[go: up one dir, main page]

TW201224640A - Shutter device and shutter blade - Google Patents

Shutter device and shutter blade Download PDF

Info

Publication number
TW201224640A
TW201224640A TW99143666A TW99143666A TW201224640A TW 201224640 A TW201224640 A TW 201224640A TW 99143666 A TW99143666 A TW 99143666A TW 99143666 A TW99143666 A TW 99143666A TW 201224640 A TW201224640 A TW 201224640A
Authority
TW
Taiwan
Prior art keywords
shutter
carbon nanotube
shutter blade
carbon nanotubes
carbon
Prior art date
Application number
TW99143666A
Other languages
Chinese (zh)
Other versions
TWI438560B (en
Inventor
Li Qian
yu-quan Wang
Chen Feng
Liang Liu
Original Assignee
Beijing Funate Innovation Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Funate Innovation Tech filed Critical Beijing Funate Innovation Tech
Priority to TW99143666A priority Critical patent/TWI438560B/en
Publication of TW201224640A publication Critical patent/TW201224640A/en
Application granted granted Critical
Publication of TWI438560B publication Critical patent/TWI438560B/en

Links

Landscapes

  • Shutters For Cameras (AREA)

Abstract

The present invention relates to a shutter device. The shutter device includes a shutter blade structure. The shutter blade structure includes at least one shutter blade. The shutter blade includes a plurality of carbon nanotubes combined with each other firmly by van der Waals attractive force. The present invention also relates to a shutter blade.

Description

201224640 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種快門裝置及快門葉片,尤其涉及一種用 於照相機的快門裝置及快門葉片。 【先前技術】 [0002] 照相機快門係使感光元件獲得合適曝光量的時間控制機 構。在照相機發展早期,由於感光材料感光度很低,所 需曝光時間很長,採用裝上、卸下鏡頭蓋來控制曝光時 間。近年來,隨著感光材料感..先.度和拍攝要求的不斷提 ' 高’對照相機快門速度的要求亦不斷提高。 [0003] 先前技術中一般使用鋼及其他金4合金作為;快門葉片的 材料。然而,鋼及其他金屬合金雖然可在一定程度上滿 足照相機快門在強度上的需求,但係由鋼及其他金屬合 金製備形成的照相機快門通常具有較大的質量,不利於 提高快門速度。 , 【發明内容】 © [0004]有鑒於此,提供.種能提高快:門速度的快門裝置及快門 葉片實為必要。 [0005] 本發明提供一種快門裝置,包括一快門葉片結構,其中 ’所述快Η葉片結構包括至少-個快門葉片,所述快門 葉片包括複數個奈㈣管,所賴數個㈣碳管沿所述 快門葉片的表面緊密排列,相鄰的奈米碳管之間通過凡 得瓦力緊密相連。 [0006] 本發明提供一種快門葉片,可應用於一種攝影穿置,用 099143666 表單編號Α0101 第3頁/共37頁 201224640 或打開所述攝影裝置中 所述攝影光元門開’從而實現 包括H 其中,所述快門葉片 個奈米碳管組成的片狀的自支撐社構,且相 鄰的奈米碳管之間_凡得瓦力緊密_:、、。構且相 ==技術,本發明的快門裝置中的快門葉片係由複 I米碳管組成㈣狀結構’由於奈米碳管本身 質量輕、機械性於古望4± 門華故,包含該奈米碳管的快 在較小的質量下達到較大的強度,從而在應用 ;種攝影裝置時,有利於提絲門速度。 【實施方式】 下面將結合關及具體實施例,對本發明提供的快門襄 置及f夬Η葉片作進—步的詳一說。 [0007] [0008] 闺冑參閱圖1及圖2,本發明第一實施例提供-種快門裝置 刚,該快門裝置⑽用於控制—外界光線進入到一攝影 裝置内部並照射到該攝影裝制感光秘的時間。當該 陕門裝置10 0開啟時,所述外界祕可照射到所述感光元 件,當所述快門聚置100閉合時,所述快門装置100可阻 擋所述外界光線照射到所述感光元件。 [_所述快門裝置_包括一快門基板10、-連接單元14、一 第一驅動單元16、一第二驅動單元18以及一快門葉片結 構 12。 、 _]所述快n基板则於支軸述快門葉#結構12、所述連 接單元14、所述第一驅動單元16以及所述第二驅動單元 18。該快門基板1〇包括一本體1〇2,所述本體1〇2具有一 099143666 表單編號Α0101 第4頁/共37頁 0992075636-0 201224640 [0012] 快門開σ 1 〇 4。 所述本體1〇2為基本平行於所述攝影裝置尹感光元件的一 平板。 . [0013] 0 所述快門開口 104設置在該本體1〇2的中央位置並貫通該 本體102。當该快門裝置1〇〇開啟時,外界光線可自該快 門開口 104照射到所述感光元件。當該快門裝置1〇〇閉合 時’所述快鬥葉片結構;12遮擋住該快鬥開口 104以阻擋所 述外界光線照射到所述感光元件。该快門開口 104的形狀 可根據實際要求而製備;讓快門開口 104的形狀選自方形 、矩形、圓形或其他多邊形。本實施例中該快門開口 104 的形狀為矩形。 [0014] 所述第一驅動單元16及第二驅動單元18設置於所述本體 102的同一側。該第一驅動單元μ及第二驅動單元18與所 述連接單元14轉動連接,用於驅動所述快門葉片結構12 做順時針或逆時針的轉動。 q [0015] 所述連接單元14用舞連接所述快門葉片結構12與本體102 < 。該連接單元14包括一第一主臂142、一第一副臂144、 一第二主臂146、一第二副臂148以及複數個旋轉軸143 。所述第一主臂142通過所述第一驅動單元16與所述本體 102相連接。所述第二主臂146通過所述第二驅動單元18 與所述本體102相連接。所述第一副臂144以及第二副臂 148分別通過一個旋轉軸143與所述本體1〇2相連接。該 第一主臂142及第一副臂144可在所述第一驅動單元16的 作用下環繞各自的旋轉轴143做順時針或逆時針轉動。所 099143666 表單編號A0101 第5頁/共37頁 0992075636-0 201224640 述第二主臂146及第二副臂148可在所述第二驅動單元18 的作用下環繞各自的的旋轉軸143做順時針或逆時針轉動 〇 _6]戶斤述快門葉片結構1 2用於遮蔽或打開所述快門開口 1 04, 攸而實現感光元件的感光。該快門葉片結構12包括一第 —快門葉片組122及一第二快門葉片組124。所述第一快 門葉片組122與第二快門葉片組124均包括至少一快門葉 片20。所述第一快門葉片組122及第二快門葉片組124中 的快門葉片20的形狀及數量不限。本實施例中,所述第 陕門葉片組12 2及.第'二.快_=.門’葉'片.組2 4均包括4個快門葉 片20。所述第一快門葉片組122與所述第一主臂142及第 刻臂144相連接,並可在所述第一驅動單元16的驅動下 ,做直線運動,從而實現遮蔽或打開所述快門開口1〇4。 所述第二快門葉片組124與所述第二主臂146及第二副臂 148相連接,並可在所述第二驅動單元18的驅動下做直 線運動,從而實現遮蔽或打開所述快門蘭口丨〇 4。 [0017]當所述快門裝置100在工作時,所述第二主臂146及第二 曰'J #148在所述第二驅動單元18的驅動下,可繞所述旋轉 軸143沿順時針方向轉動,並帶動所述第二快門葉片組 124的4個快門葉片20進行直線移動,從而打開快門開口 1〇4 ;曝光預定時間後,所述第一主臂142及第一副臂 144在所述第一驅動單元16的驅動下,繞所述旋轉轴143 沿順時針方向轉動,並帶動所述第一快門葉片組122進行 直線移動,使所述第一快門葉片組j22中的4個快門葉片 2 0遮蔽所述快門開口 1 〇 4,從而結束曝光。 099143666 表單編號Α0101 第6頁/共37頁 0992075636-0 201224640 [0018] 可理解,所述快門裝置100中的快門葉片20的結構以及動 作方式不限,可採用其他先前的結構與動作方式,只需 滿足在驅動裝置的驅動下該快門葉片20可打開或遮蔽所 述快門開口 104從而實現所述感光元件的曝光即可。 [0019] Ο 所述快門葉片20的形狀可根據需求製備。該快門葉片20 的厚度為1微米〜200微米,優選為5微米〜20微米。所述 快門葉片20對可見光的透光率大致小於等於1%。所述快 門葉片20的結構、形狀與材料基本相同。每一快門葉片 20均包括複數個奈米碳管。優選地,所述快門葉片20由 複數個奈米碳管組成。所述複數個奈米碳管可無序或有 序排列,且該複數個奈米碳管通過凡得瓦力緊密相連。 ο 在宏觀上,所述快門葉片20為一具有平面結構的奈米碳 管結構。在微觀上,所述奈米碳管結構由複數個奈米碳 管通過凡得瓦力相互連接而形成,所述複數個奈米碳管 可處於同一平面,亦可處於不同平面。優選地,所述快 門葉片20中的複數個奈米碳管基本平行於所述快門葉片 20的表面。所述奈米碳管結構為一自支撐結構。所謂“ 自支撐”即該奈米碳管結構無需通過設置於一基體表面 ,亦能保持自身特定的形狀。由於該自支撐的奈米碳管 結構包括大量的奈米碳管通過凡得瓦力相互吸引,從而 使該奈米碳管結構具有特定的形狀,形成一自支撐結構 。優選地,所述快門葉片20係由複數個奈米碳管組成的 純結構。所述快門葉片20中的奈米碳管無需酸化或其他 功能化處理,不含有羧基等其他功能化基團,所述快門 葉片20中的奈米碳管結構係純奈米碳管結構。本實施例 099143666 表單編號Α0101 第7頁/共37頁 0992075636-0 201224640 中,所述快門葉片20為複數個奈米碳管組成的片狀的自 支撐結構。所述複數個奈米碳管中相鄰的奈米碳管通過 凡得瓦力緊密相連。 [0020] 所述奈米碳管結構可包括一層或複數層奈米碳管膜,只 要使所述奈米碳管結構的厚度在1微米〜200微米之間且 透光率小於等於1%即可。當所述奈米碳管結構包括複數 層奈米碳管膜時,所述複數層奈米碳管膜層疊設置,相 鄰的奈米碳管膜之間通過凡得瓦力緊密相連。 [0021] 請參閱圖2,本實施例中所提供的快門葉片20係通過將50 層厚度大致為0.1微米的奈米碳管拉膜22層疊設置而形成 一個厚度大致為5微米的奈米碳管結構。所述奈米碳管結 構基本不透光。該快門葉片20為一具有一定強度的薄片 狀結構。 [0022] 請參見圖3,所述奈米碳管拉膜係由複數個奈米碳管組成 的自支撐結構。所述複數個奈米碳管為沿該奈米碳管拉 膜的長度方向擇優取向排列。所述擇優取向係指在奈米 碳管拉膜中大多數奈米碳管的整體延伸方向基本朝同一 方向。而且,所述大多數奈米碳管的整體延伸方向基本 平行於奈米碳管拉膜的表面。進一步地,所述奈米碳管 拉膜中多數奈米碳管係通過凡得瓦力(Van der Waals attractive force)首尾相連。具體地,所述奈米碳 管拉膜中基本朝同一方向延伸的大多數奈米碳管中每一 奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力 首尾相連。當然,所述奈米碳管拉膜中存在少數偏離該 延伸方向的奈米碳管,這些奈米碳管不會對奈米碳管拉 099143666 表單編號A0101 第8頁/共37頁 0992075636-0 201224640 夕數不米碳管的整體取向排列構成明顯影響。所 述自支撺為奈米碳管拉膜不需要大面積的載體支撐,而 只要相對兩邊提供域力g卩能整體上μ而保持自身膜 狀狀fe ’即將4奈米碳管拉膜置於(或固定於)間隔一 疋距離叹置的兩個支撐體上時,位於兩個支擇體之間的 不米厌s拉膜能狗懸空保持自身膜狀狀態。所述自支擇 主要通過奈米碳管拉膜中存在連續的通過凡得瓦力首尾 相連延伸㈣的奈米碳管而實現。具體地,所述奈米碳 S拉膜中基本朝同—方向延伸的多數奈求碳管,並非絕 對的直線狀’可騎㈣#;或者並非完全按照延神方 向上排列,可適當的偏離延伸方向。故,不能排除奈米 碳管拉膜的基本朝同_·方向延伸❹數奈米碳管中並列 的奈米碳管之間可能存在部分接I具體地,所述奈米 碳管拉膜包括複數個連續且定向排列的奈米碳管片段。 該複數個奈米碳管片段通過凡得瓦力首尾相連。每一奈 米碳管片段由複數個相互平行的奈米碳管組成。該奈米 碳管片段具有任意的長度、厚度、均勻性及形狀。 [_在料㈣葉㈣t,㈣奈米碳管拉㈣在所述㈣ 葉片20結構中相互層疊設置,且相鄰的奈米碳管拉膜22 之間通過凡得瓦力緊密相連1述奈Μ管拉膜22中的 大多數奈米碳管的轴向沿同—方向擇優取向延伸。該大 多數奈米破管中每-奈米碳管與在軸向延伸方向上相鄰 的,米碳管通過凡得瓦力首尾相連。該大多數奈米碳管 中每-奈米碳管與相鄰的奈米碳f之間通過凡得瓦力緊 密相連。當所述快Η葉片2〇由複數層奈米碳管拉膜層叠 099143666 表單編號Α0Ι01 第9頁/共37頁 〇992075636-〇 201224640 置'•且成%,優選地,至少存在兩層奈米碳管拉膜中奈 米碳管的軸向延伸方向形成一交叉角α,0。<« g90。。 更優選地,所述快門葉片20中每一奈米碳管拉膜22中的 大多數奈米碳管的軸向延伸方向與相鄰的奈米竣管拉膜 22中的大多數奈米碳管的軸向延伸方向形成—交又角“ ,〇 <aS90°。本實施例中,所述交又角為9〇。。 闺可理解,由於所述奈米碳管具有良好的吸紐能,故, 所述快門葉片2G在厚度較薄的範圍内即可具有較好的吸 光性能。具體地,當將所述快門葉片20的厚度大致在m 米到200微米時,即可實現使所述使快門葉片20對可見光 的透光率大致4於等於⑽目的。且·,由於所述奈米破 官的吸光作用,當所述快門葉片遮隹所述快門開口叫時 ’能減少所述快門葉片20的反光’從而達到優質的拍攝 效果。另外’由於奈米碳管本身具有很強的機械性能, 其抗拉強度係鋼的100倍,彈性模量與金剛石的彈性模量 相當,故,在顯著降低所述快門葉片20的厚度的前提下 ,依然可達到傳統的供門葉片的機械性能。而由於奈米 碳管同時還具有質量輕等特點,其密度係鋼材的六分之 一左右,故’厚度降低的快門葉片20的質量將顯著減小 ’從而能減小所述快門葉片2◦在遮蔽或打開所述快門開 口 104時所需的驅動力及制動力,進而減少照相機的電池 損耗。最後,所述快門葉片20中每一奈米碳管拉膜中的 大多數奈米碳管的延伸方向與相鄰的奈米碳管拉骐中的 大多數奈米碳管的延伸方向形成一9〇。交又角,從而使得 所述快門葉片20具有較大的機械強度。 099143666 表單編號A0101 第10頁/共37頁 0992075636-0 201224640 [0025] 所述快門葉片20的製備方法具體包括:提供複數個奈米 碳管拉臈;將該複數個奈米碳管拉膜層疊鋪設,形成— 奈米碳管結構;將所述奈米碳管結構經一易揮發的有機 洛劑處理,使相鄰的奈米碳管拉膜之間緊密結合;最後 將處理得到的奈米碳管結構經過衝壓加工形成所述快門 葉片20。 [0026] Ο [0027] ❹ 099143666 可理解,所述奈米碳管結構不限於由奈米碳管拉膜構成 ,亦可由奈米碳管碾壓膜、奈米碳管絮化膜或者所述三 種奈米碳管膜中的至少兩種層疊構成。 所述奈米碳管碾壓膜為通過碾壓一奈米碳管陣列獲得的 —種具有自支撐性的奈米碳管膜。該奈米碳管碾壓膜包 括均勻分佈的奈米碳管,奈米碳管沿同一方向或不同方 向擇優取向排列。所述奈米碳管媒壓膜中的大多數奈东 碳管基本平行於該奈米碳管雜骐的表面1述夺米碳 管碾壓膜中的奈米碳管相互部分交疊,並寧過凡得瓦力 相互吸引,緊密結合,使得該奈米碳管麟有报好的柔 韌性,可彎曲拆叠成掂而 木 这m厭趙意形狀不破裂。且由於奈米碳 B 、、以營之間通過凡得瓦力相互吸5卜緊 密結合,使奈㈣為-自支_結構。所述夺 米碳1 的奈米碳管與形成奈米碳管陣列的生長 基底的表面形成一央^ ^ 王我 用P,其中,办大於等於〇度且小於 等於15度,該夾角a上丄 J ^ P與施加在奈米碳管陣列上的壓力有 關,壓力越大,該爽 ^ , 再越小,優選地,該奈米碳管碾壓 膜中的不米碳管平行 於5亥生長基底排列。該奈米碳管碾 壓膜為通過碾壓—参 未碳官陣列獲得,依據碾壓的方式 表草編號麵 帛u胃/共37頁 0992075636-0 201224640 不同’該奈米碳管碾壓膜中的奈米碳管具有不同的排列 形式。具體地’奈米碳管可無序排列;當沿不同方向碾 壓時,奈米碳管沿不同方向擇優取向排列;請參閱圖4, 當沿同一方向礙壓時’奈米碳管沿一固定方向擇優取向 排列。該奈米碳管碾壓膜中奈米碳管的長度大於5〇微米 。該奈米碳管碾壓膜的面積與奈米碳管陣列的尺寸基本 相同。該奈米碳管碾壓膜厚度與奈米碳管陣列的高度以 及碾壓的壓力有關,可為〇 · 5奈米到1 0 〇微米之間。可理 解,奈米碳管陣列的高度越大而施加的壓力越小,則製 備的奈米碳管犧壓膜..的摩::靡越大反之奈米碳管陣列 的高度越小而施加的壓力越:大,則製備的奈米碳管碾壓 膜的厚度越小。 [0028] 可理解’當所述奈米碳管碾壓膜厚度較大時,所述快門 葉片20中可由單層奈米碳管碾壓膜構成’所述奈米碳管 碾壓膜中的大多數奈米碳管相互交疊並且基本沿該快門 葉片20的表面延伸。該大多數奈米碳管中每一奈米碳管 與相鄰的奈米碳管通過凡得瓦力緊密相連。當所述奈米 碳管碾壓膜厚度較小時,所述快門葉片20可由複數個層 疊設置的奈米碳管碾壓膜構成’且相鄰的奈米碳管碾壓 膜之間通過凡得瓦力緊密相連。所述快門葉片20中奈米 碳管的排列方向取決於所述奈米碳管碾壓膜中奈米碳管 的排列方向。優選地,所述奈米碳管礙塵膜中的大多數 奈米碳管的軸向基本沿同一方向延伸並且平行於該奈米 碳管碾壓膜的表面,且每一奈米碳管碾壓膜中大多數奈 米碳管的轴向延伸方向與相鄰的奈米碳管碾壓膜中大多 099143666 表單編號A0101 第12頁/共37頁 0992075636-0 201224640 [0029] Ο [0030]❹ [0031] 099143666 數奈米碳管的軸向延伸方向形成一交叉角α,〇。<〇;$90 ο ο 請參閱圖5,所述奈米碳管絮化膜為將一奈米碳管原料, 如一超順排陣列,絮化處理獲得的一自支撐的奈米碳管 膜。該奈米碳管絮化膜包括相互纏繞且均勻分佈的奈米 碟管。奈米碳管的長度大於10微米,優選為2〇〇微米到 900微米’從而使奈米碳管相互纏繞在一起。所述奈米碳 管之間通過凡得瓦力相互吸引、分佈,形成網路狀結構 。由於該自支撐的奈米碳管絮化膜中大量的奈米碳管通 過凡得瓦力相互吸弓〖並袓互攀繞,與而使讀奈米碳管絮 化膜具有特定的形狀,形成一自支撐結“。所述奈米碳 管絮化膜各向同性。所述奈米碳管絮化膜中的奈米碳管 為均勻分佈,無規則排列,所述奈米碳管絮化膜的面積 及厚度均不限,厚度大致在0. 5奈米到1⑽微米之間。 可理解,當所述奈米碳管絮化膜厚度較大時,所述快門 葉片20中的奈米破管結構可由單層奈米碳管絮化膜構成 ,所述快門葉片20中相鄰的奈米碳管之間通過凡得瓦力 相互吸引、纏繞形成網路結構。當所述奈米碳管絮化膜 厚度較小時,所述快門葉片20可由複數個層疊設置的奈 米碳管絮化膜構成’且相鄰的奈米碳管絮化膜之間通過 凡得瓦力緊密相連。 本發明第二實施例提供一種快門裝置’該快門裝置與本 發明第一實施例所提供的快門装置1〇〇基本相同,其主要 區別在於,請參考圖6,本實施例中的快門裝置的快門葉 片30進一步包括一聚合物塗層32塗覆於第一實施例所述 表單編號Α0101 第13頁/共37頁 0992075636-0 201224640 快門葉片20的表面,所述聚合物塗層32的厚度為1微米-10微米。該聚合物塗層32的材料選自含氟聚烯烴、聚醯 亞胺、聚苯硫醚及其任意組合的聚合物材料。本實施例 中,該聚合物塗層32為一聚四氟乙烯材料。所述聚四氟 乙稀材料的厚度為1微米。 [0032] 可理解,所述快門葉片20表面塗覆一層聚合物塗層32具 有潤滑作用,可降低快門葉片在做縱向的開、合動作時 相鄰葉片之間的摩擦力,從而提高快門速度及耐磨性。 [0033] 本實施例中所述快門葉片30的製備方法係在本發明第一 實施例形成所述快門葉片20的基礎上,進一步在所述快 門葉片20表面均勻地塗覆一層具有潤滑作用的聚四氟乙 稀塗層。 [0034] 本發明第三實施例提供一種快門裝置,該快門裝置與本 發明第一實施例所提供的快門裝置1〇〇基本相同,其主要 區別在於,請參閱圖7,本實施例中快門裝置的快門葉片 40所採用的奈米碳管結構由複數個層疊設置的奈米碳管 層組成,所述奈米碳管層包括複數個相互平行且並排設 置的奈米碳管線42。所述快門葉片40的厚度為30微米, 該快門葉片40為一具有一定強度的薄片狀結構。 [0035] 在所述快門葉片40結構中,每個奈米碳管層中的奈米碳 管線42與相鄰的奈米碳管線42之間通過凡得瓦力緊密接 觸,相鄰的奈米碳管層通過凡得瓦力緊密連接。優選地 ,至少有兩層奈米碳管層中奈米碳管線42交叉設置形成 一交又角α,0°<α$90°。更優選地,任意兩個相鄰的 099143666 表單編號Α0101 第14頁/共37頁 0992075636-0 201224640 [0036] ❹ [0037]201224640 VI. Description of the Invention: [Technical Field] The present invention relates to a shutter device and a shutter blade, and more particularly to a shutter device and a shutter blade for a camera. [Prior Art] [0002] The camera shutter is a time control mechanism that allows the photosensitive member to obtain a proper exposure amount. In the early days of camera development, since the sensitivity of the photosensitive material was low and the exposure time required was long, the exposure time was controlled by attaching and detaching the lens cover. In recent years, with the sensation of photosensitive materials, the first degree and the demand for shooting have been increasing, and the requirements for camera shutter speed have been increasing. [0003] Steel and other gold 4 alloys are generally used in the prior art as the material of the shutter blade. However, although steel and other metal alloys can meet the strength requirements of camera shutters to a certain extent, camera shutters made of steel and other metal alloys usually have a large mass, which is not conducive to increasing the shutter speed. SUMMARY OF THE INVENTION [0004] In view of the above, it is necessary to provide a shutter device and a shutter blade that can improve speed: door speed. [0005] The present invention provides a shutter device including a shutter blade structure, wherein 'the shutter blade structure includes at least one shutter blade, the shutter blade includes a plurality of nuclei tubes, and the plurality of (four) carbon tube edges The surfaces of the shutter blades are closely arranged, and adjacent carbon nanotubes are closely connected by van der Waals force. [0006] The present invention provides a shutter blade that can be applied to a photographic penetrating, using 099143666 form number Α0101 3rd page/total 37 page 201224640 or opening the photographic light element door opening in the photographic device to achieve H Wherein, the shutter blade has a sheet-like self-supporting structure composed of a carbon nanotube, and the adjacent carbon nanotubes are close to each other _:,. Structure and phase == technology, the shutter blade in the shutter device of the present invention is composed of a complex I-meter carbon tube (four)-like structure 'because the carbon nanotube itself is light in weight and mechanically in the ancient The carbon nanotubes achieve a relatively high strength at a relatively low mass, which facilitates the speed of the wire feeder when applying the photographic device. [Embodiment] Hereinafter, a detailed description of the shutter mechanism and the f夬Η blade provided by the present invention will be made in conjunction with the specific embodiments. [0008] Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a shutter device. The shutter device (10) is used to control that external light enters a camera and is illuminated to the camera. The time of making sensitive photos. When the Shaanxi device 100 is turned on, the external secret can be irradiated to the photosensitive element, and when the shutter gathering 100 is closed, the shutter device 100 can block the external light from being irradiated to the photosensitive element. The shutter device _ includes a shutter substrate 10, a connecting unit 14, a first driving unit 16, a second driving unit 18, and a shutter blade structure 12. The fast n substrate is coupled to the shutter leaf structure 12, the connecting unit 14, the first driving unit 16, and the second driving unit 18. The shutter substrate 1A includes a body 1〇2 having a 099143666 form number Α0101 page 4/37 page 0992075636-0 201224640 [0012] The shutter opening σ 1 〇 4. The body 1〇2 is a flat plate substantially parallel to the photographic device photosensitive element. [0013] The shutter opening 104 is disposed at a central position of the body 1〇2 and penetrates the body 102. When the shutter device 1 is turned on, external light can be radiated from the shutter opening 104 to the photosensitive member. When the shutter device 1 is closed, the fast blade structure; 12 blocks the fast opening 104 to block exposure of the external light to the photosensitive member. The shape of the shutter opening 104 can be prepared according to actual requirements; the shape of the shutter opening 104 is selected from square, rectangular, circular or other polygonal shapes. The shutter opening 104 has a rectangular shape in this embodiment. [0014] The first driving unit 16 and the second driving unit 18 are disposed on the same side of the body 102. The first driving unit μ and the second driving unit 18 are rotatably connected to the connecting unit 14 for driving the shutter blade structure 12 to rotate clockwise or counterclockwise. [0015] The connecting unit 14 connects the shutter blade structure 12 and the body 102 with a dance. The connecting unit 14 includes a first main arm 142, a first auxiliary arm 144, a second main arm 146, a second auxiliary arm 148, and a plurality of rotating shafts 143. The first main arm 142 is coupled to the body 102 via the first driving unit 16. The second main arm 146 is connected to the body 102 through the second driving unit 18. The first sub-arm 144 and the second sub-arm 148 are respectively coupled to the body 1〇2 via a rotating shaft 143. The first main arm 142 and the first sub-arm 144 are rotatable clockwise or counterclockwise around the respective rotating shaft 143 by the first driving unit 16. 099143666 Form No. A0101 Page 5 of 37 0992075636-0 201224640 The second main arm 146 and the second sub-arm 148 can be clockwise around the respective rotating shaft 143 under the action of the second driving unit 18. Or turning counterclockwise 〇_6] The shutter blade structure 1 2 is used to shield or open the shutter opening 104, thereby achieving sensitization of the photosensitive element. The shutter blade structure 12 includes a first shutter blade set 122 and a second shutter blade set 124. The first shutter blade set 122 and the second shutter blade set 124 each include at least one shutter blade 20. The shape and number of the shutter blades 20 in the first shutter blade group 122 and the second shutter blade group 124 are not limited. In this embodiment, the second Shaanxi leaf blade group 12 2 and the second 'fast _=. door' leaf' piece. The group 24 includes four shutter blades 20. The first shutter blade group 122 is connected to the first main arm 142 and the first arm 144, and can be linearly driven by the first driving unit 16, thereby shielding or opening the shutter. Opening 1〇4. The second shutter blade group 124 is connected to the second main arm 146 and the second sub-arm 148, and can be linearly driven by the second driving unit 18, thereby shielding or opening the shutter. Lankou 丨〇 4. [0017] When the shutter device 100 is in operation, the second main arm 146 and the second 曰'J #148 are driven clockwise around the rotating shaft 143 under the driving of the second driving unit 18 Rotating in the direction, and driving the four shutter blades 20 of the second shutter blade group 124 to linearly move, thereby opening the shutter opening 1〇4; after the predetermined time of exposure, the first main arm 142 and the first sub-arm 144 are The first driving unit 16 is driven to rotate in a clockwise direction around the rotating shaft 143, and drives the first shutter blade group 122 to move linearly, so that four of the first shutter blade groups j22 The shutter blade 20 shields the shutter opening 1 〇 4, thereby ending the exposure. 099143666 Form No. 1010101 Page 6 of 37 0992075636-0 201224640 [0018] It can be understood that the structure and the manner of operation of the shutter blade 20 in the shutter device 100 are not limited, and other previous structures and modes of operation may be adopted, only It is necessary to satisfy that the shutter blade 20 can open or shield the shutter opening 104 under the driving of the driving device to realize exposure of the photosensitive member. [0019] The shape of the shutter blade 20 can be prepared as needed. The thickness of the shutter blade 20 is from 1 micrometer to 200 micrometers, preferably from 5 micrometers to 20 micrometers. The light transmittance of the shutter blade 20 to visible light is approximately 1% or less. The structure, shape and material of the shutter blade 20 are substantially the same. Each shutter blade 20 includes a plurality of carbon nanotubes. Preferably, the shutter blade 20 is composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes may be arranged in disorder or order, and the plurality of carbon nanotubes are closely connected by van der Waals force. ο Macroscopically, the shutter blade 20 is a carbon nanotube structure having a planar structure. Microscopically, the carbon nanotube structure is formed by a plurality of carbon nanotubes connected to each other by van der Waals force, and the plurality of carbon nanotubes may be in the same plane or in different planes. Preferably, the plurality of carbon nanotubes in the shutter blade 20 are substantially parallel to the surface of the shutter blade 20. The carbon nanotube structure is a self-supporting structure. The so-called "self-supporting" means that the carbon nanotube structure can maintain its own specific shape without being disposed on a surface of a substrate. Since the self-supporting carbon nanotube structure includes a large number of carbon nanotubes attracted to each other by van der Waals force, the carbon nanotube structure has a specific shape to form a self-supporting structure. Preferably, the shutter blade 20 is a pure structure composed of a plurality of carbon nanotubes. The carbon nanotubes in the shutter blade 20 do not need to be acidified or otherwise functionalized, and do not contain other functional groups such as carboxyl groups. The carbon nanotube structure in the shutter blade 20 is a pure carbon nanotube structure. The present embodiment 099143666 Form No. Α0101, page 7 of 37, 0992075636-0 201224640, the shutter blade 20 is a sheet-like self-supporting structure composed of a plurality of carbon nanotubes. Adjacent carbon nanotubes in the plurality of carbon nanotubes are closely connected by van der Waals force. [0020] The carbon nanotube structure may include one or more layers of carbon nanotube film, as long as the thickness of the carbon nanotube structure is between 1 micrometer and 200 micrometers and the light transmittance is less than or equal to 1%. can. When the carbon nanotube structure comprises a plurality of layers of carbon nanotube film, the plurality of layers of carbon nanotube film are stacked, and the adjacent carbon nanotube films are closely connected by van der Waals force. [0021] Referring to FIG. 2, the shutter blade 20 provided in this embodiment is formed by laminating 50 layers of carbon nanotube film 22 having a thickness of approximately 0.1 micrometer to form a nano carbon having a thickness of approximately 5 micrometers. Tube structure. The carbon nanotube structure is substantially opaque. The shutter blade 20 is a sheet-like structure having a certain strength. [0022] Referring to FIG. 3, the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along the length direction of the carbon nanotube film. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film are oriented in substantially the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by Van der Waals attractive force. Specifically, each of the carbon nanotubes of the majority of the carbon nanotubes extending in the same direction in the carbon nanotube film is connected end to end with the carbon nanotubes adjacent in the extending direction by van der Waals force . Of course, there are a few carbon nanotubes in the carbon nanotube film that deviate from the extending direction. These carbon nanotubes do not pull the carbon nanotubes 099143666 Form No. A0101 Page 8 of 37 0992075636-0 201224640 The overall orientation of the carbon nanotubes has a significant impact. The self-supporting silicon carbide film does not need a large-area carrier support, but only provides the domain force g相对 on the opposite sides to maintain the film shape of the whole film. When (or fixed to) two supports that are separated by a distance, the non-slip film between the two supports can keep the film in a self-sustaining state. The self-selection is mainly achieved by the presence of a continuous carbon nanotube in the carbon nanotube film which is continuously extended by the van der Waals end (4). Specifically, the majority of the carbon nanotubes in the nano-carbon S-sliding film extend substantially in the same direction, and are not absolutely linear-like (four)#; or are not completely arranged in the direction of the extension, and may be appropriately deviated Extend the direction. Therefore, it cannot be excluded that the carbon nanotube film is substantially oriented in the same direction, and the nano carbon tubes juxtaposed in the number of carbon nanotubes may be partially connected. Specifically, the carbon nanotube film includes A plurality of consecutive and aligned carbon nanotube segments. The plurality of carbon nanotube segments are connected end to end by van der Waals force. Each carbon nanotube segment consists of a plurality of mutually parallel carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. [_In the material (four) leaf (four) t, (four) nano carbon tube pull (four) in the (four) blade 20 structure stacked on each other, and the adjacent carbon nanotube film 22 is closely connected by van der Waals Most of the carbon nanotubes in the manifold film 22 extend axially along the same direction. In most of the nanotubes, the carbon nanotubes are connected end to end in the direction of axial extension, and the carbon nanotubes are connected end to end by van der Waals force. Each of the carbon nanotubes in the majority of the carbon nanotubes is closely connected to the adjacent nanocarbon f by van der Waals. When the quick-twist blade 2 is laminated by a plurality of layers of carbon nanotube film 099143666 Form No. Α0Ι01 Page 9 / 37 pages 〇992075636-〇201224640 Set '• and %, preferably, there are at least two layers of nano The axial extension direction of the carbon nanotubes in the carbon tube film forms an intersection angle α,0. <« g90. . More preferably, most of the carbon nanotubes in each of the carbon nanotube films 22 in the shutter blade 20 extend in the axial direction and most of the nano carbon in the adjacent nanotube film 22 The axial extension direction of the tube forms an intersection angle ", 〇 < a S90°. In this embodiment, the intersection angle is 9 〇. 闺 understandably, since the carbon nanotube has a good suction Therefore, the shutter blade 2G can have better light absorption performance in a thin thickness range. Specifically, when the thickness of the shutter blade 20 is approximately m m to 200 μm, it can be realized. The light transmittance of the shutter blade 20 to visible light is substantially equal to or equal to (10). And, due to the light absorbing effect of the nano smashing, when the shutter blade conceals the shutter opening, it can reduce The reflection of the shutter blade 20 is achieved to achieve a high-quality shooting effect. In addition, since the carbon nanotube itself has strong mechanical properties, its tensile strength is 100 times that of the steel, and the elastic modulus is equivalent to the elastic modulus of the diamond. Therefore, the premise of significantly reducing the thickness of the shutter blade 20 The mechanical properties of the conventional door blades can still be achieved. Since the carbon nanotubes are also light in weight and the density is about one sixth of the steel, the quality of the shutter blade 20 with reduced thickness will be significant. The reduction is such that the driving force and the braking force required for the shutter blade 2 to shield or open the shutter opening 104 can be reduced, thereby reducing the battery loss of the camera. Finally, each of the shutter blades 20 The extension direction of most of the carbon nanotubes in the carbon nanotube film is formed by 9 〇 with the extending direction of most of the carbon nanotubes in the adjacent carbon nanotubes. The shutter blade 20 has a large mechanical strength. 099143666 Form No. A0101 Page 10 / Total 37 Page 0992075636-0 201224640 [0025] The preparation method of the shutter blade 20 specifically includes: providing a plurality of carbon nanotubes; The plurality of carbon nanotube membranes are laminated and laminated to form a carbon nanotube structure; the nanocarbon tube structure is treated by a volatile organic binder to cause adjacent carbon nanotubes to be pulled between the membranes. Tight combination Finally, the processed carbon nanotube structure is subjected to press working to form the shutter blade 20. [0026] ❹ 099143666 It is understood that the carbon nanotube structure is not limited to being composed of a carbon nanotube film, The carbon nanotube film can be formed by laminating at least two of the carbon nanotube film, the carbon nanotube film, or the three carbon nanotube films. The carbon nanotube film is formed by rolling a nano carbon. A self-supporting carbon nanotube film obtained by a tube array. The carbon nanotube rolled film comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are arranged in a preferred orientation in the same direction or in different directions. Most of the NEA carbon nanotubes in the carbon nanotubes are substantially parallel to the surface of the carbon nanotubes. The carbon nanotubes in the carbon nanotubes are partially overlapped and nurtured. Van der Waals attracts each other and is closely combined, so that the carbon nanotubes have good flexibility, can be bent and disassembled into enamel, and the wood is not ruptured. And because the carbon carbon B, and the camps are closely combined with each other through the van der Waals force, the nai (four) is the self-supporting structure. The carbon nanotubes of the carbon-deficient carbon 1 form a surface with the surface of the growth substrate forming the array of carbon nanotubes, wherein the use of P is greater than or equal to 15 degrees and less than or equal to 15 degrees.丄J ^ P is related to the pressure exerted on the carbon nanotube array. The greater the pressure, the smaller the thickness, and preferably, the carbon nanotubes in the carbon nanotube film are parallel to 5 Growth substrate alignment. The carbon nanotube rolled film is obtained by rolling-incorporating non-carbon official array, according to the method of rolling, the surface number is 帛u stomach/total 37 pages 0992075636-0 201224640 different 'the carbon nanotube rolling film The carbon nanotubes in the middle have different arrangements. Specifically, the carbon nanotubes can be arranged in disorder; when rolling in different directions, the carbon nanotubes are arranged in different orientations; see Figure 4, when the pressure is blocked in the same direction, the carbon nanotubes along the The orientation is preferred and the orientation is preferred. The length of the carbon nanotubes in the carbon nanotube rolled film is greater than 5 μm. The area of the carbon nanotube rolled film is substantially the same as the size of the carbon nanotube array. The thickness of the carbon nanotube film is related to the height of the carbon nanotube array and the pressure of the rolling, and may be between 5 nm and 10 μm. It can be understood that the larger the height of the carbon nanotube array is, the smaller the applied pressure is, and the prepared carbon nanotubes are pressed to the film: the friction is larger: the larger the height of the carbon nanotube array is, the smaller the height is. The higher the pressure: the larger the thickness of the prepared carbon nanotube rolled film. [0028] It can be understood that when the thickness of the carbon nanotube film is large, the shutter blade 20 can be composed of a single-layer carbon nanotube rolled film in the carbon nanotube film. Most of the carbon nanotubes overlap each other and extend substantially along the surface of the shutter blade 20. Each of the carbon nanotubes in the majority of the carbon nanotubes is closely connected to the adjacent carbon nanotubes by van der Waals forces. When the thickness of the carbon nanotube film is small, the shutter blade 20 may be composed of a plurality of stacked carbon nanotube laminated films and the adjacent carbon nanotubes are passed between The Walsh is closely connected. The arrangement direction of the carbon nanotubes in the shutter blade 20 depends on the arrangement direction of the carbon nanotubes in the carbon nanotube film. Preferably, the majority of the carbon nanotubes in the carbon nanotube dust barrier film extend substantially in the same direction and are parallel to the surface of the carbon nanotube film, and each carbon nanotube is rolled. The axial extension direction of most carbon nanotubes in the lamination is mostly in the adjacent carbon nanotube film. 099143666 Form No. A0101 Page 12/37 Page 0992075636-0 201224640 [0029] Ο [0030]❹ [0031] 099143666 The axial extension direction of the carbon nanotubes forms an intersection angle α, 〇. <〇;$90 ο ο Referring to FIG. 5, the carbon nanotube film is a self-supporting carbon nanotube film obtained by flocculation of a carbon nanotube raw material, such as a super-aligned array. . The carbon nanotube flocculation membrane comprises a nano-disc tube that is intertwined and evenly distributed. The carbon nanotubes have a length of more than 10 μm, preferably 2 μm to 900 μm, so that the carbon nanotubes are entangled with each other. The carbon nanotubes are attracted to each other by van der Waals forces to form a network structure. Since the large number of carbon nanotubes in the self-supporting carbon nanotube flocculation membrane are mutually attracted by the van der Waals force, and the carbon nanotube film of the read carbon nanotube has a specific shape, Forming a self-supporting knot. The carbon nanotube flocculation membrane is isotropic. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed, and the carbon nanotubes are randomly arranged. The area and thickness of the film are not limited, and the thickness is substantially between 0.5 nm and 1 (10) μm. It can be understood that when the thickness of the carbon nanotube film is large, the yarn in the shutter blade 20 The rice tube structure may be composed of a single layer of carbon nanotube flocculation membrane, and adjacent carbon nanotubes in the shutter blade 20 are mutually attracted and entangled by van der Waals to form a network structure. When the thickness of the carbon tube flocculation film is small, the shutter blade 20 may be composed of a plurality of stacked carbon nanotube flocculation membranes and the adjacent carbon nanotube flocculation membranes are closely connected by van der Waals force. A second embodiment of the present invention provides a shutter device, which is provided by the first embodiment of the present invention. The shutter device 1 is substantially the same, the main difference is that, referring to FIG. 6, the shutter blade 30 of the shutter device in this embodiment further includes a polymer coating 32 applied to the form number Α0101 described in the first embodiment. Page 13 of 37 0992075636-0 201224640 The surface of the shutter blade 20, the polymer coating 32 has a thickness of 1 micron to 10 micrometers. The material of the polymer coating 32 is selected from the group consisting of fluorine-containing polyolefin and polyfluorene. The polymer material of the imine, the polyphenylene sulfide and any combination thereof. In the embodiment, the polymer coating layer 32 is a polytetrafluoroethylene material, and the polytetrafluoroethylene material has a thickness of 1 micrometer. It can be understood that the surface of the shutter blade 20 is coated with a polymer coating 32 to have a lubricating effect, which can reduce the friction between the adjacent blades when the shutter blade is opened and closed in the longitudinal direction, thereby increasing the shutter speed and [0033] The preparation method of the shutter blade 30 in the embodiment is based on the formation of the shutter blade 20 in the first embodiment of the present invention, and further uniformly coating a layer on the surface of the shutter blade 20. Lubricated A PTFE coating is used. [0034] A third embodiment of the present invention provides a shutter device which is substantially the same as the shutter device 1〇〇 provided by the first embodiment of the present invention, and the main difference is that Referring to FIG. 7, the carbon nanotube structure used in the shutter blade 40 of the shutter device of the present embodiment is composed of a plurality of stacked carbon nanotube layers, and the carbon nanotube layer includes a plurality of parallel and side by side. A carbon carbon line 42 is provided. The thickness of the shutter blade 40 is 30 micrometers, and the shutter blade 40 is a sheet-like structure having a certain strength. [0035] In the structure of the shutter blade 40, each nano carbon The nanocarbon line 42 in the tube layer is in close contact with the adjacent nanocarbon line 42 by van der Waals force, and the adjacent carbon nanotube layers are tightly connected by van der Waals force. Preferably, the carbon nanotubes 42 are interdigitated in at least two layers of carbon nanotubes to form an intersection angle α, 0° < α $ 90 °. More preferably, any two adjacent 099143666 Form Numbers Α0101 Page 14 of 37 0992075636-0 201224640 [0036] ❹ [0037]

[0038] [0039] 納米碳管層中的奈米碳管線交叉設置形成一交叉角α,0 °<α $90°。本實施例中,相鄰的納米碳管層中的奈米碳 管線交叉設置形成90°交叉角。可理解,由於所述快門葉 片40中相鄰的兩個納米碳管層中的奈米碳管線42交叉設 置,故,可防止所述快門葉片40在各個方向上產生裂紋 ,並使所述快門葉片40在平行於其表面的任意方向上都 具有一定的強度。 請參閱圖8,所述奈米碳管線42可採用扭轉的奈米碳管線 。所述扭轉的奈米碳管線中的大多數奈米碳管基本沿同 一秘向方向螺旋狀延伸1該大多數奈米碳管中每一奈米 碳管與在軸向延伸方向上相鄰的奈米碳管通過凡得瓦力 首尾相連,該大多數奈米碳管中每一奈米碳管與相鄰的 奈米碳管之間通過凡得瓦力緊密相連。所述扭轉的奈米 碳管線為採用一機械力將所述奈米碳管膜兩端沿相反方 向扭轉獲得。該扭轉的奈米碳管線長度不限。 所述快門葉片40的製備方法包括:提供複數個扭轉的奈 米碳管線;將所述複數個扭轉的奈米碳管線沿同一方向 並排設置形成一奈米碳管層,再將複數個扭轉的奈米碳 管線沿另一方向層疊設置於所述奈米碳管層表面,如此 反復進行形成一奈米碳管結構;最後將所得到的奈米碳 管結構經過衝壓加工形成所述快門葉片40。 可理解,所述奈米碳管結構中的奈米碳管線不限於扭轉 的奈米碳管線,亦可選自非扭轉的奈米碳管線。 請參閱圖9,所述非扭轉的奈米碳管線為將奈米碳管拉膜 099143666 表單編號Α0101 第15頁/共37頁 0992075636-0 201224640 通過有機溶劑處理得到。具體地,將有機溶劑浸潤所述 奈米碳管拉膜的整個表面,在揮發性有機溶劑揮發時產 生的表面張力的作用下,奈米碳管拉膜中的相互平行的 複數個奈米碳管通過凡得瓦力緊密結合,從而使奈米碳 管拉膜收縮為一非扭轉的奈米碳管線。該有機溶劑為揮 發性有機溶劑,如乙醇、甲醇、丙酮、二氣乙烷或氯仿 。所述非扭轉的奈米碳管線中的大多數奈米碳管的軸向 基本沿同一方向延伸,每一奈米碳管與軸向延伸方向相 鄰的奈米碳管通過凡得瓦力首尾相連。具體地,該非扭 轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈 米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段 包括複數個相互平行並通過凡得瓦力緊密結合的奈米碳 管。該奈米碳管片段具有任意的長度、厚度、均勻性及 形狀。該非扭轉的奈米碳管線長度不限。 [0040] 可理解,所述快門葉片40亦可進一步包括一聚合物塗層 塗覆於所述快門葉片40的表面,所述聚合物塗層的厚度 為1微米-10微米。該聚合物塗層的材料選自含氟聚烯烴 、聚醯亞胺、聚苯硫醚及其任意組合的聚合物材料。 [0041] 本發明第四實施例提供一種快門裝置,該快門裝置與本 發明第一實施例所提供的快門裝置基本相同,其主要區 別在於,請參考圖10,本實施例中的快門裝置中的快門 葉片50由一奈米碳管結構與一聚合物54複合形成一奈米 碳管複合結構。所述奈米碳管結構可包括本發明第一實 施例中的奈米碳管膜,亦可包括本發明第三實施例中的 奈米碳管線,亦可同時選用奈米碳·管膜或奈米碳管線。 099143666 表單編號A0101 第16頁/共37頁 0992075636-0 201224640 Ο 所述快門葉片50中,所述奈米碳管結構複合於所述聚合 物54内部。所述奈米碳管結構中的奈米碳管之間或奈米 碳管線之間會存在一定的間隙,所述聚合物54材料會包 覆於所述奈米碳管結構的表面且填充於所述奈米碳管結 構中的間隙。可理解,該快門葉片50的厚度可通過所述 奈米碳管結構以及聚合物54的厚度來確定。所述聚合物 54為一熱固性材料或熱塑性材料,如環氧樹脂、聚稀烴 、丙烯酸樹脂、聚醯胺、聚氨酯(PU)、聚碳酸酯(PC )、聚甲醛樹脂(POM)、聚對苯二甲酸乙二酯(PET) 、聚甲基丙烯酸曱酯(PMMA)或矽樹脂等。所述快門葉 片50中,所述奈米碳管的質量百分含量為5%〜80%,優選 的,所述奈米碳管的質量百分含量為10%〜30%。可理解 ,當所述奈米碳管的含量較低時,就可發揮聚合物材料 和奈米碳管之間的協同作用,提高所述快門葉片50的性 能。 [0042] Ο 本實施例中,所述快門葉片50中的奈米碳管結構與本發 明第三實施例中奈米碳管結構相同,所述奈米碳管結構 包括複數個層疊設置的奈米碳管層,所述奈米碳管層包 括複數個相互平行並排設置的奈米碳管線52。所述奈米 碳管結構複合於所述聚合物54内部。所述聚合物54為一 聚對苯二甲酸乙二酯材料。所述快門葉片50的厚度約為 40微米,所述快門葉片50基本不透光。該快門葉片50為 一長方形的薄片狀結構。所述奈米碳管的質量百分含量 為20%。 [0043] 可理解,所述快門葉片50亦可進一步包括一聚合物塗層 099143666 表單編號A0101 第17頁/共37頁 0992075636-0 201224640 塗覆於所述快門葉片50的表面,所述聚合物塗層的厚度 為1微米-10微米。該聚合物塗層的材料與本發明第二實 施例中的聚合物塗層的材料相同。 [0044] 由於所述快門葉片50係由複數個奈米碳管與一聚合物複 合而成,故,可發揮聚合物和奈米碳管之間的協同作用 ,提高快門裝置的性能。 [0045] 所述快門葉片50係通過將所述快門葉片40浸入一聚合物 單體溶液、預聚物溶液或聚合物熔融液中,或將上述含 聚合物溶液喷灑或塗抹於所述快門葉片40結構,使聚合 物溶液能浸潤所述奈米碳管結構,使所快門葉片40與所 述聚合物複合,得到一奈米蜂管複合結構;最後將所得 到的奈米碳管複合結構經過衝壓加工製備而成。 [0046] 本發明第五實施例提供一種快門裝置,該快門裝置與本 發明第一實施例所提供的快門裝置基本相同,其主要區 別在於,請參考圖11,本實施例中的快門裝置的快門葉 片60包括至少兩層奈米碳管複合結構層疊設置而成。所 述奈米碳管複合結構係通過將一奈米碳管結構與一聚合 物材料複合而成。可理解,所述奈米碳管結構可選自本 發明第一實施例中的奈米碳管結構,亦可選自本發明第 三實施例中的奈米碳管結構。所述聚合物材料可選自本 發明第四實施例的聚合物材料。 [0047] 本發明實施例中,所述快門葉片60包括層疊設置的兩層 片狀奈米碳管複合結構62,其中,所述奈米碳管複合結 構62由一奈米碳管結構及一聚合物624複合而成。所述奈 099143666 表單編號A0101 第18頁/共37頁 0992075636-0 201224640 ❹ [0048] Ο [0049] 米碳管結構包括複數個沿同一方向層疊設置的奈米碳管 拉膜622。所述奈米碳管拉膜622與本發明第一實施例中 的奈米碳管拉膜22相同。即所述每個奈米碳管複合結構 62中的大多數奈米碳管的軸向均基本沿同一方向擇優取 向延伸。每個奈米碳管複合結構62中的大多數奈米碳管 的軸向延伸方向與相鄰的奈米碳管複合結構62中的大多 數奈米碳管的軸向延伸方向形成一交叉角a,0°<a S90 。。本實施例中,所述交叉角為90°。所述快門葉片60的 厚度為30微米,可使所述快門葉片60具有良好的遮光性 能。該快門葉月60為一具有一定強度的長方形的薄片狀 結構。所述聚合物624為一環氧樹脂材料。所述奈米碳管 的質量百分含量為30%。 可理解,當所述奈米碳管結構包括本發明第三實施例中 的奈米碳管線時,所述奈米碳管線在所述奈米碳管結構 中相互平行且並排設置,且相鄰的奈米碳管線之間通過 凡得瓦力緊密相連。每一奈米碳管複合結構中的奈米碳 管線的延伸方向與相鄰的奈米碳管複合層狀結構中的奈 米碳管線的延伸方向形成一交叉角α,0°<α$90°。優 選地,該交叉角為90°。 可理解,所述快門葉片60亦可進一步包括一聚合物塗層 塗覆於所述快門葉片60的表面,所述聚合物塗層的厚度 為1微米-10微米。該聚合物塗層的材料與本發明第二實 施例中的聚合物塗層的材料相同。 所述快門葉片60的製備方法包括:提供至少兩層奈米碳 管複合結構,所述奈米碳管複合結構係通過將複數個奈 099143666 表單編號Α0101 第19頁/共37頁 0992075636-0 [0050] 201224640 米碳管拉膜沿同一方向層疊鋪設,形成一奈米碳管結構 ,再將所述奈米碳管結構浸入一環氧樹脂材料的溶液或 熔融液中,或將一環氧樹脂材料的溶液或熔融液喷灑或 塗抹於所述奈米碳管結構,使所奈米碳管結構與所述環 氧樹脂複合製備而成;將所述至少兩層奈米碳管複合結 構層疊設置,並使每一奈米碳管複合結構中的大多數奈 米碳管的軸向延伸方向與相鄰的奈米碳管複合結構中的 奈米碳管的轴向延伸方向形成一 90°交叉角,並經過熱壓 加工形成層疊體;最後將所述層疊體經過衝壓加工形成 所述快門葉片60。 [0051] 本發明實施例所提供的快門葉片具有以下優點:首先, 所述快門葉片基本由奈米碳管組成,且該複數個奈米碳 管能通過凡得瓦力連接形成自支撐結構,故該快門葉片 的厚度可顯著降低,從而使該快門葉片具有質量輕的特 性,方便應用於各種攝影設備,並減小所述快門葉片在 遮蔽或打開快門開口所述的驅動力和制動力,進而減少 照相機的電池損耗。其次,由於奈米碳管結構本身具有 很強的機械性能,其抗拉強度係鋼的100倍,彈性模量與 金剛石的彈性模量相當,故,該快門葉片具有較高的機 械性能及耐持久性。再次,由於奈米碳管本身係一個良 好的黑體結構,將奈米碳管應用於所述快門葉片時,不 僅可有效遮住所述快門開口,還可減少所述快門葉片的 反光,從而達到優質的拍攝效果。此外,所述快門葉片 係通過將複數個奈米碳管與一聚合物材料複合而成,故 ,可發揮聚合物和奈米碳管之間的協同作用,提高快門 099143666 表單編號A0101 第20頁/共37頁 0992075636-0 201224640 [0052] Ο [0053] [0054] [0055]Ο [0056] [0057] [0058] [0059] 裝置的性能。最後,在所述快門葉片表面塗覆一層具有 潤滑作用的聚合物塗層,還可降低快門葉片在做遮蔽或 打開所述快門開口的動作時相鄰的快門葉片之間的摩擦 力,從而提高快門速度以及耐磨性。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利巾請。惟,以上所述者僅林發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明i—實施例所提供的快門裝置的結構示意圖 圖2為本發明第一實施例所提供的快門裝置中快門葉片的 剖面結構示意圖。 圖3為本發明第一實施例所提供的快門裝置中快門葉片所 採用的奈米碳管拉膜的SEM照片,。 ' .!, 卢.ίΐ 'i« K 身·5…“ i:. 圖4為本發明第一實施例所提供的快門裝置中快門葉片所 採用的奈米碳管碾壓膜的SEM照片。 圖5為本發明第一實施例所提供的快門裝置中快門葉片所 採用的奈米碳管絮化膜的SEM照片。 圖6為本發明第二實施例所提供的快門襞置中快門葉片的 别面結構示意圖。 圖7為本發明第三實施例所提供的快門裝置中快門葉片的 099143666 表單編號A0101 第21頁/共37頁 0992075636-0 201224640 剖面結構示意圖。 [0060] 圖8為本發明第三實施例所提供的快門裝置中快門葉片所 採用的扭轉的奈米碳管線的SEM照片。 [0061] 圖9為本發明第三實施例所提供的快門裝置中快門葉片所 採用的非扭轉的奈米碳管線的SEM照片。 [0062] 圖1 0為本發明第四實施例所提供的快門裝置中快門葉片 的剖面結構示意圖。 [0063] 圖11為本發明第五實施例所提供的快門裝置中快門葉片 的剖面結構示意圖。 【主要元件符號說明】 [0064] 快門裝置:100 [0065] 快門基板:10 [0066] 快門葉片結構:12 [0067] 連接單元:14 [0068] 第一驅動單元:16 [0069] 第二驅動單元:18 [0070] 本體:102 [0071] 快門開口 : 104 [0072] 第一快門葉片組·· 122 [0073] 第二快門葉片組:124 [0074] 第一主臂:142 099143666 表單編號A0101 第22頁/共37頁 0992075636-0 201224640 [0075] [0076] [0077] [0078] [0079] [0080] [0081][0039] The carbon nanotubes in the carbon nanotube layer are cross-arranged to form an intersection angle α, 0° < α $90°. In this embodiment, the carbon nanotubes in the adjacent carbon nanotube layers are arranged to form a 90° crossing angle. It can be understood that since the nano carbon pipelines 42 in the adjacent two carbon nanotube layers in the shutter blade 40 are disposed at the intersection, the shutter blade 40 can be prevented from being cracked in various directions, and the shutter can be prevented. The blade 40 has a certain strength in any direction parallel to its surface. Referring to Figure 8, the nanocarbon line 42 can be a twisted nanocarbon line. Most of the carbon nanotubes in the twisted nanocarbon pipeline extend substantially in the same direction of the secret direction. 1 Each of the carbon nanotubes in the majority of the carbon nanotubes is adjacent to the axial extension direction. The carbon nanotubes are connected end to end by van der Waals, and each of the carbon nanotubes in the majority of the carbon nanotubes is closely connected to the adjacent carbon nanotubes by van der Waals force. The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. The length of the twisted nanocarbon line is not limited. The method for preparing the shutter blade 40 includes: providing a plurality of twisted nano carbon pipelines; arranging the plurality of twisted nanocarbon pipelines in the same direction side by side to form a carbon nanotube layer, and then twisting a plurality of twisted carbon nanotubes The carbon nanotubes are stacked on the surface of the carbon nanotube layer in another direction, and thus repeatedly forming a carbon nanotube structure; finally, the obtained carbon nanotube structure is subjected to press working to form the shutter blade 40. . It will be appreciated that the carbon nanotubes in the carbon nanotube structure are not limited to twisted nanocarbon lines, but may also be selected from non-twisted nanocarbon lines. Referring to FIG. 9, the non-twisted nano carbon pipeline is obtained by treating the carbon nanotube film 099143666 Form No. 1010101 Page 15 of 37 0992075636-0 201224640 by organic solvent treatment. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and under the action of the surface tension generated by the volatilization of the volatile organic solvent, a plurality of nano carbons parallel to each other in the carbon nanotube film are drawn. The tube is tightly bonded by van der Waals force, thereby shrinking the carbon nanotube film into a non-twisted nano carbon line. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, di-hexane or chloroform. The majority of the carbon nanotubes in the non-twisted nanocarbon pipeline extend substantially in the same direction, and each of the carbon nanotubes and the axially extending carbon nanotubes pass through the van der Waals Connected. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Derived tightly combined with carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The length of the non-twisted nanocarbon line is not limited. [0040] It will be appreciated that the shutter blade 40 may further comprise a polymer coating applied to the surface of the shutter blade 40, the polymer coating having a thickness of from 1 micron to 10 microns. The polymeric coating material is selected from the group consisting of fluoroolefins, polyimines, polyphenylene sulfides, and polymeric materials in any combination thereof. [0041] A fourth embodiment of the present invention provides a shutter device, which is substantially the same as the shutter device provided by the first embodiment of the present invention. The main difference is that, referring to FIG. 10, in the shutter device in this embodiment, the shutter device is provided. The shutter blade 50 is combined with a polymer 54 by a carbon nanotube structure to form a carbon nanotube composite structure. The carbon nanotube structure may include the carbon nanotube film in the first embodiment of the present invention, and may also include the nano carbon line in the third embodiment of the present invention, and may also be a carbon nanotube film or Nano carbon pipeline. 099143666 Form No. A0101 Page 16 of 37 0992075636-0 201224640 中 In the shutter blade 50, the carbon nanotube structure is compounded inside the polymer 54. There may be a certain gap between the carbon nanotubes in the carbon nanotube structure or between the nanocarbon pipelines, and the polymer 54 material may be coated on the surface of the carbon nanotube structure and filled in a gap in the carbon nanotube structure. It will be appreciated that the thickness of the shutter blade 50 can be determined by the carbon nanotube structure and the thickness of the polymer 54. The polymer 54 is a thermosetting material or a thermoplastic material such as an epoxy resin, a polyolefin, an acrylic resin, a polyamide, a polyurethane (PU), a polycarbonate (PC), a polyacetal resin (POM), a poly pair. Ethylene phthalate (PET), polymethyl methacrylate (PMMA) or oxime resin. In the shutter blade 50, the mass percentage of the carbon nanotubes is 5% to 80%, and preferably, the mass percentage of the carbon nanotubes is 10% to 30%. It can be understood that when the content of the carbon nanotubes is low, synergy between the polymer material and the carbon nanotubes can be exerted to improve the performance of the shutter blade 50. [0042] In the present embodiment, the carbon nanotube structure in the shutter blade 50 is the same as the structure of the carbon nanotube in the third embodiment of the present invention, and the carbon nanotube structure includes a plurality of stacked nanometers. The carbon nanotube layer includes a plurality of nano carbon lines 52 arranged side by side in parallel with each other. The carbon nanotube structure is compounded inside the polymer 54. The polymer 54 is a polyethylene terephthalate material. The shutter blade 50 has a thickness of about 40 microns, and the shutter blade 50 is substantially opaque. The shutter blade 50 has a rectangular sheet-like structure. The carbon nanotubes have a mass percentage of 20%. [0043] It can be understood that the shutter blade 50 can further include a polymer coating 099143666 Form No. A0101 Page 17 / Total 37 page 0992075636-0 201224640 Coating on the surface of the shutter blade 50, the polymer The thickness of the coating is from 1 micron to 10 microns. The material of the polymer coating is the same as that of the polymer coating in the second embodiment of the present invention. Since the shutter blade 50 is formed by combining a plurality of carbon nanotubes with a polymer, synergy between the polymer and the carbon nanotube can be exerted to improve the performance of the shutter device. [0045] the shutter blade 50 is obtained by immersing the shutter blade 40 in a polymer monomer solution, a prepolymer solution or a polymer melt, or spraying or applying the above polymer solution to the shutter. The structure of the blade 40 enables the polymer solution to infiltrate the carbon nanotube structure, and the shutter blade 40 is compounded with the polymer to obtain a nanometer bee tube composite structure; finally, the obtained carbon nanotube composite structure is obtained. It is prepared by stamping. [0046] A fifth embodiment of the present invention provides a shutter device, which is substantially the same as the shutter device provided by the first embodiment of the present invention. The main difference is that, referring to FIG. 11, the shutter device in this embodiment The shutter blade 60 includes a stack of at least two layers of carbon nanotube composite structures. The carbon nanotube composite structure is formed by combining a carbon nanotube structure with a polymer material. It is understood that the carbon nanotube structure may be selected from the carbon nanotube structure in the first embodiment of the present invention, and may also be selected from the carbon nanotube structure in the third embodiment of the present invention. The polymeric material may be selected from the polymeric materials of the fourth embodiment of the invention. [0047] In the embodiment of the present invention, the shutter blade 60 includes a two-layer sheet-shaped carbon nanotube composite structure 62 stacked in a stack, wherein the carbon nanotube composite structure 62 is composed of a carbon nanotube structure and a Polymer 624 is compounded. The nano 099143666 Form No. A0101 Page 18 of 37 0992075636-0 201224640 ❹ [0049] The carbon nanotube structure includes a plurality of carbon nanotube film 622 stacked in the same direction. The carbon nanotube film 622 is the same as the carbon nanotube film 22 of the first embodiment of the present invention. That is, the axial directions of most of the carbon nanotubes in each of the carbon nanotube composite structures 62 are preferably oriented in the same direction. The axial extension of most of the carbon nanotubes in each of the carbon nanotube composite structures 62 forms an angle of intersection with the axial extension of most of the carbon nanotubes in the adjacent carbon nanotube composite structure 62. a, 0° < a S90. . In this embodiment, the crossing angle is 90°. The shutter blade 60 has a thickness of 30 μm, which allows the shutter blade 60 to have good light blocking performance. The shutter leaf month 60 is a rectangular sheet-like structure having a certain strength. The polymer 624 is an epoxy material. The carbon nanotubes have a mass percentage of 30%. It can be understood that when the carbon nanotube structure includes the nano carbon pipeline in the third embodiment of the present invention, the nano carbon pipelines are parallel to each other and arranged side by side in the carbon nanotube structure, and adjacent The carbon nanotubes are closely connected by van der Waals. The extending direction of the nanocarbon pipeline in each nanocarbon tube composite structure forms an intersection angle α with the extending direction of the nanocarbon pipeline in the adjacent carbon nanotube composite layer structure, 0° < α $ 90 °. Preferably, the angle of intersection is 90°. It will be appreciated that the shutter blade 60 may further comprise a polymer coating applied to the surface of the shutter blade 60, the polymer coating having a thickness of from 1 micron to 10 microns. The material of the polymer coating is the same as that of the polymer coating in the second embodiment of the present invention. The preparation method of the shutter blade 60 includes: providing at least two layers of carbon nanotube composite structures by numbering a plurality of Nai 099143666 forms Α 0101 19th page / 37 pages 0992075636-0 [ 0050] 201224640 m carbon tube film is laminated in the same direction to form a carbon nanotube structure, and then the carbon nanotube structure is immersed in a solution or melt of an epoxy material, or an epoxy resin Spraying or smearing a solution or melt of the material on the carbon nanotube structure to prepare a composite of the carbon nanotube structure and the epoxy resin; laminating the at least two layers of carbon nanotube composite structures Arranging and forming an axial extension direction of most of the carbon nanotubes in each carbon nanotube composite structure to form a 90° direction with the axial extension direction of the carbon nanotubes in the adjacent carbon nanotube composite structure The cross corners are formed by hot pressing to form a laminate; finally, the laminate is subjected to press working to form the shutter blade 60. The shutter blade provided by the embodiment of the present invention has the following advantages: First, the shutter blade is basically composed of a carbon nanotube, and the plurality of carbon nanotubes can be connected by van der Waals to form a self-supporting structure. The thickness of the shutter blade can be significantly reduced, so that the shutter blade has a light weight characteristic, is convenient to be applied to various photographic devices, and reduces the driving force and braking force of the shutter blade in shielding or opening the shutter opening, thereby Reduce camera battery drain. Secondly, since the carbon nanotube structure itself has strong mechanical properties, its tensile strength is 100 times that of the steel, and the elastic modulus is equivalent to the elastic modulus of the diamond. Therefore, the shutter blade has high mechanical properties and resistance. Persistence. Again, since the carbon nanotube itself is a good black body structure, when the carbon nanotube is applied to the shutter blade, not only the shutter opening can be effectively blocked, but also the reflection of the shutter blade can be reduced, thereby achieving High quality shooting results. In addition, the shutter blade is formed by combining a plurality of carbon nanotubes with a polymer material, so that synergy between the polymer and the carbon nanotube can be exerted, and the shutter is improved. 099143666 Form No. A0101 Page 20 / Total 37 pages 0992075636-0 201224640 [0052] [0055] [0058] [0059] [0059] The performance of the device. Finally, coating the surface of the shutter blade with a layer of lubricating polymer coating can also reduce the friction between adjacent shutter blades when the shutter blade acts to shield or open the shutter opening, thereby improving Shutter speed and wear resistance. In summary, the present invention has indeed met the requirements of the invention patent, and the patent towel is required in accordance with the law. However, the above description is only a preferred embodiment of the invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a shutter device according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional structural view of a shutter blade in a shutter device according to a first embodiment of the present invention. Fig. 3 is a SEM photograph of a carbon nanotube film taken by a shutter blade in a shutter device according to a first embodiment of the present invention. ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 is a SEM photograph of a carbon nanotube flocculation film used in a shutter blade in a shutter device according to a first embodiment of the present invention. FIG. 6 is a view showing a shutter blade in a shutter device according to a second embodiment of the present invention. FIG. 7 is a schematic cross-sectional view of a shutter blade in a shutter device according to a third embodiment of the present invention. FIG. 8 is a schematic diagram of a cross-sectional structure of a shutter blade 099143666 Form No. A0101 Page 21 of 37 0992075636-0 201224640. The SEM photograph of the twisted nanocarbon line used by the shutter blade in the shutter device provided by the third embodiment. [0061] FIG. 9 is a non-twisting adopted by the shutter blade in the shutter device according to the third embodiment of the present invention. [0062] FIG. 10 is a cross-sectional structural view of a shutter blade in a shutter device according to a fourth embodiment of the present invention. [0063] FIG. 11 is a fifth embodiment of the present invention. Shutter blade in shutter device Schematic diagram of the cross-section structure [Description of main component symbols] [0064] Shutter device: 100 [0065] Shutter substrate: 10 [0066] Shutter blade structure: 12 [0067] Connection unit: 14 [0068] First drive unit: 16 [0069] Second driving unit: 18 [0070] Body: 102 [0071] Shutter opening: 104 [0072] First shutter blade group · 122 [0073] Second shutter blade group: 124 [0074] First main arm: 142 099143666 Form No. A0101 Page 22 of 37 0992075636-0 201224640 [0075] [0078] [0079] [0080]

[0082] [0083] [0084] 第一副臂:144 第二主臂:146 第二副臂:148 旋轉軸:143 快門葉片:20 ; 30 ; 40 ; 50 ; 60 奈米碳管拉膜:22 ; 622 聚合物塗層:32 奈米碳管線:42 ; 52 聚合物:54 ; 624 奈米碳管複合結構:62 Ο 099143666 表單編號Α0101 第23頁/共37頁 0992075636-0[0084] First arm: 144 Second main arm: 146 Second jib: 148 Rotary shaft: 143 Shutter blade: 20; 30; 40; 50; 60 Carbon nanotube film: 22; 622 polymer coating: 32 nm carbon line: 42; 52 polymer: 54; 624 carbon nanotube composite structure: 62 Ο 099143666 Form No. 1010101 Page 23 of 37 0992075636-0

Claims (1)

201224640 七、申請專利範圍: 、1茶片釔構,所述快門業片結構 广少-個快門葉片’其改良在於,所述快門葉片包括 複數個奈米礙管’相鄰的奈米碳管之間通過凡得瓦力” 相連。 ” •如申請專利範圍第i項所述的快門裝置,其中,所述快門 葉片包括由複數個奈米碳管組成的片狀的自支撐結構。 .如申請專利範圍第1項所述的快門裝置,其中,所述快門 葉片包括複數個層疊設置的奈米碳管膜,相鄰的奈米碳管 膜之間通過凡得瓦力緊密結合。 .如申请專利範圍第3項所述的快門裝置,其申,所述奈米 碳管膜為由複數個奈米碳管組成的自支擇結構所述奈米 碳管膜中的奈米碳管的軸向沿同一方向条優取向延伸。 •如申請專利範圍第4項所述的快門裝置,其中,所述奈米 碳管膜中每-奈米碳管與在延伸$向上相鄰的奈米碳管通 過凡得瓦力首尾相連。 .如申請專利範圍第4項所述的快竹養置,其中,相鄰兩層 奈米碳管膜中的奈米碳管的抽向延伸方向形成的爽角為9〇 度。 .如申請專利範圍第1項所述的快門裝置,其中,所述快門 葉片包括複數個層疊設置的奈米碳管層,所述奈米碳管層 包括複數個相互平行且並排設置的奈米碳管線,且相鄰的 奈米碳管線之間通過凡得瓦力緊密相連。 •如申請專利範圍第7項所述的快門裝置,其中,所述奈米 碳管線包括複數個奈米碳管,該複數個奈米碳管中的大多 099143666 表單編號A0101 第24頁/共37頁 0992075636-0 201224640 數奈米碳管的軸向基本沿同一方向延伸β 9 ·如申請專利範圍第8項所述的快門裝置,其中,所述奈米 碳营線申每一奈米碳管與在軸向延伸方向上相鄰的奈米碳 管通過凡得瓦力首尾相連。 W .如申請專利範圍第8項所述的快門裝置,其中,所述快門 葉片中,每一奈米碳管層中的大多數奈米碳管線的延伸方 向與相鄰的奈米碳管層中的奈米碳管線的延伸方向形成的 夹角為90度。 11 . Ο 12 . 13 . 14 . ❹ 15 . 16 . 如申請專利範圍第1項所述的快門裝置,其中,所述快門 葉片進一步包括一聚合物塗層塗覆於所述快門葉片的表面 Ο __ Ί議Γ_義,帽雜^ .-!'' -r, - < , 如申請專利範圍第11項所述的快門裝置,其中,所述聚合 物塗層的厚度為1微米〜10微米。 如申請專利範圍第11項所述的快門裝置,其中,所述聚合 物塗層的材料選自含氟聚烯烴、聚醯亞胺、聚笨硫醚及其 任意組合。 如申請專利範圍第1亨所述的快門裝置,其中,所述快門 葉片的厚度為1微杀〜200微米。 如申請專利範圍第1項所述的快門裝置,其中,所述快門 葉片的厚度為5微米〜20微米。 如申請專利範圍第1項所述的快門裝置,其中,所述快門 裝置進一步包括一快門基板、一連接單元以及一驅動單元 ,其中,所述快門基板用於支撐所述快門葉片結構、驅動 早元及連接單元,所述連接單元用於連接所述快門葉片結 構與快門基板,所述驅動單元用於驅動所述快門葉片結構 做順時針或逆時針的轉動。 099143666 表單編號AG1Q1 第25頁/共37頁 0992075636-0 201224640 17 . —種快門葉片,可應用於一種攝影裝置,用於遮蔽或打開 所述攝影裝置中的一快門開口,從而實現所述攝影裝置中 感光元件的感光,其改良在於,所述快門葉片包括由複數 個奈米碳管組成的片狀的自支撐結構,且相鄰的奈米碳管 之間通過凡得瓦力緊密相連。 099143666 表單編號A0101 第26頁/共37頁 0992075636-0201224640 VII, the scope of the patent application: 1, a piece of tea, the shutter industry has a wide structure - a shutter blade' is improved in that the shutter blade comprises a plurality of nano-tubes adjacent to the carbon nanotubes The shutter device of claim 1, wherein the shutter blade comprises a sheet-like self-supporting structure composed of a plurality of carbon nanotubes. The shutter device of claim 1, wherein the shutter blade comprises a plurality of stacked carbon nanotube films, and the adjacent carbon nanotube films are tightly coupled by van der Waals. The shutter device of claim 3, wherein the carbon nanotube film is a self-selective structure composed of a plurality of carbon nanotubes, and the nanocarbon in the carbon nanotube film The axial direction of the tube extends in a preferred orientation in the same direction. The shutter device of claim 4, wherein each of the carbon nanotube membranes is connected end to end with a van der Waals force. The fast bamboo maintenance according to the fourth aspect of the invention, wherein the carbon nanotubes in the adjacent two layers of carbon nanotube film form a refreshing angle of 9 degrees. The shutter device of claim 1, wherein the shutter blade comprises a plurality of stacked carbon nanotube layers, the carbon nanotube layer comprising a plurality of mutually parallel and side by side nanometers. Carbon pipelines, and adjacent nanocarbon pipelines are closely connected by van der Waals force. The shutter device of claim 7, wherein the nanocarbon pipeline comprises a plurality of carbon nanotubes, and most of the plurality of carbon nanotubes are 099143666 Form No. A0101 Page 24 of 37 Page 0992075636-0 201224640 The axial direction of the carbon nanotubes substantially extends in the same direction. The shutter device according to claim 8, wherein the nano carbon camp line applies to each nano carbon tube. The carbon nanotubes adjacent to each other in the axial extension direction are connected end to end by van der Waals force. The shutter device of claim 8, wherein in the shutter blade, a majority of the carbon nanotubes in each of the carbon nanotube layers extend in an adjacent direction to the adjacent carbon nanotube layer The extending direction of the nanocarbon line in the middle forms an angle of 90 degrees. 11. The shutter device of claim 1, wherein the shutter blade further comprises a polymer coating applied to a surface of the shutter blade. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Micron. The shutter device of claim 11, wherein the material of the polymer coating is selected from the group consisting of a fluorine-containing polyolefin, a polyimide, a polyphenylene sulfide, and any combination thereof. The shutter device of claim 1, wherein the shutter blade has a thickness of 1 to 200 μm. The shutter device of claim 1, wherein the shutter blade has a thickness of 5 μm to 20 μm. The shutter device of claim 1, wherein the shutter device further comprises a shutter substrate, a connecting unit, and a driving unit, wherein the shutter substrate is configured to support the shutter blade structure and drive early And a connecting unit for connecting the shutter blade structure and the shutter substrate, wherein the driving unit is configured to drive the shutter blade structure to rotate clockwise or counterclockwise. 099143666 Form No. AG1Q1 Page 25 of 37 0992075636-0 201224640 17 - A shutter blade can be applied to a photographing device for shielding or opening a shutter opening in the photographing device, thereby realizing the photographing device The sensitization of the photosensitive member is improved in that the shutter blade comprises a sheet-like self-supporting structure composed of a plurality of carbon nanotubes, and the adjacent carbon nanotubes are closely connected by van der Waals force. 099143666 Form No. A0101 Page 26 of 37 0992075636-0
TW99143666A 2010-12-14 2010-12-14 Shutter device and shutter blade TWI438560B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99143666A TWI438560B (en) 2010-12-14 2010-12-14 Shutter device and shutter blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99143666A TWI438560B (en) 2010-12-14 2010-12-14 Shutter device and shutter blade

Publications (2)

Publication Number Publication Date
TW201224640A true TW201224640A (en) 2012-06-16
TWI438560B TWI438560B (en) 2014-05-21

Family

ID=46725907

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99143666A TWI438560B (en) 2010-12-14 2010-12-14 Shutter device and shutter blade

Country Status (1)

Country Link
TW (1) TWI438560B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8967814B2 (en) 2012-10-16 2015-03-03 Genius Electronic Optical Co., Ltd. Imaging lens with enhancement of blocking stray light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8967814B2 (en) 2012-10-16 2015-03-03 Genius Electronic Optical Co., Ltd. Imaging lens with enhancement of blocking stray light

Also Published As

Publication number Publication date
TWI438560B (en) 2014-05-21

Similar Documents

Publication Publication Date Title
Mu et al. Molecular-channel driven actuator with considerations for multiple configurations and color switching
Yin et al. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications
Koga et al. Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics
Han et al. Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing
Mu et al. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications
Hu et al. Intrinsically stretchable transparent electrodes based on silver-nanowire–crosslinked-polyacrylate composites
Dong et al. Near-infrared light-driven locomotion of a liquid crystal polymer trilayer actuator
Xie et al. Triboelectric nanogenerator based on flexible Janus nanofiber membrane with simultaneous high charge generation and charge capturing abilities
Montazami et al. Thickness dependence of curvature, strain, and response time in ionic electroactive polymer actuators fabricated via layer-by-layer assembly
CN106003888B (en) A kind of flexible extensible electromagnetic shielding film and preparation method thereof
CN102073199B (en) Gasket
WO2015024392A1 (en) Friction generator with improved power generation effect and preparation method therefor
CN102053456B (en) Shutter device and shutter blade
King et al. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices
CN102053455B (en) Shutter device and shutter blade
JP7386525B2 (en) Circular dichroism filter, optical element, organic electroluminescent element, and method for producing circular dichroism filter
Liu et al. Self-amplified piezoelectric nanogenerator with enhanced output performance: The synergistic effect of micropatterned polymer film and interweaved silver nanowires
Hu et al. High thermally conductive, hydrophobic and small-thickness nanocomposite films with symmetrical double conductive networks exhibit ultra-high electromagnetic shielding performance
CN106012553B (en) A kind of flexible extensible Electromagnetically shielding fabrics and preparation method thereof
TW201224640A (en) Shutter device and shutter blade
Xiao et al. Electrically conductive and magnetic nanofiber composites with an asymmetric structure for efficient electromagnetic interference shielding
TWI438559B (en) Shutter device and shutter blade
TWI438558B (en) Shutter device and shutter blade
Li et al. A comprehensive study of transparent conductive silver nanowires films with mixed cellulose ester as matrix
Naoi et al. Optimization of VO2 nanowire polymer composite thermochromic films by optical simulation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees