[go: up one dir, main page]

TW201224163A - High strength alpha/beta titanium alloy - Google Patents

High strength alpha/beta titanium alloy Download PDF

Info

Publication number
TW201224163A
TW201224163A TW100134192A TW100134192A TW201224163A TW 201224163 A TW201224163 A TW 201224163A TW 100134192 A TW100134192 A TW 100134192A TW 100134192 A TW100134192 A TW 100134192A TW 201224163 A TW201224163 A TW 201224163A
Authority
TW
Taiwan
Prior art keywords
alloy
ksi
mpa
range
alpha
Prior art date
Application number
TW100134192A
Other languages
Chinese (zh)
Other versions
TWI572721B (en
Inventor
David J Bryan
John V Mantione
Thomas D Bayha
Original Assignee
Ati Properties Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/888,699 external-priority patent/US20120076611A1/en
Priority claimed from US12/903,851 external-priority patent/US10513755B2/en
Application filed by Ati Properties Inc filed Critical Ati Properties Inc
Publication of TW201224163A publication Critical patent/TW201224163A/en
Application granted granted Critical
Publication of TWI572721B publication Critical patent/TWI572721B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/008Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of light alloys, e.g. extruded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Conductive Materials (AREA)
  • Golf Clubs (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Catalysts (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

An alpha/beta titanium alloy comprising, in percent by weight based on total alloy weight: 3.9 to 4.5 aluminum; 2.2 to 3.0 vanadium; 1.2 to 1.8 iron; 0.24 to 0.30 oxygen; up to 0.08 carbon; up to 0.05 nitrogen; up to 0.015 hydrogen; titanium; and up to a total of 0.30 of other elements. A non-limiting embodiment of the alpha/beta titanium alloy comprises an aluminum equivalent value in the range of 6.4 to 7.2, exhibits a yield strength in the range of 120 ksi (827.4 MPa) to 155 ksi (1, 069 MPa), exhibits an ultimate tensile strength in the range of 130 ksi (896.3 MPa) to 165 ksi (1, 138 MPa), and exhibits a ductility in the range of 12 to 30 percent elongation.

Description

201224163 六、發明說明: 【發明所屬之技術領域】 本發明係關於高強度之延性α/β鈦合金。 相關申請案之交又參考 本申請案為部分接續申請案,本案根據35 U.S.C. § 120 主張2010年1〇月13日申請且名稱為「高強度α/β鈦合金扣 件及扣件原料(High Strength Alpha/Beta Titanium Alloy201224163 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a high strength ductile alpha/beta titanium alloy. The application is also referred to this application as part of the application. The case is based on 35 USC § 120 and is filed on January 13th, 2010. The name is “High-strength α/β Titanium Alloy Fasteners and Fasteners (High) Strength Alpha/Beta Titanium Alloy

Fasteners and Fastener Stock)」之同在申請中之美國專利 申請案第12/903,851號的優先權,該案為部分接續申請 案’其根據35 U.S.C. § 120主張2010年9月23日申請且名稱 為「高強度α/β鈦合金扣件及扣件原料(High Strength"Fasteners and Fastener Stock") is the priority of US Patent Application Serial No. 12/903,851, the entire disclosure of which is filed on "High-strength α/β titanium alloy fasteners and fastener materials (High Strength

Alpha/Beta Titanium Alloy Fasteners and Fastener Stock)」 之同在申請中之美國專利申請案第丨2/888,699號的優先 權。申請案第12/903,85!號及第12/888,699號之整體揭示内 容以引用的方式併入本文中。 【先前技術】 ’耐腐蝕且在中等高溫下 、航空、國防、船舶及汽 、機架、防彈衣、船體及 鈦合金通常展現高強度重量比 抗蠕變。因此,鈦合金用於航天 車應用中,包括例如起落架部件 機械扣件 減輕飛行器或其他移動載具之重量可節約燃料。因此, 舉例而言,航天工業具有極大的動力來減輕飛行器重量。 鈦及欽合金由於其強度重量比高而為飛行器應用中達成重 量減輕的吸引人的材料。航天應用中所用之大多數欽合金 I58730.doc 201224163 零件由 Ti-6A1-4V 合金(ASTM 5級;UNS R56400 ; AMS 4928、AMS 4911)製成,其為α/ρ鈦合金βAlpha/Beta Titanium Alloy Fasteners and Fastener Stock) is the priority of U.S. Patent Application Serial No. 2/888,699. The entire disclosure of the application Serial Nos. 12/903, 85, and 12/888, 699 is incorporated herein by reference. [Prior Art] 'Corrosion resistant and at moderately high temperatures, aviation, defense, marine and steam, frame, body armor, hull and titanium alloys generally exhibit high strength to weight ratio creep resistance. Therefore, titanium alloys are used in aerospace applications, including, for example, landing gear components. Mechanical fasteners reduce the weight of aircraft or other moving vehicles to save fuel. Thus, for example, the aerospace industry has tremendous power to reduce aircraft weight. Titanium and Chin alloys are attractive materials for weight reduction in aircraft applications due to their high strength-to-weight ratio. Most of the alloys used in aerospace applications I58730.doc 201224163 Parts made of Ti-6A1-4V alloy (ASTM grade 5; UNS R56400; AMS 4928, AMS 4911), which is α/ρ titanium alloy β

Ti-6A1-4V合金為最常見的鈦基製造材料之一,估計其 在整個鈦基材料市場佔50〇/〇以上。Ti-6A1-4V合金用於許多 應用中,該等應用受益於合金之輕質、耐腐蝕性及在低溫 至中溫下之高強度的有利組合。舉例而言,1^_6八丨_4¥合 金用於製造飛行器引擎組件、飛行器結構組件、扣件、高 效能汽車組件、醫療裝置組件、運動設備、船舶應用組件 及化學加工設備組件。Ti-6A1-4V alloy is one of the most common titanium-based materials and is estimated to account for more than 50 〇/〇 in the entire titanium-based material market. Ti-6A1-4V alloys are used in many applications that benefit from the advantageous combination of light weight, corrosion resistance and high strength at low to medium temperatures. For example, 1^_6 gossip_4¥ alloys are used to manufacture aircraft engine components, aircraft structural components, fasteners, high performance automotive components, medical device components, sports equipment, marine application components, and chemical processing equipment components.

Ti-6A1-4V合金軋延產品一般在軋延退火狀態下或在固 浴處理及老化(STA)狀態下使用。如本文中所使用,「軋延 退火狀態」係指鈇合金在「軋延退火」熱處理後之狀態, 其中在高溫(例如12〇〇-15〇〇卞/649-816。(:)下使工件退火約 1-8小時並在靜止空氣中冷卻。工件在α+β相區内熱加工 後,進行軋延退火熱處理。在室溫下,在軋延退火狀態 下’直役為約2至4忖(5.08至10.16(;111)之丁丨-6八1-4¥合金圓 桿的最小規定極限拉伸強度為13〇 ksi(896 MPa)且最小規 定屈服強度為120 ksi(827 MPa)。軋延退火Ti-6A1-4V板通 常根據規格AMS 4911來製造’而軋延退火Ti_6Ai_4v桿通 常根據規格AMS 4928來製造。 以全文引用的方式併入本文中之美國專利第5,98〇 655號 (「·655專利」)揭示一種α/β鈦合金,其包含2.90至5.00重 量%鋁、2.00至3·00重量%釩、0.40至2 〇〇重量%鐵、〇 2〇 至〇·3〇重量。/。氧、附帶雜質及鈦。ι655專利中所揭示之α/β 158730.doc 201224163 鈦合金在本文中稱為「,655合金以總合金重量計,,655 合金令之市售合金組成標稱地包括4〇〇重量%鋁、2 %重 量%釩、1.50重量%鐵、〇.25重量%氧、附帶雜質及鈦,且 可在本文中稱為1^-4八1-2.5乂-1.5?6-〇.25〇合金。 由於難以冷加工丁i-6A1_4V合金,故合金一般係在高溫 下,一叙在(¾2固溶線溫度以上加工(例如鍛造、報軋、拉伸 及其類似加工)。Ti_6Al_4V合金由於例如在冷變形期間破 裂(亦即工件破損)之發生率高而無法有效地冷加工來增加 強度。然而,如以全文引用的方式併入本文中之美國專利 申請公開案第2004/0221929號中所述,令人驚訝地且出乎 意料地發現,’655合金具有相當大的可冷變形度/可冷加工 度。 •655合金令人驚訝地可進行冷加工以達成高強度,同時 仍保留可加工之延屐度。可加工之延展度在本文中定義為 合金展現大於6%伸長率之狀態》又,,655合金之強度與 Ti-6A1-4V合金可達成之強度相當◊舉例而言,如·655專利 之表6中所示,針對Ti-6A1-4V合金量測得之拉伸應力為 145.3 ksi(l,002 MPa),而'655合金之測試樣品展現在138 7 让31至142_7 1^(956.3 ^«^至983.9 1^&)之範圍内的拉伸強 度。 航天材料規格6946B(AMS 6946B)規定的化學組成範圍 比·655專利之申請專利範圍中所述者更有限。AMS 6946B 中所規定之合金保留’655專利中元素範圍界限更寬廣的可 成形性,但AMS 6946Β所允許之機械強度性質最小值低於 158730.doc 201224163 市售Ti-6A1-4V合金所規定之最小值。舉例而言,根據 AMS-4911L,0.125 吋(3.175 mm)厚的 Ti-6A1-4V 板之最小 拉伸強度為134 ksi(923.9 MPa)且最小屈服強度為126 ksi (868.7 MPa)。相比之下,根據 AMS 6946B,0.125 吋(3.175 mm)厚的Ti-4Al-2.5V-l.5Fe-0.25O板之最小拉伸強度為130 ksi(896.3 MPa)且最小屈服強度為 115 ksi(792.9 MPa)。 假設仍需要經由減輕飛行器及其他載具之重量來降低燃 料消耗,則需要改良之延性α/β鈦合金,其較佳展現類似 於或優於Ti-6A1-4V α/β鈦合金所展現之機械性質的機械性 質。 【發明内容】 根據本發明之一態樣’以總合金重量計,α/β鈦合金包 含:3.9至4.5重量%鋁;2.2至3.0重量%釩;ι_2至1.8重量% 鐵;0.24至0·30重量%氧;至多〇.〇8重量0/〇碳;至多〇.〇5重 量%氮’·至多0·015重量%氫;鈦;及至多總共〇.3〇重量% 其他元素。 根據本發明之另一態樣,以總合金重量計,α/β欽合金 基本上由以下組成:3.9至4.5重量。/。銘;2.2至3.0重量% 釩;1.2至1.8重量%鐵;0.24至0.30重量%氧;至多〇.08重 量%碳;至多0.05重量%氮;至多0.015重量%氫;鈦;及 至多總共0.30重量%其他元素。 【實施方式】 本文所述之合金及相關方法的特點及優點可參考附圖來 充分瞭解。 158730.doc 201224163 讀者經考量以下實施方式將瞭解本發明之合金及相關方 法之某些非限制性實施例的以上詳情以及其他詳情。 在本發明之非限制性實施例之描述中,除了在二作實例 中或另有說明’所有表示數量或特徵之數字均應理解為在 所有情況下由術語「約」修飾。因此,除非有相反說明, 否則以下描述巾所述之㈣數值參數均為近似值,其可視 設法藉由本發明之方法獲得之所需材料的性質而變化。最 低限度地且不希望均等論(dGetrine Qf equivaients)之應用 限於申請專利範圍,各數值參數至少應根據所報導之有效 數位的數子且藉由應用一般捨入技術來理解。 提及以全文或部分引用的方式併入本文中之任何專利、 公開案或其他揭示材料僅在以下程度上併入本文中:所併 入之材料不與本發明中所述之現有定義、陳述或其他揭示 材料衝突。因此,必要時,如本文中所述之揭示内容與以 引用的方式併入本文中之任何材料有衝突時,以本文中所 述之揭示内容為準。提及以引用的方式併入本文中但與本 文中所述之現有;t義'陳述或其他揭示材料衝突的任何材 料或其一部分或其一部分僅在以下程度上併入:所併入之 材料與現有揭示材料之間不出現衝突。 本發明之α/β鈦合金的非限制性實施例包含以下、由以 下組成或基本上由以下組成:3.9至45重量%鋁;2 2至3 〇 重量%釩;1.2至1.8重量%鐵;〇·24至〇3〇重量%氧;至多 0.08重量%碳;至多〇.〇5重量%氮;至多〇〇15重量%氮; 鈦;及至多總共0.30重量%其他元素。在本發明之某些非 限制性貫施例中,可存在於α/β鈦合金中之其他元素(作為 158730.doc 201224163 至多0.30重量%其他元素之一部分)包括硼、錫、锆 '鉬、 絡、鎳、矽'銅、鈮、钽、錳、釔及鈷中之一或多者,且 在某些非限制性實施例_,每一該種其他元素之重量含量 為0.10或小於0.10,但有兩個例外。該等例外為硼及釔, 若其完全作為其他元素之一部分存在時,則以小於〇 〇〇5 重量%之個別濃度存在。 I.合金組成 本發明之合金的非限制性實施例包含鈦、紹、訊、鐵及 氧。只要以下討論之組成中陳述合金元素,則應瞭解其餘 包括鈦及附帶雜質。 A.銘 鋁為鈦合金中之α相強化劑。本發明之α/β鈦合金的非限 制性實施例中鋁之組成範圍比,655專利中所揭示之鋁範圍 窄。又’根據本發明之合金的某些非限制性實施例之鋁的 最小含量大於AMS 6946Β中所述之最小含量。已觀察到此 等組成特點使得合金更一致地展現與Ti_6A1_4V合金相似 之機械性質。本發明之α/β鈦合金中鋁之最小濃度為3·9重 量%。本發明之α/β鈦合金中鋁之最大濃度為4 5重量%。 Β. Μ 釩為鈦合金中之β相穩定劑。本發明之α/ρ鈦合金中釩之 最小/農度大於’655專利中所揭示及AMS 6946Β中所述之最 小濃度。已觀察到此組成特點提供α相與ρ相之體積分率的 最佳、控制平衡。α相與β相之平衡使得本發明合金具有極 佳延性及可成形性。釩以2.2重量%之最小濃度存在於本發 明之α/β鈦合金中。本發明之α/ρ鈦合金中釩之最大濃度為 158730.doc 201224163 3.0重量%。 C.鐵 鐵為鈦合金中之共析P穩定劑。與,655專利中所述之合 金相比,本發明之α/β鈦合金包括較大最小濃度及較窄範 圍之鐵。已觀察到此等特點提供α相與ρ相之體積分率的最 佳、控制平衡。該平衡使得本發明之合金具有極佳延性及 Ζ成形'性。鐵以1.2重量%之最小濃度存在於本發明之α/β 口金中。本發明之α/β鈦合金中鐵之最大濃度為U % 〇 D.氧 氧為鈦合金中強化劑。本發明之α/ρ鈦合金中氧之 組成範圍比’655專利中及AMS 6946Β規格令所揭示之範圍 窄。又,本發明之合金的非限制性實施例中氧之最小濃度 大於’655專利及AMS 6946Β規格中之最小濃度。已觀察到 此等組成特點使得本發明之合金一致地展現與某*Ti_6Ai_ 4V機械性質相似之機械性質。本發明之α/ρ鈦合金中氧之 最小濃度為0.24重量%。本發明之α/β鈦合金中氧之最大濃 度為0.30重量%。 除包括如上文所論述之鈦、鋁、釩、鐵及氧外,本發明 之α/β鈦合金的某些非限制性實施例包括總濃度不超過〇 3〇 重量%之其他元素。在某些非限制性實施例中,此等其他 元素包括爛、錫 '錯、鉬、鉻、鎳、石夕、銅、銳、组、 猛、紀及鈷中之一或多者’其中除了兩個例外,每一該種 元素之重量°/。為0.10或小於0.10 ^該等例外為硼及釔。若 158730.doc 201224163 存在於本發明之合金中,則硼及釔每一者之重量%小於 0.005 ° 附帶雜質亦可存在於本發明之α/β鈦合金中。舉例而 言,可存在至多約0.008重量%碳。可存在至多約0.05重量 %氮。可存在至多約0.015重量%氫。其他可能存在之附帶 雜質對於一般熟習冶金技術者將顯而易見。 表1提供⑴本發明之α/β鈦合金的某些非限制性實施例及 (ii) '655專利中所揭示及AMS 6946Β中所規定之某些合金 之組成的總結。 表1 合金組成 合金 元素 重量% 本發明之非限制性 實施例 U.S. 5,980,655 AMS 6946B 鋁 3.9 至 4.5 2_5 至 5.4 3.55.4.5 釩 2.2 至 3.0 2.0 至 3.4 2.0 至 3.0 鐵 1.2 至 1.8 0.2至 2.0 1.2 至 1.8 氧 0.24 至 0_30 0.25.0.3 0.20 至 0.30 碳 最大0.08 最大0.1 最大0.08 氮 最大0.05 最大0.1 最大0.03 氫 最大0.015 未規定 最大0.015 其他 元素 各最大0.10,總量 最大0.30 各最大0.10, 未規定總量 各最大0.10, 總量最大0.30 本發明者出乎意料地發現,提供鋁、氧及鐵之最小含量 大於'655專利中所教示之最小含量的本發明合金可提供一 158730.doc -10- 201224163 致地展現例如至少與軋延退火Ti-6A1-4V合金之某些機械 性質相似之機械性質(諸如強度)的α/β鈦合金。本發明者亦 出乎意料地發現’相對於,655專利中所揭示之彼等最小值 及範圍,增加鐵及釩之最小含量及使其範圍變窄可提供在 軋延退火形式下展現α相與β相之體積分率之最佳及控制平 衡的合金《本發明之α/β鈇合金的此最佳相平衡提供延性 比TU6A1-4V合金改良、同時保留,655專利中所揭示及ams 6946B中所規定之合金延性之合金實施例。 熟習此項技術者瞭解,金屬材料之強度及延性一般展現 反比關係。換言之,一般而言,當金屬材料之強度增加 時,材料之延性降低。因為-般針對軋延退火鈦合金觀察 到強度與延性之間的反比關係,所以未預期本發明之α邛 鈦合金具有增加之機械強度與保留之延性的組合。增加之 機械強度與保留之延性之出乎意料且令人fi?的組合為本 發明之合金實施例的尤其有利特點。令人驚舒地觀察到, 本發明之軋延退火合金的實施例展現與Ti_6Ai_4V合金相 當之強度而不展現延性降低。 已觀察到銘當量值(Aleq)為至少63或更佳為至少Η的本 發明之cx/β合金的某些非限龍實施例展現至少 4V合金之強度相當的強度。亦已觀察到該等合金展現優於 銘當量值通常為約7.RTi_6AMv合金的延性。如本文中 所使用,「紹當量值」或「絲當量」(Aleq)意謂等於合金中 紹濃度(重量。/。)加上合金中氧濃度(重量%)之聰的值。換 言之,合金之…可如下測定:〜=awi〇 I58730.doc 201224163 (〇(wt·%))。 雖然認識到鈦合金之機械性質一般受所測試試樣之尺寸 影響’但在本發明之非限制性實施例令,α/β鈦合金之鋁 當量值為至少6.4,或在某些實施例申在6.4至7.2之範圍 内,及屈服強度為至少12〇 ksi(827·4 MPa),或在某些實施 例中為至少 130 ksi(896.3 MPa)。 在本發明之其他非限制性實施例中,α/β鈦合金之鋁當 量值為至少6.4 ’或在某些實施例中在6.4至7 2之範圍内, 及屈服強度在 120 ksi(827.4 MPa)至 155 ksi(l,069 MPa)之 範圍内。 在其他非限制性實施例中,本發明之α/ρ鈦合金的鋁當 里值為至少6.4 ’或在某些實施例中在6 4至7 2之範圍内, 及極限拉伸強度為至少13〇 ksi(896 3 Mpa),或在某些實施 例中為至少 140 ksi(965.3 MPa)。 在本發明之其他非限制性實施例中,本發明之α/ρ鈦合 金的鋁當量值為至少6.4,或在某些實施例中在6 4至72之 範圍内’及極限拉伸強度在13〇 ksi(896 3 ]^]^)至165 ksi (1,138 MPa)之範圍内。 在其他非限制性實施例中,本發明之α/ρ鈦合金的鋁當 量值為至少6.4,或在某些實施例中在64至72之範圍内, 及延性為至少12%或至少16%(伸長率。/0)。 在其他非限制性實施例中,本發明之α/ρ鈦合金的鋁當 里值為至少6.4,或在某些實施例中在6 4至7 2之範圍内, 及延性在12%至30%(伸長率%或「% e丨」)之範圍内。 158730.doc •12· 201224163 雖然根據本發明之某些非限制性實施例,6·3為A、之絕 對最小值,但本發明者已確定需要至少6 4之Alq值來達成 與Ti-6A1-4V合金所展現之強度相同的強度。亦認識到在 本發明之α/β鈦合金的其他非限制性實施例中,Α1^之最大 值為7.5且根據本文所揭示之其他非限制性實施例的強度 與延性之關係適用。 根據一非限制性實施例,本發明之α/β鈦合金的鋁當量 值為至少6·4,屈服強度為至少120 ksi(827.4 MPa),極限 拉伸強度為至少130 ksi(896.3 MPa),及延性為至少12% (伸長率°/〇)。 根據另一非限制性實施例,本發明之α/β鈦合金的鋁當 ΐ值為至少6.4,屈服強度為至少13〇 ksi(896.3 MPa),極 限拉伸強度為至少140 ksi(965.3 MPa),及延性為至少 12%。 在又一非限制性實施例中,本發明之α/β鈦合金的鋁當 量值在6.4至7·2之範圍内,屈服強度在120 ksi(827.4 MPa) 至I55 ksi(l,〇69 MPa)之範圍内,極限拉伸強度在130 ksi (896.3 MPa)至 165 ksi(l,138 MPa)之範圍内,及延性在 12% 至30%(伸長率。/〇之範圍内。 在一非限制性實施例中,本發明之α/β鈦合金展現滿足 以下方程式之平均極限拉伸強度(UTS): UTS214.767 (Aleq)+48.001。 在另一非限制性實施例中,本發明之α/β鈦合金展現滿 158730.doc •13- 201224163 足以下方程式之平均屈服強度(YS): YS213.338 (Ale<1)+46.864。 在又一非限制性實施例中,本發明之α/β鈦合金展現以 下平均延性: %el>3.3669 (Aleq)-1.9417 ° 在另一非限制性實施例中,本發明之α/β鈦合金展現滿 足以下方程式之平均極限拉伸強度(UTS): UTS>14.767 (Aleq)+48.001 ; 滿足以下方程式之平均屈服強度(YS): YS>13.338 (Aleq)+46.864 ; 及滿足以下方程式之平均延性: %el>3.3669 (Aleq)-1.941 7 ° 在一非限制性實施例中,本發明之α/β鈦合金展現滿足 以下方程式之平均極限拉伸強度(UTS) ·_ UTS212.414 (Aleq)+64.429。 在另一非限制性實施例中,本發明之α/β鈦合金展現滿 足以下方程式之平均屈服強度(YS): 158730.doc • 14· 201224163 YS213.585 (AleC))+44.904。 在又一非限制性實施例中,本發明之α/β鈦合金展現以 下平均延性: %el>4.1993 (Aleq)+7.4409。 在另一非限制性實施例中,本發明之α/β鈦合金展現滿 足以下方程式之平均極限拉伸強度(UTS): UTS>12.414 (Aleq)+64.429 ; 滿足以下方程式之平均屈服強度(YS): YS>13.585 (Alcq)+44.904 ; 及滿足以下方程式之平均延性: %el>4.1993 (Aleq)+7.4409。 在一非限制性實施例中,本發明之α/β鈦合金展現滿足 以下方程式之平均極限拉伸強度(UTS): UTS>10.087 (Aleq)+76.785。 在另一非限制性實施例中,本發明之α/β鈦合金展現滿 足以下方程式之平均屈服強度(YS): YS213.911 (Aleq)+39.435。 158730.doc 15 201224163 在又一非限制性實施例中,本發明之α/β鈦合金展現以 下平均延性: %el>1.1979 (Alet))+8.5604。 在又一非限制性實施例中,本發明之α/β鈦合金展現滿 足以下方程式之平均極限拉伸強度(UTS): UTS>10.087 (Aleq)+76.785 ; 滿足以下方程式之平均屈服強度(YS): YS>13.911 (Aleq)+39.435 ; 及滿足以下方程式之單位為伸長率%(%el)的平均延性: %el>1.1979 (Aleq)+8.5604。 已測定,與Ti-6A1-4V合金相比,本發明之α/ρ鈦合金的 非限制性貫施例展現相似或更高機械強度、更高延性及改 良之可成形性。因此,有可能在航天、航空、船舶、汽車 及其他應用中使用由本發明之合金形成之物品作為Ti_6A1_ 4V合金物品之替代品。本發明之合金之實施例的高強度及 延性允許製造具有高耐受性且目前無法由Ti 6Al_4V合金 製成之某些軋延成品形狀。 本發明之一態樣係有關包含本發明之合金及/或由本發 明之合金製成的製品。該等製品之某些非限制性實施例可 158730.doc -16- 201224163 選自飛行器引擎組件、飛行器結構組件、汽車组件、醫療 裝置組件、運動設備組件、船舶應用組件及化學加工設備 組件。一般技術者現在或今後所知且可包含本發明之α/ρ 欽合金實施例及/或由其製成之其他製品係在本文所揭示 之實施例的範疇内。藉由成形及其他製造技術包含本發明 之合金及/或由本發明之合金製成的製品現在或將來為一 般技術者所知。 以下貫例意欲進一步描述某些非限制性實施例,而不限 制本發明之範疇。一般技術者應瞭解,在僅由申請專利範 圍限定之本發明範疇内可能存在以下實例之變化形式,以 及本文未特定描述之其他實施例。 實例1 使用習知真空電弧再熔(VAR)、電漿弧熔化(ΡΑΜ)或電 子束冷膛熔解(ΕΒ)進行初熔來鑄造具有本發明之組成的 α/β鈦合金鑄錠,且使用VAR再熔。鑄錠之組成包括於上表 1之「本發明之非限制性實施例」攔中所列的範圍内。 此實例1中所產生之鑄錠組成的鋁當量值範圍為約6.0至 約7.1。使用各種熱輥軋操作將鑄錠加工成直徑介於〇25对 (〇·635 cm)與3.25吋(8.255 cm)之間的熱輥軋桿及線。在介 於1550°F (843.3°C )與1650T (898.9。〔:)之間的起始溫度下進 行熱輥軋。此溫度範圍低於此實例之合金的α/β轉變溫 度’其為約1750卞至約1850°F (約954_4°C至約1010°C ),此 視實際化學組成而定。熱輥軋後,在1275卞(690.6。〇下使 熱輥軋桿及線退火1小時,隨後進行空氣冷卻。實例1中產 158730.doc -17- 201224163 生之各桿及線樣品的直徑、铭濃度、鐵濃度、氧濃度及所 計算的人1^提供於表2中。 表2 樣品編號 直徑(in.) Al(wt.%) Fe(wt.%) 〇(wt.%) Aleq(Al%+i〇.〇%) 1 3.25 4.07 1.56 0,25 6.53 2 3.25 4.10 1.77 0.19 5.96 3 3.25 4.27 1.90 0.19 6.13 4 2 4.05 1.54 0.25 6.57 5 2 4.05 1.55 0.25 6.58 6 2 4.26 1.88 0.21 6.38 7 1 4.35 1.44 0.24 L__674_ 8 1 4.36 1.28 0.27 7.08 9 0.5 4.38 1.24 0.28 7.15 10 0.5 4.33 1.42 0.25 6.81 11 0.5 4.14 1.47 0.24 6.51 12 0.344 4.37 1.50 0.26 6.95 13 0.25 3.93 1.58 0.23 6.27 14 0.25 4.12 1.56 0.25 6.65 15 0.25 4.40 1.35 0.27 7.10 16 0.25 3.95 1.53 0.24 6.30 17 0.25 4.33 1.35 0.27 7.06 圖1以圖表形式顯示表2中所列之桿及線樣品的室溫極限 拉伸強度(UTS)、屈服強度(YS)及伸長率%(%el)與樣品中 合金之鋁當量值的關係。圖1亦包括穿過由線性回歸測定 之UTS、YS&%el數據點的趨勢線。可見平均強度與平均 伸長率%皆隨Aleq增加而增加。此關係令人驚訝且出乎竟 料’因為其與強度增加伴有延性降低之一般所觀察到的關 158730.doc •18· 201224163 係相反。The Ti-6A1-4V alloy rolled product is generally used in a rolling annealed state or in a solid bath treatment and aging (STA) state. As used herein, "rolling annealed state" means the state of the niobium alloy after "rolling annealing" heat treatment, wherein at a high temperature (for example, 12〇〇-15〇〇卞/649-816.(:) The workpiece is annealed for about 1-8 hours and cooled in still air. After the workpiece is thermally processed in the α+β phase region, the rolling annealing heat treatment is performed. At room temperature, in the rolling annealing state, the direct operation is about 2 to The minimum specified ultimate tensile strength of 4忖(5.08 to 10.16(;111) Ding丨-6八1-4¥ alloy round bar is 13〇ksi (896 MPa) and the minimum specified yield strength is 120 ksi (827 MPa) Roll-rolling annealed Ti-6A1-4V sheets are typically manufactured according to specification AMS 4911. The rolling annealed Ti_6Ai_4v rods are typically manufactured according to specification AMS 4928. U.S. Patent No. 5,98,655, incorporated herein by reference in its entirety. No. ("655 patent") discloses an α/β titanium alloy containing 2.90 to 5.00 wt% of aluminum, 2.00 to 3.000 wt% of vanadium, 0.40 to 2 wt% of iron, and 〇2〇 to 〇3 〇 Weight. /. Oxygen, incidental impurities and titanium. α/β disclosed in the ι655 patent 158730.doc 201224163 Titanium alloy in this It is called ", 655 alloy is based on the total alloy weight, and 655 alloy makes the commercially available alloy composition nominally including 4% by weight of aluminum, 2% by weight of vanadium, 1.50% by weight of iron, and 〇.25% by weight of oxygen. With impurities and titanium, and can be referred to herein as 1^-48-2.5乂-1.5?6-〇.25〇 alloy. Because it is difficult to cold-process Ding I-6A1_4V alloy, the alloy is generally at high temperature. It is processed (for example, forging, rolling, drawing and the like). The Ti_6Al_4V alloy cannot be effectively cold worked due to the high incidence of cracking (ie, workpiece breakage) during cold deformation, for example. Increasing the strength. However, as described in U.S. Patent Application Publication No. 2004/0221929, which is incorporated herein by reference in its entirety, it is surprisingly and unexpectedly found that the '655 alloy has considerable coldability. Deformation/Coldability • The 655 alloy is surprisingly cold workable to achieve high strength while still retaining processable ductility. Processable ductility is defined herein as an alloy exhibiting greater than 6% elongation. State" again, 6 The strength of the 55 alloy is comparable to the strength achievable with the Ti-6A1-4V alloy. For example, as shown in Table 6 of the '655 patent, the tensile stress measured for the Ti-6A1-4V alloy is 145.3 ksi ( l, 002 MPa), and the test sample of the '655 alloy exhibited tensile strength in the range of 138 7 letting 31 to 142_7 1^ (956.3 ^«^ to 983.9 1^&). The chemical composition range specified by Aerospace Material Specification 6946B (AMS 6946B) is more limited than that described in the patent application of the '655 patent. The alloys specified in AMS 6946B retain a broader formability limit in the '655 patent, but the minimum mechanical strength properties allowed by AMS 6946Β are less than 158730.doc 201224163 Commercially available Ti-6A1-4V alloys Minimum value. For example, according to the AMS-4911L, the 0.125 吋 (3.175 mm) thick Ti-6A1-4V plate has a minimum tensile strength of 134 ksi (923.9 MPa) and a minimum yield strength of 126 ksi (868.7 MPa). In contrast, according to AMS 6946B, the minimum tensile strength of 0.125 吋 (3.175 mm) thick Ti-4Al-2.5Vl.5Fe-0.25O plate is 130 ksi (896.3 MPa) and the minimum yield strength is 115 ksi (792.9 MPa). Assuming that there is still a need to reduce fuel consumption by mitigating the weight of aircraft and other vehicles, there is a need for improved ductile alpha/beta titanium alloys that preferably exhibit similar or superior performance to Ti-6A1-4V alpha/beta titanium alloys. Mechanical properties of mechanical properties. SUMMARY OF THE INVENTION According to one aspect of the present invention, the α/β titanium alloy comprises: 3.9 to 4.5% by weight of aluminum; 2.2 to 3.0% by weight of vanadium; ι_2 to 1.8% by weight of iron; 0.24 to 0· 30% by weight of oxygen; at most 〇.〇8重量0/〇 carbon; at most 〇.〇5 wt% nitrogen '·up to 0. 015 wt% hydrogen; titanium; and at most 〇.3 〇 wt% other elements. According to another aspect of the invention, the alpha/beta alloy is composed essentially of 3.9 to 4.5 weight by weight of the total alloy. /. Ming; 2.2 to 3.0 wt% vanadium; 1.2 to 1.8 wt% iron; 0.24 to 0.30 wt% oxygen; up to 0.08 wt% carbon; up to 0.05 wt% nitrogen; up to 0.015 wt% hydrogen; titanium; and up to a total of 0.30 wt. % other elements. [Embodiment] The features and advantages of the alloys and related methods described herein can be fully understood with reference to the drawings. The above details and other details of certain non-limiting embodiments of the alloys and related methods of the present invention will be appreciated by the reader upon consideration of the following embodiments. In the description of the non-limiting embodiments of the invention, unless otherwise indicated, Accordingly, unless indicated to the contrary, the numerical parameters of the (4) described in the following description are approximations, which may vary depending on the nature of the material desired to be obtained by the method of the present invention. The application of dGetrine Qf equivaients is limited to the scope of patent application, and each numerical parameter should be understood at least in accordance with the number of significant digits reported and by applying general rounding techniques. Any patents, publications, or other disclosures that are incorporated herein by reference in their entirety are hereby incorporated by reference to the extent of the extent of Or other revealing material conflicts. Therefore, if necessary, the disclosure as described herein conflicts with any of the materials incorporated herein by reference. Reference is made to any material or a portion or a portion thereof that is incorporated herein by reference, but which is inconsistent with the prior art; There is no conflict with existing disclosure materials. Non-limiting examples of the alpha/beta titanium alloy of the present invention comprise, consist of, or consist essentially of: 3.9 to 45 wt% aluminum; 2 2 to 3 wt% vanadium; 1.2 to 1.8 wt% iron; 2424 to 〇3 〇 wt% oxygen; up to 0.08 wt% carbon; up to 〇.〇5 wt% nitrogen; up to 15 wt% nitrogen; titanium; and up to a total of 0.30 wt% of other elements. In certain non-limiting embodiments of the invention, other elements that may be present in the alpha/beta titanium alloy (as part of 158730.doc 201224163 up to 0.30% by weight of other elements) include boron, tin, zirconium 'molybdenum, One or more of complex, nickel, ruthenium, copper, ruthenium, osmium, manganese, ruthenium and cobalt, and in certain non-limiting examples _, each of the other elements has a weight content of 0.10 or less than 0.10, But there are two exceptions. These exceptions are boron and bismuth, and if they are completely present as part of one of the other elements, they are present in individual concentrations of less than 〇 5% by weight. I. Alloy Compositions Non-limiting examples of alloys of the present invention include titanium, samarium, telecommunications, iron, and oxygen. As long as the alloying elements are stated in the composition of the following discussion, it should be understood that the remainder includes titanium and incidental impurities. A. Ming Aluminum is an alpha phase enhancer in titanium alloys. The compositional range of aluminum in the non-limiting embodiment of the alpha/beta titanium alloy of the present invention is narrower than the range of aluminum disclosed in the '655 patent. Further, the minimum content of aluminum in certain non-limiting embodiments of the alloy according to the present invention is greater than the minimum content described in AMS 6946. It has been observed that these compositional characteristics make the alloy exhibit a more consistent mechanical property similar to that of the Ti_6A1_4V alloy. The minimum concentration of aluminum in the α/β titanium alloy of the present invention is 3.9 wt%. The maximum concentration of aluminum in the α/β titanium alloy of the present invention is 45 wt%. Β. 钒 Vanadium is a β phase stabilizer in titanium alloys. The minimum/amount of vanadium in the α/ρ titanium alloy of the present invention is greater than the minimum concentration as disclosed in the '655 patent and as described in AMS 6946. This compositional characteristic has been observed to provide an optimum, control balance of the volume fraction of the alpha phase and the phase ρ phase. The balance of the alpha phase and the beta phase provides the alloy of the present invention with excellent ductility and formability. Vanadium is present in the alpha/beta titanium alloy of the present invention at a minimum concentration of 2.2% by weight. The maximum concentration of vanadium in the α/ρ titanium alloy of the present invention is 158730.doc 201224163 3.0% by weight. C. Iron Iron is an eutectoid P stabilizer in titanium alloys. The alpha/beta titanium alloy of the present invention comprises a larger minimum concentration and a narrower range of iron than the alloy described in the '655 patent. These characteristics have been observed to provide the best, control balance of the volume fraction of the alpha phase and the ρ phase. This balance allows the alloy of the present invention to have excellent ductility and enthalpy forming properties. Iron is present in the alpha/beta gold of the present invention at a minimum concentration of 1.2% by weight. The maximum concentration of iron in the α/β titanium alloy of the present invention is U % 〇 D. Oxygen is a strengthening agent in the titanium alloy. The composition of oxygen in the α/ρ titanium alloy of the present invention is narrower than that disclosed in the '655 patent and the AMS 6946Β specification. Further, the minimum concentration of oxygen in the non-limiting embodiment of the alloy of the present invention is greater than the minimum concentration of the '655 patent and the AMS 6946 specification. It has been observed that these compositional characteristics allow the alloy of the present invention to consistently exhibit mechanical properties similar to those of a certain *Ti_6Ai_4V. The minimum concentration of oxygen in the α/ρ titanium alloy of the present invention is 0.24% by weight. The maximum concentration of oxygen in the α/β titanium alloy of the present invention is 0.30% by weight. In addition to including titanium, aluminum, vanadium, iron, and oxygen as discussed above, certain non-limiting examples of the alpha/beta titanium alloys of the present invention include other elements having a total concentration of no more than 〇3 重量%. In certain non-limiting embodiments, such other elements include one or more of rotten, tin's, molybdenum, chromium, nickel, shi, copper, sharp, group, fierce, and cobalt. Two exceptions, the weight of each such element ° /. The exception is 0.10 or less than 0.10 ^. These exceptions are boron and ruthenium. If 158730.doc 201224163 is present in the alloy of the present invention, the weight % of each of boron and niobium is less than 0.005 °. Impurity may also be present in the alpha/beta titanium alloy of the present invention. By way of example, up to about 0.008% by weight of carbon may be present. There may be up to about 0.05% by weight nitrogen. There may be up to about 0.015% by weight hydrogen. Other incidental impurities that may be present will be apparent to those of ordinary skill in the art of metallurgy. Table 1 provides a summary of (1) certain non-limiting examples of the alpha/beta titanium alloys of the present invention and (ii) the compositions of certain alloys as disclosed in the '655 patent and as defined in AMS 6946. Table 1 Alloy Composition Alloy Element Weight % Non-limiting example of the invention US 5,980,655 AMS 6946B Aluminum 3.9 to 4.5 2_5 to 5.4 3.55.4.5 Vanadium 2.2 to 3.0 2.0 to 3.4 2.0 to 3.0 Iron 1.2 to 1.8 0.2 to 2.0 1.2 to 1.8 Oxygen 0.24 to 0_30 0.25.0.3 0.20 to 0.30 Carbon maximum 0.08 Maximum 0.1 Maximum 0.08 Nitrogen maximum 0.05 Maximum 0.1 Maximum 0.03 Hydrogen maximum 0.015 Unspecified maximum 0.015 Other elements maximum 0.10, total amount maximum 0.30 Each maximum 0.10, not specified total A maximum of 0.10, a total amount of up to 0.30. The inventors have unexpectedly discovered that providing an alloy of the invention having a minimum content of aluminum, oxygen and iron greater than the minimum amount taught in the '655 patent provides a 158730.doc -10- 201224163 An alpha/beta titanium alloy such as at least some mechanical properties (such as strength) similar to those of the rolled annealed Ti-6A1-4V alloy is exhibited. The inventors have also unexpectedly discovered that 'relative to the minimum and range disclosed in the '655 patent, increasing the minimum content of iron and vanadium and narrowing it to provide an alpha phase in the roll-annealed form. The best and phase-balanced alloy with the volume fraction of the beta phase "This optimum phase balance of the alpha/beta bismuth alloy of the present invention provides improved ductility compared to the TU6A1-4V alloy while retaining, as disclosed in the 655 patent and ams 6946B Alloy examples of alloy ductility as specified in the alloy. Those skilled in the art understand that the strength and ductility of metallic materials generally exhibit an inverse relationship. In other words, in general, as the strength of the metal material increases, the ductility of the material decreases. Since the inverse relationship between strength and ductility is observed for the rolled annealed titanium alloy, it is not expected that the α bismuth titanium alloy of the present invention has a combination of increased mechanical strength and retained ductility. The unexpected and compelling combination of increased mechanical strength and retained ductility is a particularly advantageous feature of the alloy embodiments of the present invention. It is surprisingly observed that the embodiment of the roll-annealed alloy of the present invention exhibits comparable strength to the Ti_6Ai_4V alloy without exhibiting a decrease in ductility. It has been observed that certain non-limiting examples of the cx/β alloy of the present invention having an equivalent value (Aleq) of at least 63 or more preferably at least 展现 exhibit a strength comparable to that of at least 4V alloy. It has also been observed that these alloys exhibit ductility superior to the nominal equivalent value of about 7. RTi_6AMv alloy. As used herein, "should equivalent" or "silk equivalent" (Aleq) means a value equal to the concentration of the alloy (weight %) plus the oxygen concentration (% by weight) in the alloy. In other words, the alloy can be determined as follows: ~=awi〇 I58730.doc 201224163 (〇(wt·%)). While recognizing that the mechanical properties of titanium alloys are generally affected by the size of the sample being tested, but in a non-limiting embodiment of the invention, the alpha equivalent of the alpha/beta titanium alloy is at least 6.4, or in certain embodiments. It is in the range of 6.4 to 7.2 and has a yield strength of at least 12 〇 ksi (827·4 MPa) or, in some embodiments, at least 130 ksi (896.3 MPa). In other non-limiting embodiments of the invention, the alpha/beta titanium alloy has an aluminum equivalent value of at least 6.4' or, in certain embodiments, in the range of 6.4 to 7.2, and a yield strength of 120 ksi (827.4). MPa) to 155 ksi (l, 069 MPa). In other non-limiting embodiments, the alpha/p titanium alloy of the present invention has an aluminum internal value of at least 6.4' or, in certain embodiments, a range of from 64 to 7 2 and an ultimate tensile strength of at least 13 〇 ksi (896 3 Mpa), or in some embodiments at least 140 ksi (965.3 MPa). In other non-limiting embodiments of the invention, the alpha/p titanium alloy of the present invention has an aluminum equivalent value of at least 6.4, or in some embodiments in the range of from 64 to 72 'and ultimate tensile strength. Within the range of 13〇ksi (896 3 ]^]^) to 165 ksi (1,138 MPa). In other non-limiting embodiments, the alpha/p titanium alloys of the present invention have an aluminum equivalent weight of at least 6.4, or in certain embodiments, in the range of 64 to 72, and ductility of at least 12% or at least 16 % (elongation. /0). In other non-limiting embodiments, the alpha/p titanium alloy of the present invention has an aluminum lining value of at least 6.4, or in certain embodiments, in the range of from 64 to 7 2 and ductility of from 12% to 30%. % (elongation % or "% e丨"). 158730.doc •12· 201224163 Although in accordance with certain non-limiting embodiments of the present invention, 6.3 is the absolute minimum of A, the inventors have determined that at least 6 4 Alq values are required to achieve with Ti-6A1. The strength exhibited by the -4V alloy is the same. It is also recognized that in other non-limiting embodiments of the alpha/beta titanium alloy of the present invention, the maximum value of Α1^ is 7.5 and the relationship between strength and ductility in accordance with other non-limiting embodiments disclosed herein applies. According to one non-limiting embodiment, the alpha/beta titanium alloy of the present invention has an aluminum equivalent value of at least 6.4, a yield strength of at least 120 ksi (827.4 MPa), and an ultimate tensile strength of at least 130 ksi (896.3 MPa). , and ductility is at least 12% (elongation ° / 〇). According to another non-limiting embodiment, the alpha/beta titanium alloy of the present invention has an aluminum value of at least 6.4, a yield strength of at least 13 〇 ksi (896.3 MPa), and an ultimate tensile strength of at least 140 ksi (965.3 MPa). And ductility is at least 12%. In still another non-limiting embodiment, the alpha/beta titanium alloy of the present invention has an aluminum equivalent value in the range of 6.4 to 7.2, and a yield strength in the range of 120 ksi (827.4 MPa) to I55 ksi (l, 〇69). Within the range of MPa), the ultimate tensile strength is in the range of 130 ksi (896.3 MPa) to 165 ksi (l,138 MPa), and the ductility is in the range of 12% to 30% (elongation./〇). In a non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 214.767 (Aleq) + 48.001. In another non-limiting embodiment, the invention The α/β titanium alloy exhibits a full 158730.doc •13-201224163 which is sufficient for the average yield strength (YS) of the following formula: YS213.338 (Ale<1)+46.864. In yet another non-limiting embodiment, the invention The α/β titanium alloy exhibits the following average ductility: %el>3.3669 (Aleq)-1.9417 ° In another non-limiting embodiment, the α/β titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation ): UTS>14.767 (Aleq)+48.001 ; The average yield strength (YS) of the following equation is satisfied: YS>13.338 (Aleq)+46.864 And satisfying the average ductility of the following equation: %el>3.3669 (Aleq)-1.941 7 ° In a non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation _ UTS 212.414 (Aleq) + 64.429. In another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average yield strength (YS) that satisfies the following equation: 158730.doc • 14· 201224163 YS213. 585 (AleC)) +44.904. In yet another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits the following average ductility: %el>4.1993 (Aleq) + 7.4409. In another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS > 12.414 (Aleq) + 64.429; the average yield strength (YS) of the following equation is satisfied ): YS > 13.585 (Alcq) + 44.904 ; and the average ductility of the following equation: %el>4.1993 (Aleq) + 7.4409. In a non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS > 10.087 (Aleq) + 76.785. In another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average yield strength (YS) that is sufficient for the following formula: YS213.911 (Aleq) + 39.435. 158730.doc 15 201224163 In yet another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits the following average ductility: %el > 1.1979 (Alet)) + 8.5604. In yet another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS > 10.087 (Aleq) + 76.785; the average yield strength (YS) of the following equation is satisfied ): YS > 13.911 (Aleq) + 39.435 ; and the unit of the following equation is the average ductility of elongation % (%el): %el > 1.1979 (Aleq) + 8.5604. It has been determined that the non-limiting embodiment of the α/ρ titanium alloy of the present invention exhibits similar or higher mechanical strength, higher ductility, and improved formability than the Ti-6A1-4V alloy. Therefore, it is possible to use articles formed from the alloy of the present invention as an alternative to Ti_6A1_4V alloy articles in aerospace, aerospace, marine, automotive, and other applications. The high strength and ductility of the embodiments of the alloys of the present invention allows for the manufacture of certain rolled finished shapes that are highly resistant and are currently not available from Ti 6Al-4V alloys. One aspect of the invention pertains to articles comprising the alloy of the invention and/or articles made from the alloys of the invention. Some non-limiting embodiments of such articles may be selected from the group consisting of aircraft engine components, aircraft structural components, automotive components, medical device components, sports equipment components, marine application components, and chemical processing equipment components. The alpha/p alloy examples of the present invention and/or other articles made therefrom, which are now or in the future known to those skilled in the art, may be within the scope of the embodiments disclosed herein. Articles comprising the alloy of the invention and/or alloys of the invention by forming and other manufacturing techniques are known to those of ordinary skill in the art. The following examples are intended to further describe certain non-limiting embodiments and are not intended to limit the scope of the invention. It will be appreciated by those skilled in the art that variations of the following examples, as well as other embodiments not specifically described herein, may be present within the scope of the invention as defined by the appended claims. Example 1 An α/β titanium alloy ingot having the composition of the present invention was cast using conventional vacuum arc remelting (VAR), plasma arc melting (ΡΑΜ) or electron beam cold crucible melting (ΕΒ) for initial melting, and used VAR remelted. The composition of the ingot is included in the range listed in the "Non-Limited Embodiment of the Invention" of Table 1 above. The ingot composition produced in this Example 1 had an aluminum equivalent value ranging from about 6.0 to about 7.1. The ingots were processed into hot rolled bars and wires having a diameter between 〇25 pairs (〇·635 cm) and 3.25 inches (8.255 cm) using various hot rolling operations. Hot rolling was carried out at an initial temperature between 1550 °F (843.3 °C) and 1650T (898.9. [:). This temperature range is lower than the α/β transition temperature of the alloy of this example, which is from about 1750 Å to about 1850 °F (about 954 _4 ° C to about 1010 ° C), depending on the actual chemical composition. After hot rolling, the hot rolled rod and wire were annealed at 1275 卞 (690.6 〇 under the underside for 1 hour, followed by air cooling. Example 1 produced 158730.doc -17- 201224163 diameter of each rod and line sample, Ming The concentration, iron concentration, oxygen concentration and calculated figures are provided in Table 2. Table 2 Sample number diameter (in.) Al (wt.%) Fe (wt.%) 〇 (wt.%) Aleq (Al %+i〇.〇%) 1 3.25 4.07 1.56 0,25 6.53 2 3.25 4.10 1.77 0.19 5.96 3 3.25 4.27 1.90 0.19 6.13 4 2 4.05 1.54 0.25 6.57 5 2 4.05 1.55 0.25 6.58 6 2 4.26 1.88 0.21 6.38 7 1 4.35 1.44 0.24 L__674_ 8 1 4.36 1.28 0.27 7.08 9 0.5 4.38 1.24 0.28 7.15 10 0.5 4.33 1.42 0.25 6.81 11 0.5 4.14 1.47 0.24 6.51 12 0.344 4.37 1.50 0.26 6.95 13 0.25 3.93 1.58 0.23 6.27 14 0.25 4.12 1.56 0.25 6.65 15 0.25 4.40 1.35 0.27 7.10 16 0.25 3.95 1.53 0.24 6.30 17 0.25 4.33 1.35 0.27 7.06 Figure 1 graphically shows the room temperature ultimate tensile strength (UTS), yield strength (YS) and elongation % (% of the rod and wire samples listed in Table 2). El) is related to the aluminum equivalent value of the alloy in the sample. Figure 1 also includes wearing The trend line of the UTS, YS&%el data points determined by linear regression shows that both the average intensity and the average elongation % increase with the increase of Aleq. This relationship is surprising and unexpectedly 'because it is associated with increased strength The general observation of the decrease in ductility is 158730.doc •18· 201224163 is the opposite.

Ti-6A1-4V之典型UTS及YS最小值分別為135 ksi(930.8 MPa)及125 ksi(861.8 MPa)。表2中所列之本發明樣品的ys 範圍為約125 ksi(對於Ale<1為約6.0之樣品)至約141 ksi(對於The typical UTS and YS minimum values for Ti-6A1-4V are 135 ksi (930.8 MPa) and 125 ksi (861.8 MPa), respectively. The ys of the inventive samples listed in Table 2 ranged from about 125 ksi (for samples with Ale < 1 to about 6.0) to about 141 ksi (for

Aleq為約7.1之樣品)。Ale〇1為約6.4之樣品展現YS為約130 ksi(896.3 MPa)。表2中所列之本發明樣品的UTS範圍為約 135 ksi(對於Aleq為約6·0之樣品)至約153 ksi(對於Aleq為約 7.1之樣品)。Aleq為約6.4之樣品展現YS為約141 ksi(972 MPa)。 實例2 在室溫下對實例1之直徑為〇.5吋(1 27 cm)及鋁當量值為 、力6.5 、力6 · 8及約7 · 15的線樣品第9 -11號進行拉伸測試。拉 伸測試之結果在圖2中以圖表形式顯示。所有此等樣品均 展現類似或高於商業Τί·6Α1·4ν合金所展現之強度的拉伸 及屈服強度。如同圖1,自圖2可見’ Aleqif加使得強度增 以及平均伸長率%增加。如上文所論述,此趨勢令人 驚舒且出乎意料,因為其與強度增加伴有延性降低之一般 所觀察到的關係相反。與表示對各種尺寸之樣品進行之測 試的圆1相比,表示對相同尺寸之樣品進行之測試的圖2之 數據散佈較小,因為機械性質在某種程度上受測試樣品之 158730.doc •19· 201224163 明之非限制性實施例」欄中所列的範圍内之組成,其中鋁 及氧濃度及鋁當量值如表3中所列。 表3 樣品編號 直徑(in.) Al(wt.%) Fe(wt.%) 〇(wt.%) Aleq(Al%+10O%) 18 1 4.08 1.53 0.24 6.43 19 1 4.13 1.44 0.24 6.48 20 1 4.22 1.49 0.29 7.12 21 1 4.25 1.40 0.28 7.05 22 1 4.21 1.38 0.29 7.08 所有熱輥軋溫度均低於合金之α/β轉變溫度。合金之 值為約6.5至約7.1。使用室溫拉伸測試測定拉伸強度、屈 服強度及伸長率%(延性)。拉伸測試結果在圖3中以圖表形 式顯示。自圖3可見,如由所計算之鋁當量所指示包括 增加含量之A1及Ο的合金在室溫下展現的強度至少與τ “ 6A1-4V合金所展現之強度相當。此外,觀察到強度隨 增加而增加。另外,本發明合金之平均延性隨著A、增^ 及強度增加而略有增力0或保持大致不冑。此趨勢令人驚舒 且出乎意# ’因A其與強度增加伴有延性降低之一 察到的關係相反。 本發明已參考各種例示性、說明性及非限制性實施例來 描述。然而’一般技術者應認識到,可在不脫離本發明範 嘴的情況下對任-所揭示實施例(或其—㈣Μ#㈣ 代、修改或组合’本發明料僅由中請專利範圍限定。因 此,預期且瞭解,本發明涵蓋本文未明確闡述之其他實施 158730.doc -20· 201224163 例。該等實施例可例如藉由組合及/或改變本文所述之實 施例的所揭示步驟、成分、組成部分、組分、元素、特 點、態樣及其類似物中之任一者來獲得。因此,本發明不 又各種例示n、說明性及非限制性實施例之描述限制,而 僅受申請專利範圍限制。以此方式,應瞭解,申請專利範 圍可在本發明專射請案之審查期間進行修正以向本發明 添加如本文以不同方式所述的特點。 【圖式簡單說明】 圖1為包含本發明之合金之非限制性實施例之桿及線的 極限拉伸強度及屈服強度與鋁當量之關係圖; 圖2為包含本發明之合金之非限制性實施例之0.5叫 G 27 cm)直徑線的極限拉伸強度及屈服強度與鋁當量之關係 圖,及 圖3為包含本發明之合金之非限制性實施例之1吋(2.54 cm)厚板的拉伸強度、屈服強度及伸長率%與鋁當量之關 係圖。 158730.doc •21·Aleq is a sample of about 7.1). Ale〇1 exhibits a YS of about 130 ksi (896.3 MPa) for a sample of about 6.4. The UTS range of the inventive samples listed in Table 2 was about 135 ksi (a sample of about 6.00 for Aleq) to about 153 ksi (a sample of about 7.1 for Aleq). A sample with an Aleq of about 6.4 exhibited a YS of about 141 ksi (972 MPa). Example 2 At room temperature, the sample No. 9-11 of Example 1 having a diameter of 〇.5吋 (1 27 cm) and an aluminum equivalent value, a force of 6.5, a force of 6 · 8 and about 7 · 15 was pulled. Stretch test. The results of the tensile test are shown graphically in Figure 2. All of these samples exhibited tensile and yield strengths similar to or higher than those exhibited by commercial Τί·6Α1·4ν alloys. As shown in Fig. 1, it can be seen from Fig. 2 that the 'Aleqif addition increases the strength and the % elongation at the average. As discussed above, this trend is surprising and unexpected because it is contrary to the generally observed relationship of increased strength with reduced ductility. Compared to Circle 1 which represents tests on samples of various sizes, the data representing Figure 2 for testing samples of the same size is less spread because the mechanical properties are somewhat affected by the test sample 158730.doc • The composition within the ranges listed in the column of Non-limiting Examples of 201224163, wherein aluminum and oxygen concentrations and aluminum equivalent values are listed in Table 3. Table 3 Sample No. Diameter (in.) Al (wt.%) Fe (wt.%) 〇 (wt.%) Aleq (Al%+10O%) 18 1 4.08 1.53 0.24 6.43 19 1 4.13 1.44 0.24 6.48 20 1 4.22 1.49 0.29 7.12 21 1 4.25 1.40 0.28 7.05 22 1 4.21 1.38 0.29 7.08 All hot rolling temperatures are below the α/β transition temperature of the alloy. The value of the alloy is from about 6.5 to about 7.1. Tensile strength, yield strength, and elongation % (ductility) were measured using a room temperature tensile test. The tensile test results are shown graphically in Figure 3. As can be seen from Figure 3, the alloy exhibiting an increased content of A1 and yttrium as indicated by the calculated aluminum equivalent exhibited at least room strength at room temperature comparable to that exhibited by the τ "6A1-4V alloy. In addition, the strength was observed with In addition, the average ductility of the alloy of the present invention increases slightly with the increase of A, increase, and strength by 0 or remains substantially unsatisfactory. This trend is surprising and unexpected. # 'A and its strength Increasing the relationship observed with one of the reductions in ductility is reversed. The invention has been described with reference to various illustrative, illustrative, and non-limiting embodiments. However, the skilled artisan will recognize that the invention may be practiced without departing from the scope of the invention. The present invention is intended to be limited only by the scope of the patent application. It is therefore contemplated and understood that the present invention encompasses other implementations not explicitly set forth herein. .doc -20 201224163. The embodiments may, for example, be combined and/or altered by the disclosed steps, ingredients, components, components, elements, features, aspects, and the like. The invention is not limited by the description of the various illustrative, non-limiting, and non-limiting embodiments, and is only limited by the scope of the application. In this manner, it should be understood that the scope of the patent application can be The invention is modified during the review of the invention to add to the present invention features as described herein in different ways. [Schematic Description] FIG. 1 is a rod and wire comprising a non-limiting embodiment of the alloy of the present invention. Graph of ultimate tensile strength and yield strength versus aluminum equivalent; Figure 2 is the relationship between ultimate tensile strength and yield strength and aluminum equivalent of a 0.5 angstrom diameter line comprising a non-limiting embodiment of the alloy of the present invention. Figure 3 and Figure 3 is a graph of tensile strength, yield strength and elongation % versus aluminum equivalent for a 1 吋 (2.54 cm) thick plate comprising a non-limiting embodiment of the alloy of the present invention. 158730.doc • 21·

Claims (1)

201224163 七、申請專利範圍: 1 · 一種α/β鈦合金,以總合金重量計,其包含: 3.9至4.5重量%鋁; 2.2至3.0重量%釩; 1.2至1.8重量%鐵; 0.24至0.30重量%氧; 至多0.08重量%碳; 至多0.05重量%氮; 至多0.015重量%氫; 鈦;及 至多總共0.30重量%其他元素》 2.如請求項1之α/β鈦合金,其中: 該等至多總共0.30重量%其他元素包括硼、錫、锆、 鉬、鉻、錄、石夕、銅、銳、鈕、猛、纪及钻中之至少一 者; 存在時’硼及釔中每一者之含量係小於0.005重量% ;及 存在時,錫、結、鉬、鉻、錄、石夕、銅、銳、组、猛 及始中每一者之含量係不大於0.10重量%。 3 ·如凊求項1之α/β鈦合金,其中該合金之鋁當量值為至少 6·4且展現至少120 ksi(827.4 MPa)之屈服強度。 4, 如請求項1之α/β銥合金,其中該合金之鋁當量值為至少 6·4且展現至少130 ksi(896_3 MPa)之極限拉伸強度。 5. 如印求項1之α/β鈦合金,其中該合金之鋁當量值為至小 6.4且展現至少12%伸長率之延性。 158730.doc 201224163 6. 如請求項1之α/β鈦合金,其中該合金之鋁當量值為至少 6.4,展現至少120 ksi(827.4 MPa)之屈服強度,展現至 少130 ksi(896.3 MPa)之極限拉伸強度,且展現至少12% 伸長率之延性。 7. 如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至 7·2之範圍内,且展現在120 ksi(827.4 MPa)至155 ksi(l,〇69 MPa)之範圍内之屈服強度。 8. 如请求項1之α/β鈥合金,其中該合金之IS當量值在6.4至 7.2之範圍内,且展現在130 ksi(896.3 MPa)至165 ksi(l,138 MPa)之範圍内之極限拉伸強度。 9·如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至 7-2之範圍内,且展現在I2%至30%伸長率之範圍内之延 性。 10. 如請求項1 2α/β鈦合金,其中該合金之鋁當量值在6 4至 7.2之範圍内,展現在 120 ksi(827.4 MPa)至 155 ksi(l,〇69 MPa)之範圍内之屈服強度,展現在130 ksi(896.3 MPa)至 165 ksi(l,138 MPa)之範圍内之極限拉伸強度,且展現在 12%至3 0°/。伸長率之範圍内之延性。 11. 一種α/β鈦合金,以總合金重量計,其基本上由以下組 成: 3 · 9至4 · 5重量%铭; 2·2至3.0重量%釩; 1.2至1.8重量%鐵; 0.24至0_30重量。/。氧; 158730.doc 201224163 至多0.08重量%碳; 至多0.05重量%氮; 至多0.015重量%氫; 鈦;及 至多總共0.30重量%其他元素。 12. 如請求項11之α/β欽合金,其中: 該至多總共0.30重量%其他元素包括硼、錫、錯、 鉬、鉻、鎳、矽、銅、鈮、钽、錳、釔及鈷中之至少一 者; 存在時,硼及釔中每一者之含量係小於0.005重量% ;及 存在時,錫、錯、1§、鉻、鎳、石夕、銅、銳、组、猛 及鈷中每一者之含量係不大於0.10重量%。 13. 如請求項11之α/β鈦合金,其中該合金之鋁當量值為至少 6.4且展現至少120 ksi(827_4 MPa)之屈服強度》 14·如請求項11之α/β鈦合金,其中該合金之鋁當量值為至少 6.4且展現至少130 ksi(896.3 MPa)之極限拉伸強度。 15. 如請求項11之α/β鈦合金,其中該合金之鋁當量值為至少 6.4且展現至少12%伸長率之延性。 16. 如請求項11之α/β欽合金,其中該合金之铭當量值為至少 6.4 ’展現至少120 ksi(827.4 MPa)之屈服強度,展現至 少130 ksi(896.3 MPa)之極限拉伸強度,且展現至少12% 伸長率之延性。 17. 如請求項11之α/β鈦合金,其中該合金之鋁當量值在6.4 至7.2之範圍内,且展現在120 ksi(827.4 MPa)至155 158730.doc 201224163 ksi(l,069 MPa)之範圍内之屈服強度。 18. 如請求項11之α/β鈦合金,其中該合金之鋁當量值在6.4 至7.2之範圍内,且展現在130 ksi(896.3 MPa)至165 ksi(l,138 MPa)之範圍内之極限拉伸強度。 19. 如請求項11之α/β鈦合金,其中該合金之鋁當量值在6.4 至7.2之範圍内,且展現在12%至30%伸長率之範圍内之 延性。 20. 如請求項11之α/β鈦合金,其中該合金之銘當量值在6.4 至7.2之範圍内,展現在120 ksi(827.4 MPa)至155 ksi(l,069 MPa)之範圍内之屈服強度,展現在130 ksi(896.3 MPa)至 165 ksi(l,138 MPa)之範圍内之極限拉 伸強度,且展現在12%至30%伸長率之範圍内之延性。 21. —種製品,其包含如請求項1之合金。 22. 如請求項21之製品,其中該製品係由如請求項!之合金 組成。 2 3 ·如睛求項21之製品’其中該製品係選自飛行器引擎組 件、飛行器結構組件、汽車組件、醫療裝置組件、運動 設備組件、船舶應用組件及化學加工設備組件。 24.如請求項22之製品,其中該製品係選自飛行器引擎組 件、飛行器結構組件、汽車組件、醫療裝置組件、運動 設備組件、船舶應用組件及化學加工設備組件。 25· —種製品,其包含如請求項11之合金。 26.如請求項25之製品,其中該製品係由如請求項丨i之合金 組成》 158730.doc -4 - 201224163 27. 如請求項25之製品 > 其中該製品係選自飛行器 件、飛行器結構組件、汽車組件、醫療裝置組件 設備組件、船舶應用組件及化學加工設備組件。 28. 如請求項26之製品,其中該製品係選自飛行器 件、飛行器結構組件、汽車組件、醫療裝置組件 設備組件、船舶應用組件及化學加工設備組件。 擎組 運動 擎組 運動 158730.doc201224163 VII. Patent application scope: 1 · An α/β titanium alloy, based on the total alloy weight, comprising: 3.9 to 4.5% by weight of aluminum; 2.2 to 3.0% by weight of vanadium; 1.2 to 1.8% by weight of iron; 0.24 to 0.30 by weight % oxygen; up to 0.08 wt% carbon; up to 0.05 wt% nitrogen; up to 0.015 wt% hydrogen; titanium; and up to a total of 0.30 wt% of other elements. 2. The alpha/beta titanium alloy of claim 1, wherein: at most A total of 0.30% by weight of other elements include at least one of boron, tin, zirconium, molybdenum, chromium, lan, shi, copper, sharp, button, fierce, and drill; in the presence of 'both and bismuth The content is less than 0.005% by weight; and in the presence of, the content of each of tin, knot, molybdenum, chromium, ruthenium, ruthenium, copper, sharp, group, and sinister is not more than 0.10% by weight. 3. The alpha/beta titanium alloy of claim 1, wherein the alloy has an aluminum equivalent value of at least 6.4 and exhibits a yield strength of at least 120 ksi (827.4 MPa). 4. The alpha/beta bismuth alloy of claim 1, wherein the alloy has an aluminum equivalent value of at least 6.4 and exhibits an ultimate tensile strength of at least 130 ksi (896 _ 3 MPa). 5. The alpha/beta titanium alloy of claim 1, wherein the alloy has an aluminum equivalent value of less than 6.4 and exhibits ductility of at least 12% elongation. 158730.doc 201224163 6. The α/β titanium alloy of claim 1, wherein the alloy has an aluminum equivalent value of at least 6.4, exhibiting a yield strength of at least 120 ksi (827.4 MPa), exhibiting at least 130 ksi (896.3 MPa) Ultimate tensile strength and exhibits ductility of at least 12% elongation. 7. The α/β titanium alloy of claim 1, wherein the alloy has an aluminum equivalent value in the range of 6.4 to 7.2 and exhibits at 120 ksi (827.4 MPa) to 155 ksi (1, 〇 69 MPa). Yield strength within the range. 8. The alpha/beta bismuth alloy of claim 1, wherein the alloy has an IS equivalent value in the range of 6.4 to 7.2 and exhibits a range from 130 ksi (896.3 MPa) to 165 ksi (l, 138 MPa). Ultimate tensile strength. 9. The alpha/beta titanium alloy of claim 1, wherein the alloy has an aluminum equivalent value in the range of 6.4 to 7-2 and exhibits ductility in the range of from 1% to 30% elongation. 10. In the case of claim 1 2α/β titanium alloy, wherein the alloy has an aluminum equivalent value in the range of 64 to 7.2, exhibiting in the range of 120 ksi (827.4 MPa) to 155 ksi (l, 〇69 MPa) The yield strength, which exhibits an ultimate tensile strength in the range of 130 ksi (896.3 MPa) to 165 ksi (l, 138 MPa), and exhibits a 12% to 30°/. Ductility within the range of elongation. 11. An alpha/beta titanium alloy consisting essentially of the weight of the total alloy: 3 · 9 to 4 · 5 wt%; 2 to 2 to 3.0 wt% vanadium; 1.2 to 1.8 wt% iron; 0.24 To 0_30 weight. /. Oxygen; 158730.doc 201224163 up to 0.08 wt% carbon; up to 0.05 wt% nitrogen; up to 0.015 wt% hydrogen; titanium; and up to a total of 0.30 wt% of other elements. 12. The α/β alloy according to claim 11, wherein: the total of 0.30% by weight of other elements includes boron, tin, chromium, molybdenum, chromium, nickel, cerium, copper, lanthanum, cerium, manganese, lanthanum and cobalt. At least one of; in the presence of, each of boron and bismuth is less than 0.005% by weight; and, in the presence, tin, errone, 1 §, chrome, nickel, shixi, copper, sharp, group, fission and cobalt The content of each of them is not more than 0.10% by weight. 13. The alpha/beta titanium alloy of claim 11, wherein the alloy has an aluminum equivalent value of at least 6.4 and exhibits a yield strength of at least 120 ksi (827_4 MPa). 14 . The alpha/beta titanium alloy of claim 11 Wherein the alloy has an aluminum equivalent value of at least 6.4 and exhibits an ultimate tensile strength of at least 130 ksi (896.3 MPa). 15. The alpha/beta titanium alloy of claim 11 wherein the alloy has an aluminum equivalent value of at least 6.4 and exhibits ductility of at least 12% elongation. 16. The alpha/beta alloy of claim 11, wherein the alloy has an equivalent value of at least 6.4' exhibiting a yield strength of at least 120 ksi (827.4 MPa), exhibiting an ultimate tensile strength of at least 130 ksi (896.3 MPa) And exhibits a ductility of at least 12% elongation. 17. The alpha/beta titanium alloy of claim 11, wherein the alloy has an aluminum equivalent value in the range of 6.4 to 7.2 and exhibits at 120 ksi (827.4 MPa) to 155 158730.doc 201224163 ksi (1,069 MPa) Yield strength within the range of ). 18. The alpha/beta titanium alloy of claim 11, wherein the alloy has an aluminum equivalent value in the range of 6.4 to 7.2 and exhibits a range from 130 ksi (896.3 MPa) to 165 ksi (l, 138 MPa). Ultimate tensile strength. 19. The alpha/beta titanium alloy of claim 11, wherein the alloy has an aluminum equivalent value in the range of from 6.4 to 7.2 and exhibits ductility in the range of from 12% to 30% elongation. 20. The α/β titanium alloy of claim 11 wherein the alloy has an equivalent value in the range of 6.4 to 7.2 and exhibits a range of from 120 ksi (827.4 MPa) to 155 ksi (1,069 MPa). Yield strength, exhibiting ultimate tensile strength in the range of 130 ksi (896.3 MPa) to 165 ksi (l, 138 MPa), and exhibiting ductility in the range of 12% to 30% elongation. 21. An article comprising the alloy of claim 1. 22. The article of claim 21, wherein the article is as claimed; The composition of the alloy. 2 3 . The article of claim 21 wherein the article is selected from the group consisting of an aircraft engine component, an aircraft structural component, an automotive component, a medical device component, a sports equipment component, a marine application component, and a chemical processing equipment component. 24. The article of claim 22, wherein the article is selected from the group consisting of an aircraft engine component, an aircraft structural component, an automotive component, a medical device component, a sports equipment component, a marine application component, and a chemical processing equipment component. 25. An article comprising the alloy of claim 11. 26. The article of claim 25, wherein the article is comprised of an alloy of claim 丨i 158730.doc -4 - 201224163 27. The article of claim 25, wherein the article is selected from the group consisting of a flying device, an aircraft Structural components, automotive components, medical device component equipment components, marine application components, and chemical processing equipment components. 28. The article of claim 26, wherein the article is selected from the group consisting of an aircraft component, an aircraft structural component, an automotive component, a medical device component device component, a marine application component, and a chemical processing equipment component.擎组运动 擎组运动 158730.doc
TW100134192A 2010-09-23 2011-09-22 High strength α/β titanium alloy TWI572721B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/888,699 US20120076611A1 (en) 2010-09-23 2010-09-23 High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock
US12/903,851 US10513755B2 (en) 2010-09-23 2010-10-13 High strength alpha/beta titanium alloy fasteners and fastener stock
US13/108,045 US20120076686A1 (en) 2010-09-23 2011-05-16 High strength alpha/beta titanium alloy

Publications (2)

Publication Number Publication Date
TW201224163A true TW201224163A (en) 2012-06-16
TWI572721B TWI572721B (en) 2017-03-01

Family

ID=45870864

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105136978A TWI631222B (en) 2010-09-23 2011-09-22 High strength α/β titanium alloy
TW100134192A TWI572721B (en) 2010-09-23 2011-09-22 High strength α/β titanium alloy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105136978A TWI631222B (en) 2010-09-23 2011-09-22 High strength α/β titanium alloy

Country Status (16)

Country Link
US (1) US20120076686A1 (en)
EP (1) EP2619340A1 (en)
JP (1) JP6104164B2 (en)
KR (3) KR102056035B1 (en)
CN (1) CN103097559A (en)
AU (1) AU2011305924B2 (en)
BR (1) BR112013005248B1 (en)
CA (1) CA2809035A1 (en)
IL (1) IL224802A (en)
MX (1) MX368806B (en)
NZ (1) NZ607852A (en)
PE (1) PE20131367A1 (en)
RU (1) RU2616676C2 (en)
TW (2) TWI631222B (en)
UA (1) UA121644C2 (en)
WO (1) WO2012039929A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) * 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9957836B2 (en) 2012-07-19 2018-05-01 Rti International Metals, Inc. Titanium alloy having good oxidation resistance and high strength at elevated temperatures
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN104152744A (en) * 2014-07-08 2014-11-19 宁夏东方钽业股份有限公司 Low-cost medium-high-strength corrosion-resistant titanium alloy and processing method thereof
CZ305941B6 (en) * 2014-12-17 2016-05-11 UJP PRAHA a.s. Titanium-based alloy and process of heat and mechanical treatment thereof
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
JP6065168B1 (en) * 2015-03-02 2017-01-25 新日鐵住金株式会社 Titanium sheet and manufacturing method thereof
CN104762525A (en) * 2015-03-27 2015-07-08 常熟市双羽铜业有限公司 Titanium alloy tube for heat exchanger
CN104831119A (en) * 2015-04-15 2015-08-12 苏州维泰生物技术有限公司 Joint titanium alloy material and preparation method thereof
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CA3020443C (en) * 2016-04-25 2023-07-04 Arconic Inc. Bcc materials of titanium, aluminum, vanadium, and iron, and products made therefrom
US10851437B2 (en) * 2016-05-18 2020-12-01 Carpenter Technology Corporation Custom titanium alloy for 3-D printing and method of making same
CN107058798A (en) * 2016-11-08 2017-08-18 中航装甲科技有限公司 A kind of composite armour material and preparation method thereof
CN106521239B (en) * 2016-11-21 2018-07-20 西北有色金属研究院 A kind of used by nuclear reactor high impact toughness low activation titanium alloy
CN108130485A (en) * 2016-12-01 2018-06-08 北方工业大学 High-strength material for assembly type building connection
CN107335765B (en) * 2017-05-31 2019-06-25 太仓市微贯机电有限公司 A kind of titanium alloy pecker and preparation method thereof for seamless perforating material machine
CN107858558B (en) * 2017-11-23 2019-09-03 北京有色金属研究总院 A kind of Superplastic Titanium Alloys plate and preparation method thereof
EP3502288B1 (en) * 2017-12-21 2020-10-14 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
CN108149066A (en) * 2017-12-28 2018-06-12 宁夏东方钽业股份有限公司 A kind of bicycle use new titanium alloy Ti421 tubing and its processing method
US10913991B2 (en) 2018-04-04 2021-02-09 Ati Properties Llc High temperature titanium alloys
US11001909B2 (en) 2018-05-07 2021-05-11 Ati Properties Llc High strength titanium alloys
CN108467971A (en) * 2018-06-08 2018-08-31 南京赛达机械制造有限公司 A kind of erosion resistant titanium alloy blade of aviation engine
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
EP3671359B1 (en) * 2018-12-21 2023-04-26 Nivarox-FAR S.A. Manufacturing method of a timepiece spiral spring made of titanium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1131234C (en) * 1983-06-09 1994-10-30 ВНИИ авиационных материалов Titanium-base alloy
US5980655A (en) * 1997-04-10 1999-11-09 Oremet-Wah Chang Titanium-aluminum-vanadium alloys and products made therefrom
JPH10306335A (en) * 1997-04-30 1998-11-17 Nkk Corp Alpha plus beta titanium alloy bar and wire rod, and its production
US7073559B2 (en) * 2003-07-02 2006-07-11 Ati Properties, Inc. Method for producing metal fibers
US20040221929A1 (en) * 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US20060045789A1 (en) * 2004-09-02 2006-03-02 Coastcast Corporation High strength low cost titanium and method for making same
US20080103543A1 (en) * 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical device with titanium alloy housing
JP2009299110A (en) * 2008-06-11 2009-12-24 Kobe Steel Ltd HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
JP5315888B2 (en) * 2008-09-22 2013-10-16 Jfeスチール株式会社 α-β type titanium alloy and method for melting the same
US9255316B2 (en) * 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
CN102212716B (en) * 2011-05-06 2013-03-27 中国航空工业集团公司北京航空材料研究院 Low-cost alpha and beta-type titanium alloy

Also Published As

Publication number Publication date
WO2012039929A1 (en) 2012-03-29
CN103097559A (en) 2013-05-08
BR112013005248A2 (en) 2018-05-02
JP6104164B2 (en) 2017-03-29
MX368806B (en) 2019-10-17
KR102056035B1 (en) 2019-12-13
TWI572721B (en) 2017-03-01
US20120076686A1 (en) 2012-03-29
NZ607852A (en) 2015-05-29
PE20131367A1 (en) 2013-11-25
JP2013539822A (en) 2013-10-28
CA2809035A1 (en) 2012-03-29
KR20180049165A (en) 2018-05-10
MX2013002312A (en) 2013-05-09
KR20190040094A (en) 2019-04-16
KR20130099001A (en) 2013-09-05
BR112013005248B1 (en) 2019-10-01
IL224802A (en) 2017-05-29
AU2011305924A1 (en) 2013-03-28
TWI631222B (en) 2018-08-01
TW201708555A (en) 2017-03-01
EP2619340A1 (en) 2013-07-31
RU2616676C2 (en) 2017-04-18
AU2011305924B2 (en) 2016-04-07
UA121644C2 (en) 2020-07-10
RU2013118571A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
TW201224163A (en) High strength alpha/beta titanium alloy
JP6026416B2 (en) High strength alpha / beta titanium alloy fasteners and fastener stock
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP2599263B2 (en) Nickeloo iron aluminide alloy capable of high temperature processing
ES2932726T3 (en) high strength titanium alloys
AU2023282167B2 (en) Creep Resistant Titanium Alloys
TW201207127A (en) Precipitation-hardened stainless steel and process for production thereof
JPH03274238A (en) Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
JP2022037155A (en) High temperature titanium alloys
JP2025502826A (en) Manufacturing method of high strength titanium alloy using ferrochromium and high strength titanium alloy
US20160145720A1 (en) High Strength Alpha/Near-alpha Ti Alloys
JP2025502827A (en) High strength, highly formable titanium alloy using molybdenum and ferrochromium and its manufacturing method
JP4263987B2 (en) High-strength β-type titanium alloy
RU2772153C1 (en) Creep-resistant titanium alloys
JP2024527351A (en) Nickel-Based Alloys