illustrative of the application of the principles of the invention. Many modifications and different configurations are possible in the art to which the invention pertains without departing from the spirit and scope of the invention, and the scope of the appended claims is intended to cover such modifications. Therefore, the present invention is considered to be the most practical and preferred embodiment of the present invention: As disclosed above, the general knowledge of the technical field to which the present invention pertains may be based on the concepts and principles presented herein. The changes are made without limitation by a variety of dimensions, materials, shapes, shapes, functions, methods of operation, assembly, and use. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention. 2 is a cross-sectional view showing a manufacturing process of a semiconductor device in an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a manufacturing process of a semiconductor device according to an embodiment of the present invention. Figure 4 is a cross-sectional view showing a light emitting diode device in an embodiment of the present invention. Figure 5 is a cross-sectional view showing another embodiment of the light emitting diode device in accordance with an embodiment of the present invention. [Main component symbol description] 12 diamond substrate 13 reflective layer 14 transparent diamond layer 15 emission • 1 6 semiconductor layer 1 8 carbonized stone layer 3 2 carbonized stone layer 34 矽 growth substrate 36 diamond layer 38 wonderful layer 4 〇 - Oxidation surface 42 矽 carrier substrate 44 n-type semiconductor material 46 MQW layer 48 p-type semiconductor material 5 〇 n-type electrode 52 p-type electrode 54 reflective layer 56 diamond substrate 58 transparent diamond layer 6 0 carbonization "5 eve 62 distributed 28