[go: up one dir, main page]

TW201223106A - Digital linear voltage modulator - Google Patents

Digital linear voltage modulator Download PDF

Info

Publication number
TW201223106A
TW201223106A TW99141450A TW99141450A TW201223106A TW 201223106 A TW201223106 A TW 201223106A TW 99141450 A TW99141450 A TW 99141450A TW 99141450 A TW99141450 A TW 99141450A TW 201223106 A TW201223106 A TW 201223106A
Authority
TW
Taiwan
Prior art keywords
voltage
circuit module
inverter
output
pmos transistor
Prior art date
Application number
TW99141450A
Other languages
Chinese (zh)
Other versions
TWI449318B (en
Inventor
Wei-Chih Hsieh
Wei Hwang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW099141450A priority Critical patent/TWI449318B/en
Publication of TW201223106A publication Critical patent/TW201223106A/en
Application granted granted Critical
Publication of TWI449318B publication Critical patent/TWI449318B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Logic Circuits (AREA)

Abstract

The present invention relates to a digital linear voltage modulator which can output a modulated voltage, having high current efficiency and can be integrated into a variety of chip, which includes: at least a digital error detection circuit module, a first control logic circuit module, a second control logic circuit module, a mode indication module, a voltage divider circuit module, at least a push-up element circuit module and a pull-down device circuit module. Wherein at least a digital error detection circuit module outputs a logic signal according to the voltage difference value between a compared voltage and a reference voltage, while a first control logic circuit module and the second control logic circuit module separately control at least a push-up element circuit module and a pull-down device circuit module to output the aforementioned modulated voltage.

Description

201223106 六、發明說明: 【發明所屬之技術領域】 可給:上明係關於一種數位式線性電壓調變器,尤指-種 位於超越臨界電壓範圍内或-接近臨界雷壓範圍 内的调變電壓、具有高電流效率及可整合至各式晶片中的 數位式線性電壓調變器。 【先前技術】 厂般而言’電壓調變器大致上可分為兩類,一為交換 式電壓調變器,另一則為線性電壓調變器。其中 文 電壓調變器較常被應用數位控制系統。但是,由於交換^ 電壓调變器需藉由類比數位轉換器轉換信號,故其電路中 具有為數不少的雷忘逾_ Φ # /、電感,迈成交換式電壓調變器 容易整合至一晶片内部。 又益1不 另方面,雖然相李交於交換式電壓調變器線性 調㈣僅需佔據較小的晶片面積,且其具有較小的電容。 但疋’由於習知之線性電壓調變器均以類比電路的形式實 現,所以當線性電壓調變器運作於一高速環境下時,其所 產$的靜態電流的大小相較於信號電流的大小而言就非常 顯著’造成習知之線性電壓調變器的電流效率(C_ent Efficiency)非常有限。 如圖1所示’其係顯示習知之類比式線性調變器之電路 架構的不思圖。其中’類比式線性調變器1係由—誤差放大 器(ΕΐΤ〇Γ Amplifier)1 1、一類比緩衝器(Analog buffer)1 2及一 201223106 輸出元件(Output device) 13組成,且類比緩衝器丨2係耦接至 ,差放大器1 1及輸出^件13。而當習知之類比式線性調變 器丨運作時,其误差放大器n係用於比較出一介於參考電壓 (〜F)與輸出電壓(ν〇υΐ)之間的電壓差值且將此電壓差值 經由類比緩衝器丨2而傳送至輸出元件丨3。之後,輸出元件 13之電容元件14便因而進行充放電動作以使得輸出電壓 CVour)之電壓位於一目標輸出電壓之電壓的附近。最後,此 出電壓(νουι)再提供給負载丨5。 但是’由於前述之誤差放大器I丨及類比緩衝器丨2均由 類比式電路構成,所以誤差放大器丨丨及類比緩衝器丨2的表 現對於環境的變化非常敏感,連帶使得習知之類比式線性 調變器的表現(如輸出電壓之電壓值)也對於環境的變化非 常敏感。因此,習知之類比式線性調變器常無法運作於原 本所設計之工作點上3 況且,如前所述,受制於類比式電路的基本特性,習 知之線性電壓調變器的電流效率(C_m Efficiency)相當 有限,且也不易於整合至各式晶片中,造成業界將習知: 類比式線性調變器應用於綠能相關應用中(如需低電壓 '高 電流效率及佔據較小之晶片面積的應用)時不小的困擾。门 因此業界而要—種可輸出—位於超越臨界電壓範圍 内或-接近臨界電壓範圍内的調變電壓、具有高電流效率 及可整合至各式晶片中的數位式線性電壓調變器。 【發明内容】 201223106 本發明之主要目的係在提供一種數位式線性電壓調變 器,俾將線性電壓調變器整合至各式晶片中。 。。本發明之_人要目的係在提供一種數位式線性電壓調變 器,俾能輸出一位於超越臨界電壓範圍内或一接近臨界電 壓範圍内的調變電壓,並具有高電流效率。 /為達成上述目#纟發明之數位式線性電壓調變哭, 係用於輸出一調變電壓,包括:至少—數位誤差摘測;路 杈組,係依據一介於一比較電壓與一參考電壓之間的電壓 差值輸出-邏輯信號;一第一控制邏輯電路模組,係耗接 匕至乂數位6吳差偵測電路模組,以接收此邏輯信號; 7第二控制邏輯電路模組,係_此至少-數位誤差偵 組,㈣收此邏輯信號一模式指示模組,係輕 控制璉輯電路模組,以設定此調變電壓之準 壓器電路模組,係、分職接至此模式指示模組及 h數位誤差情測電路模組;至少-上推元件電路模 ΐ路::Γ接t此第一控制邏輯電路模組;以及-下拉元件 吴,且’係耗接至此第二控制邏輯電路模組。其中,此 :::制邏輯電路模組與此第二控制邏輯電路模組係依據 此避輯信號的狀態, 制此至少一上推元件電路模組 拉讀電路模組之運作方式,以輸出此調變電壓, 相=:f推元件電路模組係與此下拉元件電路模組互 ;I交電壓輸出端’以從此調變電壓輸出端輸出 此調變電屬·士 A %输出 組,以將此調變二 =出端並_此分壓器電路模 包土傳遞至此分壓器電路模組,此分壓器 201223106 電路模、’且則再依據此模式指示模組所設定之此調變電壓之 準位,對應輸出ϋ較電壓至此至少―數位誤差偵測 電路楔組,以使此至少一數位誤差偵測電路模組輸出一另 一邏輯信號。 因此,由於在本發明之數位式線性電壓調變器中,其 數位誤差偵測電路模組所包含之各組成元件(即第一電壓 控制延遲單元、第二電壓控制延遲單元、第一反相器、第 一反相斋、第三反相器、第四反相器、第五反相器 '第六 反相,、第七反相11、第八反相器、第-正反器及第二正 二器等)均為數位元件,故相較於具有類比式誤差放大器之 習知之線性電壓調變器,本發明之數位式線性電壓調變器 不僅電流效率大幅提昇(可達99 9%的水準),其更可整合至 各式晶片中。 除此之外,藉由適當地設計其上推元件電路模組的數 目及其分壓器電路模組所輸出電壓之種類的數目,本發明 之j位式線性電壓調變器可在維持其佔據晶片面積低於一 特疋值的條件下,持續地提供一位於超越臨界電壓範圍内 或—接近臨界電壓範圍内的調變電壓(如一介於〇 5伏特至 γ伏特之間的調變電壓)’且可迅速地將其所輸出之調變電 壓之電壓切換至另一電壓值(如從05伏特迅速地切換至 〇·7伏特)。 另方面,由於本發明之數位式線性電壓調變器具有 至〆一數位誤差偵測電路模組(如3個數位誤差偵測電路模 且)且這至;一數位誤差偵測電路模組係依序運作,即它 201223106 們係依序因為被觸發,而依據一介於一比較電壓(Vmp)與一 參考電壓(vREF)之間的電壓差值輸出一邏輯信號。所以,在 本發明之數位式線性電壓調變器中,其產生邏輯信號的時 間週期便可進一步縮短’使得本發明之數位式線性電壓調 變器的反應時間間隔也進一步縮短,且可於相同的時間内 調變出更多次調變電壓。如此,本發明之數位式線性電壓 調變益除可迅速地將其所輸出之調變電壓之電壓切換至另 一電壓值(如從0.5伏特迅速地切換至〇 7伏特)之外,其輸 出調變電壓的穩定度更可大幅度地提昇。 【實施方式】 請參閱圖2 ’其係顯示本發明一實施例之數位式線性電 壓調變器之電路架構的示意圖。如圖2所示,本發明一實施 例之數位式線性電壓調變器2係包括:至少一數位誤差偵測 電路模組21、一第一控制邏輯電路模組22、一第二控制邏 輯電路杈組23、一模式指示模組24'一分壓器電路模組25、 至:/、上推元件電路模組26以及一下拉元件電路模組27。 其中,至少一數位誤差偵測電路模組2丨係依據一介於一比 較電壓(vCMP)與一參考電壓(Vref)之間的電壓差值輸出一 邏輯k號(圖中未示)。H意的是,雖然圊2僅顯示出一級 數位誤差偵測電路模組2卜但事實上,在不同的應用環境 中’本發明之數位式線性電壓調t器亦可具有不同數目之 數位誤差偵測電路模組2 !。 201223106 “此外,第—控制邏輯電路模組22與第二控制邏輯電路 模組23係分別耗接至至少—數位誤差偵測電路模組2卜以 接收前述之邏輯信號。 β。另♦方面m务明一實施例之數位式線性電壓調變 «中&式才曰T ;^組24係轉接至帛—控制邏輯電路模組 22’分壓器電路模組25則分別輕接至模式指示模組24及數 位誤差偵測電路模組21。除此之外,至少一上推元件電路 杈組26係叙接至第一控制邏輯電路模組22,下拉元件電路 模組27則耦接至第二控制邏輯電路模組23 ^ 需注意的是,在本實施例中,前述之邏輯信號係包含 一第:次邏輯信號及-第二次邏輯信號。但是,在其他的 應用環境中’前述之邏輯信號可包含不同數目之次邏輯信 號。另一方面,雖然在圖2所示之本發明一實施例之數位式 線性電壓調變中.5 ,丨、__ u & Π 乂杰T至)上推几件電路模組26僅包含一 组上推元件電路模組。但是,在其他的應用環境中前述 之至少一上推元件電路模組26亦可包含不同組數的上推元 件電路模組,例如包含6組上推元件電路模組。 再如圖2所示’前述之至少—上減件電路模組26係與 下拉兀件電路模組27互相耦接於一調變電壓輸出端“a,以 輸出一調變電壓(Vreg),而調變電壓輸出端28a則再耦接至 一負載29。另一方面,調變電壓輸出端28a另耦接至分壓器 電路杈組2:>,以將調變電壓輸出端28a所輸出之調變電壓 (Vrkg)傳遞(回授)至分壓器電路模組25。 201223106 而當本發明一實施例之數位式線性電壓調變器運作 時,第一控制邏輯電路模組22與第二控制邏輯電路模組23 均依據前述之邏輯信號(其所包含之第一次邏輯信號及第 二次邏輯信號)的狀態,分別控制至少一上推元件電路模組 26(與第一控制邏輯電路模組22耦接)及下拉元件電路模組 27(與第二控制邏輯電路模組23耦接)的運作方式使得至少 一上推元件電路模組26及下拉元件電路模組27互相合作而 輸出前述之調變電壓(Vrkg),且此被輸出之調變電壓(Vr^) 的準位係由模式指示模組24所控制。 隨後,如前所述,此調變電壓(Vrkg)除了從調變電壓 輸出端28a輸出以外’亦被便被傳遞(回授)至分壓器電路模 組25。接著,分壓器電路模組25便依據模式指示模組“所 設定之該調變電壓之準位,對應輸出一另一比較電壓(VcMp·) 至至少一數位誤差偵測電路模組2丨,以使至少一數位誤差 摘測電路模組21能依據此另一比較電壓〜,)與前述之參 考電壓〜γ)之間的電壓差值,輸出一另—邏輯信號(圖中 未示)。 後本發明一貝%例之數位式線性電盤調變器之第 邏輯電路模組22與帛二控制邏輯電路模組23便再次 依據此另—邏輯信號(圖中未示)的狀態,分別控制至少一上 ^元件電路模組26及下拉元件電路模組27的運作方式使 2至少一上推元件電路模組26及下拉元件電路模組27互相 輸出另一调變電壓(Vreg ),此輪出調變電壓之準 位亦由模式指示模組24所控制。 201223106 以下,將配合圖式,詳細敘述本發明一實施例之數位 式線性電壓調變器所具之數位誤差偵測電路模組的電路架 搆,以及其輸出一邏輯信號(包含一第一次邏輯信號Q丨及一 第二次邏輯信號Q2)的流程。 如圖3所示’其係顯示本發明一實施例之數位式線性電 壓調變器所具之數位誤差偵測電路模組之電路架構的示意 圖。其中,數位誤差偵測電路模組2 1包含一第一延遲線單 元31、一第一正反器32、一第二延遲線單元33、一第二正 反器34及一反及閘(NAND gate)35。此外,第一延遲線單元 31進一步包含_第一電壓控制延遲單SD,、一第一反相器 311、一第二反相器312及一第三反相器313,且第—電壓控 制延遲單元〇,係由一比較電壓(VcMp)所控制。另一方面, 第一延遲線單元33則進一步包含一第二電壓控制延遲單元 〇2、一第四反相器331、一第五反相器332、一第六反相器 333及一第七反相器334 ,且第二電壓控制延遲單元D2係由 一參考電壓(Vref)所控制。 在本實施例中’第一正反器32係一負緣觸發正反器, 且具有一第一輸入端I,、一第一時脈輸入端CLK|&一第一 輸出端〇,。其中’第一輸入端〖I係耦接至第三反向器3丨3之 輸出端’第一輸出端〇,則輸出一第一次邏輯信號(Q丨)。另 —方面,第二正反器34亦為一負緣觸發正反器,且具有一 第二輸入端丨2、一第二時脈輸入端CLK2及一第二輸出端 〇2°其中,第二輸入端h係耦接至第三反向器313之輸出端, 第二輸出端〇2則輸出一第二次邏輯信號(Q2)。此外,第一 201223106 正反器32之第一時脈輸入端clk,係耦接至第五反相器332 之輸出端,第二正反器34之第二時脈輸入端則耦接至 第七反向器334之輸出端。 最後’在本實施例中,反及閘35包含一輸入端、一致 能端(EN)及一輸出端,且反及閘35之輸入端係耦接至第四 反相器33 1之輸出端,反及閘35之輸出端則耦接至第八反向 器36。隨後,第八反向器36並再耦接至第一延遲線單元3ι 之第一電壓控制延遲單元D|及第二延遲線單元33之第二電 壓控制延遲單元D2。 而當數位誤差偵測電路模組2丨運作時,位於第三反相 器313之輸出側之〇〇端點的信號係來自一由第一電壓控制 延遲單元卩,發出,經過3個反相器(即第一反相器3U、第二 反相器3丨2與第三反相器3 1 3)延遲後所得的信號。至於位於 第五反相器332及第六反相器333之間之Ci端點的信號’係 來自一由第二電壓控制延遲單元D2發出,通過2個反相器 (即第四反相器331與第五反相器332)延遲後所得的信號。另 方面,位於第七反相器334之輸出側之C2端點的信號,則 ίτ'來自第二電壓控制延遲單元A發出,通過4個反相器(即 第四反相|§33卜第五反相器332、第六反相器333與第七反 相器334)延遲後所得的信號。 因此’基於前述之數位誤差偵測電路模組2丨中之D〇端 點、C 1端點及C2端點所分別具有的電路特徵,所以在不同 之電壓差值狀態下(即—介於比較電壓(ν〔Μρ)與參考電壓 (VREF — 0.5伏特)之間的電壓差值),本實施例之數位誤差 201223106 偵測電路模組21所輸出之第一次邏輯信號(Qi)與第二次邏 輯信號(Q2)所分別具有之邏輯值,便如下列表1所示: Q1邏輯值 Q2邏輯值 V CMP < 0.495伏特 1 1 0.495伏特 < Vcmp < 0.505 伏;特 0 ] 1 0.505 伏特<VCMP 0 0 表1201223106 VI. Description of the invention: [Technical field to which the invention pertains] It is possible to give: a digital linear voltage modulator, especially a modulation that is within or beyond the critical voltage range. Voltage, high current efficiency, and digital linear voltage modulators that can be integrated into a variety of wafers. [Prior Art] As a factory, voltage modulators can be roughly classified into two types, one is an exchange voltage regulator and the other is a linear voltage modulator. Among them, voltage regulators are often used in digital control systems. However, since the switching voltage regulator needs to convert the signal by the analog digital converter, there are a lot of traces in the circuit that are more than _ Φ # /, the inductor, and the switching voltage modulator is easy to integrate into one. Inside the wafer. Another benefit is that although the crossover of the switching voltage regulator is linear (4), it only needs to occupy a small wafer area, and it has a small capacitance. However, since the conventional linear voltage modulators are implemented in the form of analog circuits, when the linear voltage modulator operates in a high-speed environment, the magnitude of the quiescent current generated is smaller than the magnitude of the signal current. In fact, it is very significant 'the current efficiency of the conventional linear voltage modulator (C_ent Efficiency) is very limited. As shown in Fig. 1, it is a schematic diagram showing the circuit architecture of a conventional analog linear modulator. The analog analog linear modulator 1 is composed of an error amplifier (ΕΐΤ〇Γ Amplifier) 1 1 , an analog buffer 1 2 and a 201223106 output device 13 , and an analog buffer 丨The 2 series is coupled to the difference amplifier 1 1 and the output unit 13. When the analog analog modulator operates, the error amplifier n is used to compare the voltage difference between the reference voltage (~F) and the output voltage (ν〇υΐ) and the voltage difference is The value is transferred to the output element 丨3 via the analog buffer 丨2. Thereafter, the capacitive element 14 of the output element 13 is thus subjected to a charge and discharge operation such that the voltage of the output voltage CVour) is in the vicinity of the voltage of a target output voltage. Finally, the voltage (νουι) is supplied to the load 丨5. However, since the aforementioned error amplifier I丨 and analog buffer 丨2 are both composed of analog circuits, the performance of the error amplifier 丨丨 and analog buffer 丨2 is very sensitive to environmental changes, and the analogy is analogous to the linear modulation. The performance of the transformer (such as the voltage value of the output voltage) is also very sensitive to changes in the environment. Therefore, conventional analog linear modulators are often unable to operate at the operating point of the original design. As mentioned above, subject to the basic characteristics of analog circuits, the current efficiency of conventional linear voltage modulators (C_m) Efficiency) is quite limited and not easy to integrate into various types of wafers, which is known in the industry: Analog linear modulators are used in green energy-related applications (such as low voltage 'high current efficiency and smaller chips) The application of the area is not a small problem. So the industry has to be able to output - a modulation voltage that is within or beyond the threshold voltage range, a high current efficiency, and a digital linear voltage modulator that can be integrated into various wafers. SUMMARY OF THE INVENTION 201223106 The primary object of the present invention is to provide a digital linear voltage modulator that integrates a linear voltage modulator into a variety of wafers. . . SUMMARY OF THE INVENTION The object of the present invention is to provide a digital linear voltage modulator capable of outputting a modulation voltage in a range exceeding a threshold voltage or in a range close to a threshold voltage, and having high current efficiency. In order to achieve the above-mentioned goal, the digital linear voltage modulation crying is used to output a modulation voltage, including: at least - digital error sampling; the routing group is based on a comparison voltage and a reference voltage. Between the voltage difference output-logic signal; a first control logic circuit module, which is connected to the 乂6-bit difference detection circuit module to receive the logic signal; 7 second control logic circuit module , _ this at least - digital error detection, (four) receive this logic signal, a mode indicating module, is a light control circuit module, to set the voltage transformer circuit module of the modulation voltage, system, sub-job At this point, the mode indicating module and the h-digit error sensing circuit module; at least - pushing up the component circuit mode circuit:: connecting the first control logic circuit module; and - pulling down the component Wu, and the system is connected to this The second control logic circuit module. Wherein: the:::the logic circuit module and the second control logic circuit module are based on the state of the avoidance signal, and the operation mode of the at least one push-up component circuit module to read the circuit module is output The modulation voltage, phase =:f push component circuit module and the pull-down component circuit module; I cross voltage output terminal 'outputs the modulated electric energy A · A % output group from the modulated voltage output terminal, To adjust this to the second = output and _ the divider circuit circuit package soil is transferred to the voltage divider circuit module, the voltage divider 201223106 circuit mode, and then according to the mode set module The level of the modulation voltage is corresponding to the output voltage 至 to the at least “digital error detection circuit wedge group”, so that the at least one digital error detection circuit module outputs another logic signal. Therefore, in the digital linear voltage modulator of the present invention, the components included in the digital error detecting circuit module (ie, the first voltage control delay unit, the second voltage control delay unit, and the first inversion) , a first inverter, a third inverter, a fourth inverter, a fifth inverter 'sixth inversion, a seventh inversion 11, an eighth inverter, a first-reactor and The second positive second device and the like are all digital components, so the digital linear voltage modulator of the present invention not only greatly improves the current efficiency (up to 99 9%) compared with the conventional linear voltage modulator having an analog error amplifier. Level), which can be integrated into various wafers. In addition, the j-position linear voltage modulator of the present invention can maintain its number by properly designing the number of push-up element circuit modules and the number of types of voltages output by the voltage divider circuit modules thereof. Under the condition that the wafer area is less than a special value, continuously provide a modulation voltage in the range of exceeding the threshold voltage or close to the threshold voltage (such as a modulation voltage between 〇5 volts to γ volts) And can quickly switch the voltage of the modulated voltage it outputs to another voltage value (such as rapidly switching from 05 volts to 〇7 volts). On the other hand, the digital linear voltage modulator of the present invention has a digital error detection circuit module (such as three digital error detection circuit modules) and this; a digital error detection circuit module In order to operate, that is, it 201223106 is sequentially triggered to output a logic signal according to a voltage difference between a comparison voltage (Vmp) and a reference voltage (vREF). Therefore, in the digital linear voltage modulator of the present invention, the time period during which the logic signal is generated can be further shortened', so that the reaction time interval of the digital linear voltage modulator of the present invention is further shortened and can be the same The modulation voltage is modulated more times. Thus, the digital linear voltage modulation of the present invention can quickly switch the voltage of the modulated voltage outputted by it to another voltage value (for example, rapidly switching from 0.5 volt to 〇7 volt), and its output The stability of the modulation voltage can be greatly improved. [Embodiment] Please refer to Fig. 2' for a schematic diagram showing the circuit architecture of a digital linear voltage modulator according to an embodiment of the present invention. As shown in FIG. 2, the digital linear voltage modulator 2 of the embodiment of the present invention includes: at least one digital error detecting circuit module 21, a first control logic circuit module 22, and a second control logic circuit. The group 23, a mode indicating module 24', a voltage divider circuit module 25, a: /, a push-up component circuit module 26, and a pull-down component circuit module 27. The at least one digital error detecting circuit module 2 outputs a logical k number (not shown) according to a voltage difference between a comparison voltage (vCMP) and a reference voltage (Vref). H means that although 圊2 only shows the first-order digital error detection circuit module 2, in fact, the digital linear voltage regulator of the present invention can have different numbers of bit errors in different application environments. Detection circuit module 2!. 201223106 "In addition, the first control logic circuit module 22 and the second control logic circuit module 23 are respectively respectively connected to at least the digital error detection circuit module 2 to receive the aforementioned logic signal. In the embodiment, the digital linear voltage modulation «中 & type 曰T; ^ group 24 series to 帛 - control logic circuit module 22' voltage divider circuit module 25 are respectively connected to the mode Instructing the module 24 and the digital error detecting circuit module 21. In addition, at least one push-up device circuit group 26 is connected to the first control logic circuit module 22, and the pull-down device circuit module 27 is coupled. To the second control logic circuit module 23, it should be noted that in the embodiment, the foregoing logic signal includes a first-order logic signal and a second-order logic signal. However, in other application environments. The foregoing logic signal may include a different number of secondary logic signals. On the other hand, although in the digital linear voltage modulation of an embodiment of the present invention shown in FIG. 2, 丨, __ u & Π 乂 T T Up) a few pieces of circuit module 26 only contains a group The component circuit module is pushed. However, in other application environments, the at least one push-up component circuit module 26 may also include different sets of push-up component circuit modules, for example, including six sets of push-up component circuit modules. As shown in FIG. 2, the at least the upper-substance circuit module 26 and the pull-down device circuit module 27 are coupled to a modulation voltage output terminal "a" to output a modulation voltage (Vreg). The modulated voltage output 28a is recoupled to a load 29. On the other hand, the modulation voltage output terminal 28a is further coupled to the voltage divider circuit group 2: > to transfer (return) the modulation voltage (Vrkg) output from the modulation voltage output terminal 28a to the voltage division. Circuit module 25. 201223106, when the digital linear voltage modulator of an embodiment of the present invention operates, the first control logic circuit module 22 and the second control logic circuit module 23 are both based on the aforementioned logic signal (the first time included therein) The state of the logic signal and the second logic signal respectively controls at least one push-up component circuit module 26 (coupled with the first control logic circuit module 22) and the pull-down component circuit module 27 (with the second control logic circuit) The module 23 is coupled to operate in such a manner that at least one of the push-up component circuit module 26 and the pull-down component circuit module 27 cooperate with each other to output the aforementioned modulation voltage (Vrkg), and the output modulated voltage (Vr^) The level of the system is controlled by the mode indicating module 24. Subsequently, as previously described, this modulation voltage (Vrkg) is also transferred (returned) to the voltage divider circuit module 25 in addition to being output from the modulation voltage output terminal 28a. Then, the voltage divider circuit module 25 correspondingly outputs a further comparison voltage (VcMp·) to at least one digital error detection circuit module according to the level of the modulation voltage set by the mode indication module. So that at least one digit error extracting circuit module 21 can output a further logic signal (not shown) according to the voltage difference between the other comparison voltage 〜, and the aforementioned reference voltage ~γ). The logic circuit module 22 and the second control logic circuit module 23 of the digital linear panel modulator of the present invention are again based on the state of the logic signal (not shown). Controlling at least one of the upper component circuit module 26 and the pull-down component circuit module 27 to operate at least one of the push-up component circuit module 26 and the pull-down component circuit module 27 to output another modulation voltage (Vreg ). The level of the modulated voltage is also controlled by the mode indicating module 24. 201223106 Hereinafter, the digital error detecting circuit of the digital linear voltage modulator according to an embodiment of the present invention will be described in detail with reference to the drawings. Module circuit frame And a flow outputting a logic signal (including a first logic signal Q丨 and a second logic signal Q2). As shown in FIG. 3, it shows a digital linear voltage modulation according to an embodiment of the present invention. The schematic diagram of the circuit structure of the digital error detection circuit module includes a first delay line unit 31, a first flip-flop 32, and a second delay line. The unit 33, a second flip-flop 34, and a NAND gate 35. In addition, the first delay line unit 31 further includes a first voltage control delay single SD, a first inverter 311, and a The second inverter 312 and a third inverter 313, and the first voltage control delay unit 〇 is controlled by a comparison voltage (VcMp). On the other hand, the first delay line unit 33 further includes a first Two voltage control delay units 〇2, a fourth inverter 331, a fifth inverter 332, a sixth inverter 333 and a seventh inverter 334, and the second voltage control delay unit D2 is Controlled by a reference voltage (Vref). In the present embodiment, the first flip-flop 32 is The negative edge triggers the flip-flop, and has a first input terminal I, a first clock input terminal CLK|& a first output terminal 〇, wherein the first input terminal is coupled to the third The output terminal 'the first output terminal 反向 of the inverter 3丨3 outputs a first logic signal (Q丨). On the other hand, the second flip-flop 34 is also a negative edge triggering flip-flop, and Having a second input terminal 丨2, a second clock input terminal CLK2, and a second output terminal 〇2°, wherein the second input terminal h is coupled to the output end of the third inverter 313, the second output The second logic signal (Q2) is outputted by the terminal 〇 2. In addition, the first clock input terminal clk of the first 201223106 flip-flop 32 is coupled to the output terminal of the fifth inverter 332, and the second positive The second clock input of the inverter 34 is coupled to the output of the seventh inverter 334. Finally, in this embodiment, the anti-gate 35 includes an input terminal, a uniform energy terminal (EN) and an output terminal, and the input terminal of the opposite gate 35 is coupled to the output terminal of the fourth inverter 33 1 . The output of the anti-gate 35 is coupled to the eighth inverter 36. Subsequently, the eighth inverter 36 is recoupled to the first voltage control delay unit D| of the first delay line unit 3i and the second voltage control delay unit D2 of the second delay line unit 33. When the digital error detecting circuit module 2 is operated, the signal at the end point of the output side of the third inverter 313 is derived from a first voltage controlled delay unit, and is sent out through three inversions. The signal obtained after the delay of the first inverter 3U, the second inverter 3丨2 and the third inverter 3 1 3 is delayed. The signal 'between the Ci terminals located between the fifth inverter 332 and the sixth inverter 333 is derived from a second voltage controlled delay unit D2, and passes through two inverters (ie, the fourth inverter). The signal obtained after the delay of 331 and the fifth inverter 332). On the other hand, the signal at the C2 end point on the output side of the seventh inverter 334 is φτ' from the second voltage control delay unit A, and is passed through four inverters (ie, the fourth inversion|§33b The signals obtained after the delay of the fifth inverter 332, the sixth inverter 333, and the seventh inverter 334) are delayed. Therefore, based on the circuit characteristics of the D〇 endpoint, the C1 endpoint, and the C2 endpoint in the digital error detection circuit module 2, the voltage difference is different (ie, between Comparing the voltage difference between the voltage (ν [Μρ) and the reference voltage (VREF - 0.5 volts)), the digital error 201223106 of the present embodiment detects the first logic signal (Qi) and the output of the circuit module 21 The logical values of the secondary logic signal (Q2) respectively are as shown in the following list 1: Q1 logic value Q2 logic value V CMP < 0.495 volts 1 1 0.495 volts < Vcmp < 0.505 volts; special 0 ] 1 0.505 Volt <VCMP 0 0 Table 1

士鈉所述本發明一實施例之數位式線性電壓調變器 之第二控制邏輯電路模組22及第二控制邏輯電路模組23便 接受前述之第-次邏輯信號(Q1)與第二次邏輯信號(⑻以 控制至少一上推元件電路模組%(與第一控制邏輯電路模 組22耦接)及下拉元件電路模組27(與第二控制邏緝電路模 .,且-3耗接)的運作方式,使得至少_上推元件電路模組%及 下拉元件電路模組2 7互相合作而輸出前述之調變電壓 (Vre(;)。The second control logic circuit module 22 and the second control logic circuit module 23 of the digital linear voltage modulator of the embodiment of the present invention receive the first-order logic signal (Q1) and the second Secondary logic signal ((8) to control at least one push-up component circuit module % (coupled with the first control logic circuit module 22) and pull-down component circuit module 27 (with the second control logic circuit module, and -3 The operation mode is such that at least the push-up component circuit module % and the pull-down component circuit module 27 cooperate with each other to output the aforementioned modulation voltage (Vre(;).

…此外’如前所述,調變電壓(V㈣)的準位係由模式右 不杈組24所6又疋’模式指示模組24控制分壓器電路模組2 將所接受的調變電壓(Vreg)轉換成—另—比較電瘦 (Vcmp )例如將一電壓接近0.7伏特之調變電壓(Vreg 轉換成一電壓接近 : ·伏特之另一比較電壓(VCMP )。 最後,在本實施例令,圖3所示之數位誤差读測電路模 組21中所包含之第 反相窃311、第二反相器3|2、第三反 相?§313、第四反相哭,2 时J31、苐五反相器332、第六反相器 12 201223106 333、第七反相器334及第八反相器36均為數位式反相器, 且第一正反器32、第二正反器34及反及閘35亦為數位元 件,所以數位誤差偵測電路模組2 1係為一數位電路模組, 而非構成習知之類比式誤差放大器之類比電路模組。 請再參照圖4,其係顯示圖3所示之第一電壓控制延遲 單元之電路架構的示意圖。其中,第一電壓控制延遲單元 D,具有一第一 PMOS電晶體41、一第二PMOS電晶體42、一 第三PMOS電晶體43、一第四PMOS電晶體44、一第一NMOS 電晶體45以及一輸出反相器46。此外,第一 PMOS電晶體4 1 之源極係耦接至一偏壓電源(VDD),第一 PMOS電晶體4 1之 閘極端則耦接至一比較電壓(VCMP)。另一方面,第二PMOS 電晶體42之源極係耦接至第一 PMOS電晶體4 1之汲極,第二 PMOS電晶體42之閘極則接地。除此之外,第三PMOS電晶 體43之源極係耦接至第二PMOS電晶體42之汲極,第三 PMOS電晶體43之閘極亦接地。 而如圖4所示,第四PMOS電晶體44之源極係耦接至第 三PMOS電晶體43之汲極,第四PMOS電晶體44之汲極則耦 接至第一NMOS電晶體45之汲極,再耦接至輸出反相器46。 此外,第一NM0S電晶體45之閘極與第四PMOS電晶體44之 閘極係互相耦接,再耦接至一輸入電壓(IN),輸出反相器46 則耦接至一輸出電壓(OUT)。所以,因第二PMOS電晶體42 之閘極與第三PMOS電晶體43之閘極均接地的關係,第二 PMOS電晶體42及第三PMOS電晶體43均呈現導通之狀態, 201223106 且能抑制第四PMOS電晶體44與第一 NMOS電晶體45切換 狀態時所產生之耦合干擾。 而當第一電壓控制延遲單元D!運作時,輸入至第一 PM0S電晶體41之閘極的電壓為比較電壓(VcMp),且當比較 電壓(VCMP)增加時,第一pm〇s電晶體41之汲極源極電壓 (Vds)便變小’流過第一 PM0S電晶體41之電流便因而縮 減’使得偏壓電源(VDD)經由第一pm〇S電晶體41而對位於 第一PMOS電晶體41下方之電路的充電速率便降低。如此, 當比較電壓(VCMP)增加時,第一電壓控制延遲單元D|之輸 入電壓(IN)傳送至輸出電壓(〇υτ)的延遲時間便延長。相反 地’當比較電壓(VCMP)減小時’第一PMOS電晶體41之汲極 源極電壓(VDS)便變大,流過第一 pmos電晶體41之電流便 因而增加,使得偏壓電源(Vdd)經由第一PM〇s電晶體4丨而 對位於第一 PMOS電晶體4 1下方之電路的充電速率便提 幵。如此,當比較電壓(vCMP)減小時,第一電壓控制延遲單 元D,之輸入電壓(in)傳送至輸出電壓(〇υτ)的延遲時間便 縮短。 需注意的是,由於在前述之數位誤差偵測電路模組2丨 中,第二電壓控制延遲單元〇2具有與第一電壓控制延遲單 疋仏相同之電路架構,且兩者之間的差別僅在於第二電壓 控制延遲單元D 之第一 Ρ μ 〇 S電晶體之閘極端係耦接至— 參考電壓(vR1ZF),而非一比較電壓(VcMp)。所以,對於第二 電壓控制延遲單元D2之電路架構及運作的詳細敘述,在此 將不再贅述。... In addition, as mentioned above, the level of the modulation voltage (V(4)) is controlled by the mode right group 24 and the mode indicator module 24 controls the voltage divider circuit module 2 to accept the modulated voltage. (Vreg) is converted into - another - comparative thin (Vcmp), for example, a voltage close to a voltage of 0.7 volts (Vreg is converted to a voltage close to: - another voltage of comparison (VCMP). Finally, in this embodiment The digital error reading circuit module 21 shown in FIG. 3 includes the first reverse thief 311, the second inverter 3|2, the third reverse phase § 313, the fourth reverse cry, and the second time J31. The fifth inverter 332, the sixth inverter 12 201223106 333, the seventh inverter 334 and the eighth inverter 36 are all digital inverters, and the first flip-flop 32, the second positive and negative The device 34 and the anti-gate 35 are also digital components, so the digital error detection circuit module 2 1 is a digital circuit module, rather than an analog circuit module that constitutes a conventional analog error amplifier. Please refer to FIG. 4 again. , which is a schematic diagram showing the circuit architecture of the first voltage controlled delay unit shown in FIG. 3. The first voltage control delay The unit D has a first PMOS transistor 41, a second PMOS transistor 42, a third PMOS transistor 43, a fourth PMOS transistor 44, a first NMOS transistor 45, and an output inverter 46. In addition, the source of the first PMOS transistor 4 1 is coupled to a bias power supply (VDD), and the gate terminal of the first PMOS transistor 41 is coupled to a comparison voltage (VCMP). The source of the second PMOS transistor 42 is coupled to the drain of the first PMOS transistor 41, and the gate of the second PMOS transistor 42 is grounded. In addition, the source of the third PMOS transistor 43 The gate of the third PMOS transistor 43 is also grounded. As shown in FIG. 4, the source of the fourth PMOS transistor 44 is coupled to the third PMOS. The drain of the fourth PMOS transistor 44 is coupled to the drain of the first NMOS transistor 45, and is coupled to the output inverter 46. In addition, the gate of the first NMOS transistor 45 The gates of the fourth PMOS transistor 44 are coupled to each other and coupled to an input voltage (IN), and the output inverter 46 is coupled to an output voltage (OUT). The gate of the second PMOS transistor 42 and the gate of the third PMOS transistor 43 are grounded, and the second PMOS transistor 42 and the third PMOS transistor 43 are both turned on, 201223106 and can suppress the fourth PMOS. The coupling between the transistor 44 and the first NMOS transistor 45 is switched. When the first voltage control delay unit D! operates, the voltage input to the gate of the first PMOS transistor 41 is a comparison voltage (VcMp). And when the comparison voltage (VCMP) increases, the drain source voltage (Vds) of the first pm〇s transistor 41 becomes smaller, and the current flowing through the first PMOS transistor 41 is thus reduced. The power source (VDD) is reduced in charge rate to the circuit under the first PMOS transistor 41 via the first pmS transistor 41. Thus, as the comparison voltage (VCMP) increases, the delay time at which the input voltage (IN) of the first voltage-controlled delay unit D| is transmitted to the output voltage (?τ) is prolonged. Conversely, when the comparison voltage (VCMP) is decreased, the drain source voltage (VDS) of the first PMOS transistor 41 becomes large, and the current flowing through the first pmos transistor 41 is thereby increased, so that the bias power source ( Vdd) improves the charging rate of the circuit under the first PMOS transistor 41 via the first PM〇s transistor 4丨. Thus, when the comparison voltage (vCMP) is decreased, the delay time of the first voltage control delay unit D, the input voltage (in) is transmitted to the output voltage (?τ) is shortened. It should be noted that, in the foregoing digital error detecting circuit module 2, the second voltage control delay unit 〇2 has the same circuit architecture as the first voltage control delay unit, and the difference between the two Only the gate terminal of the first Ρ μ 〇 S transistor of the second voltage controlled delay unit D is coupled to the reference voltage (vR1ZF) instead of a comparison voltage (VcMp). Therefore, a detailed description of the circuit architecture and operation of the second voltage control delay unit D2 will not be repeated here.

201223106 :後® 4所不之電壓控制延遲單元之結構僅為本實施 ”斤使用之一特定態樣,即電壓控制延遲單元之組成電路 構並不限於圖4所不之電路結構,任何可用電壓來控制| ^狀態㈣路皆可適用於本發明―以例之數位式線性 壓調變器所具之數位誤差偵測電路模組之電壓控制延遲 單元。 圖5係顯示本發明一實施例之數位式線性電塵調變器 :具之分壓器電路棋組之電路架構的示意圖。#中,分壓 杰電路模組5係為-電阻式分壓器電路模組,且在本實施例 中’分壓器電路模組5係包含6個電阻元件5Π、512 513、 514、515、516及6個開關元件52ι、⑵⑵、似、仍、 526。此外’各個不同開關元件所分別對應的電路分別具有 不同的分Μ比率’以將調變電壓之電壓分壓轉換至參 考電壓(VREF)之電壓附近,以供數㈣差㈣電路模組使 如圖5所示,各個開關元件52卜522、523、524、525、 526所對應之電路具有的分壓比率,由上而下依序為丨、 5/6 5/7、5/8 ' 5/9及1/2。如此,本發明_實施例之數位式 線性電壓調變器所具之分壓器電路模组便可將一位於超越 臨界電壓^uper thresh0⑷範圍m近臨界電壓㈣r threshold)範圍内之調變電壓(Vre(;)之電壓(即調變電壓之電 壓介於〇.5伏特至1伏特之間)分壓轉換至參考電壓(Vri:f) 之電壓附近。而且,在本實施例中參考電壓d丨)為W 伏特。 201223106 需注意的是,雖然於圖5中,分壓器電路模組 個電阻元件與六個開關元件,但其數目乃是為了搭配本‘ 明一實施例之數位式線性電壓調變器之輪出電壓準位的數 目(因本發明一實施例之數位式線性電壓調變器之輸出電 壓準位可為0.5伏特、0_6伏特、0.7伏特、〇 8伏特。、"伏特、 !伏特,共6種)而設計。所以,事實上,分壓器電路^且所 包含之電阻元件與開關元件之數目並無任何限制,它們可 依據欲輸出之電壓準位的數目,而設計分壓器電路模組呈 有其他數目之電阻元件與開關元件。 ' ' ''201223106: The structure of the voltage control delay unit of 4 is not only the specific aspect of the implementation of the present invention, that is, the circuit structure of the voltage control delay unit is not limited to the circuit structure shown in Fig. 4, any available voltage To control | ^ state (four) way can be applied to the voltage-controlled delay unit of the digital error detecting circuit module of the digital linear voltage modulator of the present invention - Fig. 5 shows an embodiment of the present invention Digital linear electric dust modulator: Schematic diagram of the circuit structure of the voltage divider circuit board. In the middle, the partial pressure circuit module 5 is a resistive voltage divider circuit module, and in this embodiment The 'divider circuit module 5 includes six resistive elements 5Π, 512 513, 514, 515, 516 and six switching elements 52ι, (2) (2), similar, still, 526. In addition, 'each different switching element corresponds to The circuits respectively have different bifurcation ratios to convert the voltage division voltage of the modulation voltage to the vicinity of the voltage of the reference voltage (VREF) for the number (four) difference (four) circuit module to be as shown in FIG. 5, each switching element 52 522, 523, 524, 525, 52 The corresponding circuit has a voltage division ratio of 丨, 5/6 5/7, 5/8 '5/9 and 1/2 from top to bottom. Thus, the digital linearity of the present invention_embodiment The voltage divider circuit module of the voltage modulator can set a voltage (Vre (;) voltage (ie, the modulation voltage) within a range of a threshold voltage (four) r threshold that exceeds the threshold voltage ^uper thresh0(4). The voltage is between 〇.5 volts and 1 volt. The partial voltage is converted to the vicinity of the voltage of the reference voltage (Vri:f). Moreover, in the present embodiment, the reference voltage d丨) is W volt. 201223106 Although in FIG. 5, the voltage divider circuit module has one resistive element and six switching elements, the number is used to match the wheel-out voltage level of the digital linear voltage modulator of the present embodiment. The number (the output voltage level of the digital linear voltage modulator according to an embodiment of the present invention can be designed to be 0.5 volts, 0-6 volts, 0.7 volts, 〇8 volts, "volts, volts, 6 types) Therefore, in fact, the voltage divider circuit and the number of resistor elements and switching elements included There are no restrictions, they can be designed according to the number of voltage levels to be output, and the voltage divider circuit module is designed to have other numbers of resistance elements and switching elements. ' ' ''

^至於本發明一實施例之數位式線性電壓調變器之運作 態樣’則將詳細說明如下: 2先,請先參照圖5之分壓器電路模組5,若欲使本發 明一實施例之數位式線性電壓調變器輸出一電壓為〇 7伏 特之調變電壓(VREG),模式指示器24便控制分壓器電路模也 5,使得分壓器電路模組5中具有分壓比率5/7的電路導通’, 即將開關元件523關閉。The operation mode of the digital linear voltage modulator according to an embodiment of the present invention will be described in detail as follows: 2 First, please refer to the voltage divider circuit module 5 of FIG. 5, if an implementation of the present invention is to be implemented. For example, the digital linear voltage modulator outputs a voltage of 〇7 volts (VREG), and the mode indicator 24 controls the voltage divider circuit module 5 so that the voltage divider circuit module 5 has a voltage divider. The circuit of ratio 5/7 is turned on, that is, the switching element 523 is turned off.

接著因參考電壓(Vref)被設定為〇 5伏特故前述之 〇·7伏特的調變電壓(Vreg)便經過(5/7)分壓比率之電路使 得〇_7伏特的調變電壓除頻至〇5伏特附近。隨後,分壓轉 換後之電壓(稱為另一比較電壓)便再被傳送至數位誤差偵 ’貝J電路模組2丨。此時,數位誤差偵測電路模組2}便將此另 比較電壓(vCMP)與參考電壓比較。 隨後,第一次邏輯控制信號(Q1)與第二次邏輯信號(Q2) 便傳运至第-控制邏輯電路模組22與第二控制邏輯電路模 16 201223106 組23,第一控制邏輯電路模組22與第二控制邏輯電路模組 23則依據接收之第一次邏輯控制信號(Q丨)與第二次邏輯信 號(Q2)所分別具有的邏輯值,分別控制至少一上推元件電 路模組26與下拉元件電路模組27之運作方式使得至少一 上推元件電路模組26及下拉元件電路模組27互相合作而輸 出一調變電壓(VREG)。 w 當另一比較電壓(vCMP)係高於參考電壓(VRd時(因另Then, since the reference voltage (Vref) is set to 〇5 volts, the above-mentioned 〇7 volt modulation voltage (Vreg) is passed through the (5/7) voltage division ratio circuit to divide the 〇7 volt modulation voltage. Near to 5 volts. Subsequently, the voltage after the partial voltage conversion (referred to as another comparison voltage) is again transmitted to the digital error detector. At this time, the digital error detecting circuit module 2} compares the other comparison voltage (vCMP) with the reference voltage. Subsequently, the first logic control signal (Q1) and the second logic signal (Q2) are transmitted to the first control logic circuit module 22 and the second control logic circuit module 16 201223106 group 23, the first control logic circuit mode The group 22 and the second control logic circuit module 23 respectively control at least one push-up component circuit mode according to the logic values respectively received by the first logic control signal (Q丨) and the second logic signal (Q2) received. The group 26 and the pull-down component circuit module 27 operate in such a manner that at least one of the push-up component circuit module 26 and the pull-down component circuit module 27 cooperate with each other to output a modulation voltage (VREG). w When another comparison voltage (vCMP) is higher than the reference voltage (VRd (due to another

一比較電壓(VCMP)係高於0·505伏特,而〇 5〇5伏特又高 於參考電壓之0.5㈣)’第二控制邏輯電路模組23便控制 下拉元件電路模組27,以將調變電壓輸出端“a之電壓下 拉。相反m比較電壓(VeMp.)係低於參考電壓(v町) 時(因另一比較電壓(VcMP )係低於0 495伏特,而〇 495伏 特又低於參考電壓之0.5伏特),第-控制邏輯電路模組22 便控制至少一上推元件電路模組26,以將調變電壓輸出端 28a之電壓上推。 “之後’此調變電壓(Vr[:g;K£被傳遞(回授)至分壓器電路 、· 25以重複别述之運作。而此運作方式便不斷地循環, 直到調變電壓輸出端28a所輸出之調變電壓的電壓被調變 至〇 · 7伏特為止。 请參閱圖6,其係顯示本發明另一實施例之數位式線性 電壓調變器之電路架構的示意圖。如圖6所示,本發明另一 :施例之數位式線性電壓調變器6係包括:―數位誤差偵測 ,路杈組6丨、—第一控制邏輯電路模組' 一第二控制邏 。電路換63 &式指*模組64、-分壓器電路模組μ ' 201223106 6個上推元件電路模組66〗' 662、663、、665、666以及 -下拉元件電路模組67。纟中,&位誤差偵測電路模组^ 係依據一介於一比較電壓(VcMp)與一參考電壓(v_)之間 的電壓差值,輸出一邏輯信號(圖中未示)。此外,第一控制 邏輯電路模M62與第二控制邏輯電路模組63係分別耗接至 數位誤差偵測電路模組61,以接收前述之邏輯信號。 另方面在本發明另一貫施例之數位式線性電壓調 變器中,模式指示模組64係耦接至第一控制邏輯電路模組 62,分壓器電路模組65則分別耦接至模式指示模組μ及數 位誤差偵測電路模組W。除此之外,前述之6個上推元件電 路杈組661、662、663、664、665、666均耦接至第一控制 邏輯電路模組62及模式指*模組64,並由模式指示模組M 控制以累加方式運作。另一方面’下拉元件電路模組。則 耗接至第二控制邏輯電路模組63。 再如圖6所示,前述之6個上推元件電路模組66丨、662、 663、664、665 ' 666係分別與下拉元件電路模組”互相耦 接於調菱電壓輸出端68a,以輸出一調變電壓(V^ G),而 調變電壓輸出端68a則再耦接至一負載69。另一方面,調變 電壓輸出端68a另耦接至分壓器電路模組65,以將調變電壓 輸出端68a所輸出之調變電壓(Vreg)傳遞(回授)至分壓器電 路模組65。在本實施例中,前述之6個上推元件電路模組 661、662、663 ' 664、665、066及下拉元件電路模組67係 互相合作,以輸出一最大值為1 00 m A的負載電流。 201223106 _此外,别述之6個上推元件電路模組的電路結構均相 同它們均分別包含一驅動電路模組及一 電晶體。例 如,上推TL件電路模組66 1包含一驅動電路模組66丨丨及一 PMOS電晶體66丨2,且驅動電路模組“丨丨係耦接至第一控制 邏輯電路模組62,PMOS電晶體66丨2則輸出任一調變電壓 (VREG)的情況下(如〇.5伏特至丨伏特之間的任一電壓)所 需的負載電流。A comparison voltage (VCMP) is higher than 0.505 volts, and 〇5〇5 volts is higher than 0.5 (four) of the reference voltage.) The second control logic circuit module 23 controls the pull-down component circuit module 27 to adjust The voltage at the variable voltage output terminal "a is pulled down. Conversely, the m comparison voltage (VeMp.) is lower than the reference voltage (v-cho) (because another comparison voltage (VcMP) is lower than 0 495 volts, and 〇495 volts is low At 0.5 volts of the reference voltage, the first control logic circuit module 22 controls at least one push-up component circuit module 26 to push up the voltage of the modulated voltage output terminal 28a. "After this, the modulation voltage (Vr) [:g; K £ is transmitted (returned) to the voltage divider circuit, 25 to repeat the operation described above. This mode of operation is continuously cycled until the modulation voltage output from the modulation voltage output terminal 28a is The voltage is modulated to 〇7 volts. Please refer to Fig. 6, which is a schematic diagram showing the circuit architecture of a digital linear voltage modulator according to another embodiment of the present invention. As shown in Fig. 6, another aspect of the present invention: The digital linear voltage modulator 6 of the embodiment includes: "digital error detection" The switch group 6丨, the first control logic circuit module 'a second control logic. The circuit is changed 63 & type refers to the module 64, the voltage divider circuit module μ ' 201223106 6 push-up component circuit mode Group 66〗 662, 663, 665, 666 and - pull-down component circuit module 67. In the middle, the & bit error detection circuit module is based on a comparison voltage (VcMp) and a reference voltage (v_) The voltage difference between the two outputs a logic signal (not shown). In addition, the first control logic circuit module M62 and the second control logic circuit module 63 are respectively connected to the digital error detection circuit module 61. In order to receive the aforementioned logic signal, in another embodiment of the digital linear voltage modulator of the present invention, the mode indicating module 64 is coupled to the first control logic circuit module 62, and the voltage divider circuit module The group 65 is respectively coupled to the mode indicating module μ and the digital error detecting circuit module W. In addition, the above six push-up element circuit sets 661, 662, 663, 664, 665, 666 are coupled. Connected to the first control logic circuit module 62 and the mode finger * module 64, and indicated by the mode mode The group M control operates in an accumulation manner. On the other hand, the 'pull-down element circuit module is consumed to the second control logic circuit module 63. As shown in Fig. 6, the above-mentioned six push-up element circuit modules 66丨662, 663, 664, 665 '666 are respectively coupled to the modulating voltage output terminal 68a and the modulating voltage output terminal 68a to output a modulation voltage (V^G), and the modulation voltage output terminal 68a is Re-coupling to a load 69. On the other hand, the modulation voltage output terminal 68a is coupled to the voltage divider circuit module 65 to transmit the modulation voltage (Vreg) outputted by the modulation voltage output terminal 68a. Granted to the voltage divider circuit module 65. In this embodiment, the six push-up component circuit modules 661, 662, 663 '664, 665, 066 and the pull-down component circuit module 67 cooperate with each other to output a load having a maximum value of 100 m A. Current. 201223106 _ In addition, the circuit structures of the six push-up component circuit modules are respectively included in a circuit module and a transistor. For example, the push-up TL device circuit module 66 1 includes a driving circuit module 66 丨丨 and a PMOS transistor 66 丨 2, and the driving circuit module is “coupled to the first control logic circuit module 62 , The PMOS transistor 66丨2 outputs the load current required for any modulation voltage (VREG), such as any voltage between 55 volts and volts.

在本實施例中,#述之6個上推元件電路模組661、 663 664 665、666所分別具有的pM〇s電晶體係互 相合作,#同分擔提供負載電流的責任。如此,本發明另 -實施例之數位式線性電壓調變器可在輸出不同調變電壓 (VREG)的情況下,能提供—電流為⑽_的負載電流。 而且,由於前述之6個上推元件電路模組之每一上推元件電 路模組所需負擔的責任(提供負載電流)並不大,使得前述之 6個上推元件電路模組之每-上推元件電路模組所需佔據 的晶片面積便可進—步縮小,有效降低本發明另-實施例 之數位式線性電壓調變器製作時之成本。 圖7係顯示本發明又一實施例之數位式線性電壓調變 器之電路架構的示意圖。如圖7所示,本發明又—實施例之 數位式線性電壓調變器7咚& .a •糸包括· 3個數位誤差偵測電路模 組7 1 1、7丨2、7 1 3、一第一松也丨·w处& ' ^ k制邏輯電路模組72、一第二控 制邏輯電路模組73、—模式指示模組74、一分壓器電:: 組7 5、一上推元件電路模έ且7 6 β _ , 悮,且76以及一下拉元件電路模組 。,、中’ 3個數位误差偵測電路模組7丨1、7丨2、”3係依 201223106 序依據一介於一比較雷廢r v rt . . ^ 。早又电嶝(vCMP)與一參考電壓(Vr丨丨)之 的電壓差值,輸出一邏輯信號(圖中未示)。 在本七明又一實施例之數位式線性電壓調變器中,這3 個數位誤差_電路模組川、川'713係料地運作,°且 後兩個數位誤差偵測電路模組7丨2、7丨3係因被第—個數位 誤差偵測電路模組川觸發而運作。而且這3個數位誤差 偵測電路模組711 ' 7丨2、713分別運作的時間點(亦稱為被 觸發的時間點m分別間隔-預先設定的延遲時間(de|av time)。 -In the present embodiment, the pM〇s electro-crystalline systems respectively of the six push-up element circuit modules 661, 663 664 665, and 666 respectively cooperate with each other, and share the responsibility of providing load current. Thus, the digital linear voltage modulator of the other embodiment of the present invention can provide a load current of (10)_ at a different output voltage (VREG). Moreover, since each of the six push-up component circuit modules has a burden on the load-carrying component circuit module (the load current is supplied) is not large, so that each of the six push-up component circuit modules described above - The area of the chip required to push up the component circuit module can be further reduced, which effectively reduces the cost of the digital linear voltage modulator of another embodiment of the present invention. Figure 7 is a diagram showing the circuit architecture of a digital linear voltage modulator according to still another embodiment of the present invention. As shown in FIG. 7, the digital linear voltage modulator of the present invention is further referred to as a digital linear voltage modulator, and includes three digital error detecting circuit modules 7 1 1 , 7丨2, and 7 1 3 . , a first 松 丨 w 处 & ' ' ^ k system logic circuit module 72, a second control logic circuit module 73, - mode indicating module 74, a voltage divider device:: Group 7 5, A push-up element circuit module and 7 6 β _ , 悮, and 76 and a pull-down element circuit module. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The voltage difference of the voltage (Vr丨丨) outputs a logic signal (not shown). In the digital linear voltage modulator of another embodiment of the present invention, the three digital error_circuit modules The Sichuan and Sichuan '713 series materials operate, and the latter two digital error detection circuit modules 7丨2, 7丨3 are operated by the first digital error detection circuit module. And these 3 The time points at which the digital error detection circuit modules 711 '7丨2, 713 operate respectively (also referred to as the time points m to be triggered are respectively separated by a preset delay time (de|av time).

。。而在本實施例中,前述之延遲時間係被設定為一可將 早-數位誤差偵測電路模組之偵測時間(detecti〇n “咖)被 至少-數位誤差偵測電路模組等分的時間。例如,由於本 电明又-實施例之數位式線性電壓調變器具有3個數位誤 差偵測電路核組川、m、713,所以前述之延遲時間⑺e㈣ time)便為一可將單一數位誤差偵測電路模组之偵測時間3 等分的時間》. . In this embodiment, the delay time is set to be equal to the detection time of the early-digital error detection circuit module (detecti〇n “coffee” is divided by the at least-digit error detection circuit module) For example, since the digital linear voltage modulator of the present embodiment has three digital error detecting circuit core groups, m, 713, the aforementioned delay time (7) e (four) time is one can be Single digital error detection circuit module detection time 3 equal time"

如此,當本發明又一實施例之數位式線性電壓調變器 運作時’每隔1/3的單-數位誤差偵測電路模組之偵測時間 便會有一個數位誤差偵測電路模組因被觸發而依據一介 於—比較電壓(vCMP)與一參考電壓(Vref)之間的電壓差值 輸出一邏輯信號(圖中未示)β也就是說若本發明之數位式 線性電壓5周變器具有更多數目的數位誤差偵測電路模組, 其產生邏輯信號(圖中未示)的時間週期便可更進一步地縮 短。 20 201223106 …制邏輯電路模組72與第二控制邏輯電路 "73係〜別M接至3個數位誤以貞測電路模組川、712、 H以接收3個數位誤差價測電路模組711、712、713所依 序輸出之邏輯信號。 η …在本㉝明又""貫施例之數位^線性電壓調Thus, when the digital linear voltage modulator of another embodiment of the present invention operates, there is a digital error detecting circuit module every 1/3 of the single-digit error detecting circuit module detecting time. Because it is triggered, a logic signal (not shown) is output according to a voltage difference between the comparison voltage (vCMP) and a reference voltage (Vref), that is, if the digital linear voltage of the present invention is 5 weeks. The transformer has a greater number of digital error detection circuit modules, and the time period for generating logic signals (not shown) can be further shortened. 20 201223106 ...the logic circuit module 72 and the second control logic circuit &73; system is connected to three digits to detect the circuit module Chuan, 712, H to receive three digital error measurement circuit module The logic signals output by 711, 712, and 713 in sequence. η ... in this 33 and again "" examples of the digital ^ linear voltage adjustment

二示模組74_接至第—控制邏輯電路模組 ’分壓電路模組75則分_接至模式指示模組Μ及數 ㈣差偵測電路模組7丨。除此之外,至少一上推元件電路 換組76係轉接至第—控制邏輯電路模組72,下拉元件電路 柷組77則耦接至第二控制邏輯電路模組乃。 再圖7所不,月;述之至少一上推元件電路模組%係应 :拉元件電路模組77互_於一調變電壓輸出端%,以 :出一调變電壓(Vreg),而調變電壓輸出端78a則再耦接至 :負載79。另一方面,調變電壓輸出端78a另耦接至分壓器 :以將5周受電壓輸出端78a所輸出之調變電壓 (vreg)傳遞(回授)至分壓器電路模組乃。 士而當本發明又一實施例之數位式線十生電壓㈣器運作 時’第-控制邏輯電路模組72與第二控制邏輯電路模組73 均依據3個數位誤差读測電路模組川、7]2、7丨3所依序輸 出之邏輯信號的狀態,分別控制至少—上推元件電路模組 7 6 (與第一控制邏輯電路模組7 2耦接)及下拉元件電路模組 7 7 (與第二控制邏輯電路模組7 3耦接)的運作方式,使得至少 上推/L件電路模組76及下拉元件電路模組77互相合作而 201223106 輸出前述之調變電壓(vRPX·),且此被輸出之調變電壓(Vki ( ) 的準位係由模式指示模組74所控制。 隨後,如前所述,此調變電壓(VkF〇)K 了從調變電壓 輸出端78a輸出以外,亦被便被傳遞(回授)至分壓器電路模 組75。接著,分壓器電路模組75便依據模式指示模組以所 設定之該調變電壓之準位,對應輸出一另一比較電壓 至3個數位誤差偵測電路模組7n、7丨2、7Π,以使這3個^ 位誤差偵測電路模組71丨、7丨2、7丨3能依據此另一比較電壓 (V(、N.n> )與前述之參考電壓(Vrkf)之間的電壓差值,依序輸出 另一邏輯信號(圖中未示)。 之彳交,本發明又一實施例之數位式線性電壓調變器之 第一控制邏輯電路模組72與第二控制邏輯電路模組73便再 次依據此另一邏輯信號(圖中未示)的狀態,分別控制至少一 上推元件電路模組76及下拉元件電路模組77的運作方式, 使得至少一上推元件電路模組76及下拉元件電路模組77互 相合作而輸出一另一調變電壓(Vreg),此輸出調變電壓之 準位亦由模式指示模組74所控制。 因此’由於具有3個數位誤差偵測電路模組7 1 1、7丨2、 71 3 ’本發明又一實施例之數位式線性電壓調變器輸出一調 變電壓的時間間隔(反應時間間隔)便可進一步地縮短。例 如’本發明又一實施例之數位式線性電壓調變器的反應時 間間隔便可從僅具單一數位誤差偵測電路模組之本發明一 實施例之數位式線性電壓調變器的反應時間間隔(約600 ps) ’大幅縮短為其1/3(約200 ps)。所以,由於可於相同的 22 201223106 時間内調變出更多次調變電壓,故本發明又一實施例之數 位式線性電壓調變器輸出調變電壓的穩定度便遠高於本發 明一實施例之數位式線性電壓調變器輸出調變電壓的穩定 度。而此可大幅度提昇輸出調變電壓之穩定度的技術,一 般稱為時間交錯式數位控制技術。 【圖式簡單說明】 圖1係顯π習知之類比式線性調變器之電路架構的示意圖3 圖2係顯示本發明一實施例之數位式線性電壓調變器之電 路架構的示意圖。 圖3係顯不本發明一實施例之數位式線性電壓調變器所具 之數位誤差偵測電路模組之電路架構的示意圖。 圖4係顯示圖3所示之第一電壓控制延遲單元之電路架構的 示意圖。 圖5係顯示本發明一實施例之數位式線性電壓調變器所具 之分壓器電路模組之電路架構的示意圖。 圖6係顯示本發明另一實施例之數位式線性電壓調變器之 電路架構的示意圖。 圖7係顯示本發明又一實施例之數位式線性電壓調變器之 電路架構的不意圖。 【主要元件符號說明】 I類比式線性ί周變器 2、6、7數位式線性電壓調變器 5分壓器電路模組 丨丨誤差放大器 201223106 丨2類比緩衝器 13輸出元件 14電谷元件 丨5、29、69、79負載 21、61、7丨丨、7丨2、7丨3數位誤差偵測電路模組 22 '62 '72第一控制邏輯電路模組 23 '63 '73第二控制邏輯電路模組 24、64、74模式指示模組25、65、75分壓器電路模組 26、66卜662 ' 663、664、⑹、_、%上推元件電路模The second display module 74_ is connected to the first control logic circuit module ‘the voltage dividing circuit module 75 is connected to the mode indicating module Μ and the number (four) difference detecting circuit module 7丨. In addition, at least one push-up component circuit group 76 is switched to the first control logic circuit module 72, and the pull-down component circuit group 77 is coupled to the second control logic circuit module. Figure 7 is no, month; at least one of the push-up component circuit modules % should be: pull-element circuit module 77 mutual _ a variable voltage output terminal %, to: a modulation voltage (Vreg), The modulated voltage output 78a is recoupled to: load 79. On the other hand, the modulation voltage output terminal 78a is further coupled to the voltage divider: to transfer (return) the modulation voltage (vreg) outputted by the voltage output terminal 78a to the voltage divider circuit module for 5 weeks. When the digital line-type voltage (four) device of another embodiment of the present invention operates, the first control logic circuit module 72 and the second control logic circuit module 73 are both based on three digital error reading circuit modules. , 7] 2, 7丨3 sequentially output the state of the logic signal, respectively controlling at least the push-up component circuit module 7 6 (coupled with the first control logic circuit module 7 2) and the pull-down component circuit module 7 7 (coupled with the second control logic circuit module 733), such that at least the push/L device circuit block 76 and the pull-down device circuit block 77 cooperate with each other and the 201223106 outputs the aforementioned modulation voltage (vRPX) ·), and the level of the output modulated voltage (Vki ( ) is controlled by the mode indicating module 74. Subsequently, as described above, the modulated voltage (VkF 〇) K is output from the modulated voltage. In addition to the output of terminal 78a, it is also transmitted (returned) to voltage divider circuit module 75. Then, voltage divider circuit module 75 is based on the mode indicating module to set the level of the modulation voltage. Corresponding output one another comparison voltage to three digital error detection circuit modules 7n, 7丨2 7Π, so that the three bit error detecting circuit modules 71丨, 7丨2, 7丨3 can be based on the other comparison voltage (V(, N.n>) and the aforementioned reference voltage (Vrkf) The voltage difference between the two sequentially outputs another logic signal (not shown). The first control logic circuit module 72 of the digital linear voltage modulator according to another embodiment of the present invention The second control logic circuit module 73 again controls the operation mode of the at least one push-up component circuit module 76 and the pull-down component circuit module 77 according to the state of the other logic signal (not shown), so that at least one is The push component circuit module 76 and the pull-down component circuit module 77 cooperate with each other to output another modulation voltage (Vreg), and the level of the output modulation voltage is also controlled by the mode indication module 74. Therefore, Digital error detecting circuit module 7 1 1 , 7丨2, 71 3 'The time interval (reaction time interval) of the output voltage of the digital linear voltage modulator according to another embodiment of the present invention can be further Shortened. For example, the digital line of another embodiment of the present invention The reaction time interval of the voltage modulator can be greatly shortened from the reaction time interval (about 600 ps) of the digital linear voltage modulator of the embodiment of the present invention having only a single digital error detecting circuit module. /3 (about 200 ps). Therefore, since the modulation voltage can be modulated more and more times in the same 22 201223106, the output voltage modulation of the digital linear voltage modulator of another embodiment of the present invention is stable. The degree of stability is much higher than that of the digital linear voltage modulator output modulation voltage according to an embodiment of the present invention, and the technique for greatly improving the stability of the output modulation voltage is generally called time interleaved digital control. technology. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the circuit architecture of an analog linear modulator of π. FIG. 2 is a schematic diagram showing the circuit architecture of a digital linear voltage modulator according to an embodiment of the present invention. 3 is a schematic diagram showing the circuit architecture of a digital error detecting circuit module of a digital linear voltage modulator according to an embodiment of the present invention. Figure 4 is a diagram showing the circuit architecture of the first voltage controlled delay unit shown in Figure 3. Fig. 5 is a view showing the circuit architecture of a voltage divider circuit module of a digital linear voltage modulator according to an embodiment of the present invention. Figure 6 is a diagram showing the circuit architecture of a digital linear voltage modulator according to another embodiment of the present invention. Fig. 7 is a schematic view showing the circuit architecture of a digital linear voltage modulator according to still another embodiment of the present invention. [Main component symbol description] I-class ratio linear variant 2,6,7 digital linear voltage modulator 5 voltage divider circuit module 丨丨 error amplifier 201223106 丨2 analog buffer 13 output component 14 electric grid component丨5, 29, 69, 79 load 21, 61, 7 丨丨, 7 丨 2, 7 丨 3 digital error detection circuit module 22 '62 '72 first control logic circuit module 23 '63 '73 second Control logic circuit module 24, 64, 74 mode indicating module 25, 65, 75 voltage divider circuit module 26, 66 662 '663, 664, (6), _, % push-up component circuit mode

27、67 ' 77下拉元件電路模組 28a、68a、78a調變電壓輸出端 32第一正反器 34第二正反器 36第八反相器 42第二PMOS電晶體 44第四PMOS電晶體 46輸出反相器 3 1 1第一反相器 3 1 3第三反相器 331第四反相器 333第六反相器 I,第一輸入端 0,第一輸出端 CLK2第二時脈輸入端 DO、Cl、C2 端點27, 67 '77 pull-down component circuit module 28a, 68a, 78a modulation voltage output terminal 32 first flip-flop 34 second flip-flop 36 eighth inverter 42 second PMOS transistor 44 fourth PMOS transistor 46 output inverter 3 1 1 first inverter 3 1 3 third inverter 331 fourth inverter 333 sixth inverter I, first input 0, first output CLK2 second clock Input DO, Cl, C2 endpoints

31第一延遲線單元 33第二延遲線單元 35反及閘 41第一 PMOS電晶體 43第三PMOS電晶體 45第一 NMOS電晶體 D,第一電壓控制延遲單元 3 1 2第二反相器31 first delay line unit 33 second delay line unit 35 reverse gate 41 first PMOS transistor 43 third PMOS transistor 45 first NMOS transistor D, first voltage controlled delay unit 3 1 2 second inverter

Ds第二電壓控制延遲單元 332第五反相器 334第七反相器 CLK,第一時脈輸入端 12第二輸入端 〇2第二輸出端 24 201223106 6611驅動電路模組 6612 PMOS電晶體 511、512、513、514、515、516 電阻元件 521、522、523、524、525、526 開關元件Ds second voltage control delay unit 332 fifth inverter 334 seventh inverter CLK, first clock input terminal 12 second input terminal 〇2 second output terminal 24 201223106 6611 drive circuit module 6612 PMOS transistor 511 , 512, 513, 514, 515, 516 resistive elements 521, 522, 523, 524, 525, 526 switching elements

Claims (1)

201223106 七、申請專利範圍: 1.-種數位式線性電壓調變器,係用於輸出—調變電 壓,包括: 至少一數位誤差偵測電路模組,係依據一介於一比較 電壓與一參考電壓之間的電壓差值輸出一邏輯信號; -第-控制邏輯電路模组’係耦接至該至少二數位誤 差偵測電路模組,以接收該邏輯信號;201223106 VII. Patent application scope: 1. A digital linear voltage modulator for output-modulation voltage, including: at least one digit error detection circuit module, based on a comparison voltage and a reference The voltage difference between the voltages outputs a logic signal; the first control logic circuit module is coupled to the at least two digit error detection circuit module to receive the logic signal; -第二控制邏輯電路模組,係耦接至該至少一數位誤 差偵測電路模組,以接收該邏輯信號; -模式指示模組,係耗接至該第一控制邏輯電路模 組以設定該調變電壓之準位; 一分壓器電路模組’係分_接至該模式指示模組及 該至少一數位誤差偵測電路模組; 至少一上推元件電路模組,係輕接至該第一控制邏輯 電路模組;以及 一下拉元件電路模組,軸接至該第二控 模組; 、竹电岭a second control logic circuit module coupled to the at least one digital error detection circuit module for receiving the logic signal; a mode indication module consuming the first control logic circuit module to set a voltage-dividing voltage level; a voltage divider circuit module is connected to the mode indicating module and the at least one digital error detecting circuit module; at least one push-up component circuit module is lightly connected To the first control logic circuit module; and the pull-down component circuit module, the shaft is connected to the second control module; 其中’該第-控制邏輯電路模組與該第二控制邏輯電 路极組係依據該邏輯信號的狀態,分別控制該至少 70件電路模組及該下拉元件電路模組之運作方式,以幹出 該調變電壓,且該至少—t …上推凡件電路模組係與該下拉 件電路模組互相搞接於一調變電壓輸出端,以從該 ㈣出端輸出㈣變電壓;該調·變電壓輸出端助接 分壓器電路模組,以將該調變電壓傳遞至該分壓器電路; 26 201223106 組’該分壓器電路模組則再依據該模式指示模組所設定之 s玄調變電麼之準位’對應輸出一另-比較電壓至該至少— 數位誤差偵測電路模組,以使該至少一數位誤差偵測電路 模組輸出'一另一邏輯信號。 2·如申請專利範圍第1項所述之數位式線性電壓調變 器其中,該邏輯信號係包含一第一次邏輯信號及一第二 人邏輯[號’且泫主少一數位誤差偵測電路模組係包括: 一第-延遲線單元,包含—第—電壓控制延遲單元、 -第—反相器、一第二反相器及一第三反相器且該第— 電壓控制延遲單元係由該比較電壓所控制; 一第一正反11 ’係—負緣觸發正反ϋ並包含-第-輸 入端、一第一時脈輪入端及一第一輸出端,且該第一輸入 端係耦接至該第三反南哭 為之輸出立而,該第一輸出端則輸出 遠第一次邏輯信號; —一-第二延遲線單元’包含_第二電壓控制延遲單元、 :二四反相器'一第五反相器、一第六反相器及—第七反 范且-玄第一電壓控制延遲單元係由該參考電壓所控制: -第二正反器,係一負緣觸發正反器並包含一第 第Γ時脈輸入端及—第二輸出端,且該第二心 “广“二反向益之輸出端,該第二輸出端則輸出 δ玄第二次邏輯信號:以及 0:1 反及閘ίτ'包含一輪入端、_致能端及一輸出端; X 口其:战第一正反器之第-時脈輸入端係耦接至該第 五反相器之輸出端,- τ 弟—正反器之第二時脈輸入端則辑 27 201223106 接至該第七反向器之輸出端;該反及閘之輸入端係耦接至 該第四反相器之輸出端,該反及閘之輸出端則耦接至該第 八反向器,該第八反向器並再耦接至該第一延遲線單元之 該第一電壓控制延遲單元及該第二延遲線單元之該第二電 壓控制延遲單元。 3. 如申請專利範圍第2項所述之數位式線性電壓調變 器,其中,該第一反相器、該第二反相器、該第三反相器、 該第四反相器、該第五反相器、該第六反相器、該第七反 相器及該第八反相器係為數位式反相器。 4. 如申請專利範圍第2項所述之數位式線性電壓調變 器,其中,該第一電壓控制延遲單元係包括: 一第一 PMOS電晶體,該第一 PMOS電晶體之源極係耦 接至一偏壓電源,該第一 PMOS電晶體之閘極則耦接至該比 較電壓; 一第二PMOS電晶體,該第二PMOS電晶體之源極係耦 接至該第一 PMOS電晶體之汲極,該第二PMOS電晶體之閘 極則接地; 一第三PMOS電晶體,該第三PMOS電晶體之源極係耦 接至該第二PMOS電晶體之汲極,該第三PMOS電晶體之閘 極則接地; 一第四PMOS電晶體,該第四PMOS電晶體之源極係耦 接至該第三PMOS電晶體之汲極; 一第一NM0S電晶體,該第一NMOS電晶體之汲極係耦 接至該第四PMOS電晶體之汲極,該第一 NM0S電晶體之閘 201223106 極則與該第四PMOS電晶體之閘極互相耗接,再耗接至 入電壓;以及 -輸出反相器,接至該第一NM〇s電晶體之波極 及該第四PMOS電晶體之汲極,再耗接至一輸出電壓。 5.如申請專利範圍第1項所述之數位式線性電壓調變 器,其中,該調變電壓之範圍係位於一超越臨界電壓範圍 内或一接近臨界電壓範圍内。 。。6.如申請專利範圍第1項所述之數位式線性電壓調變 其中,6玄”壓器電路椒組係—電阻式分壓器電路模組, 且戎分壓器電路模組包含6個電阻元件及6個開關元件。 。。7·如申請專利範圍第6項所述之數位式線性電壓調變 杰’其中,該數位式線性電壓調變器可分壓轉換之調變電 壓的電壓係介於0.5伏特至丨伏特之間。 π 8·如申請專利範圍第6項所述之數位式線性電壓調變 态,其中’該至少一上推元件電路模組的數目係為6。 。。9·如申請專利範圍第8項所述之數位式線性電壓調變 器’其中,該6組上推元件電路模組係以累加方式運作並分 別耦接至該第一控制邏輯電路模組。 從如1 〇.如申請專利範圍第1項所述之數位式線性電壓調 叉器其中,5亥至少一上推元件電路模組係包含一驅動電 路杈組及一PMOS電晶體,且該驅動電路模組係耦接至該第 —控制邏輯電路模組,該PM〇Sfaa曰體則提供輸出該調變電 壓所需之負載電流。 201223106 11.如申請專利範圍第1項所述之數位式線性電壓調 變器,其中,該至少一數位誤差偵測電路模組的數目係為3。八、圖式(請見下頁):Wherein the first control logic circuit module and the second control logic circuit group respectively control the operation mode of the at least 70 circuit modules and the pull-down component circuit module according to the state of the logic signal to perform The modulation voltage, and the at least -t ... push-up device circuit module and the pull-down circuit module are connected to a modulation voltage output terminal to output (four) variable voltage from the (four) output terminal; The variable voltage output terminal is connected to the voltage divider circuit module to transmit the modulation voltage to the voltage divider circuit; 26 201223106 group 'the voltage divider circuit module is further set according to the mode indicating module The sinusoidal power-changing level is 'corresponding to the output one another-comparing the voltage to the at least one-digit error detecting circuit module, so that the at least one digital error detecting circuit module outputs 'another logic signal. 2. The digital linear voltage modulator according to claim 1, wherein the logic signal comprises a first logic signal and a second person logic [number] and the first one is less digital error detection. The circuit module includes: a first delay line unit including a first voltage control delay unit, a first inverter, a second inverter, and a third inverter, and the first voltage control delay unit Controlled by the comparison voltage; a first positive and negative 11' system-negative edge triggering positive and negative feedback and including a -first input terminal, a first clock wheel input terminal and a first output terminal, and the first The input end is coupled to the third anti-South crying output, and the first output end outputs a far first logic signal; the first-second delay line unit includes a second voltage control delay unit, : a quadruple inverter 'a fifth inverter, a sixth inverter and a seventh reverse-and-first voltage control delay unit are controlled by the reference voltage: - a second flip-flop, a negative edge triggering flip-flop and including a first Γ clock input and a second output, The second heart is "wide" and the second output is outputted by the second output, and the second output is outputted by the second logical signal: and the 0:1 inverse gate ίτ' includes a round end, the _ enable end and a Output port; X port: the first clock-inverter of the first flip-flop is coupled to the output of the fifth inverter, - τ 弟 - the second clock input of the flip-flop 27 201223106 is connected to the output end of the seventh inverter; the input end of the anti-gate is coupled to the output end of the fourth inverter, and the output end of the anti-gate is coupled to the eighth reverse And the eighth inverter is recoupled to the first voltage control delay unit of the first delay line unit and the second voltage control delay unit of the second delay line unit. 3. The digital linear voltage modulator of claim 2, wherein the first inverter, the second inverter, the third inverter, the fourth inverter, The fifth inverter, the sixth inverter, the seventh inverter, and the eighth inverter are digital inverters. 4. The digital linear voltage regulator of claim 2, wherein the first voltage controlled delay unit comprises: a first PMOS transistor, a source coupling of the first PMOS transistor Connected to a bias power supply, the gate of the first PMOS transistor is coupled to the comparison voltage; a second PMOS transistor, the source of the second PMOS transistor is coupled to the first PMOS transistor The drain of the second PMOS transistor is grounded; a third PMOS transistor, the source of the third PMOS transistor is coupled to the drain of the second PMOS transistor, the third PMOS The gate of the transistor is grounded; a fourth PMOS transistor, the source of the fourth PMOS transistor is coupled to the drain of the third PMOS transistor; a first NMOS transistor, the first NMOS The drain of the crystal is coupled to the drain of the fourth PMOS transistor, and the gate of the first NMOS transistor 201223106 is mutually coupled with the gate of the fourth PMOS transistor, and then drained to the input voltage; And an output inverter connected to the wave of the first NM〇s transistor and the fourth PMOS The drain electrode body, and then connected to an output voltage consumption. 5. The digital linear voltage modulator of claim 1, wherein the amplitude of the modulation voltage is within a range of a threshold voltage or a threshold voltage. . . 6. The digital linear voltage modulation as described in claim 1 of the patent application, wherein the 6 Xuan transformer circuit is a resistor-type voltage divider circuit module, and the 戎 voltage divider circuit module includes 6 Resistive element and 6 switching elements. 7. The digital linear voltage modulation as described in claim 6 of the patent application, wherein the digital linear voltage modulator can divide and convert the voltage of the modulated voltage The system is between 0.5 volts and volts. π 8 · The digital linear voltage modulation state described in claim 6 wherein the number of the at least one push-up element circuit module is 6. 9. The digital linear voltage modulator of claim 8 wherein the six sets of push-up component circuit modules are operated in an accumulated manner and coupled to the first control logic circuit module, respectively. The digital linear regulator according to claim 1, wherein the at least one push-up component circuit module comprises a driving circuit group and a PMOS transistor, and a driving circuit module coupled to the first control logic The circuit module, the PM 〇 Sfaa 提供 body provides a load current required to output the modulating voltage. 201223106 11. The digital linear voltage modulator of claim 1, wherein the at least one digit The number of error detection circuit modules is 3. Eight, the pattern (see next page): 3030
TW099141450A 2010-11-30 2010-11-30 Digital linear voltage modulator TWI449318B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099141450A TWI449318B (en) 2010-11-30 2010-11-30 Digital linear voltage modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099141450A TWI449318B (en) 2010-11-30 2010-11-30 Digital linear voltage modulator

Publications (2)

Publication Number Publication Date
TW201223106A true TW201223106A (en) 2012-06-01
TWI449318B TWI449318B (en) 2014-08-11

Family

ID=46725408

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141450A TWI449318B (en) 2010-11-30 2010-11-30 Digital linear voltage modulator

Country Status (1)

Country Link
TW (1) TWI449318B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508437B (en) * 2013-01-25 2015-11-11 Richtek Technology Corp Voltage adjusting circuit for amplifier circuit and method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754415A (en) * 1997-02-24 1998-05-19 Adtran, Inc. Constant current flyback power supply having forward converter mode-configured auxiliary secondary windings producing constant voltage output
EP1397856B1 (en) * 2001-05-29 2012-08-22 Diversified Technologies, Inc. A high voltage converter system
US7319421B2 (en) * 2006-01-26 2008-01-15 Emerson Process Management Foldback free capacitance-to-digital modulator
EP2189870A1 (en) * 2008-11-25 2010-05-26 St Microelectronics S.A. A switch-mode voltage regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508437B (en) * 2013-01-25 2015-11-11 Richtek Technology Corp Voltage adjusting circuit for amplifier circuit and method thereof

Also Published As

Publication number Publication date
TWI449318B (en) 2014-08-11

Similar Documents

Publication Publication Date Title
US7315270B2 (en) Differential delay-line analog-to-digital converter
US7944199B2 (en) Voltage-measuring circuit and method
US20140340142A1 (en) Multi-level stack voltage system for integrated circuits
CN105452882B (en) Battery monitoring apparatus
US20100171372A1 (en) Charge Pump Circuit and Voltage Converter Using the Same
TWI593222B (en) Sido power converter for hysteresis current control mode and control method thereof
US20110254603A1 (en) Phase interpolator and a delay circuit for the phase interpolator
CN103762965A (en) Detection circuit and sensor device
US20150070949A1 (en) Device for transfering power from a first circuit to a second circuit
US20140266003A1 (en) Cell balancing through a switched capacitor level shifter
US10348200B2 (en) Digital current sensor for on-die switching voltage regulator
US20120131402A1 (en) Test mode setting circuit
US9530338B2 (en) Driving circuit having built-in-self-test function
US7737748B2 (en) Level shifter of semiconductor device and method for controlling duty ratio in the device
US8008964B1 (en) Variable input voltage charge pump
US8531227B2 (en) Level shifter
CN109959837B (en) Electric leakage detection circuit
TW201223106A (en) Digital linear voltage modulator
US8981830B2 (en) Capacitive coupling, asynchronous electronic level shifter circuit
TW201915499A (en) Semiconductor apparatus including a capacitance measuring circuit
CN105572603B (en) Power management system and detection device of power module thereof
US10389112B2 (en) Device and method for generating duty cycle
CN108139763A (en) Regulating circuit and circuit voltage regulation method
KR101262837B1 (en) On-chip touch sensor interface using charge pump based capacitance-to-voltage converter
CN104137416B (en) Voltage detection circuit and electronic circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees