201219465 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種黑色膜、包含該黑色膜的附有黑色膜 之基材及圖像顯示裝置、與黑色樹脂組合物及黑色材料分 散液。 【先前技術】 先前’作為黑色材料’例如像專利文獻1所記載般,已 知有故黑、鈦黑(低價氧化鈦或氮氧化欽)、氧化鐵、鉻、 銀微粒子等金屬材料或無機材料。 該等黑色材料除黑色遮光性膜、黑色遮光性玻璃、黑色 紙、黑色布、黑色油墨以外,亦於電漿顯示面板(PDP)、 液晶顯示器(LCD)及有機電致發光(EL)顯示器等顯示元件 之黑色矩陣材料、黑色密封材料、黑色掩膜材料等中用作 賦予黑色或遮光性之材料。 上述之中,液晶顯示元件用之黑色矩陣或黑色條紋(以 下,簡稱為「黑色矩陣等」)係用以藉由防止於液晶顯示 元件中由驅動電極等引起之各像素間之光洩漏,而抑制圖 像之模糊或斑點者。又,該等通常為使用光微影法於與 . TFT(Thin Film Transistor,薄膜電晶體)元件基板成對的玻 : 璃或塑膠片等透明基板上形成的條紋狀或格子狀之遮光性 材料之圖案。 亦存在使用氧化鉻等之膜而形成該黑色矩陣等之情形, 但通常係藉由將上述黑色材料分散於感光性樹脂成分中而 形成黑色膜後’使用光微影法使樹月旨成分形成圖案,而製 157917.doc 201219465 作樹脂黑色矩陣等。 此處’先前之液晶顯示元件用之黑色矩陣係形成於與 TFT元件基板成對的玻璃或塑膠片等透明基板上。 近來,為應對彩色液晶顯示器中之進一步高精細化、高 亮度化,揭示有於主動矩陣型液晶顯示器中,將彩色濾光 片設置於TFT元件基板側的陣列上彩色濾光片方式 (COA(Color Filter On Array)方式)、或僅將黑色矩陣設置 於TFT基板元件側的陣列上黑矩陣方式(B〇A(Black MatHx On Array)方式)^根據該等方式,與將黑色矩陣形成於彩 色濾光片側之情形相比,由於無需留出與主動元件側之位 置對準餘量,因此可提高開口率,其結果可實現高亮度 化。 又’為於液晶顯示裝置中實現高對比度化,必需進一步 防止紅色(R)、綠色、藍色(B)各液晶元件間之光洩漏, 進一步抑制圖像之模糊或斑點,即,為於液晶顯示裝置中 獲得咼π度與咼對比度,需要使黑色矩陣微細化及具有高 遮光性。 另外用以使先刖之TN(Twisted Nematic,扭轉向列型) 驅動型液bb中成為問題之狹小視角大幅擴大的201219465 6. Technical Field of the Invention The present invention relates to a black film, a substrate with a black film containing the black film, an image display device, a black resin composition, and a black material dispersion. [Prior Art] As described in Patent Document 1, for example, as described in Patent Document 1, metal materials such as black, titanium black (titanium oxide or nitrogen oxide), iron oxide, chromium, silver fine particles, or the like are known. material. These black materials are also used in plasma display panels (PDP), liquid crystal displays (LCD), and organic electroluminescence (EL) displays in addition to black light-shielding films, black light-shielding glass, black paper, black cloth, and black ink. A black matrix material, a black sealing material, a black mask material or the like of the display element is used as a material for imparting black or light blocking properties. In the above, a black matrix or a black stripe (hereinafter simply referred to as a "black matrix") for a liquid crystal display element is used to prevent light leakage between pixels in a liquid crystal display element caused by a driving electrode or the like. Suppresses blurring or blurring of images. Moreover, these are generally stripe-like or lattice-like light-shielding materials formed on a transparent substrate such as glass or plastic sheet which is paired with a TFT (Thin Film Transistor) element substrate by photolithography. The pattern. In the case where the black matrix or the like is formed using a film of chromium oxide or the like, a black film is usually formed by dispersing the black material in a photosensitive resin component, and then a photo-lithography method is used to form a tree-like component. Pattern, and made 157917.doc 201219465 as a resin black matrix. Here, the black matrix for the conventional liquid crystal display element is formed on a transparent substrate such as a glass or a plastic sheet which is paired with the TFT element substrate. Recently, in order to cope with further high definition and high brightness in a color liquid crystal display, it has been disclosed that in an active matrix type liquid crystal display, a color filter is disposed on an array on a TFT element substrate side in a color filter mode (COA ( Color Filter On Array) or black matrix on the TFT substrate element side (B〇A (Black MatHx On Array) method) ^ according to these methods, and forming a black matrix in color Compared with the case of the filter side, since the positional alignment margin with the active element side is not required, the aperture ratio can be increased, and as a result, high luminance can be achieved. Further, in order to achieve high contrast in the liquid crystal display device, it is necessary to further prevent light leakage between the liquid crystal elements of red (R), green, and blue (B), and further suppress blurring or speckle of the image, that is, liquid crystal. In the display device, 咼π degrees and 咼 contrast are obtained, and it is necessary to make the black matrix finer and have high light blocking property. In addition, the narrow angle of view that becomes a problem in the TN (Twisted Nematic) driving type liquid bb is greatly expanded.
Plane Switching,橫向電場切換)驅動型液晶亦受到關注。 另一方面,近年來,電漿顯示裝置或無機EL裝置、有機 EL裝置等作為無需背光等之自發光型顯示裝置而得到實際 應用。 該等自發光型顯示裝置係於相對向之一對電極間具有氣 157917.doc 201219465 體或者包含無機或有機固體材料之發光層而構成者。 為於此種自發光型顯示褒置中實現高亮度,可考慮擴大 各發光兀件本身之發光面積之方法。χ,為實現高對比度 化’較為重要的是藉由防止R、G、Β各發光元件間之光沒 漏或相互干涉而防止混色,抑制圖像之模糊或斑點。 另外,為達成該等,必需使分割各發光元件間之隔離壁 或分離層遮光化而形成遮光壁,並且使該遮光壁更微細且 具有尚遮光性。 進而,於此種自發光型顯示裝置中,作為其顯示品質, 對比度之提高成為一大課題。即,存在如下課題:外部光 入射至顯示面發生反射,因此利用來自於發光層之光之顯 示受知’結果無法獲得良好的顯示品質。 該反射主要係由各發光像素間之隔離壁或分離層、以及 設置於該部分之發光元件驅動用配線所引起。因此,較為 有效的疋不僅使隔離壁或分離層遮光化,且亦設置黑色矩 陣等’藉此使外部光不入射至發光元件驅動用配線。 此處’於COA方式或BOA方式之液晶顯示元件、或自發 光型顯示裝置中’使元件驅動用配線接觸黑色矩陣等或遮 光壁’或者於黑色矩陣或遮光壁上直接設置元件驅動用配 線之結構成為主流。於此情形時’為防止配線間之短路, 黑色矩陣等或遮光壁必需使用具有一定值以上之體積電阻 率的絕緣性材料。 又’於IPS驅動型液晶之情形時,若黑色矩陣具有導電 性’則會在與本來用以驅動液晶之電場不同之方向上產生 157917.doc 201219465 電場而導致圖像混亂,因此亦必需使黑色矩陣為絕緣性。 進而’於該等黑色矩陣等或遮光壁中,為使TFT元件或 自發光元件穩定地進行動作而不產生圖像混亂,必需使寄 生電容最小化等,因此要求較低之比介電係數。 於先前之黑色矩陣等或遮光壁中,通常使用碳黑作為遮 光用黑色材料。碳黑之遮光性較高,但電阻值較低,因此 與树知成分混合而形成黑色矩陣等或遮光壁之情形時,若 為使該等具有高遮光性而增加碳黑相對於樹脂成分之添加 量,則會產生碳黑之粒子彼此接觸形成導電通道,從而無 法保持黑色矩陣等或遮光壁之絕緣性的問題。 為防止上述無法保持遮光壁之絕緣性的問題,有如下方 法:將碳黑之添加量控制在不表現導電性之程度而維持絕 緣性,並且藉由增加黑色矩陣之厚度或遮光壁之高度而提 高遮光性。 然而,於該方法中,每丨μιη膜厚之光學密度至多僅能獲 得〇.5左右,故而為獲得作為黑色矩陣所必需之光學密度 (通*為2.5或2.5以上),必需增大膜厚。因此,基板與黑 色矩陣或遮光壁間之階差變大’其結果產生配線容易斷 線,或者各液晶元件或各發光元件間之均勻性變差,元件 之面内不均增大的問題。 又二即便可維持絕緣性,因膜之比介電係數較多情形時 為較高之200以上,故有可能圖像混亂成為問題。 π針對該等問題’為獲得遮光性較高、具有絕緣性且厚度 得到抑制’並且比介電係數較低之黑色矩陣或遮光壁,: 157917.doc 201219465 示有如下方法。 處:二”文獻2中揭示以重氮化合物對碳黑進行表面 t φ 黑於樹脂巾之分散性,藉此提高黑色矩陣樹 之碳黑3有比率而提高遮光性,並且維持絕緣性的 法。 又’專利文獻3中揭示有以絕緣物f對碳粒子之表面進 打塗覆’藉此獲得具有高絕緣性與相對較低之比介電係數 之黑色矩陣的方法。 又’專利文獻4中揭示有使用控制組成而提高遮光性之 鈦氮氧化物(TiOxNy :欽黑)之粉末作為黑色材料,將其與 名緣性之氧化物粉末組合使用,藉此獲得同時具有較高之 遮光性與絕緣性的黑色矩陣之技術。 進而,專利文獻5中亦揭示有降低碳黑之含量,並且添 加有機顏料’藉此獲得具有較高之遮光性與絕緣性的黑色 矩陣之方法。 另一方面,通常無線遠程控制器(遙控器)等之信號係使 用波長 950 nm 之 LED(Light Emitting Diode,發光二極 體)’又’工業上係使用波長1064 nm波段之光纖雷射等。 就防止由可見光所致之誤動作或外觀之方面而言,通常對 該等信號源或光接收元件設置使用遮斷可見光而使近紅外 線等紅外線透射之構件的套等。因此’需要儘管外觀上呈 現黑色’但對所使用之具有自近紅外線至红外線之波長的 光線具有充分之透射性的紅外線透射黑色膜、或使用該紅 外線透射黑色膜之紅外線透射濾光片。 157917.doc 201219465 於下代之液Ba面板中,—般認為上述c〇a方式或 boa方式將成為线’但於該等方式中,係對形成於陣列 側之黑色塗佈乾燥膜進行圖案化而製作作為黑色膜之黑色 矩陣’故而必需直接進行黑色矩陣圖案相對於陣列之位置 對準。該位置對準係使用咖〜95〇 nm之紅外線,因此為讀 取位置對準信號’期待使該波長區域之光透射之黑色塗佈 乾燥膜作為黑色矩陣材料。 再者’於黑色㈣構件之情形時,通常係使用光學密度 (〇D值:0ptieal Denshy)作為透射率之指標。若將膜之透 射率設為T(%) ’則其係由下式⑴所表示。 〇D=-l〇g(T/1()())…⑴ 又’通常於黑色矩陣構件之情形時,多將每1 μπι厚度之 OD值作為遮光性之指標。 ▲針對上述課題’考慮有如專利文獻1、6所記載的改良先 前之黑色膜之方法,該方法中主要使用碳黑、鈦黑(氮氧 化鈦)、氧化鐵、鉻及銀微粒子等金屬材料或無機材料作 為’’、、色材料’使該等黑色材料分散於有機樹脂或無機樹脂 等中’使用如此所得之材料而形成黑色膜。 另方面,揭示有如專利文獻7、8所記載的使用有機顏 料或染料作為黑色材料之紅外線㈣型濾H 〆 先前技術文獻 專利文獻 專利文獻1.日本專利特開平5·127433號公報 專利文獻2 ·曰本專利特開2005-215 149號公報 1579l7.doc 201219465 專利文獻3:曰本專利特開2006-189765號公報 專利文獻4:日本專利特開2008-266045號公報 專利文獻5:日本專利特開2009-75446號公報 專利文獻6:日本專利特開2005-189561號公報 專利文獻7:曰本專利特開2005-67007號公報 專利文獻8:日本專利特開2005-257721號公報 【發明内容】 發明所欲解決之問題 然而,首先關於上述同時提高遮光性及絕緣性之技術, 於上述提高碳黑之分散性之方法中,製造時發生溶著或凝 聚之碳黑粒子本身之狀態未變,因此只不過是改善炫著粒 子或凝聚粒子彼此之分散性。因此,尤其是於為提高黑色 度而增加碳黑量之情形時’存在變得易產生熔著粒子或凝 聚粒子彼此之再凝聚,黑色矩陣之特性之均勻性下降,或 表現部分性的導電性之問題。進而,於該文獻中,為改善 穩定性’揭示有非液狀而是預先進行臨時膜化之方法,但 亦存在使黑色矩陣之製造步驟複雜化,黑色矩陣與基材間 之接合性下降之問題。 又,於上述以絕緣物質對碳粒子之表面進行塗覆之方法 中,亦存在使黑色矩陣之製造步驟複雜化之課題。進而, 於§亥文獻中無絕緣物質之具體的記載,而難以實施。 又,於上述使用鈦氮氧化物粉末之方法中存在如下課 題:因欽氮氧化物具有導電性’故藉由與絕緣性氧化物粉 末相組合可確保作為黑色矩陣之絕緣性,但可添加於形成 157917.doc 201219465 黑色矩陣之樹脂成分中之欽氮氧化物粉末與氧化物粉末之 合計量存在限度,因此難以使較高之黑色度與高絕緣性並 存。進而’於未使鈦氮氧化物粉末與氧化物粉末均句地分 散於樹脂成分中之情形時,鈦氮氧化物粉末彼此連接形成 導電通道而變得無法保持絕緣性,因此必需使兩種成分均 勻地分散。 進而’於上述添加有機顏料之方法中,絕緣性可維持, 但難以提高遮光性,其結果,無法使黑色矩陣之厚度變 薄。又’亦存在因作為外部光之太陽光或螢光燈中所含之 紫外線而產生有機顏料褪色之問題。 另一方面,關於上述對具有自近紅外線至紅外線之波長 之光線具有充分的透射性之黑色膜之技術,具有如下特 徵:先前之碳黑、鈦黑、氧化鐵、鉻及銀微粒子等金屬材 料或無機材料中其光吸收能不具備波長依存性,或即便具 備其變化量亦較小。因此,於使用使該等黑色材料分散於 有機樹脂或無機樹脂等中而成之材料而形成之黑色膜中, 若提高可見光之遮斷性,則存在於包含近紅外等紅外線區 域之全部之波長區域中透射率降低,而變得無法作為紅外 線透射性黑色膜而發揮功能之問題。 又’於使用有機顏料或染料作為黑色材料之情形時,擔 憂因自太陽光、或螢光燈等之紫外線而有機顏料或染料發 生分解或劣化,例如使用該等之濾光片產生褪色。 本發明係鑒於此種狀況而完成者,其目的在於提供一種 具有優異之遮光性且賦予有一定值以上之體積電阻率,進 157917.doc •10- 201219465 而較佳為亦賦予有一定值以下之比介電係數之黑色膜, 又,提供一種對可見光具有優異之遮光性,且對紅外線具 有一定值以上之透射性之紅外線透射性黑色膜,包含該黑 色膜的附有黑色膜之基材及圖像顯示裝置,進而提供一種 用以形成上述黑色膜之黑、色樹脂組合物及黑'色材料分散 液。 解決問題之技術手段 上述課題係藉由下述本發明而解決。即,本發明係提供 如下者: π] —種黑色膜,其至少包含樹脂成分與黑色材料,且 上述黑色材料之體積分率為2體積%以上、3〇體積%以 下’膜中之平均分散粒徑為! nm以上、2〇〇⑽以下且每 1 μΓΠ厚度之光學密度為丨以上,體積電阻率為1〇" 〇\瓜以 [2] 如[1]之黑色膜,其中1 丁 > 人森 八T 1 kHz下之比介電係數為15以 下; [3] 如[1]或[2]之黑色膜,其中t沭里 丹Y上迷黑色材料之膜中之粒 度分佈指標090%為600 nm以下; ⑷-種紅外線透射性黑色膜,其係包含黑色材料及樹脂 成分而成,且 上述黑色材料於膜中之平均分散粒徑為i騰以上、1〇〇 nm以下, 透射率(T56G)未達40%,且 學雄、度(OD56〇)與基於波長 波長560 nm下每1 μιη厚度之 基於波長560 nm下之透射率的光 157917.doc -11· 201219465 950 nm下之透射率的光學密度(〇d95。)之比(〇D95〇/OD56())為 0.35以下; [5] 如[4]之紅外線透射性黑色膜,其中上述基於波長56〇 nm下之透射率的光學密度(〇d560)、與基於波長800 nm以 上2500 nrn以下的近紅外線(NIR)波長區域中各波長下之透 射率的光學密度(ODNIR)之比(〇DNIR/OD56。)為0.40以下; [6] 如[4]或[5]之紅外線透射性黑色膜,其中上述黑色材 料之體積分率為1.0體積%以上、25體積%以下; [7] 如[1]至[6]中任一項之黑色膜,其中上述黑色材料係 以銀及錫作為主成分之金屬微粒子; [8] 如[7]之黑色膜,其中上述金屬微粒子包含銀錫合金微 粒子、或該銀錫合金微粒子與銀微粒子之混合微粒子,且 滿足下述(1)或(2): (1) 上述銀錫合金微粒子中之銀成分相對於銀與錫之合計 量的含有率為45質量%以上、95質量%以下; (2) 上述銀錫合金微粒子與銀微粒子之混合微粒子中之銀 成分相對於銀與錫之合計量的含有率為45質量%以上、% 質量%以下; [9] 一種黑色樹脂組合物,其係用以形成如⑴至[3]、⑺ 及[8〗中任一項之黑色膜者, 其至少包含黑色材料與樹脂形成成分或樹脂成分,該里 色樹脂組合物中該黑色材料之平均分散粒徑為ι⑽以上’、’、 200 nnm下’該黑色樹脂組合物中之粒度分佈指標讀 為600 nm以下; 157917.doc •12- 201219465 π〇]—種黑色樹脂組合物,其係用以形成如[4]至[8]中任 一項之黑色膜者, 其至少包含黑色材料與樹脂形成成分或樹脂成分,該黑 色樹月曰組合物中該黑色材料之平均分散粒徑為1以 下; π 1]—種黑色材料分散液,其係如[9]之黑色樹脂組合物 所使用者, 其係於分散介質中分散有黑色材料,該黑色材料之分散 液中之平均分散粒徑為1 nm以上、200 nm以下,分散液中 之粒度为佈指標D90%為6〇〇 nm以下; [12] —種黑色材料分散液,其係如[1〇]之黑色樹脂組合物 所使用者, 其係於分散介質中分散有黑色材料,該黑色材料之分散 液中之平均分散粒徑為100 nm以下; [13] 種附有黑色膜之基材,其係包含如[1]至[8]中任一 項之黑色膜者; [14] 一種圖像顯示裝置,其係包含如[丨]至[8]中任一項之 黑色膜者。 發明之效果 根據本發明,可提供一種具有優異之遮光性且賦予有一 定值以上之體積電阻率的黑色膜,又,可提供一種對可見 光具有優異之遮光性,且對紅外線具有一定值以上之透射 性的紅外線透射性黑色膜,包含該黑色膜的附有黑色膜之 基材及圖像顯示裝置,進而提供一種用以形成上述黑色膜 157917.doc • 13- 201219465 之黑色樹脂組合物及黑色材料分散液。因此,本發明可提 供一種具有高亮度且高對比度之特性的圖像顯示裝置等。 【實施方式】 本發明之第1發明係關於一種至少包含樹脂成分與黑色 材料,該黑色材料之體積分率為2體積%以上、30體積%以 下,膜中之平均分散粒徑為1 nm以上、200 nm以下,且每 1 μιη厚度之光學密度為1以上,體積電阻率為1〇" n.cm以 上之黑色膜、用於該黑色膜之形成之黑色樹脂組合物及黑 色材料分散液、包含該黑色膜的附有黑色膜之基材及圖像 顯示裝置。 本發明之第2發明係關於一種包含黑色材料及樹脂成 分’該黑色材料於膜中之平均分散粒徑為1 nm以上、1〇〇 nm以下,波長560 nm下每1 μπι厚度之透射率(T560)未達 40% ’且基於波長560 nm下之透射率的光學密度(〇D560) 與基於波長950 nm下之透射率的光學密度(〇D950)之比 (OD950/OD560)為0.35以下之黑色膜、用於該黑色膜之形 成之黑色樹脂組合物及黑色材料分散液、包含該黑色膜的 附有黑色膜之基材及圖像顯示裝置。 以下’藉由實施形態對本發明加以說明。 〈第1發明〉 (黑色膜) 本實施形態之第1黑色膜之特徵在於:至少包含樹脂成 分與黑色材料’上述黑色材料之體積分率為2體積%以 上、30體積%以下’膜中之平均分散粒徑為1 nm以上、 I57917.doc 1j4 201219465 200 nm以下’且每1 μπι厚度之光學密度為i以上,體積電 阻率為1011 Ω · cm以上。 於本實施形態之第1黑色膜中,使用下述之黑色材料, 該黑色材料之黑色度較高,於樹脂中之分散性亦優異。因 此’藉由將黑色獏中之體積分率設為2體積%以上、3〇體 積%以下’可較為容易地獲得本實施形態之黑色膜之特性 即每1 μπι厚度之光學密度為1以上,體積電阻率為1〇11 以上之黑色膜。又,因分散性良好,故可使1 kHz下 之比介電係數為15以下’進而可使粒度分佈指標D9〇%為 600 nm以下。 於本實施形態之第1黑色膜中,上述黑色材料之體積分 率必需設為2體積%以上、30體積%以下。若黑色材料分過 少於該範圍’則於形成黑色膜時無法確保充分的遮光性, 又’若黑色材料過多於該範圍,則無關黑色材料之形狀、 尺寸或分散狀態,黑色膜均成為低電阻,因此變得無法獲 得所需之體積電阻率。 上述黑色材料之體積分率較佳為2體積%以上、2 8體積% 以下’更佳為2體積❶/。以上、25體積%以下。 再者,由於黑色材料及樹脂成分各自之比重為已知,故 而本貫施形態之第1黑色膜中之上述黑色材料之體積分率 可根據用作原料之黑色材料及樹脂形成成分之質量而求 出。 又,樹脂成分於相對較低之溫度下因分解或氧化而揮 散’相對於此,因黑色材料為金屬故直至高溫亦穩定,因 157917.doc •15- 201219465 此可根據利用熱重量分析(TG,Therm〇gravimetdc㈣㈣ 之黑色膜之質量變化量求出該黑色膜中之樹脂成分盘里色 材料之重量比例。另-方面,若藉由成分分析來確㈣脂 成分及黑色材料各自之物質,則可求出兩物質之比重,因 此亦可根據所獲得之重量比例與各成分之比重求出本實 施形態之黑色膜中之黑色材料之體積分率。 又’於本實施形態之糾黑色膜中,黑色材料於膜中之 平均分散粒徑必需為! nm以上、細nm以下。於本實施形 態中,所使用之黑色材料之平均一次粒㈣設為較佳為ι 、上因此右平均分散粒徑未達丨nm,則難以作為粒子 而存在。另-方面,若平均分散粒徑超過⑽咖,則黑色 膜中變得易產生由黑色材料微粒子之凝聚所致之導電通 道’因此難以確保所需之體積電阻率,並且於黑色材料微 粒子之凝聚顯著之情形時,遮光性亦下降。 上述膜中之平均分散粒徑較佳為2 nm以上、2〇〇⑽以 下’更佳為5 nm以上、200 ηιη以下。 再者,本實施形態之黑色膜中之平均分散粒徑係由對應 於以累積分佈表示粒度之情形之累積值5〇%之粒徑(累積 50%粒徑··中值粒徑)表示。 又’第1黑色膜中之上述黑色材料之膜中之粒度分佈指 標卿/〇較佳為_ nm以下,更佳為5〇〇⑽以下。若膜中 之粒度分佈指標卿/0為_ nm以下,則可抑制粒徑之不 均勻性變大,可維持所需之趙積電阻率並且端保充分的遮 先性。此處,上述所謂膜中之粒度分佈指標·%,係指 157917.doc 201219465 於以累積分佈表示粒戶:夕样 Η累精嫩時’對應於累積值鳩之粒 仫(累積90%粒徑),而成 V. ^ ^ ,£t ^ . …表不存在於骐中之黑色材料粒 子之粒徑之均勾性的指標者。 再者,D90%之下限值益 ^ ^ „ …、特別規疋,但因較佳地使用之 黑色材料之平均粒徑之 .^ 限值為1 nm,故於實際製造步驟 中難以使D90%為未達5nm。 上述黑色材料於膜中之平约公抱_私彳_ 心十約刀散粒徑例如可藉由使用 FIB(f〇cuscd i〇n beam » 甲隹施工永、从 聚焦離子束)於剖面方向上切割膜 3式樣使其薄片化,利用穿读1番工甜概处 j用茅逯式電子顯微鏡觀察切割面而 定。 於本實施形態中,自觀察視野中選取一定數目之任意之 粒子(50個以上’更佳為⑽個以上),以相同面積之圓近似 表示各自之粒子像,將該圓之直徑設為該粒子之粒徑,其 後求出粒徑之累積分佈,將對應於累積值5〇〇/〇之粒徑(中值 粒徑)設為膜中之平均分散粒徑。又,上述粒度分佈指標 D90%係設為所選擇之粒子之粒徑之累積9〇%粒徑而求出。 再者,累積值均為個數基準。 本貫施形態之第1黑色膜必需係每1 μιη厚度之光學密度 為1以上。若每1 μιη之光學密度未達丨’則若黑色膜之厚度 為數μηι程度則無法獲得充分的遮光性。又,為獲得充分 的遮光性,而必需增加膜厚’尤其是於用作黑色矩陣等之 情形時’因膜厚增加而變得易產生配線之斷線或顯示不均 等。因此,設為即便不使膜厚增加至必需以上亦可獲得充 分的遮光性之範圍,而將每1 μιη之光學密度設為1以上。 157917.doc •17- 201219465 又,每1 μιη之光學密度較佳為1.2以上’更佳為1.5以 上。 此處,本實施形態中之黑色材料之黑色度較高,又,於 樹脂中之分散性亦優異,因此若為本實施形態之第1黑色 膜,則亦可藉由增加黑色材料之量,而較為容易地維持所 需之體積電阻率,並且使每1 μιη之光學密度為2以上。再 者,每1 μπι之光學密度越高越理想,但就測定上之限制而 言,上限為10左右。 此處,上述每1 μιη厚度之光學密度可以如下方式求出。 試樣係作為透射測定用而於透明基板上形成為膜狀。利 用透射密度計測定該膜狀試樣之光學密度,並且使用觸針 式表面形狀測定器等測定膜厚,並以膜厚除所獲得之試樣 之光學密度值’藉此可求出每1卜爪厚度之光學密度。再 者’膜狀試樣之光學密度設為4.0左右或其以下可防止測 定精度之降低,故而較佳。 又,上述黑色膜之體積電阻率必需為1 〇1 1 以上 其原因在於:於COA方式或BOA方式之液晶顯示元件或 發光型顯示裝置中,使元件驅動用之配線接觸於黑色矩 等或遮光壁,或於黑色㈣或遮光壁上直接設置元件驅 用配線之結構成為主流,因此若使用上述黑色膜而形成 黑色矩陣等或遮光壁之體積電阻率未達至ι〇11 ω.〇瓜, 配線間變得易發生短路’而引起TFT元件之動作不良等 又,於1PS驅動型液晶中,若使用上述黑色膜而形成之 色矩陣具有導電性,則亦會於與本來Μ驅動液晶之電 157917.doc -18· 201219465 @方向上產生不需要之電場,而引起圖像混亂。 ,黑色膜之體積電阻率較佳為1G12 n.emm,更佳為 10 Ω cm以上。黑色膜之體積電阻率越高越佳,其上限 無特別限制,通常為1〇18 Q.cm以下。 再者,體積電阻率之測定可使用市售之體積電阻率計, 例如藉由四探針法等而測定。 進而本貫施形態之第1黑色膜之比介電係數較佳為i 下為15以下,更佳為丨2以下,進而較佳為6以下,特佳 為5以下。若黑色膜之比介電係數為15以下,則於使用上 述黑色膜形成黑色矩陣等或遮光壁之情形時,寄生電容等 對用以驅動液晶疋件或發光元件之切換信號之影響降低, 藉此可將圖像等之混亂減少至目視上幾乎無影響之程度。 又,若黑色膜之比介電係數為6以下,則於使用上述黑色 膜形成黑色矩陣等或遮光壁之情形時,可正確地傳遞用以 驅動液晶元件或發光元件之切換信號,圖像等中不會產生 混亂。黑色膜之比介電係數越小越佳,其下限無特別限 制,但通常係於1 kHz下為2.0以上。 但是,因比介電係數之影響與信號頻率成正比,故於液 晶元件或發光元件中之切換信號之驅動頻率較低之情形 時,比介電係數無需較低,進而若驅動頻率為DC(direct current,直流)級別(10 Hz以下),則可忽視比介電系數值 本身。Plane Switching, a horizontal electric field switch) is also attracting attention. On the other hand, in recent years, plasma display devices, inorganic EL devices, organic EL devices, and the like have been put into practical use as self-luminous display devices that do not require a backlight or the like. The self-luminous display devices are constructed such that they have a gas layer 157917.doc 201219465 or a light-emitting layer containing an inorganic or organic solid material between a pair of electrodes. In order to achieve high luminance in such a self-luminous type display device, a method of enlarging the light-emitting area of each of the light-emitting elements itself can be considered. In order to achieve high contrast, it is important to prevent color mixing by preventing light leakage or mutual interference between R, G, and 发光 light-emitting elements, and to suppress blurring or speckle of an image. Further, in order to achieve this, it is necessary to form a light-shielding wall by blocking the partition wall or the separation layer between the respective light-emitting elements, and to make the light-shielding wall finer and have a light-shielding property. Further, in such a self-luminous display device, as a display quality, improvement in contrast has become a major issue. In other words, there is a problem that external light is incident on the display surface, and therefore, the display of light from the light-emitting layer is known. As a result, good display quality cannot be obtained. This reflection is mainly caused by a partition wall or a separation layer between the respective pixels, and a wiring for driving the light-emitting elements provided in the portion. Therefore, the more effective enthalpy is not only to shield the partition wall or the separation layer, but also to provide a black matrix or the like, whereby external light is not incident on the light-emitting element driving wiring. Here, in the liquid crystal display element of the COA method or the BOA system, or the self-luminous display device, the element driving wiring is brought into contact with a black matrix or the like, or the light shielding wall is provided, or the element driving wiring is directly provided on the black matrix or the light shielding wall. The structure has become mainstream. In this case, in order to prevent short-circuiting between wirings, it is necessary to use an insulating material having a volume resistivity of a certain value or more for a black matrix or the like. In the case of IPS-driven liquid crystal, if the black matrix is electrically conductive, the 157917.doc 201219465 electric field is generated in a direction different from the electric field used to drive the liquid crystal, resulting in image confusion, so it is necessary to make black The matrix is insulative. Further, in the black matrix or the like or the light-shielding wall, in order to stably operate the TFT element or the self-luminous element without causing image disorder, it is necessary to minimize the parasitic capacitance, and the like, and a lower specific dielectric constant is required. In the conventional black matrix or the like or the light shielding wall, carbon black is generally used as a black material for light shielding. Carbon black has a high light-shielding property, but has a low electric resistance value. Therefore, when it is mixed with a known component to form a black matrix or the like, or a light-shielding wall, if the light-shielding property is high, the carbon black is added to the resin component. When the amount is added, the particles of carbon black are brought into contact with each other to form a conductive path, so that the problem of insulation of the black matrix or the like or the light shielding wall cannot be maintained. In order to prevent the above problem that the insulating property of the light-shielding wall cannot be maintained, there is a method of controlling the addition amount of carbon black to maintain the insulation property without exhibiting conductivity, and by increasing the thickness of the black matrix or the height of the light-shielding wall. Improve shading. However, in this method, the optical density per 丨μη film thickness can only be obtained at most 〇.5, so in order to obtain the optical density (pass* is 2.5 or more) necessary as a black matrix, it is necessary to increase the film thickness. . Therefore, the step difference between the substrate and the black matrix or the light-shielding wall becomes large. As a result, the wiring is easily broken, or the uniformity between the liquid crystal elements or the respective light-emitting elements is deteriorated, and the unevenness in the surface of the element is increased. On the other hand, even if the insulation property can be maintained, the film has a higher specific dielectric constant than 200, which may cause image confusion. π is a method for obtaining such a problem that a black matrix or a light-shielding wall having a high light-shielding property, an insulating property, and a thickness is suppressed, and having a lower specific dielectric constant, 157917.doc 201219465. In the second document, the method of dispersing the surface of the carbon black with a diazo compound on the surface of the carbon black, thereby increasing the ratio of the carbon black 3 of the black matrix tree to improve the light-shielding property and maintaining the insulating property is disclosed. Further, 'Patent Document 3 discloses a method of coating a surface of a carbon particle with an insulator f to thereby obtain a black matrix having a high insulating property and a relatively low specific dielectric constant. Further Patent Document 4 It is disclosed that a powder of titanium oxynitride (TiOxNy: chinensis) which has a light-shielding property by using a control composition is used as a black material, and it is used in combination with a well-known oxide powder, thereby obtaining high opacity at the same time. Further, Patent Document 5 discloses a method of reducing the content of carbon black and adding an organic pigment to thereby obtain a black matrix having high light-shielding property and insulating property. Usually, the signal of the wireless remote controller (remote control) is LED (Light Emitting Diode) with a wavelength of 950 nm, and the industrial wavelength is 1064 nm. In order to prevent erroneous operation or appearance due to visible light, a cover for a member that uses a component that blocks visible light and transmits infrared rays such as near-infrared rays is generally provided for the signal source or the light-receiving element. 'Infrared transmission black film which has sufficient transparency to light having a wavelength from the near infrared ray to the infrared ray, or an infrared ray transmission filter using the infrared ray transmission black film, although it is black in appearance. Doc 201219465 In the liquid Ba panel of the next generation, it is generally considered that the c〇a method or the boa method will be a line'. However, in these methods, the black coated dry film formed on the array side is patterned. As the black matrix of the black film, it is necessary to directly align the position of the black matrix pattern with respect to the array. This position alignment uses infrared rays of ~95 〇 nm, so the reading position alignment signal is expected to make the wavelength region The black coated dry film that transmits light is used as a black matrix material. In addition, in the case of black (four) members, it is usually The optical density (〇D value: 0ptieal Denshy) is used as an index of the transmittance. When the transmittance of the film is set to T(%)', it is represented by the following formula (1): 〇D=-l〇g(T/ 1()()) (1) Further, in the case of a black matrix member, the OD value per 1 μm thickness is often used as an indicator of the light-shielding property. ▲In view of the above problem, the improvement described in Patent Documents 1 and 6 is considered. In the method of the prior black film, a metal material such as carbon black, titanium black (titanium oxide), iron oxide, chromium, and silver fine particles or an inorganic material is mainly used as the '', color material' to disperse the black materials. A black film is formed by using the material thus obtained in an organic resin or an inorganic resin, etc. In addition, an infrared (four) type filter using an organic pigment or a dye as a black material as disclosed in Patent Documents 7 and 8 is disclosed. Patent Document 1. Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. 4: Patent Publication No. 2008-266045 Patent Document 5: Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Problem to be Solved by the Invention] First, the above-mentioned technique for simultaneously improving the light-shielding property and the insulating property is manufactured in the above method for improving the dispersibility of carbon black. The state in which the carbon black particles themselves are dissolved or agglomerated does not change, and therefore merely improves the dispersibility of the dazzling particles or the agglomerated particles. Therefore, especially when the amount of carbon black is increased in order to increase the degree of blackness, the presence of the melted particles or the agglomerated particles re-agglomerates, the uniformity of the characteristics of the black matrix is lowered, or partial conductivity is exhibited. The problem. Further, in this document, in order to improve the stability, a method of temporarily forming a film is disclosed in a non-liquid state, but the manufacturing process of the black matrix is complicated, and the bondability between the black matrix and the substrate is lowered. problem. Further, in the above method of coating the surface of carbon particles with an insulating material, there is also a problem that the manufacturing process of the black matrix is complicated. Further, in the document, there is no specific description of the insulating material, and it is difficult to carry out. Further, in the method of using the titanium oxynitride powder described above, there is a problem in that the oxynitride has electrical conductivity, so that the insulating property of the black matrix can be ensured by combining with the insulating oxide powder, but it can be added thereto. Forming 157917.doc 201219465 The resin composition of the black matrix has a limit on the total amount of the oxynitride powder and the oxide powder, so that it is difficult to coexist with a high degree of blackness and high insulation. Further, when the titanium oxynitride powder and the oxide powder are not uniformly dispersed in the resin component, the titanium oxynitride powders are connected to each other to form a conductive path, and the insulating property cannot be maintained. Therefore, it is necessary to make the two components Disperse evenly. Further, in the above method of adding an organic pigment, the insulating property can be maintained, but it is difficult to improve the light-shielding property, and as a result, the thickness of the black matrix cannot be made thin. Further, there is also a problem that organic pigments are discolored due to ultraviolet rays contained in external sunlight or fluorescent lamps. On the other hand, the above-mentioned technique for a black film having sufficient transparency to light having a wavelength from near-infrared to infrared has the following characteristics: a metal material such as carbon black, titanium black, iron oxide, chromium, and silver fine particles. In the inorganic material, the light absorption energy does not have wavelength dependence, or even if the amount of change is small. Therefore, in the black film formed by dispersing these black materials in a material such as an organic resin or an inorganic resin, if the blocking property of visible light is increased, it is present in all wavelengths including infrared rays such as near-infrared rays. In the region, the transmittance is lowered, and it becomes impossible to function as an infrared-transmitting black film. Further, when an organic pigment or a dye is used as the black material, it is feared that the organic pigment or dye is decomposed or deteriorated by ultraviolet rays such as sunlight or fluorescent lamps, and for example, the use of such a filter causes fading. The present invention has been made in view of such a situation, and an object thereof is to provide a volume resistivity which is excellent in light-shielding property and which is given a certain value or more, and is preferably given a value below a certain value of 157917.doc •10-201219465. A black film having a specific dielectric constant, and an infrared-transmitting black film having excellent light-shielding properties for visible light and having a transmittance of a certain value or more for infrared rays, and a black film-containing substrate including the black film And an image display device, further comprising a black, color resin composition and a black 'color material dispersion liquid for forming the black film. Means for Solving the Problems The above problems are solved by the present invention described below. That is, the present invention provides the following: π] - a black film containing at least a resin component and a black material, and the volume fraction of the black material is 2% by volume or more and 3% by volume or less 'average dispersion in the film The particle size is! Above nm, 2〇〇(10) and below, and the optical density per 1 μΓΠ thickness is above 丨, and the volume resistivity is 1〇" 〇\瓜~[2] such as [1] black film, of which 1 Ding > The specific dielectric constant at eight T 1 kHz is 15 or less; [3] The black film of [1] or [2], in which the particle size distribution index in the film of the black material on the T-Ridden Y is 090% is 600. (4) - an infrared-transmissive black film comprising a black material and a resin component, and the average dispersion particle diameter of the black material in the film is i 以上 or more, 1 〇〇 nm or less, and transmittance (T56G) ) less than 40%, and the transmittance of light, OD56〇, and light at a wavelength of 560 nm per 1 μm thickness based on a wavelength of 560 nm at a wavelength of 157917.doc -11· 201219465 950 nm The ratio of the optical density (〇d95.) (〇D95〇/OD56()) is 0.35 or less; [5] The infrared-transmitting black film of [4], wherein the above-mentioned optical based on the transmittance at a wavelength of 56 〇 nm Density (〇d560), and transmission at each wavelength in the near-infrared (NIR) wavelength region based on wavelengths above 800 nm and 2500 nrn The optical density (ODNIR) ratio (〇DNIR/OD56) is 0.40 or less; [6] The infrared-transmitting black film of [4] or [5], wherein the black material has a volume fraction of 1.0% by volume or more. [7] The black film according to any one of [1] to [6] wherein the black material is a metal fine particle containing silver and tin as a main component; [8] black as in [7] a film, wherein the metal fine particles comprise silver tin alloy fine particles or mixed fine particles of the silver tin alloy fine particles and silver fine particles, and satisfy the following (1) or (2): (1) the silver component in the silver tin alloy fine particles is relatively The content ratio of silver to tin is 45 mass% or more and 95 mass% or less; (2) the content ratio of the silver component in the mixed fine particles of the silver tin alloy fine particles and the silver fine particles to the total amount of silver and tin 45% by mass or more and % by mass or less; [9] A black resin composition for forming a black film according to any one of (1) to [3], (7), and [8], which contains at least black Material and resin forming component or resin component, the color resin combination The average dispersed particle diameter of the black material is ι (10) or more ', ', '200 nnm', and the particle size distribution index in the black resin composition is read as 600 nm or less; 157917.doc •12- 201219465 π〇]-black A resin composition for forming a black film according to any one of [4] to [8], which comprises at least a black material and a resin forming component or a resin component, the black material in the black tree mooncake composition The average dispersed particle diameter is 1 or less; π 1] is a black material dispersion liquid, which is a user of the black resin composition of [9], which is dispersed in a dispersion medium with a black material, and the black material is dispersed. The average dispersed particle size in the liquid is 1 nm or more and 200 nm or less, and the particle size in the dispersion is D90% of the cloth index is 6 〇〇 nm or less; [12] a black material dispersion, such as [1〇] a black resin composition in which a black material is dispersed in a dispersion medium, and an average dispersed particle diameter in the dispersion of the black material is 100 nm or less; [13] a substrate with a black film, Contains black as in any one of [1] to [8] Persons; [14] An image display device comprising the system [Shu] to [8] by a black film of any. Advantageous Effects of Invention According to the present invention, it is possible to provide a black film having excellent light-shielding properties and imparting a volume resistivity of a certain value or more, and an excellent light-shielding property to visible light and having a certain value or more for infrared rays. a transmissive infrared transmissive black film, a black film-attached substrate and an image display device comprising the black film, and further a black resin composition for forming the black film 157917.doc • 13-201219465 and black Material dispersion. Therefore, the present invention can provide an image display device or the like having high luminance and high contrast characteristics. [Embodiment] The first invention of the present invention relates to at least a resin component and a black material. The volume fraction of the black material is 2% by volume or more and 30% by volume or less, and the average dispersed particle diameter in the film is 1 nm or more. a black film having a thickness of 1 nm or more and a volume resistivity of 1 〇" n.cm or more, a black resin composition for forming the black film, and a black material dispersion. A black film-attached substrate and an image display device including the black film. According to a second aspect of the present invention, there is provided a black material and a resin component, wherein the black material has an average dispersed particle diameter of 1 nm or more and 1 〇〇 nm or less in a film, and a transmittance per 1 μm thickness at a wavelength of 560 nm ( T560) is less than 40%' and the ratio of the optical density (〇D560) based on the transmittance at 560 nm to the optical density (〇D950) based on the transmittance at 950 nm (OD950/OD560) is 0.35 or less. A black film, a black resin composition for forming the black film, a black material dispersion, a black film-containing substrate including the black film, and an image display device. Hereinafter, the present invention will be described by way of embodiments. <First Invention> (Black Film) The first black film of the present embodiment is characterized in that at least the resin component and the black material 'the black material have a volume fraction of 2% by volume or more and 30% by volume or less' in the film. The average dispersed particle diameter is 1 nm or more, I57917.doc 1j4 201219465 200 nm or less', and the optical density per 1 μπι thickness is i or more, and the volume resistivity is 1011 Ω·cm or more. In the first black film of the present embodiment, the following black material is used, and the black material has a high blackness and is excellent in dispersibility in the resin. Therefore, the optical density of the thickness of the black film of the present embodiment, that is, the optical density per 1 μm thickness, can be easily obtained by setting the volume fraction of the black crucible to 2% by volume or more and 3% by volume or less. A black film having a volume resistivity of 1 〇 11 or more. Further, since the dispersibility is good, the specific dielectric constant at 1 kHz can be 15 or less', and the particle size distribution index D9〇% can be made 600 nm or less. In the first black film of the present embodiment, the volume fraction of the black material must be 2% by volume or more and 30% by volume or less. If the black material is less than the range, the sufficient light-shielding property cannot be ensured when the black film is formed, and if the black material is excessively in the range, the shape, size, or dispersion state of the black material is irrelevant, and the black film becomes low resistance. Therefore, it becomes impossible to obtain the required volume resistivity. The volume fraction of the above black material is preferably 2% by volume or more and 28% by volume or less, more preferably 2% by volume. Above 25% by volume. Further, since the specific gravity of each of the black material and the resin component is known, the volume fraction of the black material in the first black film of the present embodiment can be based on the quality of the black material used as the raw material and the resin forming component. Find out. Further, the resin component is volatilized by decomposition or oxidation at a relatively low temperature. In contrast, since the black material is a metal, it is stable up to a high temperature, because 157917.doc •15-201219465 can be used according to the use of thermogravimetric analysis (TG). , Therm〇gravimetdc (4) (4) The amount of change in the mass of the black film in the black film is determined by the weight ratio of the resin component in the black film. In addition, if the component of the (b) fat component and the black material is determined by component analysis, Since the specific gravity of the two substances can be obtained, the volume fraction of the black material in the black film of the present embodiment can be obtained from the weight ratio obtained and the specific gravity of each component. Further, in the blackening film of the present embodiment The average particle size of the black material in the film must be 纳米 or more and fine nm or less. In the present embodiment, the average primary particle (four) of the black material used is preferably ι or upper, so the right average dispersed particle When the diameter is less than 丨nm, it is difficult to exist as particles. On the other hand, if the average dispersed particle size exceeds (10) coffee, the black film becomes easy to be condensed by the black material particles. The resulting conductive channel 'is therefore difficult to ensure the required volume resistivity, and the light-shielding property also decreases when the aggregation of the black material fine particles is remarkable. The average dispersed particle diameter in the above film is preferably 2 nm or more, 2 〇 〇 (10) or less is more preferably 5 nm or more and 200 ηηη or less. Further, the average dispersed particle diameter in the black film of the present embodiment is a particle diameter corresponding to a cumulative value of 5 % by weight in the case of expressing the particle size by the cumulative distribution. (accumulated 50% particle diameter··median particle diameter). The particle size distribution index in the film of the black material in the first black film is preferably _ nm or less, more preferably 5 〇〇 (10). In the following, if the particle size distribution index /0 in the film is _ nm or less, the unevenness of the particle diameter can be suppressed from being increased, the required radii resistivity can be maintained, and sufficient pre-preservability can be maintained. The above-mentioned particle size distribution index % in the film refers to 157917.doc 201219465 in terms of cumulative distribution, which means that the granules (accumulated 90% of the particle size) corresponding to the cumulative value 粒V. ^ ^ , £t ^ . ... the table does not exist in the black The index of the uniformity of the particle size of the material particles. Further, the lower limit of D90% is ^^ „ ..., especially, but the average particle size of the black material is preferably used. It is 1 nm, so it is difficult to make D90% less than 5 nm in the actual manufacturing step. The above-mentioned black material is flat in the film, and the particle size can be, for example, by using FIB (f〇). Cuscd i〇n beam » 隹 隹 隹 、 、 、 、 、 、 、 、 、 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 切割 cus cus cus cus cus cus cus cus cus cus cus cus In the present embodiment, a certain number of arbitrary particles (50 or more 'more preferably (10) or more) are selected from the observation field, and the respective particle images are approximated by circles of the same area, and the diameter of the circle is set to The particle diameter of the particles was determined by the cumulative distribution of the particle diameters, and the particle diameter (median diameter) corresponding to the cumulative value of 5 Å/〇 was defined as the average dispersed particle diameter in the film. Further, the particle size distribution index D90% was determined by setting the cumulative particle size of the particle diameter of the selected particles to 9% by volume. Furthermore, the cumulative values are all benchmarks. The first black film of the present embodiment must have an optical density of 1 or more per 1 μm thickness. If the optical density per 1 μm is less than 丨', sufficient shading properties cannot be obtained if the thickness of the black film is several μη. Further, in order to obtain sufficient light-shielding property, it is necessary to increase the film thickness, in particular, when it is used as a black matrix or the like, the wire breakage or display unevenness is likely to occur due to an increase in film thickness. Therefore, it is possible to obtain a sufficient light-shielding property without increasing the film thickness to a required level or more, and to set the optical density per 1 μm to 1 or more. 157917.doc • 17- 201219465 Further, the optical density per 1 μm is preferably 1.2 or more and more preferably 1.5 or more. Here, the black material in the present embodiment has a high blackness and is excellent in dispersibility in the resin. Therefore, if the first black film of the embodiment is used, the amount of the black material can be increased. It is easier to maintain the required volume resistivity and to have an optical density of 2 or more per 1 μm. Further, the higher the optical density per 1 μm, the more preferable, but the upper limit is about 10 in terms of measurement limitation. Here, the optical density per 1 μm thickness described above can be obtained as follows. The sample was formed into a film shape on a transparent substrate as a transmission measurement. The optical density of the film sample is measured by a transmission densitometer, and the film thickness is measured using a stylus type surface shape measuring device or the like, and the optical density value of the obtained sample is divided by the film thickness. The optical density of the thickness of the claw. Further, it is preferable that the optical density of the film sample is about 4.0 or less to prevent a decrease in measurement accuracy. In addition, the volume resistivity of the black film must be 1 〇1 1 or more. The reason is that the wiring for driving the element is in contact with a black moment or the like in a liquid crystal display device or a light-emitting display device of a COA method or a BOA system. The wall or the structure in which the component drive wiring is directly provided on the black (four) or the light-shielding wall becomes the mainstream. Therefore, if the black film is used to form a black matrix or the like, the volume resistivity of the light-shielding wall does not reach ι〇11 ω. In the 1PS-driven liquid crystal, if the color matrix formed by using the black film has conductivity, the wiring is likely to be short-circuited, and the liquid crystal of the liquid crystal is used to drive the liquid crystal. 157917.doc -18· 201219465 @There is an unwanted electric field in the direction, causing image confusion. The volume resistivity of the black film is preferably 1 G12 n.emm, more preferably 10 Ω cm or more. The higher the volume resistivity of the black film, the higher the upper limit is not particularly limited, and is usually 1 〇 18 Q.cm or less. Further, the volume resistivity can be measured by using a commercially available volume resistivity meter, for example, by a four-probe method or the like. Further, the specific dielectric constant of the first black film of the present embodiment is preferably 15 or less, more preferably 丨2 or less, still more preferably 6 or less, and particularly preferably 5 or less. When the specific dielectric constant of the black film is 15 or less, when a black matrix or the like or a light-shielding wall is formed using the black film, the influence of the parasitic capacitance or the like on the switching signal for driving the liquid crystal element or the light-emitting element is lowered. This can reduce the confusion of images and the like to the extent that there is almost no influence on the visual. In addition, when the specific dielectric constant of the black film is 6 or less, when a black matrix or the like or a light-shielding wall is formed using the black film, a switching signal for driving the liquid crystal element or the light-emitting element, an image, etc. can be accurately transmitted. There will be no confusion in it. The smaller the specific dielectric constant of the black film, the lower the limit is not particularly limited, but it is usually 2.0 or more at 1 kHz. However, since the influence of the specific dielectric coefficient is proportional to the signal frequency, when the driving frequency of the switching signal in the liquid crystal element or the light emitting element is low, the specific dielectric constant does not need to be low, and if the driving frequency is DC ( For the direct current (DC) level (below 10 Hz), the specific dielectric constant value itself can be ignored.
再者,黑色膜之比介電係數之測定可使用市售之LCR meter(inductance capacitance resistance meter,雷咸雪玄 157917.doc -19- 201219465 電阻測定計)進行。 本實施形態之第1黑色膜可獲得較高之體積電阻率之 值’進而較低地控制比介電係數之值,藉此可較佳地用於 COA方式或BOA方式之液晶顯示元件、或自發光型顯示裝 置中之黑色矩陣等或遮光壁,一般認為其理由如下。 首先’可列舉作為黑色材料之銀錫合金微粒子、或銀錫 合金微粒子與銀微粒子之混合微粒子之黑色度高於先前之 作為黑色材料之碳黑等《黑色度較高意味著獲得相同遮光 性所必需之量較少,即,於將每丨μιη厚度之光學密度設為 1以上時,膜中之黑色材料之體積分率少於先前。如此因 黑色材料之體積分率較低,故於黑色膜中無黑色材料微粒 子也、聚之情況。即’於微粒子彼此密聚之情形時,因微粒 子彼此相接觸而形成導電通道,而不會引起此種狀況。 作為其他理由’可列舉提高黑色材料之分散性。分散性 較尚意味著黑色材料之凝聚度較低。如上所述,即便於黑 色材料之體積分率較低之情形時,若黑色材料之分散性較 低,則黑色材料微粒子彼此凝聚,尤其是凝聚為鏈狀,因 此有可能形成導電通道。然而,於本實施形態之第〗黑色 膜中,黑色材料之分散性較高且平均分散粒徑較小,因此 黑色材料均勻地分散於黑色膜巾,而無形$由鍵狀之凝聚 所致之導電通道之情況。如此,於本實施形態之黑色膜 中,黑色材料均勻地分散而不形成導電通道,因此可獲得 較高之體積電阻率。 又,黑色材料本身為金屬而比介電係數非常高,使其微 157917.doc •20- 201219465 粒子化而均勻地分散於比介電係數較低之樹脂成分中形成 高電阻膜,藉此可降低作為黑色膜之實效性的比介電係 數。進而,因黑色膜中之黑色材料之體積分率較低,故可 進一步提高比介電係數降低之效果。藉此,可獲得較低之 比介電係數。 再者,如於下述黑色材料分散液或黑色樹脂組合物中所 記載,本實施形態中之黑色材料係使用分散劑或分散助劑 進行分散處理’藉此可較為容易地達成上述黑色膜中之分 散粒徑之減少或粒度分佈指標之減少。 如此,於藉由使具有特徵之黑色材料提高分散性而存在 於膜中而獲得之本實施形態之黑色膜中,藉由將黑色材料 之體積分率設為2體積。/❶以上、3〇體積%以下,將膜中之平 均刀政粒徑設為1 nm以上、200 nm以下,可獲得ι〇π Q.cm以上之體積電阻率,又,亦可使每i μιη厚度之光學 密度為1以上。進而,可使i kHz下之比介電係數為15以 下。 -黑色材料- 作為本實施形Μ之第1黑色膜所使用之黑色材料,較 佳為選擇以銀及錫作為主成分之金屬微粒子H,上述 所謂「以銀及錫作為主成分」,係指金屬微粒子中至少包 3銀及錫兩種心’且銀及錫之合計之含量相對於金屬微 粒子整體為50質量%以上。,成分及含量係相對於金屬 微t子整體而規定者,並非係規定各個粒子本身之成分及 含量者。 157917.doc -21- 201219465 自先則便已知粒徑為1 nm至數百nm程度之金屬微粒子 (奈米尺寸之金屬微粒子)藉由金屬之表面電漿子吸收而呈 現各種色調,又,亦已知該色調係根據微粒子之組成或粒 徑而變化。於本實施形態中,只要選擇藉由調整組成或粒 徑而呈現黑色之金屬微粒子即可,作為此種黑色金屬微粒 子’可選擇以銀及錫作為主成分之金屬微粒子。 作為該金屬微粒子,可較佳地使用銀錫合金微粒子、或 銀錫合金微粒子與銀微粒子之混合微粒子。此處,於以銀 及錫作為主成分之金屬微粒子為銀錫合金微粒子之情形 時,該銀錫合金微粒子中之銀成分之含有率,即銀成分相 對於銀與錫之合計量之比率(銀/(銀+錫):質量%)較佳為C 質量%以上、95質量%以下,更佳為6〇質量%以上、95質 量乂下進而較佳為62質量%以上、95質量%以下,特 佳為65質量。/。以上' 95質量%以下。 又,於以銀及錫作為主成分之金屬微粒子為銀錫合金微 粒子與銀微粒子之混合微粒子之情形時,該銀錫合金微粒 子與銀微粒子之混合微粒子中之銀成分之含有率,即銀成 分相對於銀與錫之合計量之比率(銀/(銀+錫):質量%)較佳 為45質量%以上、95質量%以下,更佳為⑼質量%以上、 95質量/。以下,進而較佳為62質量%以上%質量%以 下,特佳為65質量%以上、95質量%以下。 將上述銀成分之含有率限定於上述範圍之理由在於:若 該銀成分之比率為45質量%以上、95質量%以下,則成為 光之反射率不會變高且具有充分的黑色度之黑色膜,而可 157917.doc -22- 201219465 獲得充分的光遮斷性。 再者’上述銀成分之較佳之含有率範圍係取一定量上述 銀錫合金微粒子、或上述銀錫合金微粒子與銀微粒子之混 合微粒子時,表示該微粒子整體中之銀成分之較佳之含有 率範@者’並非係表示各個粒子中之銀成分之較佳之含有 率範圍者。 再#’此處,所謂銀錫合金微粒子係例如如下者,不僅 包含具有銀錫合金之晶體結構者(以下,亦稱為「銀錫合 金相」)’亦可包含具有銀之晶體結構者(以下,亦稱為 「銀相」)。 f先’作為具有銀錫合金相者,於由化學式Agl_xSiix表 示銀錫合金之情形時,已知有X之範圍為0.118 0.2285之$相(空間群?63/111111(〇及0.237$又$0.25之8相(空間 群Pmmn)(根據Binary Alloy Phase Diagram,ρ· 94-97)。一 般認為若將該等相之組成及空間群與X射線繞射之 ICDD(International Centre for Diffraction Data,國際粉晶 繞射數據中心)卡(JCPDS(Joint Committee on Powder Diffraction Standards,粉末繞射標準聯合委員會)卡)相比 較,貝Ιέ相之X射線繞射資料相當於Ag3Sn(IDCC 71-0530), ζ相之X射線繞射資料相當於Ag4Sn(IDCC 29-1151)。因 此,若為具有作為斜方晶系之ε相(Ag3Sn)或作為六方晶系 之ζ相(Ag4Sn)之結構之銀錫合金微粒子,則可滿足化學上 的穩定性與黑色度。 其次,作為銀相,即具有銀之晶體結構者,係指銀結晶 157917.doc -23- 201219465 中之銀原子之一部分經錫原子取代而成者,於由化學式 Agi-ySriY表示此情形之銀錫合金之情形時,γ之範圍為 0<YS0.115 ’於上述文獻中係以(Ag)相(由以下表記表示 之空間群:立方晶系)表示。 [數1]Further, the specific dielectric constant of the black film can be measured using a commercially available LCR meter (inductance capacitance resistance meter, 157917.doc -19-201219465 resistance meter). The first black film of the present embodiment can obtain a value of a higher volume resistivity and further lower the value of the specific dielectric constant, thereby being preferably used for a liquid crystal display element of a COA mode or a BOA mode, or A black matrix or the like, or a light-shielding wall in a self-luminous display device is generally considered to be as follows. First, it can be cited that the silver tin alloy fine particles as the black material or the mixed fine particles of the silver tin alloy fine particles and the silver fine particles have higher blackness than the carbon black which was previously used as the black material. The amount required is small, that is, when the optical density per thickness of the thickness is set to 1 or more, the volume fraction of the black material in the film is less than that of the prior art. In this way, since the volume fraction of the black material is low, there is no black material in the black film. That is, when the fine particles are densely aggregated with each other, the conductive passages are formed by the fine particles contacting each other without causing such a situation. For other reasons, the dispersibility of the black material can be improved. Dispersion means that the black material has a low degree of cohesion. As described above, even in the case where the volume fraction of the black material is low, if the dispersibility of the black material is low, the black material particles are agglomerated with each other, in particular, agglomerated into a chain shape, so that it is possible to form a conductive path. However, in the black film of the present embodiment, the dispersibility of the black material is high and the average dispersed particle diameter is small, so that the black material is uniformly dispersed in the black film towel, and the invisible $ is caused by the aggregation of the bonds. The case of conductive channels. Thus, in the black film of the present embodiment, the black material is uniformly dispersed without forming a conductive path, so that a high volume resistivity can be obtained. Moreover, the black material itself is a metal and the specific dielectric constant is very high, so that the micro-157917.doc •20-201219465 is particle-shaped and uniformly dispersed in a resin component having a lower dielectric constant to form a high-resistance film. Reduce the specific dielectric constant as the effectiveness of the black film. Further, since the volume fraction of the black material in the black film is low, the effect of lowering the specific dielectric constant can be further improved. Thereby, a lower specific dielectric constant can be obtained. Further, as described in the following black material dispersion or black resin composition, the black material in the present embodiment is subjected to dispersion treatment using a dispersing agent or a dispersing aid, whereby the above-mentioned black film can be easily obtained. The decrease in the dispersed particle size or the decrease in the particle size distribution index. As described above, in the black film of the present embodiment obtained by increasing the dispersibility of the characteristic black material in the film, the volume fraction of the black material is set to 2 volumes. /❶ or more, 3〇 volume% or less, and the average knife-size particle size in the film is 1 nm or more and 200 nm or less, and a volume resistivity of ι π Q.cm or more can be obtained, and each i can be made. The optical density of the μιη thickness is 1 or more. Further, the specific dielectric constant at i kHz can be made 15 or less. - Black material - As the black material used for the first black film of the present embodiment, it is preferable to select metal fine particles H containing silver and tin as main components, and the above-mentioned "silver and tin as main components" means At least 3 silver and tin cores are contained in the metal fine particles, and the total content of silver and tin is 50% by mass or more based on the total amount of the metal fine particles. The composition and content are defined relative to the metal micro-t overall, and are not intended to define the composition and content of each particle itself. 157917.doc -21- 201219465 It has been known that metal microparticles (nano-sized metal microparticles) with a particle size of 1 nm to several hundreds of nanometers exhibit various tones by absorption by surface plasmons of metal. It is also known that the hue varies depending on the composition or particle diameter of the fine particles. In the present embodiment, it is preferable to select metal fine particles which are black by adjusting the composition or the particle diameter, and as the black metal fine particles, metal fine particles containing silver and tin as main components can be selected. As the metal fine particles, silver tin alloy fine particles or mixed fine particles of silver tin alloy fine particles and silver fine particles can be preferably used. Here, in the case where the metal fine particles containing silver and tin as main components are silver tin alloy fine particles, the content ratio of the silver component in the silver tin alloy fine particles, that is, the ratio of the silver component to the total amount of silver and tin ( Silver/(silver+tin):% by mass) is preferably C% by mass or more and 95% by mass or less, more preferably 6% by mass or more, and 95% by mass or less, more preferably 62% by mass or more and 95% by mass or less. , especially good for 65 quality. /. Above '95 mass% or less. When the metal fine particles containing silver and tin as main components are fine particles of silver tin alloy fine particles and silver fine particles, the content of the silver component in the mixed fine particles of the silver tin alloy fine particles and the silver fine particles, that is, the silver component The ratio (silver/(silver + tin): mass%) to the total amount of silver and tin is preferably 45 mass% or more and 95 mass% or less, more preferably (9) mass% or more and 95 mass%. In the following, it is preferably 62% by mass or more and 7% by mass or less, and particularly preferably 65% by mass or more and 95% by mass or less. The reason why the content of the silver component is limited to the above range is that when the ratio of the silver component is 45 mass% or more and 95 mass% or less, the reflectance of light does not become high and the blackness of sufficient blackness is obtained. Membrane, and 157917.doc -22- 201219465 to obtain sufficient light interception. Further, when the preferred content range of the silver component is a predetermined amount of the silver tin alloy fine particles or the mixed fine particles of the silver tin alloy fine particles and the silver fine particles, the preferred content ratio of the silver component in the entire fine particle is @者' is not a range indicating a preferred content rate of the silver component in each particle. Here, the silver tin alloy fine particles are, for example, those including a crystal structure having a silver-tin alloy (hereinafter also referred to as "silver-tin alloy phase") or a crystal structure having silver ( Hereinafter, it is also called "silver phase"). f first 'as a silver-tin alloy phase, in the case of a silver-tin alloy represented by the chemical formula Agl_xSiix, it is known that the range of X is 0.118 0.2285 (space group? 63/111111 (〇 and 0.237$ and $0.25) 8 phase (space group Pmmn) (according to Binary Alloy Phase Diagram, ρ· 94-97). It is generally considered that if the phase composition and space group and X-ray diffraction ICDD (International Centre for Diffraction Data, international powder crystal Compared to the JCPDS (Joint Committee on Powder Diffraction Standards) card, the X-ray diffraction data of the Bellow phase is equivalent to Ag3Sn (IDCC 71-0530). The X-ray diffraction data is equivalent to Ag4Sn (IDCC 29-1151). Therefore, if it is a silver-tin alloy fine particle having an ε phase (Ag3Sn) as an orthorhombic system or a ruthenium phase (Ag4Sn) as a hexagonal system, It can satisfy the chemical stability and blackness. Secondly, as the silver phase, that is, the crystal structure having silver, it means that one of the silver atoms in the silver crystal 157917.doc -23- 201219465 is replaced by a tin atom. Yu Yu When the formula Agi-ySriY indicates the case of the silver-tin alloy in this case, the range of γ is 0 < lt 0.115 ' is represented by the (Ag) phase (space group represented by the following formula: cubic crystal system) in the above literature. [Number 1]
Fm3m 若以AgzSn(Z為實數)表記該範圍,則z之範圍為 7.70S Z<〇〇(無限大)。 再者,於上述化學式中,Y=0(AglSn〇)或z=〇〇(Ag〇〇Sn^s 當於Ag單獨相,因此脫離了作為此處所示之銀錫合金微粒 子之規定範I但是,於本實施形態中作為用作黑色材料 之以銀及錫作為主成分之金屬微粒子,不僅係銀錫合金微 粒子,而且亦可為銀錫合金微粒子與銀微粒子之混合微粒 子’因此黑色材料中亦可包含丫=〇者。 又,包含該銀錫合金微粒子、或銀錫合金微粒子與銀微 粒子之混合微粒子之黑色材料實質上不含錫微粒子。此 處’所謂實質上不含錫微粒子,係表示於利用狀線繞射 法之解析中未確認具有錫之晶體結構之物質之存在。若該 黑色材料含有錫微粒子,則使用該黑色材料形成之黑色遮 光膜之光遮斷性大幅度地下降。 本實施形態所使用之里$ #姻_ + π & , ,1文阳&…e材枓之平均一次粒徑較佳為 nm以上、200 nm以下,争佔盔< h更佳為5nm以上、2〇〇nm以下。 此處’將平均一次粒徑限定於上述範圍之理由在於藉由 將平均-次隸設於上狀範㈣,可較為容易地形成所 157917.doc -24· 201219465 需之黑色膜。即’原因在於若平均—次粒徑未達1⑽,則 與可見光之波長相比過小,因此有作為光吸收之主要因素 的金屬之定域型表面電漿子吸收減少,而變得無法獲得所 需之黑色度之情形,另一方面,若平均一次粒徑超過2〇〇 nm,則粒子表面上之電子運動之範圍變廣,因此有金屬之 定域型表面電漿子吸收減少,黑色度降低之情形。 作為本實施形態所使用之黑色材料之製造方法,如上所 述,若為可獲得藉由調整組成或粒徑而呈現黑色之金屬微 粒子之方法,則無特別限制,可應用氣相反應法、喷霧熱 分解法、液相反應法、冷凍乾燥法、水熱合成法等通常之 金屬微粒子合成法。 尤其是於選擇銀錫合金微粒子、或銀錫合金微粒子與銀 微粒子之混合微粒子作為上述金屬微粒子之情形時,較佳 為使用可較為谷易地獲得該等微粒子之液相反應法。 作為上述液相反應法,例如可例示於錫膠體分散液中滴 加銀化合物溶液與還原劑,使錫與銀離子反應而合金化, 並且由銀離子形成銀微粒子,藉此生成銀錫合金微粒子與 銀微粒子之方法。 於該製造方法中,藉由適當地調整反應條件(例如,錫 與銀離子之比率、反應液之pH值、反應溫度、反應時間、 還原劑量等),可任意地控制銀錫合金微粒子之生成量、 銀微粒子之生成量(包含實質上未生成銀微粒子之情形, 即僅生成銀錫合金微粒子之情形)、進而銀錫合金微粒子 與銀微粒子之生成量比。 157917.doc •25- 201219465 於該製造方法中,藉由液相中之反應完成合成,因此所 獲得之包含金屬微粒子之黑色材料成為分散於水系之液相 中之狀態’可直接或藉由經過簡單的步驟而用作下述之水 分散系之黑色材料分散液。 又,於使用該黑色材料製作黑色膜之情形時,考慮黑色 材料與樹脂形成成分之分散性,而亦可使分散液之分散介 質為有機溶劑系》如上所述’因黑色材料係於分散於水系 之液相中之狀態下獲得,故於製備有機溶劑系之分散液^ 情形時,可採用如下方法:暫且對自水系之液相回收之塊 狀凝聚物進行機械粉碎而製成粉末,其後,使用球磨機、 珠磨機等濕式混合機於有機溶劑中進行分散處理。又,若 可能,則亦可於維持分錢之狀態下直接藉由溶劑取代^ 變更分散液。 -樹脂成分- 作為本實施形態中之樹脂成分,只要選擇於均勻地分散 有作為黑色材料之呈現黑色之金屬微粒子的狀態下硬化, 且符合形成之黑色膜所要求之特性者即可。作為該樹脂成 分,可使用各種電離放射線硬化性樹脂、熱硬化性樹脂、 熱塑性樹脂等。 上述所謂電離放射線硬化性樹脂,係表示藉由照射作為 電磁波或帶電粒子束的例如紫外線或電子束等而交聯或進 行聚合反應,從而硬化之樹脂,可例示:自由基聚合型丙 烯酸系樹脂、不飽和聚酯樹脂、或陽離子聚合型環氧樹 脂、乙烯醚系樹脂、氧雜環丁烷類、縮水甘油驗類。 157917.doc -26- 201219465 作為上述丙烯酸系樹脂,可例示:聚酯(曱基)丙烯酸酯 系樹脂、環氧(甲基)丙烯酸酯系樹脂、(甲基)丙烯酸胺基 甲醆酯系樹脂、多元醇(甲基)丙稀酸酯系樹脂、聚石夕氧(曱 基)丙烯酸酯系樹脂等。再者,此處,所謂「(甲基)丙烯酸 醋」’係表示「丙烯酸酯或甲基丙烯酸酯」。以下相同。 又’作為上述熱硬化性樹脂,可例示:紛樹脂、紛_經 樹脂、脲樹脂、脲-醛樹脂、三聚氰胺樹脂、聚酯_三聚氛 胺樹脂、三聚氰胺-醛樹脂、醇酸樹脂、環氧樹脂、環氧_ 二聚氰胺樹脂、不飽和聚醋樹脂、聚醯亞胺樹脂、丙稀酸 系樹脂、聚矽氧烷樹脂、聚胺基曱酸酯樹脂、通用之2液 硬化型丙烯酸系樹脂(丙烯酸多元醇硬化物)等。 又’作為上述熱塑性樹脂,較佳為使用:聚酯樹脂、醇 酸樹脂、聚胺基曱酸酯、聚乙稀吡咯啶酮、聚乙烯醇等。 進而’於將本實施形態之第1黑色膜製成黑色矩陣等之 情形時’較佳為選擇鹼溶性樹脂作為樹脂成分之原料即樹 脂形成成分,將使用該樹脂形成成分形成之樹脂作為樹脂 成分。 再者’因樹脂(有機材料)之比介電係數一般較低,故對 於使黑色膜之比介電係數為15以下幾乎不存在樹脂成分之 選擇限制因素’但於一部分樹脂例如酚樹脂中’存在因組 成等而比介電係數超過1〇者,因此有時需要注意。 -黑色膜之製造方法_ 本實施形態之第1黑色膜係藉由使用下述黑色樹脂組合 物’利用公知之各種塗敷法形成膜體而獲得。例如,黑色 157917.doc -27- 201219465 膜可藉由如下步驟而較為容易地獲得:利用輥塗法、旋塗 法、浸塗法、噴塗法、棒塗法等各種塗佈法,將上述黑色 樹脂組合物於基材之一主表面上成形(塗佈)為層狀而形成 塗佈膜’藉由揮發等將溶劑自該塗佈膜中除去,並視需要 進行硬化處理。 該硬化處理通常係使塗佈膜中之樹脂形成成分藉由聚合 等進行反應而製成樹脂成分之步驟,於使用電離放射線硬 化型樹脂作為樹脂形成成分之情形時,可列舉紫外線、電 子束、X射線等放射線之照射(照射放射線後,亦可視需要 實施熱處理),於使用添加有熱聚合觸媒之熱塑性樹脂原 料等熱反應性樹脂作為樹脂形成成分之情形時,可列舉加 熱處理。 放射線之照射量係設為電離放射線硬化型樹脂充分地硬 化所需之充分量’通常係設為2〇 mJ/cm2以上、1〇〇〇 mJ/cm2以下。又,作為加熱處理之溫度,只要為熱反應性 樹脂充分地硬化,且樹脂本身不會改質或變形,並且基材 可財受之溫度則無特別限制,例如可例示於大氣環境中、 80 C〜300 C之範圍之溫度下進行3分鐘〜12〇分鐘左右之熱 處理》 又,於黑色樹脂組合物中之成分為溶解於溶劑中之樹脂 成分之情形時,硬化處理成為自塗佈膜中之樹脂成分中除 去溶劑之步驟,可列舉大氣壓下或減壓下之加熱處理。於 此情形時,藉由除去溶劑而硬化之樹脂成分有可能因曝露 於相同溶劑而再次膨潤、溶解,因此較佳為藉由嚴格設定 157917.doc -28 · 201219465 加熱處理條件’而將溶劑完全地除去。此處,於使用電離 放射線硬化型樹脂作為樹脂成分之情形時,只要於溶劑除 去後照射紫外線、電子束、x射線等放射線,或進而實施 熱處理使其完全地硬化即可,於使用熱反應性樹脂作為樹 脂成分之情形時,只要藉由溶劑除去後之熱處理而完成硬 化反應即可β (黑色材料分散液) 本實施形態之黑色材料分散液(以下,有時簡稱為「分 散液」)係使上述本實施形態之黑色材料分散於分散介質 中而成之分散液。 於該分散液中’黑色材料之平均分散粒徑為1 nm以上、 x下刀散介質中之粒度分佈指標1)90〇/〇為600 nm 以下。 -分散介質- 、〔刀散"質基本而呂係含有水、有機溶劑及樹脂形成 成分中之1種以上者。 作為上述之有機溶劑,例如較佳為使用:甲醇、乙醇、 2:醇:醇、辛醇等醇類;乙酸乙酿、乙酸丁醋、乳酸 -曰、丙-醇單W乙酸單 内酯等酯類;二乙醚、乙γτ 醇單乙叫基溶纖劑、 曱喊(甲基溶纖劑)、乙二 乙二醇單甲ϋ、 ·(丁基溶纖劑卜二 嗣、曱基異丁 f、甲基乙基 苯、一曱苯^乙酿丙_、環己綱等鋼類;笨'曱 -曱本、乙本等芳香族烴;二甲基甲酿胺、跳二甲 157917.doc •29· 201219465 可使用該等 基乙醯基乙酿胺、N-甲:mi β ^ T基比咯啶酮等醯胺類 溶劑令之1種或2種以上。 使用上述有機溶劑之情形之分散液 田 队队『〜ΰ卞千权佳為5 質置以下,更佳為^哲县0/、 ”·、質量/〇以下,進而較佳為2質量。/〇以 下0 右二散液之含水率超過5質量%則於將分散有黑色材 r •之刀散液與非水系樹脂成分或樹脂形成成分混合之情形 時,存在分散液與樹脂成分或樹脂形成成分變得易分離, 而不易獲得穩定之混合物(黑色樹脂組合物)之情形。即, 藉由將分散液之含水率設為5質量%以下,可自多種非水 系感光性樹脂中適當地選擇符合所需之曝光、顯影條件、 :物性等者,亦無對分散液或塗佈膜之制約,而可擴寬該 等之设計之自由度。 -其他成分- 於本實施形態之分散液中,為提高黑色材料之分散性, 提高分散穩定性,較佳為併用分散劑及/或分散助劑。其 中,尤其是若使用高分子分散劑作為分散劑,則經時分散 =定性優4,因此較佳。再者,此處,所謂分散劑,係指 確保黑色材料之分散敎性的結構與黑色材料完全不 冋的聚合物等,所謂分散助劑,係指用以提高黑色材料之 分散性之顏料衍生物。 例如可列舉:胺基甲酸 '聚氧乙烯烷基醚系分 、山梨糖醇酐脂肪族酯 通常作為高分子分散劑之分類, 酯系分散劑、聚乙烯亞胺系分散劑 散劑、聚氧乙烯二醇二酯系分散劑 157917.doc 201219465 系分散劑、脂肪族改質聚酯系分散劑、多羧酸鹽、聚烷基 硫酸鹽、聚乙稀0比 p各。定 g同(PVP,polyvinyl pyrr〇lid〇ne)、 聚乙烯醇(PVA,polyvinyl alcohol)、聚丙烯酸醯胺等。該 等之中’若考慮與用作樹脂之電離放射線硬化性樹脂、熱 硬化性樹脂、熱塑性樹脂之相溶性、與有機溶劑之相溶 性,則較佳為胺基甲酸酯系分散劑。 又,於按照依存於製造方法之結構對高分子分散劑進行 分類之情形時,可列舉:無規共聚物、梳齒形共聚物、 ΑΒΑ型嵌段共聚物、bab型嵌段共聚物、兩末端含有親水 基之聚合物、一末端含有親水基之聚合物等。該等之中, 若考慮與用作樹脂之電離放射線硬化性樹脂、熱硬化性樹 脂、熱塑性樹脂之相溶性、與有機溶劑之相溶性,則較佳 為無規共聚物、梳齒形聚合物。 作為滿;i該等條件之分散劑之具體例,按照商品名,可 列舉.EFKA(EFKA Chemicals BV(EFKA)公司製造)、 ㈣吻k(BYK-Chemie公司製造)、咖咖細❼觸公 司製造)等。該等分散劑可!種或混合2種以上使用。 再者’該等分散料亦為聚合物(樹脂),比介電係數通 較低’因此幾乎不存在對使黑色膜之比介電係數為㈣ 下之限制因素。 又’上述分散劑相對於M多 w ^ 、…' 色材枓之添加量較佳為相對於 散=1()〇質量份為5質量份以上,質量份以下。若分 量未達5質量份’則存在如下情形:黑色微粒子 ” ’义需之分散劑量不足而無法保持分散液之分散 157917.doc -31· 201219465 i·生無法滿足上述分散液中之平均分散粒徑、膜中之平均 粒徑、膜之體積電阻率。又,若添加分散劑量超過50 則存在如下情形:分散劑量變得相對於黑色微粒 子過剩,因分散劑彼此之相互作用等而無法保持分散液之 刀散ί± ’無法滿足上述分散液中之平均分散粒經、膜中之 平均分散粒徑、膜之體積電阻率。 本實施形態之黑色材料分散液係使本實施形態之黑色材 料分散於分散介質中而成之分散液,視需要添加上述「其 他成分」。此處’該分散液中之上述黑色材料之平均分散 粒徑必需為1 nm以上、以下。即,因將本實施形態 中使用之較佳之黑色材料之平均—次粒徑設為i⑽以上, 故作為平均分散粒徑未達i nm之黑色材料微粒子,其本身 難以存在。另-方面,若平均分散粒徑超過2〇〇⑽,則使 用該分散液形成之黑色膜中變得易產生由黑色材料微粒子 之凝聚所致之導電通冑,因此難以確保所需之體積電阻 率,並且於黑色材料微粒子之凝聚顯著之情形時,遮光性 亦下降。進而,若平均分散粒徑增大,則於分散液中維持 穩定之分散狀態本身變難。 上述平均分散粒徑較佳為2 nm以上、2〇〇 nm以下,更佳 為10 nm以上、150 nm以下。 又刀政液中之上述黑色材料之粒度分佈指標D90%(累 積90%徑)必需為600 nm以下。若超過6〇〇 nm,則粒徑之不 均一性變得過大,所含之粗大粒子於分散液中維持穩定的 分散狀態本身變難,並且於使用該分散液形成之黑色膜 157917.doc -32- 201219465 中’難以維持所需之體積電阻率並且確保充分遮光性。 上述分散液中之粒度分佈指標D9〇%更佳為5〇〇 以 下。再者,D90%之下限值無特別規定,但因黑色材料之 平均粒徑之下限值為i nm ’故於實際之分散步驟上難以使 D90%為未達5 nm。 對於上述分散液巾之平均分散粒彳n要使㈣用動態 光散射法之粒度分佈㈣裝置敎該分散液之粒度分佈, 將藉由算術平均根據獲得之分佈結果求出之體積平均粒徑 (MV值,mean volume di_ter)設為平均分散粒徑即可。 另一方面’於以累積分佈(體積基準)表示粒度之情形時, 粒度分佈指標D90%可設為對應於累積值9〇%之粒徑(累積 90%粒徑)而求出。 ’、 、又’對於下述黑色樹脂組合物中之平均分散粒徑及粒度 分佈指標,亦可藉由相同之測定方法而求出。 又,該分散液中之黑色材料之含㈣較 進而較佳為10質量%以上、40質量%以下。若黑色材料之 :有率為i質量。/。以上、80質量%以下,則於分散液中上述 黑色材料可呈現良好的分散狀態。此處,若黑色材料之含 有率未達1質量% ’則分散介f變得過多,於使用該分散 液形成黑色膜時,存在因分散介質之料而變.得不易獲得 所需之黑色膜,或用以除去分散介質之成本增加之情 另=面,若黑色材料之含有率超過80質量%,則存在黑 色材料之濃度變得過高而成為糊狀,使作為分散液之特徵 157917.doc •33· 201219465 消失之情形。 本實施形態之黑色材料分散液可藉由將上述黑色材料、 與視需要分散劑或分散助劑等成分添加於上述分散介質中 進行混合分散而製備。混合分散方法只要選擇超音波分散 機塗料振盪器、球磨機、珠磨機、艾格爾研磨機(Eiger Mill)等公知之分散機對混合有黑色材料或樹脂形成成分等 ^混合液進行分散處理即可,但就提高分散性之方面而 s,較佳為使用珠磨機。又,亦可組合使用複數種分散方 法。 (黑色樹脂組合物) 本貫施形態之第1黑色膜之形成所使用之黑色樹脂組合 物係至少包含本實施形態之黑色材料與樹脂形成成分或樹 脂成分之樹脂組合物,包含黑色塗料等。再者,所謂樹脂 形成成分,係指用以形成上述樹脂成分之成分。 於該黑色樹脂組合物中,上述黑色材料之平均分散粒徑 為1 nm以上、200 nm以下。即,因將本實施形態中使用之 較佳之黑色材料之平均一次粒徑設為丨nm以上,故作為平 均分散粒徑未達1 nm之黑色材料微粒子,其本身難以存 在另方面’右平均分散粒徑超過200 nm,則於使用該 黑色樹脂組合物形成之黑色膜中,變得易產生由黑色材料 微粒子之凝聚所致之導電通道,因此難以確保所需之體積 電阻率,並且於黑色材料微粒子之凝聚顯著之情形時,遮 光性亦下降。進而,若平均分散粒徑增大,則於黑色樹脂 組合物中黑色材料維持穩定之分散狀態本身變難。 157917.doc •34· 201219465 上述平均分散粒徑較佳為2 nm以上、200 nm以下,更佳 為10 nm以上、150 nm以下。 又’該黑色樹脂組合物中之上述黑色材料之粒度分佈指 標D90°/〇為600 nm以下。若超過600 nm,則粒徑之不均_ 性變得過大’所含之粗大粒子於分散液中維持穩定的分散 狀態本身變難’並且於使用該分散液形成之黑色膜中,維 持所需之體積電阻率並且確保充分的遮光性變得較為困 難。 又’上述黑色樹脂組合物中之粒度分佈指標D90%較佳 為500 nm以下。再者,D9〇%之下限值無特別規定,但因 黑色材料之平均粒徑之下限值為i nm,故於實際之分散步 驟上難以使D90%為未達5 nm。 再者’對於黑色樹脂組合物中之平均分散粒徑及粒度分 佈指標D90%之測定方法,可藉由與上述黑色材料分散液 之記載相同之測定方法而求出。 此處,黑色樹脂組合物中所含之全部固形物成分中,合 计樹脂成分及樹脂形成成分之含量較佳為5質量%以上、 7〇質量。/。以下,更佳為1〇質量%以上、5〇質量%以下。 若δ计樹爿曰成分及樹脂形成成分之含量超過7〇質量〇/〇, 則於使用本黑色樹脂組合物形成黑色膜時,存在因黑色膜 中之樹脂成分單位體積中之黑色材料豐度不足而無法確保 充分的遮光性之情形。另—方面,^合計樹脂成分及樹脂 形成成分之含量未達5質量%,則於使用本黑色樹脂組合 物形成黑色膜時,存在無法形成均句之膜體,無法獲得所 157917.doc -35· 201219465 需之膜厚等無法形成作為黑色膜之較佳之形狀之情形。 此處,用以構成黑色樹脂組合物之主要成分係如下所示 之[A]至[E] 5種。再者’ [B]與[E]係設為不同者。 [A] 黑色材料 [B] 黑色材料分散介質 [C] 樹脂形成成分 [D] 樹脂成分 [E] 樹脂形成成分或樹脂成分之溶劑 上述黑色樹脂組合物主要係藉由該5種成分之組合構 成,其組合係如下述(1)至(7)。再者,關於可視需要添加 之除[A]至[E]以外之成分,即分散劑、分散助劑或表面處 理劑,此處省略。 ⑴:[A] + [C] 該黑色樹脂組合物為最小限之組合之2成分系,可理解 為於液狀樹脂形成成分中分散有黑色材料者。於此情形 時,[C]必需為液狀。 (2) : [A] + [B] + [C] 該黑色樹脂組合物為3成分系,可理解為將上述「黑色 材料分散液」與樹脂形成成分混合而成者。通常[C]必需 為液狀,但於[C]可溶於[B]之情形時,[c]亦可為固體狀。 (3) : [A] + [C] + [E] 該黑色樹脂組合物為3成分系,可理解為使黑色材料分 散於溶解於溶劑中之樹脂形成成分中而成者。因[c]溶解 於[E] ’故可為液狀亦可為固體狀。 157917.doc -36· 201219465 (4) : [A] + [D] + [E] 該黑色樹脂組合物為3成分系,可理解為使黑色材料分 散於溶解於溶劑中之樹脂成分中而成者。再者,因[D]為 固體’故只要存在[D],則[E]便不可缺少。 (5) : [A] + [B] + p] §玄黑色樹脂組合物為僅於[D]可溶於[b]之情形時成立之 組合’可S解為於上14「黑色材料分散液」七容解有樹脂 成分者。僅於此情形時,例外地[E]為不需要。 (6) : [A] + [B] + [C] + [E] (7) : [A] + [B] + [D] + [E] 該等黑色樹脂組合物為4成分系’可理解為於上述「黑 色材料分散液」中混合使樹脂形成成分或樹脂成分溶解之 溶液而成者》於此情形時,[B]與[E]必需相溶性較高。於 兩者之相溶性較低之情形時,即便「黑色材料分散液」與 「使樹脂形成成分或樹脂成分溶解之溶液」各自穩定地存 在’於將兩者混合時亦會產生相分離或粒子成分之凝聚 等’因此欠佳。 再者’於[B]與[E]相同之情形時,分別將(6)設為包含於 (2)或(3)中者’將(7)設為包含於(4)或(5)中者。又,亦考慮 有[A] + [B] + [C] + [D] + [E],但可理解為其與樹脂形成成分之 一部分逐漸變化為樹脂成分之狀態相同,因此設為包含於 (6)中者》 上述黑色材料[A]、黑色材料之分散介質[B]、樹脂形成 成分[C]、樹脂成分[D]、樹脂形成成分或樹脂成分之溶劑 157917.doc •37· 201219465 [E]中,對黑色材料、黑色材料之分散介質、樹脂成分以 上已作敍述,因此此處對樹脂形成成分、樹脂形成成分或 樹脂成分之溶劑加以說明。 -樹脂形成成分- 所謂樹脂形成成分,係指用以形成上述黑色膜中之樹脂 成分之成分,通常包含樹脂成分之單體 '低聚物或預聚 物。即,因可使用各種電離放射線硬化性樹脂、熱硬化性 樹脂、熱塑性樹脂等作為上述樹脂成分,故該等中至少包 含該等樹脂之單體、低聚物、預聚物中之任一種。 於選擇電離放射線硬化性樹脂作為樹脂成分之情形時, 作為樹脂形成成分之電離放射線聚合性單體(m〇n〇mer), 較佳為分子中具有自由基聚合性官能基之聚合性單體之多 官能性(甲基)丙烯酸酯’具體而言,可列舉:乙二醇二(甲 基)丙稀酸Sg、丙二醇二(曱基)丙婦酸醋、三經曱基丙燒= (甲基)丙烯酸酯、二季戊四醇五(曱基)丙烯 四醇六(甲基)丙烯酸酯、己内酯改質二季戊四醇六(曱 丙烯酸酯等。作為具有陽離子聚合性官能基之單體,你 可列舉:3,4-環氧環己基甲基_3,,4,_環氧環己基甲酸醋筹 環族環氧物類、雙紛A二縮水甘油謎等縮水甘油喊類 經基丁基乙烯趟等乙_類、3_乙基·3_經甲基氧雜環丁 ^氧雜環Η類等。該等電離放射線聚合性單體可單獨 用1種,或組合使用2種以上, 聚合性預聚物併用。 又,亦可與上述電離放射 聚物(亦包含低聚物),例 作為上述電離放射線聚合性預 157917.doc •38- 201219465 如可列舉:聚酯(甲基)丙烯酸酯系、環氧(甲基)丙烯酸酯 系、(曱基)丙烯酸胺基甲酸酯系、多元醇(甲基)丙烯酸酯 系、聚矽氧(甲基)丙烯酸酯系、不飽和聚酯系等分子中具 有自由基聚合性官能基之聚合性低聚物、或酚醛清漆系型 環氧樹脂預聚物、芳香族乙烯醚系樹脂預聚物等環氧系樹 脂等分子中具有陽離子聚合性官能基之聚合性低聚物等。 該等電離放射線聚合性預聚物可單獨使用1種,或組合使 用2種以上。 又’於選擇作為熱硬化性樹脂之酚樹脂、酚醛樹脂、脲 樹脂、脲·醛樹脂、三聚氰胺樹脂、聚酯-三聚氰胺樹脂、 二聚氰胺-醛樹脂、醇酸樹脂、環氧樹脂、環氧_三聚氰胺 樹脂、不飽和聚酯樹脂、聚醯亞胺樹脂、丙烯酸系樹脂、 聚矽氧烷樹脂、聚胺基甲酸酯樹脂、通用之2液硬化型丙 烯酸系樹脂(丙烯酸多元醇硬化物)等作為上述樹脂成分之 it形時,作為樹脂形成成分,可列舉:用以形成該等熱硬 化性樹脂之原料化合物、或聚合性樹脂之單體、低聚物、 預聚物。 進而於選擇作為熱塑性樹脂之聚g旨樹脂、醇酸樹脂、 聚胺基曱酸酯、聚乙烯吡咯啶酮、聚乙烯醇等作為上述樹 脂成分之情形時,作為樹脂形成成分,亦可列舉:用以形 成該等熱塑性樹脂之原料化合物、或聚合性樹脂之單體、 低聚物、預聚物。 進而,樹脂形成成分中亦可包含用以由該等原料化合物 或聚合性樹脂單體、低聚物、預聚物反應形成樹脂而添加 157917.doc -39· 201219465 的反應劑、反應起始劑、或聚合劑、聚合起始劑等β 於製造將使用上述黑色樹脂組合物之黑色膜圖案化為特 定形狀而成之膜體,例如黑色矩陣之情形時,理想的是使 用包含驗溶性樹脂、光聚合起始劑、乙婦性不飽和化合物 之黑色樹脂組合物,使該黑色樹脂組合物成形為層狀而成 之塗佈膜具有光(紫外線)感光性。若塗佈膜具有感光性, 則使用光罩等使塗佈膜以特定圖案狀曝光後,顯影並進行 硬化處理,藉此可較為容易地獲得黑色矩陣等特定形狀之 黑色膜。 作為上述鹼溶性樹脂,若為含有羧基或羥基之樹脂,則 無特別限^,例如可列舉:環氧丙烯酸醋系樹脂、㈣清 漆系樹脂、聚乙烯酚系樹脂、丙烯酸系樹脂、含羧基之環 氧樹脂、含缓基之胺基甲酸醋樹脂等。該等之中,較佳^ 環氧丙稀酸s旨系樹脂、祕清料樹脂、丙烯酸系樹脂, 其:就提供較高之體積電阻率及較低之比介電係數之方面 而δ,特佳為具有芳香環結構之樹脂。 於此情形時,驗溶性樹脂相對於上述黑色樹脂組合物中 之全部固形物成分之比例較佳為5質量%以上、π質量%以 下,更佳為1〇質量%以上、50質量%以下。若驗溶性樹脂 之比例過多於5質量%以上、7〇質量%以下之範圍,則存在 :黑色矩陣圖㈣成時無法確保充分的感光度,又,亦益 :確保必需之遮光性之情形,另—方面,若過少,則存在 …法形成樹脂黑色矩陣之較佳之形狀之情形。 上述所謂光聚合起始劑,係指可藉由紫外線或熱而產生 1579l7.doc 201219465 使乙稀性不飽和基聚合之自由基之化合物。 作為光聚合起始劑,尤其是就感光度之方面而言,肟衍 生物類(蔣系化合物)較為有效,例如提高遮光性等,使用 含有酚性羥基之鹼溶性樹脂之情形等就感光度之方面而言 變得不利,因此尤其是此種感光度優異之肟衍生物類(肟 系化合物)較為有用。於本實施形態中,上述光聚合起始 劑可單獨使用1種,亦可併用2種以上。 於形成樹月曰黑色矩陣之情形,分散液中之光聚合起始劑 之比例相對於全部固形物成分較佳為〇 4質量%以上、15質 量/。以下,更佳為〇 5質量y❶以上、丨〇質量%以下。若光聚 合起始劑之比例過多於〇.4質量%以上、15質量%以下之範 圍,則存在顯影速度變得過慢之情形,另一方面,若過 >,則存在無法獲得充分的感光度,亦無法形成較佳之樹 脂黑色矩陣形狀之情形。 上述所謂乙烯性不飽和化合物,係表示分子内具有1個 以上乙烯性不飽和鍵之化合物,作為該化合物,就聚合 陡、交聯性、及可擴大伴隨其之曝光部與非曝光部之顯影 液办解性之差異之方面而言,較佳為分子内具有2個以上 乙稀性不飽和鍵之化合物,χ,更佳為其不飽和鍵係源自 (曱基)丙烯醯氧基之(曱基)丙烯酸酯化合物。進而,若使 用刀子内具有3個以上乙烯性不飽和鍵,就形成膜之體積 電阻率或比介電係數等之電氣特性而言較佳。 作為上述为子内具有1個以上乙烯性不飽和鍵之化合 物例如可列舉:(曱基)丙烯酸、丁烯酸、異丁烯酸、順 157917.doc •41· 201219465 丁稀二酸、亞甲基丁二酸、甲基順丁烯二酸等不飽和羧 酸、及其之烷基酯、(曱基)丙烯腈、(曱基)丙烯酸醯胺、 苯乙烯等。 又’作為上述分子内具有2個以上乙烯性不飽和鍵之化 合物’例如可列舉:不飽和羧酸與聚羥基化合物之酯類、 含(甲基)丙烯醯氧基之碌酸鹽類、經基(曱基)丙烯酸酯化 合物與聚異氰酸酯化合物之(甲基)丙烯酸胺基曱酸酯類、 及(甲基)丙烯酸酸或羥基(甲基)丙烯酸酯化合物與聚環氧 化合物之環氧(曱基)丙烯酸酯類等。 -树脂形成成分或樹脂成分之溶劑- 作為樹脂形成成分或樹脂成分之溶劑(以下,存在稱為 「樹脂溶劑」之情形),係樹脂形成成分或樹脂成分之溶 解度較南之液體’基本上係選自水及有機溶劑中之1種或2 種以上者。 作為上述樹脂溶劑’除樹脂形成成分或樹脂成分之溶解 度較尚以外,必需滿足如下條件:黑色材料之分散性較 问’與黑色材料分散液之相溶性較高;又,於與黑色材料 分散液混合時,黑色材料之分散性或樹脂成分或樹脂形成 成分之溶解度不會降低。於未滿足該等條件之情形時,即 便「黑色材料分散液」與「溶解樹脂形成成分或樹脂成分 之溶液」各自穩定地存在,於將兩者混合而形成黑色樹脂 組合物時,產生相分離、黑色材料之凝聚或沈澱、樹脂形 成成分或樹脂成分之析出等,變得無法獲得良好的黑色樹 脂組合物。就此觀點而言,若可選擇相同或同類溶劑作為 157917.doc •42· 201219465 樹脂溶劑與黑色材料分散液,則可避免此種問題,因此較 佳0 再者’作為上述有機溶劑,可同樣使用上述黑色材料分 散液所使用之有機溶劑。 又’於上述黑色樹脂組合物中,為與黑色材料分散液同 樣地提高黑色材料之分散性、提高分散穩定性,較佳為亦 併用分散劑及/或分散助劑。其中,尤其是若使用高分子 分散劑作為分散劑,則經時性分散穩定性優異,因此較 佳再者’關於分散劑或分散助劑,與於黑色材料分 中記載者相同,因此省略其詳細說明。 又’於選擇包含分散劑及/或分散助劑之分散液作為本 實施形態之黑色材料分散液,使用該黑色材料分散液作為 黑色樹脂組合物之原料之情形時,亦可直接使用該分散液 中既3之分散劑或分散助劑。其理由在於分散劑或分散助 劑係藉由使黑色材料之表面改質而使黑色材料表面為對分 散介質或溶劑具有親和性之物質,因此若分散介質或溶劑 之特性不變,則並無需以其他種類分散劑或分散助劑進行 處理。 -黑色樹脂組合物之製造方法_ 以上所說明之黑色樹脂組合物可藉由如下步驟製備:至 少選擇上述黑色材料與樹脂形成成分及/或樹脂成分,視 需要亦添加黑色材料分散介質或樹脂形成成分或樹脂成分 之溶劑’進而添加光聚合起始劑、分散劑等其他成分進行 混合分散。又,關於該等黑色材料、黑色材料分散介質、 1579l7.doc •43· 201219465 樹脂形成成分、樹脂成分、樹脂形成成分或樹脂成分之溶 劑之組合,如上所述。 於此情形時,可藉由預先製備黑色材料分散液,於其中 添加樹脂形成成分等或光聚合起始劑等使其溶解,而製備 黑色樹脂組合物。又’亦可藉由將預先製備之黑色材料分 散液、與使樹脂形成成分等或光聚合起始劑等成分溶解之 溶液加以混合而製備。 混合分散方法只要選擇超音波分散機、塗料振盪器、球 磨機、珠磨機、艾格爾研磨機(Eiger Mill)等公知之分散處 理方法對混合有黑色材料或樹脂形成成分等之混合液進行 處理即可,但就提高分散性之方面而言,較佳為使用珠磨 機。又’亦可組合使用複數種分散方法。再者,於使用預 先製備之黑色材料分散液之情形時,亦存在於製造黑色樹 脂組合物時不進行上述分散處理方法,而只要將黑色材料 分散液與使樹脂形成成分等溶解之溶液充分地混合、攪拌 即可之情形》 (附有黑色膜之基材) 本實施形態之附有黑色膜之基材係於基材上設置既述之 本實施形態之第1黑色膜而構成者。具體而言,例如藉由 視需要對於光透射性基材上使用上述黑色樹脂組合物以既 述之方式形成之層進行圖案化而製作。 作為上述基材,無特別限定,可列舉:玻璃基材、塑膠 基材(有機高分子基材)。又,作為其形狀,可列舉:平 板、膜狀、片狀等。又,作為上述塑膠基材,較佳為塑膠 157917.doc -44- 201219465 片、塑膠膜等。 作為上述玻璃基材之材質,無特別限定,例如可適當地 自鈉玻璃、鹼玻璃、無鹼玻璃等中選擇。 作為上述塑膠基材之材質,無特別限定,例如可根據用 途或使用條件適當地自醋酸纖維素、聚笨乙稀(pS, polystyrene)、聚對笨二甲酸乙二醋(pET , p〇iyethyiene terephthalate)、聚醚、聚醯亞胺、環氧樹脂、笨氧基樹 脂、聚碳酸酯(PC , p〇lycarb〇nate)、聚偏氟乙烯、三乙醯 纖維素、聚醚砜(PES,Polyether sulfone)、聚丙烯酸酯等 中選擇。 又,對使用上述黑色樹脂組合物形成之層進行圖案化之 方法無特別限定,如上所述,可包括使鹼溶性樹脂、光聚 合起始劑、乙烯性不飽和化合物包含於黑色樹脂組合物 中,使該黑色樹脂組合物成形為層狀而形成具有光(紫外 線)感光性之塗佈膜,使該塗佈膜以圖案狀曝光後進行顯 影而形成黑色膜之步驟而成,視需要亦可設置後曝光或後 供烤專其他步驟而構成。 關於上述曝光、顯影等圖案化步驟,可使用公知之方 法’但例如於用作圖像顯示裝置用之黑色矩陣之情形時, 曰本專利特開2〇〇6_251〇95號公報之段落編號〇〇96至〇ι〇6 中記載之方法、或日本專利特開2〇〇6_251237號公報之段 落編號0116至0126中記載之遮光圖像之形成方法於本實施 形態中亦可較佳地使用。 又’亦有使用上述黑色樹脂組合物,使用喷墨法,於基 157917.doc •45- 201219465 材上直接製作形成有圖案之層之方法。於此情形時,無需 向黑色樹脂組合物之塗佈膜提供感光性,但所使用之黑色 樹脂組合物必需係自微小的喷墨喷嘴之噴出性(噴出量或 喷出方向之穩定性)優異,並且噴出而附著於基材後,以 不流出或變形之方式成為高黏度狀態。因此,使用調整黑 色樹脂組合物之黏度,或添加用以提供搖變性之助劑等方 法。 關於該步驟,亦可使用公知之方法,但例如於用作圖像 顯示裝置用之黑色矩陣之情形時’可使用日本專利特開 2008-i 16895號公報之段落編號〇〇29至〇〇3丨中記載之方 法。 本實施形態之附有黑、色膜之基材可作為言免置有黑色矩陣 (遮光膜)之黑色矩陣基板,而較佳地用於製作彩色濾光 片。 " 作為黑色矩陣基板時之黑色膜之膜厚較佳為〇 2 ^瓜以 上、5.0 μΓΠ以下,特佳為〇.2 μβ1以上、4 〇 μιη以下。又, 因使用本貫施形態之第1黑色膜作為黑色矩陣基板中之黑 色膜’故即便係薄膜亦具有高度之光學密度。 (圖像顯示裝置) 本實施形態之第1黑色膜可於各種圖像顯示裝置中較佳 地使用。作為上述圖像顯示裝置,可列舉:電漿顯示器顯 示裝置、EL顯示裝置等自發光型顯示裝置、CRT㈣h〇de_ ray tube,陰極射線管)顯示裝置、液晶顯示裝置等,其中 於用於液晶顯示裝置或EL顯示裝置之情形時可顯著發揮本 157917.doc • 46 · 201219465 實施形態之黑色膜之效果。此處,作為液晶顯示裝置之種 類,可列舉:STN(Super-twisted nematic,超扭轉向列 型)、TN(twisted nematic,扭轉向列型)、VA(Vertical Alig nment ’ 垂直排列型)、lPS(in-plane switching,橫向電場 切換型)、OCS(optical communication system,光通訊系統 型)、及R-OCB(Reflective Optically Compensated Bend, 反射光學補償彎曲型)等。 本貫施形態之第1黑色膜之黑色度較高且具有較 積電阻率,因此可較佳地用作利用其遮光性(光之抗反射 性)及南電阻率之圖像顯示裝置用構件。作為該等構件, 可列舉·液晶顯示元件或自發光型顯示裝置中之黑色矩陣 與使用其之彩色濾光片或黑色條紋、於液晶顯示裝置或自 發光型顯示裝置中於各色之像素間分離之遮光壁、於液晶 顯示裝置中填充液晶之基板間之分隔件等。 於應:於上述黑色矩陣與使用其之彩色濾光片時,因黑 色又較η故可減小黑色矩陣之厚度。其結果,因所獲得 之彩色滤光片之表面平坦性較高,故包含該彩色滤光片之 液曰曰T裝置於彩色攄光片與基板之間不會產生單元間隙 不均,而顏色不均等顯示不良之產生得到改善。 進而’因體積電阻率軔含,^ _ _ 手季乂间故如COA方式或BOA方式之 液晶顯示元件或自發氺刑 本. &顯不裝置,即便於黑色矩陣與像 素驅動用配線相接觸情 室私认. 渭形時,亦不會引起由配線之短路 等所致之7L件之驅動不良。 又,於應用於遮光壁戍 4刀k件時,亦因體積電阻率較 157917.doc 201219465 高,故無各像素間之配線短路之情況,因此不會引起元件 之驅動不良。進而,因黑色度較高,故可減小遮光壁之厚 度,可實現各像素下之利用發光區域之擴大之對比度之提 高、或伴隨著像素間隔之減少的發光元件之高密度化等。 進而,利用較高之光吸收性,亦可應用於對比度增強膠 膜等。 〈第2發明> 其次,對第2發明加以說明。 (黑色膜) 本實施形態之具有紅外線透射性之第2黑色膜之特徵在 於:其係包含黑色材料及樹脂成分而成,該黑色材料於膜 中之平均分散粒徑為1 nm以上、100 nm以下,波長560 nm 下每1 μιη厚度之透射率(T560)未達40%,且基於波長560 nm下之透射率的光學密度(OD560)與波長950 nm中之基於 透射率之光學密度(OD950)之比(OD950/OD560)為0.35以下 (以下,存在將「基於透射率之光學密度」簡稱為「光學 密度」之情形)。再者,本實施形態之第2黑色膜亦為具有 與上述第1黑色膜相同之充分的遮光性與較高之體積電阻 率者。 又,於本實施形態中,可見光之波段係根據JIS-Z8 120 之記載「短波長界限為360~400 nm,長波長界限為 760〜830 nm」,而設為380 nm以上且未達800 nm。又,將 波長800 nm以上、1 mm以下之光設為紅外線,將波長800 nm以上、2500 nm以下之光設為近紅外線。進而,上述所 157917.doc -48- 201219465 謂「光學密度」,係指將透射率設為τ(%)時由上述式 所表示者《又,本實施形態中之所謂「紅外線透射性黑色 膜」’係表示上述使3.0%以上紅外線透射之膜。 再者,於本實施形態中,選擇波長56〇 nm下之透射率 (Two)作為表示透射率之指標之原因在於:該波長位於可 見光波段之大致中央,而廣泛地用作代表可見光之波長。 此處,將T56〇設為未達40°/。之原因在於若可見光透射率 未達40%,則外觀上(目視上觀察)可將膜視為黑色。即, 原因在於若遙控器之覆蓋發光部或受光部之構件之可見光 透射率未連40°/。,則經由構件觀察内部之發光元件或光接 收元件變難,而可將内部視為藉由黑色膜遮光隱蔽之狀 態。丁56〇較佳為37。/。以下’更佳為35%以下。再者,τ560之 下限無特別限定,但測定裝置之檢測界限為〇 〇〇〇〇〇1%左 右。 又,若波長560 nm下之光學密度(OD56q)與波長95〇 nm下 之光學密度(〇D95〇)之比(ODmq/OD56。)為0.35以下,則尤其 是對多用於無線遠程控制器之波長950 nm之光可獲得所必 需之透射光量。 OD95〇/〇D56〇較佳為0.32以下’更佳為0.30以下。再者, od95Q/od56()之下限為〇.1左右。 進而’於本實施形態之第2黑色膜中,〇d56()、與波長 800 nm以上2500 nm以下之近紅外線(NIR)波長區域中各波 長下之光學密度(ODNIR)之比(ODNIR/〇D56())較佳為0.40以 下。若ODNIR/OD56()為0.40以下’則具有對可見光之遮光 157917.doc -49- 201219465 性,並且對工業用之各種近紅外線雷射、或對黑色矩陣圖 案定位用之紅外線等可獲得充分的透射光量,因此可較佳 地用作紅外線透射性黑色膜。 ODN丨R/〇D560更佳為0.37以下,進而較佳為0 35以下β再 者,ODNIR/〇D56〇之下限為0.01左右〇 又’於本貫施形態之第2黑色膜中,上述黑色材料之體 積分率較佳為設為1_〇體積。/。以上、25體積%以下。藉由將 體積分率設為該範圍,於形成黑色膜時於可見光域中可確 保充分的遮光性,並且對近紅外域以上之光亦可獲得較高 之透射率。即,:¾黑色材料之體積分率未達1 . 〇體積%,則 黑色材料過少,因此存在可見光域之遮光性不足之情形。 另一方面,原因在於若黑色材料之體積分率超過25體積 Μ,則紅外線透射黑色膜帶有金屬光澤性,因此有可能近 紅外域以上之光之透射率亦降低,又,即便於不產生金屬 光澤性之情形時,因黑色材料之量過多,故存在近紅外域 以上之光之透射率亦降低之情形。上述黑色材料之體積分 率更佳為設為2.0體積%以上、2G體積%以下,若為2〇體積 %以上、15體積%以下,則進而較佳。 再者,於本實施形態之第2黑色膜中,上述黑色材料之 體積分率可藉由根據構成紅外線透射黑色膜之各成分之密 度、與製作塗料時添加之該等各成分之重量來計算各成分 之體積而求出。 又’樹脂成分於相對較低之溫度下因分解或氧化而揮 散,相對於此,因黑色材料為金屬,&直至高溫亦穩定, 157917.doc •50- 201219465 因此可根據利用熱重量分析(TG)之黑色膜之重量變化量求 出該黑色膜中之樹脂成分與黑色材料之重量比例,另一方 面’右藉由成分分析來確定樹脂成分與黑色材料各自之物 質,則可求出兩物質之比重,因此亦可根據所獲得之重量 比例與各成分之比(重而求出本實施形態之第2黑色膜中之 黑色材料之體積分率。 又,於本實施形態之第2黑色膜中,黑色材料於膜中之 平均分散粒徑只要為1 nm以上、丨〇〇 nm以下即可但較佳 為2 nm以上、80 nm以下,若為5 nm以上、5〇 nm以下,則 更佳。若上述膜中之平均分散粒徑為丨〇〇 nm以下,則可抑 制因存在黑色材料之微粒子造成之紅外線區域中之瑞利散 射或Mie散射’可抑制紅外線之透射率之降低。 即,如下所述,本實施形態中之黑色材料於紅外線區域 中具有光透射性,但如先前,若僅將分散於樹脂中之金屬 微粒子之平均一次粒徑設為i nm以上、2〇〇 nm以下之範 圍,則即便於紅外線區域中亦無法抑制所產生之瑞利散射 或Mie散射,其結果,無法獲得充分的紅外線透射特性。 然而,如本實施形態,藉由將黑色膜中之平均分散粒徑設 為100 nm以下來抑制瑞利散射或Mie散射,於紅外線區域 中亦可獲得充分的透射特性。 再者,於光學元件中,為防止可見光之瑞利散射或Mie 散射之影響,一般認為分散之微粒子之平均分散粒徑較佳 為20 nm以下。但是,因瑞利散射或Mie散射具有基於其產 生機構之波長依存性,故與可見光相比於波長較長之红外 157917.doc -51- 201219465 線之情形時容許之粒徑擴大,又,本實施形態中之紅外線 透射性無需光學元件程度之較高之透射性而容許略微之散 射,因此可將平均分散粒徑之大小擴大至1〇〇nm。 另一方面,本實施形態中之黑色材料於膜中之平均分散 粒仏為1 nm以上。其理由在於在平均粒徑未達1⑽之情形 時’粒子之結晶性降低,因此有可能可見光之吸收狀態變 得不穩定,而變得無法獲得充分的黑色度。 本實施形態中之紅外線透射黑色媒中之黑色材料之平均 分散粒徑可使用FIB(聚焦離子束)等將所獲得之紅外線透 射黑色膜於剖面方向上切取為薄片狀,使用穿透式電子顯 微鏡(TEM,Transmission Electr〇n Micr〇sc〇py)觀察該薄片 中之黑色材料之粒子而求出。即,只要自TEM照片中隨機 選擇特定個數(通常數10個以上)之粒子測定其粒徑,將其 平均值設為平均分散粒徑即可。再者,因本實施形態之粒 子大致為球狀,故只要將各粒子之最大徑設為該粒子之粒 徑即可。 -黑色材料- 作為本實施形態中之黑色材料,較佳為選擇以銀及錫作 為主成分之金屬微粒子》此處,上述所謂「以銀及錫作為 主成分」,係指於金屬微粒子中至少包含銀及錫之兩種成 为,且銀及錫之合計含量相對於金屬微粒子整體為5〇質量 %以上。即,成分及含量係相對於金屬微粒子整體而規定 者’並非係規定各個粒子本身之成分及含量者。 自先前已知粒徑為1 nm至數百nm程度之金屬微粒子(奈 157917.doc •52· 201219465 米尺寸之金屬微粒子)係藉由金屬之表面電漿子吸收而呈 現各種色調,又,亦已知該色調(即,吸收波長)係根據金 屬微粒子之組成或粒徑而變化。於本實施形態中,只要選 擇藉由調整組成或粒徑,於可見光區域中呈現黑色並且於 紅外線區域中表現一定值以上之透射性之金屬微粒子即 可,作為此種黑色金屬微粒子,可選擇以銀及錫作為主成 分之金屬微粒子。 作為該以銀及錫作為主成分之金屬微粒子,可較佳地使 用銀錫合金微粒子、或銀錫合金微粒子與銀微粒子之混合 微粒子。 此處’於以銀及錫作為主成分之金屬微粒子為銀錫合金 微粒子之情形時,該銀錫合金微粒子中之銀成分之含有 率,即銀成分相對於銀與錫之合計量之比率(銀/(銀+錫): 質量%)較佳為45質量%以上、95質量。/〇以下,更佳為50質 量%以上、95質量%以下,進而較佳為6〇質量%以上、% 質量。/〇以下。 又,於以銀及錫作為主成分之金屬微粒子為銀錫合金微 粒子與銀微粒子之混合微粒子之情形時,該銀錫合金微粒 子與銀微粒子之混合微粒子中之銀成分之含有率,即銀成 分相對於銀與錫之合計量之比率(銀/(銀+錫):質量%)較佳 為45質量❶/。以上、95質量。/〇以下,更佳為50質量%以上、 95質量%以下,進而較佳為6〇質量%以上、%質量%以 下。 將上述銀成分之含有率限定於上述範圍之理由在於··若 157917.doc •53· 201219465 該銀成分之比率為45質量%以上、95質量%以下,則可見 光之反射率不會變高,成為具有充分的黑色度之黑色膜, 而可獲得充分的光遮斷性,並且該黑色膜亦具有紅外線之 透射性。 再者’上述銀成分之較佳之含有率範圍係取一定量上述 銀錫合金微粒子、或上述銀錫合金微粒子與銀微粒子之混 合微粒子時,表示該微粒子整體中之銀成分之較佳之含有 率範圍者’並非係表示各個粒子中之銀成分之較佳之含有 率範圍者。 再者,於本實施形態中’上述所謂銀錫合金微粒子,不 僅係因具有銀錫合金之晶體結構而可明確地判斷為銀錫合 金者’亦包含具有銀之晶體結構者。 首先’作為具有銀錫合金之晶體結構者之例,已知有於 以化學式Agl_xSnx(X為實數)表示銀錫合金之情形時,χ 之範圍為 0.118SXS 0.2285 之 ζ相及 〇.237g XS 0.25 之 ε相 (根據Binary Alloy Phase Diagram, ρ. 94-97)。又,作為具 有銀之晶體結構者,係於保持銀晶體之結構之狀態下,銀 晶體中之銀原子之一部分被錫原子取代而成者,但於上述 文獻中係表示為(Ag)相,一般認為以化學式AgiYSnY(Y為 實數)表示具有該銀晶體結構之銀錫合金之情形時,γ為 〇<Y^ 0.115。 再者,於上述化學式中,Y=0(AgiSn())相當於銀單獨 相,即相當於銀微粒子,因此將其自作為銀錫合金微粒子 而規定之上述Y之範圍中排除。但是,作為較佳地用作本 157917.doc -54· 201219465 黑色材料之以銀及錫作為主成分之金屬微粒子,較佳為銀 錫合金微粒子、或銀錫合金微粒子與銀微粒子之混合微粒 子’因此本黑色材料中亦可包含γ=0者。 又,包含該銀錫合金微粒子、或銀錫合金微粒子與銀微 粒子之混合微粒子之黑色材料實質上不含錫微粒子。此 處,所謂實質上不含錫微粒子,係表示於利用χ射線繞射 法之解析中未確認具有錫之晶體結構之物質之存在。若該 黑色材料含有錫微粒子,則使用該黑色材料形成之黑色遮 光膜之光遮斷性大幅度地降低。 作為本實施形態中之黑色材料之製造方法,若為可獲得 上述組成與粒徑者,則無特別限制,可應用氣相反應法、 喷霧熱分解法、液相反應法、冷;東乾燥法、水熱合成法等 金屬微粒子合成法,但尤其是於選擇銀錫合金微粒子、或 銀錫合金微粒子與銀微粒子之混合微粒子作為黑色材料之 情形時,較佳為使用可較為容易地獲得該等微粒子之液相 反應法。 作為液相反應法,較佳為使用水系反應系,例如可使用 於錫膠體分散液中滴加銀化合物溶液,使錫與銀合金化之 方法,或藉由於銀膠體與錫膠體共存之分散液中添加氧化 劑或還原劑’而使銀與錫合金化之方法等生成銀錫合金微 粒子與銀微粒子。若為該製造方法,則藉由適當地調整反 應條件(例如’錫與銀(銀離子)之比率、反應液之ΡΗ值、 反應溫度、反應時間、氧化劑或還原劑之種類或量等), 可任意地控制銀錫合金微粒子之生成量、銀微粒子之生成 157917.doc -55- 201219465 量(包含實質上未生成之情形,即僅生成銀錫合金微粒子 之情形)、進而銀錫合金微粒子與銀微粒子之生成量比。 又,為使該黑色材料均句地分散於樹脂成分中或為提高 黑色材料與樹脂成分之親和性,較佳為預先利用表面處理 劑或分散劑對黑色材料之表面進行處理。該等表面處理劑 或分散劑只要根據樹脂成分之材質或使黑色材料於樹脂成 分中分散之方法,自公知者中選擇即可,但如下所述,可 藉由於調整表面處s劑或分散劑之種類之同時亦—併調整 分散方法或分散條件,使黑色材料於樹脂成分中良好地分 散’而獲得本實施形態之第2黑色膜。 作為上述分散劑,較佳為高分子分散劑,例如可列舉: 胺基甲酸酯系分散劑、改質聚酯系分散劑、聚羧酸鹽 '聚 烷基硫酸鹽、聚乙烯吡咯啶酮(pvp)、聚乙烯醇(pVA)、聚 丙烯酸醯胺等》 又,作為於由下述黑色樹脂組合物使樹脂形成成分(用 以形成樹脂成分之成分)硬化而形成黑色膜時,可維持黑 色材料之分散性之較佳之結構的高分子分散劑,可選擇無 規共聚物、梳齒狀共聚物、ΑΒΑ型共聚物、BAB型共聚 物、兩末端含親水基之聚合物、一末端含親水基之聚合物 等°該等之中’若考慮與對樹脂成分或樹脂形成成分相溶 性較高之溶劑相溶性較高,換言之,與樹脂成分、樹脂形 成成分、樹脂成分及樹脂形成成分相溶性較高之溶劑中之 黑色材料之分散性較高,則較佳為無規共聚物、及梳齒狀 共聚物。 157917.doc -56- 201219465 作為上述分散劑之具體例,可列舉:EFKA(EFKA Chemicals BV(EFKA)公司製造)、Disperbyk(BYK-Chemie 公司製造)、Disparlon(楠本化成公司製造)、SOLSPERSE (Zeneca公司製造)、KP(信越化學公司製造)、p〇iyfi〇w(共 榮社化學公司製造)等。 又,作為上述表面處理劑,可列舉:矽烷偶合劑、鈦偶 合劑等偶合劑等。 該黑色材料因材料本身之特性而黑色度較高,可見光之 遮光性優異,並且具有紅外線透射性。並且,藉由控制分 散粒徑,由粒子所致之紅外線之散射亦受到抑制。進而, 因由無機材料構成’故化學上的穩定性亦較高,即便曝露 於太陽光或螢光燈等之紫外線下,亦無褪色等之擔憂。 •"樹脂成分- 作為樹脂成分,若為可使上述黑色材料分散且於所使用 之紅外線之波長區域中無較強之吸收者,則無機系樹脂、 有機系樹脂之任一者均可,並無特別限定,但可較佳地 使用丙烯酸系樹脂、環氧系樹脂、聚醋系樹脂、聚胺基 甲酸酯系樹脂等有機樹脂、及液晶用或mems (^^〇electromechanical,微機電系統)用光阻劑化 口物等。X ’亦可添加包含用以提高膜之硬度或用以調整 膜=折射率之無機物質的填充材、或用以提高與塗佈基材 之密接性之添加劑等。 乍為丙烯酸系樹脂’例如可自以選自下述樹脂成分原料 記栽之丙婦酸系樹脂單體、低聚物、預聚物中的i種或2 157917.doc •57- 201219465 種以上之單體、低聚物、預聚物為基之聚合物令選擇。作 為該聚合物之例,可列舉:聚(甲基)丙烯酸曱酯、聚(甲 基)丙烯酸環己酯、聚乙二醇二(甲基)丙烯酸酯、聚-三羥 甲基丙烷二(曱基)丙烯酸酯、及聚-季戊四醇四(甲基)丙烯 酸酯等聚(甲基)丙烯酸酯樹脂等。再者,此處,所謂「(甲 基)丙烯酸酯」,係表示「丙烯酸酯或甲基丙烯酸酯」。 以下相同。 又,作為環氧系樹脂,可列舉:丙三醇聚縮水甘油醚、 季戊四醇聚縮水甘油醚、二丙三醇聚縮水甘油醚、聚丙三 醇二縮水甘油醚、苯酚酚醛清漆型環氧樹脂、甲酚酚醛清 漆型環氧樹脂、雙酚型環氧樹脂、三苯酚曱烷型環氧樹 脂、縮水甘油基(曱基)丙烯酸酯與苯乙烯之共聚物環氧樹 脂、縮水甘油基(曱基)丙烯酸酯與苯乙烯與(甲基)丙烯酸 曱s曰之共聚物環氧樹脂、縮水甘油基(曱基)丙烯酸酯與環 己基馬來醯亞胺之共聚物環氧樹脂、及苐系環氧樹脂等。 作為聚酯系樹脂,若為塗料通常所使用者,則無限定, 例如可列舉.·己二酸、癸二酸、間苯二甲酸等多元羧酸與 乙二醇、三羥曱基丙烷等多元醇之縮合聚合物等。又,聚 胺基甲酸酯系樹脂亦若為塗料通常所使用者,則無限定, 例如,較佳為使異氰酸酯基與多元醇而鏈延長之聚胺基曱 酸酯樹脂。作為上述多元醇,可列舉:聚酯多元醇、聚醚 多元醇、丙烯酸多元醇等。 -其他成分- 本實施形態之第2黑色膜除包含上述黑色材料及樹脂成 157917.doc -58 - 201219465 分以外,亦可包含填充材等各種成分。 :填充材可為提高黑色膜之硬度或以調整折射率為目的而 絲。作為該填充材,無機物質、尤其是無機氧化物較為 穩疋而較佳。該填充材之分散粒徑必需不引起紅外線之散 射’因此黑色膜中之平均分散粒徑較佳為別⑽以下。 匕作為用以提高黑色膜之硬度之填充材,較佳為具有與樹 脂成分同等程度之折射率之無機氧化物,就獲得之容易性 或價格等方面而言,較佳為使时石(二氧化石夕)微粒子。 又,作為折射率之調整用,於以高折射率化為目的之情 形時,例如只要使用包含氧化锆、二氧化鈦等高折射率材 料之微粒子即可,另一方面,於以低折射率化為目的之情 形時’例如只要使用奈米孔洞矽石或中空矽石等具有微小 空隙之低折射率性之微粒子即可。 再者’本實施形態之第2之黑色膜中用作黑色材料之由 銀錫合金微粒子及銀微粒子構成之微粒子與先前之專色膜 中用作黑色材料之碳黑或鈦黑相比黑色度較高,因此如上 所述’可使膜中之含量減少至1.0體積%以上、25體積%以 下之範圍。因此,即便添加黑色材料以外之物質,亦可維 持膜之形成性或膜本身之特性,因此可添加此種填充材。 -黑色膜之製造方法- 本實施形態之第2之黑色膜係使下述黑色樹脂組合物於 基板上成形為層狀而形成。再者’本實施形態之黑色樹脂 組合物亦至少包含本實施形態之黑色材料與樹脂形成成分 或樹脂成分之樹脂組合物,包含黑色塗料等。 157917.doc 59· 201219465 作為所使用之基板’只要根據黑色膜之使用方法或使用 形態選擇即可’無特別限定,例如除玻璃等無機基板以 外’若使用如丙烯酸基板、聚碳酸酯基板般硬度較高之基 板’則可獲得具有紅外線透射黑色膜之結構體。又,若使 用PET(聚對苯二甲酸乙二酯)、或PEN(Polyethylene Naphtahalate,聚萘二甲酸乙二醇酯)、PES((Polyethylene sulfone ’ 聚趟磷)、TAC(triacetyl cellulose,三乙酿纖維 素)等高分子膜等’亦可獲得具有可撓性之紅外線透射性 黑色膜。 又’黑色樹脂組合物之塗佈方法(塗佈膜形成方法)亦無 特別限定’可列舉:旋塗法、流塗法、喷塗法、浸塗法、 膜塗法、凹版印刷塗佈法、刮塗法、棒塗法、喷墨法等。 藉由使所獲得之塗佈膜硬化或使溶劑揮發除去等,可獲 得第2黑色膜。再者,於上述藉由硬化而獲得黑色膜時, 於黑色樹脂組合物中包含溶劑之情形時,首先將塗佈膜中 之溶劑除去而形成塗佈乾燥膜(藉由除去溶劑而成為固體 之膜狀’而樹脂成分之聚合硬化幾乎不會發生,藉由與溶 劑相接觸可再次溶解於溶劑中之狀態之膜)後,使塗佈膜 硬化。 作為硬化方法,可以使熱聚合開始之溫度對樹脂成分原 料之單體、低聚物、預聚物進行加熱,又,於添加反應起 始齊1之晴形時’只要進行對應於反應起始劑之熱或光之施 加即可。又,亦可併用兩者。 其次’就對下述使用包含具有紫外線感光性之樹脂成分 157917.doc 201219465 原料之黑色樹脂組合物之塗佈膜進行紫外線照射(曝光)、 顯影,獲得複雜形狀之製程進行簡單地說明。 曝光方式無特別限制’若為平面形狀者,則可藉由使用 市售之紫外線曝光裝置與光罩而較為容易地進行曝光。 又,亦可使用紫外線雷射作為光源,對微細的雷射光束進 行掃描,藉此直接將圖案刻入塗佈乾燥膜,即進行直接刻 寫(直刻)。 顯影方式亦無特別限制,只要使用浸潰式或攪拌式等通 常之方法即可。又,該等曝光或顯影之條件只要根據所使 用之樹脂成分原料或所要求之形狀適當地選擇、調整即 可。 作為根據上述製程,於樹脂成分原料中例如使用光阻劑 材料,對塗佈乾燥膜進行曝光、顯影而獲得複雜形狀者之 較佳例,可列舉下述黑色矩陣。 <黑色材料分散液及黑色樹脂組合物> 用以形成本實施形態之第2黑色膜之黑色材料分散液及 黑色樹脂組合物例如可以如下方式獲得。 首先’準備黑色材料。作為黑色材料,較佳為上述以銀 及錫作為主成分之金屬微粒子,尤其是可更佳地使用由銀 錫合金微粒子及銀微粒子構成之微粒子。並且,關於其製 造方法,例如亦較佳為使用如上述之液相反應法。 此處黑色㈣中金屬為主成分’又’如亦可由可以水系 反應系之液相反應法較佳地製造所知曉,為具有親水性表 面之微粒子。因此,為使此種黑色材料均勻地混合於樹脂 157917.doc 201219465 成分原料中,而必需為可直接分散於樹脂成分原料之狀 態,或使黑色材料分散於與樹脂形成成分等相溶性較高之 溶劑中。因此,較佳為對黑色材料進行利用高分子分散劑 或表面處理劑之表面處理。再者,在以下說明中,存在將 高分子分散劑與表面處理劑一併記為「高分子分散劑等」 之情形。又,上述樹脂成分原料如下所述。 於上述表面處理中,結合於黑色材料表面之高分子分散 劑等之量相對於黑色材料總量較佳為5質量%以上、3〇質 量%以下。進而,根據黑色材料之組成或一次粒徑、使黑 色材料分散混合之下述樹脂成分原料之組成,存在更佳之 範圍。其理由在於:於由使用該黑色材料形成之黑色樹脂 組合物形成塗佈膜,進而形成紅外線透射性黑色膜之情形 時’為確保塗佈膜中或黑色膜中之黑色材料之分散性,而 必需預先嚴密地調整高分子分散劑等於黑色材料中之添加 量。 即’於高分子分散劑等之量較少之情形時,存在黑色材 料粒子表面之一部分中產生高分子分散劑等之被覆量較少 部分’而與該部分中之樹脂成分原料或溶劑之親和性降低 之情形。進而,因黑色材料粒子彼此之親和性殘存,故將 黑色材料分散於樹脂成分原料或溶劑後,存在自該高分子 分散劑等之被覆量較少之部分黑色材料粒子彼此凝聚之情 形。 另一方面,於高分子分散劑等之量過多之情形時,存在 分散劑本身成為使分散性降低之因素之情形。又,於使樹 157917.doc -62· 201219465 脂形成成分硬化而形成黑色膜之情形時,存在過剩之高分 子分散劑等阻礙利用樹脂形成成分之聚合之硬化,而變得 無法獲得充分的膜強度之情形。進而,於硬化樹脂中使用 光阻劑等之情形時,於利用光之曝光後之顯影步驟中,顯 影性變差亦作為理由而列舉。 如此,為嚴密地調整高分子分散劑等於黑色材料中之添 加量,較佳為於使具有親水性表面之黑色材料粒子分散之 水系溶劑中添加高分子分散劑等並進行授摔等,於 料粒子,表面進行高分子分散劑等之被覆處理後,、例如使 用蒸發益等僅將溶劑除去,並對黑色材料粒子進行乾燥。 若以此種方式,則可於黑色材料粒子中添加 子分散劑等。 |里心门刀 進:’即便於利用高分子分散劑等進行表面處理時分散 ,匕理不均句,於使經該表面處理之黑色材料粒子分散 於樹脂成分原料戍與樹出八κ 後,原料相錢較高之溶劑中 衡子分散劑等對黑色材料粒子之吸附脫附平 ::使Μ子分散劍等對各粒子之被覆均句,因此亦可 確保,,,、色材料之均勻的分散性。 另方面’於該表面處理中,若柹用白止义 分散處理方法,則欠佳。讀用自先則通常進行之 之 二=:峨理方法中,於使具有親水性表面 行授拌m散之水系溶劑中添加高分子分散劑並進 订撹抨4於黑色材料 被覆處理後,利用過資以面進灯尚分子分散劑等之 ’慮或離心分離等將藉由被覆處理而凝 157917.doc •63· 201219465 聚沈澱之黑色材料粒子自溶劑分離,光姑* & 並使其乾燥,藉此進 行利用高分子分散劑之表面處理。或,於水系或極性溶劑 中,如上所述’將經高分子分散劑之被覆處理之粒子直接 萃取、分散至非水溶劑中,藉此進行溶劑取代。然而,於 該等之方法中,分離之水系溶液中殘留有高分子分散劑等 之-部分,因此高分子分散劑等之被覆量變得少於設計之 量。因此,如上所述,有可能產生黑色材料粒子彼此凝聚 等問題。 進而,因難以估測殘留於溶液中之高分子分散劑等之 量’故難以額外添加殘留相應量之高分子分散劑等,若添 加量較少,則高分子分散劑等之量不足之情形之問題無法 解決,另-方面,於添加量過剩之情形時,高分子分散劑 等之量變得過多,而有可能引起阻礙樹脂形成成分之硬化 等問題。 又,藉由所獲得之高分子分散劑等進行了表面處理之里 色材料中之水分量相對於處理粒子較佳為2 ()質量%以下*。、 其原因在於:於下述之由黑色樹脂組合物形m ^ 使樹脂形μ分硬化形社外線透射性黑色膜時,防止黑 色材料粒子彼此之凝聚或樹脂之白化等。 … 即’於與樹脂d補相純較高之溶劑與水分共同包 含於塗膜中之情形時,存在如下情形:藉由乾燥除去與樹 脂成分原料相溶性較高之溶劑而水分量相對上升,超過某 一定值時,塗膜中之溶解度參數大幅度地變化,引起粒^ 彼此之凝聚或樹脂之白化之類的現象。原因在於為防止此 157917.doc •64· 201219465 問題’而必需預先極力地縮小黑色樹脂組合物之水分量, 較佳為於最容易引起水分之混人之利用高分子分散劑等之 表面處理時,儘量縮小黑色材料之水分量。 作為減少進行利用此種高分子分散劑等之表面處理之黑 色材料之水分量的方法,亦可較佳地使用上述僅將溶劑除 去之方法,例如使用蒸發器等對黑色材料粒子進行乾燥之 方法。 〃 /另一方面,例如亦有藉由使用15〇t以上之乾燥機對進 行了表面處理之黑色材料進行長時間加熱而除去水分之方 法’但於此情形時,低分子之分散劑揮發或分解,而招致 分散劑之處理量之變化或變質,因此欠佳。 其次,製作包含利用高分子分散劑等進行了表面處理之 黑色材料與樹脂成分原料之黑色樹脂组合物。此處,所謂 樹脂成分原料,係液狀且藉由硬化或溶劑餾去等而形成上 述樹脂成分者,除包含形成樹脂成分之單體、低聚物、預 聚物(樹脂形成成分)以外,亦包含將樹脂成分溶解於溶劑 而成者’進而包含將形成樹脂成分之單體、低聚物、預聚 物溶解於溶劑而成者。 於上述形成樹脂成分之單體、低聚物、預聚物為液狀之 情形時,亦可直接將該等單體、低聚物、預聚物作為樹脂 成分原料’於其中混合分散黑色材料,而製作黑色樹脂組 合物。又’亦可將於適當的溶劑中溶解樹脂成分或固體狀 之上述單體、低聚物、預聚物而成為液狀之溶液、或將液 狀之上述單體、低聚物、預聚物於溶劑中稀釋而成之溶液 157917.doc -65- 201219465 作為樹脂成分原料,於其中混合分散黑色材料,而製作黑 色樹脂組合物。 又’該黑色塗料中亦可包含上述填充材或下述添加劑。 於本實施形態中,可使上述藉由高分子分散劑等進行了 表面處理之黑色材料以微粒子之狀態混合分散於樹脂成分 原料中而形成黑色樹脂組合物’又,亦可藉由預先製作使 黑色材料分散於與樹脂成分原料相溶性較高之溶劑中而成 之黑色材料分散液(以下,存在稱為「分散液」之情形), 將該分散液與樹脂成分原料加以混合,而形成黑色樹脂組 合物。再者,於該黑色材料分散液中,可預先分散上述填 充材’又,亦可預先溶解下述添加劑。 上述黑色樹脂組合物或黑色材料分散液中中之黑色材料 之平均分散粒徑為100 nm以下,較佳為50 nm以下。藉由 將黑色樹脂組合物或黑色材料分散液中之平均分散粒徑設 為1〇〇 nm以下,可將使用該塗料或分散液製作之黑色膜中 之黑色材料之平均分散粒徑控制在1〇〇 nm以下,其結果, 了抑制紅外線區域中之由瑞利散射或Mie散射之產生所致 之紅外線之透射率降低。 再者’上述平均分散粒徑可使用應用動態光散射法之粒 度为佈測定裝置(例如,Microtrac 9340-UPA,曰機裝公司 製造)對所製備之黑色樹脂組合物等進行粒度分佈測定, 設為自個數分佈之小粒徑側5〇個數。Λ之值而求出。 作為樹脂成分原料,可較佳地使用形成樹脂成分之單 體、低聚物、預聚物(樹脂形成成分)。 157917.doc -66- 201219465 作為丙稀酸系樹脂之單體,可列舉:(甲基)丙稀酸甲 酯、環己基(曱基)丙烯酸酯、乙二醇二(曱基)丙烯酸酯、 二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸 酯、四乙二醇二(甲基)丙稀酸醋、三經甲基丙烧三(子基) 丙烯酸酯、三羥甲基乙烷三(甲基)丙烯酸酯、季戊四醇四 (甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、及甘油 (曱基)丙浠酸醋專(曱基)丙稀酸酸g旨類;2 -經基乙基(甲基) 丙烯酸酯、2·羥基丙基(甲基)丙烯酸酯、及2_乙基己基(甲 基)丙烯酸酯等含有羥基之單體;與含有該等之聚酯化合 物、胺基曱酸酯化合物、雙酚系(曱基)丙烯酸酯化合物、 及苐系(曱基)丙烯酸酯化合物等》又,作為低聚物或預聚 物,可列舉:聚(甲基)丙烯酸甲酯、聚(甲基)丙烯酸環己 酉曰、聚乙二醇二(曱基)丙稀酸酯、聚_三羥甲基丙烧三(甲 基)丙烯酸酯、及聚-季戊四醇四(曱基)丙烯酸酯等聚(甲基) 丙烯酸酯樹脂等。 又,作為此外之丙烯酸系樹脂,亦可使用例如DIC(股份 有限公司)製造之「ACRYDIC」系' 料燒接型丙烯酸系樹 脂。 又,作為環氧樹脂之單體、低聚物、預聚物,可列舉: 丙三醇聚縮水甘油醚、季戊四醇聚縮水甘油醚、二丙三醇 聚縮水甘油醚、聚丙二醇二縮水甘油醚、苯酚酚醛清漆型 環氧樹脂、曱酚酚醛清漆型環氧樹脂、雙酚型環氧樹脂、 苐系環氧樹脂、三苯酚曱烷型環氧樹脂、縮水甘油基(曱 基)丙烯酸醋與苯乙烯之共聚物環氧樹脂、縮水甘油基(曱 157917.doc •67· 201219465 基)丙烯馱西曰與笨乙烯與(甲基)丙烯酸甲酯之共聚物環氧樹 月曰縮水甘油基(曱基)丙烯酸酯與環己基馬來醯亞胺之共 聚物%氧樹脂等交聯網路化前之預聚物等。 於本實施形態中,如下所述,就可對塗佈乾燥膜進行曝 光、顯影而形成呈現複雜的設計或提高了構思性之形狀的 黑色膜之方面而言’樹脂形成成分為較佳具有紫外線感光 J·生。又,藉由使用具有紫外線感光性之樹脂形成成分,亦 可用作黑色圖案形成用之黑色光阻劑。 此處,作為具有紫外線感光性之樹脂,有負型(顯影而 感光部殘留)與正型(藉由顯影除去感光部),但較佳為負 型。其理由在於:本實施形態之黑色膜或黑色材料對紫外 線亦具有遮光性,因此於曝光部(紫外線照射部)中膜之底 β亦易變為未充分地感光之狀態,於正型之情形時變得易 產生殘膜’因此為防止此影響較佳為負型。 作為上述具有紫外線感光性之樹脂形成成分,除可使用 市售之光阻劑材料以外,亦可於上述丙烯酸系樹脂、環氧 系树脂、聚酯系樹脂、聚胺基甲酸酯系樹脂中添加光反應 化劑。作為上述市售之光阻劑材料,較佳為使用液晶用或 MEMS用者,其理由在於:藉由對由該等光阻劑材料形成 之膜進行熱硬化等之處理,可形成為永久膜。 作為上述市售之光阻劑化合物,例如可使用昭和高分子 公司製造之「Lipoxy」PR系列、SPC系列、或曰本化藥公 司製造之「ZCR1569H」等。又,若可使用作為液晶之黑 色矩陣或彩色濾光片形成用而市售之顏料分散光阻劑之光 157917.doc -68- 201219465 阻劑成分(除顏料以外者),則更佳。 又’黑色樹脂組合物中亦可添加用以使該等樹脂成分原 料硬化之反應起始劑。作為反應起始劑,只要為藉由熱或 光產生自由基而使樹脂成分之聚合開始/促進之物質即 可,作為光反應起始劑,例如可列舉:Ciba SpecialtyFm3m If AgzSn (Z is a real number) is used to represent the range, the range of z is 7.70S Z <〇〇 (infinity). Furthermore, in the above chemical formula, Y = 0 (AglSn 〇) or z = 〇〇 (Ag 〇〇 Sn s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ However, in the present embodiment, the metal fine particles containing silver and tin as main components used as the black material are not only silver tin alloy fine particles but also mixed fine particles of silver tin alloy fine particles and silver fine particles. Further, the black material containing the silver tin alloy fine particles or the fine particles of the silver tin alloy fine particles and the silver fine particles is substantially free of tin fine particles. Here, the term "substantially does not contain tin fine particles" The presence of a substance having a crystal structure of tin was not confirmed in the analysis by the line diffraction method. When the black material contains tin fine particles, the light blocking property of the black light-shielding film formed using the black material is greatly lowered. In the present embodiment, the average primary particle diameter of $# marriage_ + π & , , 1 Wenyang &...e material is preferably nm or more and 200 nm or less, and the helmet is occupied. <h is more preferably 5 nm or more and 2 〇〇 nm or less. Here, the reason why the average primary particle diameter is limited to the above range is that the 157917 can be formed relatively easily by arranging the average-times in the upper state (fourth). Doc -24· 201219465 Black film required. That is, the reason is that if the average-secondary particle diameter is less than 1 (10), it is too small compared with the wavelength of visible light. Therefore, the localized surface plasmon absorption of the metal which is a main factor of light absorption is reduced, and it becomes impossible to obtain On the other hand, if the average primary particle diameter exceeds 2 〇〇 nm, the range of electron motion on the surface of the particle becomes wider, so that the localized surface plasmon absorption of the metal is reduced, and the blackness is reduced. Reduce the situation. As a method of producing the black material used in the present embodiment, as described above, the method of obtaining the fine metal particles by adjusting the composition or the particle diameter is not particularly limited, and a gas phase reaction method or a spray can be applied. A general metal microparticle synthesis method such as a mist thermal decomposition method, a liquid phase reaction method, a freeze drying method, or a hydrothermal synthesis method. In particular, in the case of selecting silver tin alloy fine particles or mixed fine particles of silver tin alloy fine particles and silver fine particles as the metal fine particles, it is preferred to use a liquid phase reaction method which can obtain such fine particles relatively easily. As the liquid phase reaction method, for example, a silver compound solution and a reducing agent may be added dropwise to the tin colloidal dispersion liquid, and tin may be alloyed by reacting with silver ions, and silver fine particles may be formed from silver ions, thereby forming silver tin alloy fine particles. Method with silver particles. In the production method, the formation of the silver-tin alloy fine particles can be arbitrarily controlled by appropriately adjusting the reaction conditions (for example, the ratio of tin to silver ions, the pH of the reaction liquid, the reaction temperature, the reaction time, the amount of reduction, etc.). The amount of silver particles generated (including the case where silver fine particles are not substantially formed, that is, when only silver tin alloy fine particles are formed), and the ratio of the amount of silver tin alloy fine particles to silver fine particles. 157917. Doc • 25- 201219465 In the manufacturing method, the synthesis is completed by the reaction in the liquid phase, so that the obtained black material containing the metal fine particles becomes dispersed in the liquid phase of the water system' can be directly or by simple The procedure was used as a black material dispersion of the following water dispersion system. Further, when a black film is formed using the black material, the dispersibility of the black material and the resin forming component may be considered, and the dispersion medium of the dispersion may be an organic solvent system as described above. In the case of obtaining a liquid phase in a liquid phase, in the case of preparing a dispersion of an organic solvent system, the following method may be employed: temporarily, the bulk aggregate recovered from the liquid phase of the water system is mechanically pulverized to form a powder. Thereafter, the dispersion treatment is carried out in an organic solvent using a wet mixer such as a ball mill or a bead mill. Further, if possible, the dispersion can be changed by directly replacing the solvent with a solvent. - Resin component - The resin component in the present embodiment may be selected so as to be cured in a state in which the black metal particles which are black materials are uniformly dispersed, and which meet the characteristics required for the formed black film. As the resin component, various ionizing radiation curable resins, thermosetting resins, thermoplastic resins and the like can be used. The above-mentioned ionizing radiation curable resin is a resin which is cured by crosslinking or polymerization reaction by irradiation with, for example, an ultraviolet ray or an electron beam as an electromagnetic wave or a charged particle beam, and examples thereof include a radical polymerization type acrylic resin, Unsaturated polyester resin, or cationically polymerized epoxy resin, vinyl ether resin, oxetane, and glycidol. 157917. Doc -26-201219465 The acrylic resin may, for example, be a polyester (mercapto) acrylate resin, an epoxy (meth) acrylate resin, a (meth) acrylate methyl methacrylate resin, or a plurality of An alcohol (meth) acrylate resin, a polyoxo acrylate resin, or the like. Here, the term "(meth)acrylic acid vinegar" means "acrylate or methacrylate". The same is true below. Further, 'the above-mentioned thermosetting resin may, for example, be a resin, a resin, a urea resin, a urea-formaldehyde resin, a melamine resin, a polyester trisamine resin, a melamine-aldehyde resin, an alkyd resin, or a ring. Oxygen resin, epoxy _ melamine resin, unsaturated polyester resin, polyimide resin, acrylic resin, polyoxyalkylene resin, polyamine phthalate resin, general-purpose 2-liquid hardening type Acrylic resin (acrylic polyol cured product) or the like. Further, as the thermoplastic resin, a polyester resin, an alkyd resin, a polyamino phthalate, a polyvinylpyrrolidone, a polyvinyl alcohol or the like is preferably used. In the case where the first black film of the present embodiment is formed into a black matrix or the like, it is preferable to select an alkali-soluble resin as a resin-forming component which is a raw material of the resin component, and to use a resin formed of the resin-forming component as a resin component. . Furthermore, since the specific dielectric constant of the resin (organic material) is generally low, there is almost no selection restriction factor of the resin component for the specific dielectric constant of the black film of 15 or less, but in a part of the resin such as phenol resin. There is a case where the specific dielectric constant exceeds 1 因 due to the composition and the like, and therefore it is sometimes necessary to pay attention. - Method for producing black film - The first black film of the present embodiment is obtained by forming a film body by various known coating methods using the following black resin composition. For example, black 157917. Doc -27-201219465 The film can be easily obtained by the following steps: the above-mentioned black resin composition is applied to the base by various coating methods such as roll coating, spin coating, dip coating, spray coating, and bar coating. One of the main surfaces is formed (coated) into a layered shape to form a coating film. The solvent is removed from the coating film by volatilization or the like, and is subjected to a hardening treatment as needed. In the curing treatment, the resin component in the coating film is usually reacted by polymerization or the like to form a resin component, and when an ionizing radiation-curable resin is used as the resin component, ultraviolet rays, electron beams, and In the case of irradiation with radiation such as X-rays (heat treatment may be performed after irradiation, if necessary), a heat-reactive resin such as a thermoplastic resin material to which a thermal polymerization catalyst is added may be used as a resin-forming component, and heat treatment may be mentioned. The irradiation amount of the radiation is a sufficient amount required for the ionizing radiation-curable resin to be sufficiently hardened, and is usually 2 〇 mJ/cm 2 or more and 1 〇〇〇 mJ/cm 2 or less. Further, the temperature of the heat treatment is not particularly limited as long as the heat-reactive resin is sufficiently cured, and the resin itself is not modified or deformed, and the temperature at which the substrate can be used is not particularly limited, and for example, it can be exemplified in an atmospheric environment, 80 Heat treatment at a temperature in the range of C to 300 C for about 3 minutes to about 12 minutes. Further, when the component in the black resin composition is a resin component dissolved in a solvent, the hardening treatment becomes a self-coating film. The step of removing the solvent from the resin component may be a heat treatment under atmospheric pressure or under reduced pressure. In this case, the resin component which is hardened by removing the solvent may be swollen and dissolved again by exposure to the same solvent, and therefore it is preferably set by rigorously setting 157,917. Doc -28 · 201219465 Heat treatment conditions' and completely remove the solvent. When the ionizing radiation-curable resin is used as the resin component, it is possible to irradiate radiation such as ultraviolet rays, electron beams, and x-rays after the solvent is removed, or to perform heat treatment to completely cure the heat-reactive property. When the resin is used as the resin component, the curing reaction can be completed by the heat treatment after the removal of the solvent. β (black material dispersion) The black material dispersion of the present embodiment (hereinafter sometimes simply referred to as "dispersion") A dispersion obtained by dispersing the black material of the above embodiment in a dispersion medium. In the dispersion, the average dispersion particle diameter of the black material is 1 nm or more, and the particle size distribution index in the x-knife dispersion medium is 1) 90 〇 / 〇 is 600 nm or less. - Dispersing medium - [Knife-scattering" is basically one of the components containing water, an organic solvent, and a resin. As the above-mentioned organic solvent, for example, methanol, ethanol, 2: alcohol: alcohol, alcohol such as octanol; acetic acid, butyl acetate, lactic acid-hydrazine, propylene-alcohol, mono-W acetic acid monolactone, etc. are preferably used. Ester; diethyl ether, ethyl γτ alcohol, single ethyl group, cellosolve, scream (methyl cellosolve), ethylene glycol monomethyl hydrazine, · (butyl cellosolve, diterpene, decyl isobutylidene , methyl ethyl benzene, monoterpene benzene ^ ethyl propylene _, cyclohexyl and other steels; stupid '曱-曱, B, and other aromatic hydrocarbons; dimethyl ketone, dimethyl 157917. Doc •29· 201219465 One or two or more kinds of the guanamine solvents such as N-methyl:mi β ^ T-pyrrolidone can be used. In the case of using the above-mentioned organic solvent, the dispersion liquid team team "~ΰ卞千权佳 is 5 or less, more preferably ^zhexian 0/,"·, quality/〇 below, and further preferably 2 mass. When the moisture content of the right second dispersion is more than 5% by mass, when the dispersion of the black material r·· is mixed with the non-aqueous resin component or the resin-forming component, the dispersion liquid and the resin component or the resin component are changed. In the case where it is easy to obtain a stable mixture (black resin composition), it is possible to appropriately select a suitable one from a plurality of non-aqueous photosensitive resins by setting the water content of the dispersion to 5% by mass or less. The exposure, development conditions, physical properties, and the like are not restricted to the dispersion or the coating film, and the degree of freedom of the design can be broadened. - Other components - In the dispersion of the present embodiment, In order to improve the dispersibility of the black material and to improve the dispersion stability, it is preferred to use a dispersing agent and/or a dispersing aid in combination. Among them, especially when a polymer dispersing agent is used as a dispersing agent, the dispersion over time is qualitatively superior 4 Preferably. Here, the term "dispersant" refers to a polymer which ensures the dispersibility of a black material and a polymer which is completely free from a black material. The term "dispersion aid" refers to a pigment derivative for improving the dispersibility of a black material. For example, a carboxylic acid 'polyoxyethylene alkyl ether component, a sorbitan fatty acid ester is generally classified as a polymer dispersant, an ester dispersant, a polyethyleneimine dispersant powder, and a polyoxygen. Ethylene glycol diester dispersant 157917. Doc 201219465 is a dispersant, an aliphatic modified polyester dispersant, a polycarboxylate, a polyalkyl sulfate, and a polyethylene 0 to p. The same as g (PVP, polyvinyl pyrr〇lid〇ne), polyvinyl alcohol (PVA, polyvinyl alcohol), polyacrylamide and the like. In the above, the urethane-based dispersant is preferred in consideration of the compatibility with the ionizing radiation curable resin, the thermosetting resin, the thermoplastic resin used as the resin, and the compatibility with the organic solvent. Further, when the polymer dispersant is classified according to the structure depending on the production method, a random copolymer, a comb-shaped copolymer, a fluorene-type block copolymer, a bab-type block copolymer, and two A polymer having a hydrophilic group at the terminal, a polymer having a hydrophilic group at one end, and the like. Among these, a random copolymer or a comb-shaped polymer is preferable in consideration of compatibility with an ionizing radiation curable resin, a thermosetting resin, a thermoplastic resin, and an organic solvent used as a resin. . Specific examples of the dispersing agent under these conditions are listed by product name. EFKA (manufactured by EFKA Chemicals BV (EFKA) Co., Ltd.), (4) Kiss k (manufactured by BYK-Chemie Co., Ltd.), and café-made company. These dispersants are available! Use 2 types or more. Further, the dispersions are also polymers (resins) having a lower specific dielectric constant. Therefore, there is almost no limiting factor for making the specific dielectric constant of the black film (IV). Further, the amount of the dispersing agent added to the coloring material 枓 is preferably 5 parts by mass or more and not more than 1 part by mass relative to the mass fraction of the powder. If the amount is less than 5 parts by mass, then there is a case where the black microparticles are insufficiently dispersed to maintain the dispersion of the dispersion 157917. Doc -31· 201219465 i·Life cannot satisfy the average dispersed particle diameter in the above dispersion, the average particle diameter in the film, and the volume resistivity of the film. Further, if the dispersion amount is more than 50, there is a case where the dispersion amount becomes excessive with respect to the black fine particles, and the dispersion of the dispersion liquid cannot be maintained due to the interaction of the dispersants and the like, and the average of the above dispersions cannot be satisfied. The dispersed particle size, the average dispersed particle size in the film, and the volume resistivity of the film. In the black material dispersion liquid of the present embodiment, the black material of the present embodiment is dispersed in a dispersion medium, and the above-mentioned "other components" are added as needed. Here, the average dispersed particle diameter of the above black material in the dispersion must be 1 nm or more and less. In other words, since the average-secondary particle diameter of the preferred black material used in the present embodiment is i (10) or more, it is difficult to exist as a black material fine particle having an average dispersed particle diameter of less than i nm. On the other hand, if the average dispersed particle diameter exceeds 2 〇〇 (10), the conductive film formed by the aggregation of the black material particles is likely to be generated in the black film formed using the dispersion liquid, so that it is difficult to secure the required volume resistance. The light-shielding property also decreases when the aggregation of the black material particles is remarkable. Further, when the average dispersed particle diameter is increased, it is difficult to maintain a stable dispersion state in the dispersion liquid itself. The average dispersed particle diameter is preferably 2 nm or more and 2 〇〇 nm or less, more preferably 10 nm or more and 150 nm or less. In addition, the particle size distribution index of the above black material in the knife solution is D90% (accumulated 90% diameter) must be 600 nm or less. If it exceeds 6 〇〇 nm, the particle size non-uniformity becomes too large, and the coarse particles contained therein maintain a stable dispersion state in the dispersion itself, and it is difficult to form a black film 157917 using the dispersion. Doc -32- 201219465 "It is difficult to maintain the required volume resistivity and ensure adequate shading. The particle size distribution index D9 〇 % in the above dispersion liquid is more preferably 5 Å or less. Further, the lower limit of D90% is not particularly specified, but since the lower limit of the average particle diameter of the black material is i nm ', it is difficult to make D90% less than 5 nm in the actual dispersion step. For the average dispersed particle size of the above-mentioned dispersion liquid towel, (4) the particle size distribution of the dispersion liquid by the dynamic light scattering method (4), the volume average particle diameter obtained by arithmetic mean averaging according to the distribution result obtained ( The MV value, mean volume di_ter) is set as the average dispersed particle diameter. On the other hand, when the particle size is expressed in terms of cumulative distribution (volume basis), the particle size distribution index D90% can be obtained by setting the particle diameter (accumulated 90% particle diameter) corresponding to the cumulative value of 9% by weight. The average dispersed particle diameter and particle size distribution index in the following black resin composition can also be determined by the same measurement method. Further, the content (4) of the black material in the dispersion is more preferably 10% by mass or more and 40% by mass or less. If the black material: the rate is i mass. /. When the amount is 80% by mass or less, the black material may exhibit a good dispersion state in the dispersion. Here, if the content of the black material is less than 1% by mass, the dispersion f becomes excessive, and when the dispersion is formed into a black film, it is changed by the dispersion medium. It is difficult to obtain the desired black film, or the cost of removing the dispersion medium is increased. If the content of the black material exceeds 80% by mass, the concentration of the black material becomes too high to become a paste. Made as a feature of the dispersion 157917. Doc •33· 201219465 The disappearance of the situation. The black material dispersion liquid of the present embodiment can be prepared by mixing and dispersing the black material, a component such as a dispersing agent, or a dispersing aid, in the dispersion medium. As the mixing and dispersing method, a known dispersing machine such as an ultrasonic disperser paint shaker, a ball mill, a bead mill, or an Eiger mill can be used to disperse a mixture of a black material or a resin forming component. However, in terms of improving the dispersibility, it is preferred to use a bead mill. Further, a plurality of dispersion methods may be used in combination. (Black resin composition) The black resin composition used for the formation of the first black film of the present embodiment contains at least the resin composition of the black material, the resin component or the resin component of the present embodiment, and includes a black paint or the like. Further, the term "resin forming component" means a component for forming the above resin component. In the black resin composition, the black material has an average dispersed particle diameter of 1 nm or more and 200 nm or less. That is, since the average primary particle diameter of the preferred black material used in the present embodiment is 丨nm or more, it is difficult to have another right average dispersion as a black material fine particle having an average dispersed particle diameter of less than 1 nm. When the particle diameter exceeds 200 nm, in the black film formed using the black resin composition, the conductive path caused by the aggregation of the black material particles is easily generated, so that it is difficult to secure the required volume resistivity, and the black material is required. When the aggregation of the fine particles is remarkable, the light blocking property also decreases. Further, when the average dispersed particle diameter is increased, it is difficult to maintain the stable state of the black material in the black resin composition itself. 157917. Doc •34· 201219465 The above average dispersed particle diameter is preferably 2 nm or more and 200 nm or less, more preferably 10 nm or more and 150 nm or less. Further, the above black material in the black resin composition has a particle size distribution index of D90 ° / 〇 of 600 nm or less. If it exceeds 600 nm, the unevenness of the particle size becomes too large, and it is difficult to maintain the stable dispersion state of the coarse particles contained in the dispersion in the dispersion liquid, and it is maintained in the black film formed using the dispersion liquid. The volume resistivity and ensuring sufficient light blocking properties become difficult. Further, the particle size distribution index D90% in the above black resin composition is preferably 500 nm or less. Further, the lower limit of D9〇% is not particularly specified, but since the lower limit of the average particle diameter of the black material is i nm, it is difficult to make D90% less than 5 nm in the actual dispersion step. Further, the method of measuring the average dispersed particle diameter and the particle size distribution index D90% in the black resin composition can be determined by the same measurement method as that described above for the black material dispersion. Here, the total content of the resin component and the resin-forming component in all the solid content components contained in the black resin composition is preferably 5% by mass or more and 7 Å by mass. /. Hereinafter, it is more preferably 1% by mass or more and 5% by mass or less. When the content of the δ bark component and the resin component exceeds 7 〇 mass 〇/〇, when a black film is formed using the black resin composition, there is a black material abundance per unit volume of the resin component in the black film. Insufficient to ensure adequate opacity. On the other hand, when the content of the resin component and the resin-forming component is less than 5% by mass, when a black film is formed using the black resin composition, a film body which cannot form a uniform sentence may be obtained, and the 157917 may not be obtained. Doc -35· 201219465 The film thickness required, etc., cannot be formed as a preferred shape of the black film. Here, the main components constituting the black resin composition are five kinds of [A] to [E] as shown below. Furthermore, '[B] and [E] are different. [A] Black material [B] Black material dispersion medium [C] Resin forming component [D] Resin component [E] Resin forming component or resin component solvent The above black resin composition is mainly composed of a combination of the five components. The combination is as follows (1) to (7). Further, a component other than [A] to [E] which is optionally added, that is, a dispersing agent, a dispersing aid or a surface treating agent, is omitted here. (1): [A] + [C] The black resin composition is a two-component system having a minimum combination, and is understood to be a black material dispersed in a liquid resin-forming component. In this case, [C] must be liquid. (2) : [A] + [B] + [C] The black resin composition is a three-component system, and it can be understood that the above-mentioned "black material dispersion" and the resin-forming component are mixed. Usually [C] must be liquid, but when [C] is soluble in [B], [c] can also be solid. (3) : [A] + [C] + [E] The black resin composition is a three-component system, and it can be understood that the black material is dispersed in a resin-forming component dissolved in a solvent. Since [c] is dissolved in [E], it may be in the form of a liquid or a solid. 157917. Doc -36· 201219465 (4) : [A] + [D] + [E] The black resin composition is a three-component system, and it can be understood that the black material is dispersed in a resin component dissolved in a solvent. Furthermore, since [D] is a solid state, [E] is indispensable as long as [D] is present. (5) : [A] + [B] + p] § Mysterious black resin composition is a combination of [D] soluble in [b]. 'S can be solved as the upper 14" black material dispersion Liquid" seven capacitors have resin components. In this case only, the exception [E] is not required. (6) : [A] + [B] + [C] + [E] (7) : [A] + [B] + [D] + [E] These black resin compositions are 4 components. It is understood that the above-mentioned "black material dispersion" is obtained by mixing a solution in which a resin component or a resin component is dissolved. In this case, the compatibility between [B] and [E] is high. In the case where the compatibility between the two is low, even if the "black material dispersion" and the "solution in which the resin-forming component or the resin component are dissolved" are stably present, the phase separation or the particle may be generated when the two are mixed. The agglomeration of ingredients, etc. 'is therefore not good. In addition, when [B] is the same as [E], (6) is set to be included in (2) or (3), and (7) is set to be included in (4) or (5). The middle. In addition, [A] + [B] + [C] + [D] + [E] is also considered, but it is understood that it is the same as the state in which one part of the resin-forming component gradually changes to the resin component, and therefore it is included in (6) Middle" The above black material [A], black material dispersion medium [B], resin forming component [C], resin component [D], resin forming component or resin component solvent 157917. Doc • 37· 201219465 [E] The black material, the dispersion medium of the black material, and the resin component have been described above. Therefore, the solvent of the resin forming component, the resin forming component or the resin component will be described here. - Resin forming component - The resin forming component means a component for forming a resin component in the above black film, and usually comprises a monomer 'oligomer or a prepolymer of a resin component. In other words, since various ionizing radiation curable resins, thermosetting resins, thermoplastic resins and the like can be used as the resin component, at least one of the monomers, oligomers and prepolymers of the resins may be contained. When the ionizing radiation-curable resin is selected as the resin component, the ionizing radiation-polymerizable monomer (m〇n〇mer) which is a resin-forming component is preferably a polymerizable monomer having a radical polymerizable functional group in the molecule. Specific examples of the polyfunctional (meth) acrylate include ethylene glycol di(meth)acrylic acid Sg, propylene glycol bis(indenyl) acetoacetate, and tris-propyl propyl acrylate = ( Methyl) acrylate, dipentaerythritol penta (indenyl) propylene tetraol hexa(meth) acrylate, caprolactone modified dipentaerythritol hexa ruthenium acrylate, etc. As a monomer having a cationically polymerizable functional group, you It can be exemplified by 3,4-epoxycyclohexylmethyl_3,,4,_epoxycyclohexylcarboxylic acid vinegar, cyclohexyl epoxide, double glutinous A diglycidol, etc. Ethylene-based oxime, such as a hydrazine, a hydrazine, a hydrazinium, a hydrazinium, a hydrazinium, a hydrazinium, a hydrazinium, etc. The polymerizable prepolymer is used in combination. Also, it may be combined with the above ionizing radiopolymer (also including low Thereof), examples of the ionizing radiation-polymerization pre 157,917. Doc •38- 201219465 For example, polyester (meth) acrylate type, epoxy (meth) acrylate type, (mercapto) acrylate urethane type, and polyol (meth) acrylate type a polymerizable oligomer having a radical polymerizable functional group in a molecule such as a polyoxymethylene (meth)acrylate or an unsaturated polyester, or a novolac-based epoxy resin prepolymer or an aromatic vinyl ether. A polymerizable oligomer having a cationically polymerizable functional group in a molecule such as an epoxy resin such as a resin prepolymer. These ionizing radiation-polymerizable prepolymers may be used alone or in combination of two or more. Also selected as a thermosetting resin phenol resin, phenolic resin, urea resin, urea aldehyde resin, melamine resin, polyester-melamine resin, melamine-aldehyde resin, alkyd resin, epoxy resin, ring Oxygen_melamine resin, unsaturated polyester resin, polyimine resin, acrylic resin, polyoxyalkylene resin, polyurethane resin, general-purpose 2-liquid hardening acrylic resin (acrylic polyol cured product) In the case of the above-mentioned resin component, the resin-forming component may be a raw material compound for forming the thermosetting resin or a monomer, an oligomer or a prepolymer of a polymerizable resin. Further, when a resin such as a poly-resin, an alkyd resin, a polyamino phthalate, a polyvinylpyrrolidone or a polyvinyl alcohol as a thermoplastic resin is selected as the resin component, examples of the resin-forming component include: A monomer compound, an oligomer, or a prepolymer for forming a raw material compound of the thermoplastic resin or a polymerizable resin. Further, the resin forming component may further comprise a resin for reacting with the raw material compound or the polymerizable resin monomer, the oligomer or the prepolymer to form a resin. Doc -39·201219465 Reagent, reaction initiator, or polymerization initiator, polymerization initiator, etc. β is produced by patterning a black film using the above black resin composition into a specific shape, for example, a black matrix In the case of using a black resin composition containing a testable resin, a photopolymerization initiator, and an ethylapatotic unsaturated compound, the black resin composition is formed into a layered coating film having light ( Ultraviolet light). When the coating film is photosensitive, the coating film is exposed to a specific pattern using a mask or the like, developed, and hardened, whereby a black film having a specific shape such as a black matrix can be easily obtained. The alkali-soluble resin is not particularly limited as long as it is a resin containing a carboxyl group or a hydroxyl group, and examples thereof include an epoxy acryl vine resin, (iv) a varnish resin, a polyvinyl phenol resin, an acrylic resin, and a carboxyl group-containing resin. Epoxy resin, urethane resin containing a slow base, and the like. Among these, preferred are epoxy succinic acid s, resin, secret resin, acrylic resin, which provide a higher volume resistivity and a lower specific dielectric coefficient δ, Particularly preferred is a resin having an aromatic ring structure. In this case, the ratio of the solvent-soluble resin to the total solid content of the black resin composition is preferably 5% by mass or more and π% by mass or less, more preferably 1% by mass or more and 50% by mass or less. When the proportion of the test-soluble resin is more than 5% by mass or more and 7% by mass or less, there is a case where the black matrix (4) is not sufficient to ensure sufficient sensitivity, and it is also advantageous to ensure the necessary light-shielding property. On the other hand, if there are too few, there is a case where the method forms a preferable shape of the resin black matrix. The above-mentioned photopolymerization initiator means that 1579l can be produced by ultraviolet light or heat. Doc 201219465 A compound that polymerizes a free radical of an ethylenically unsaturated group. As a photopolymerization initiator, in particular, in terms of sensitivity, an anthracene derivative (a Chiang-based compound) is effective, for example, a light-shielding property is improved, and a sensitivity is obtained by using an alkali-soluble resin containing a phenolic hydroxyl group. On the other hand, it becomes disadvantageous, and in particular, such an anthracene derivative (anthracene compound) excellent in sensitivity is useful. In the present embodiment, the photopolymerization initiator may be used singly or in combination of two or more. In the case where the dendrimer black matrix is formed, the proportion of the photopolymerization initiator in the dispersion is preferably 〇 4% by mass or more and 15% by mass based on the total solid content. Hereinafter, it is more preferably 〇 5 mass y ❶ or more and 丨〇 mass % or less. If the proportion of photopolymerization initiator is too much. In the range of 4% by mass or more and 15% by mass or less, the development speed may be too slow. On the other hand, if it is over, sufficient sensitivity cannot be obtained, and a preferable resin black matrix shape cannot be formed. The situation. The above-mentioned ethylenically unsaturated compound is a compound having one or more ethylenically unsaturated bonds in the molecule, and as the compound, the polymerization is steep, the crosslinkability, and the development of the exposed portion and the non-exposed portion can be enlarged. In terms of the difference in the solubility of the liquid, it is preferably a compound having two or more ethylenically unsaturated bonds in the molecule, and more preferably, the unsaturated bond is derived from a (fluorenyl) propylene oxy group. (fluorenyl) acrylate compound. Further, when three or more ethylenically unsaturated bonds are used in the knives, it is preferable to form electrical resistivity such as volume resistivity or dielectric constant of the film. Examples of the compound having one or more ethylenically unsaturated bonds in the above-mentioned examples include (mercapto)acrylic acid, crotonic acid, methacrylic acid, and cis. Doc •41· 201219465 Unsaturated carboxylic acids such as succinic acid, methylene succinic acid and methyl maleic acid, and alkyl esters thereof, (mercapto) acrylonitrile, bismuth (mercapto) acrylate Amine, styrene, etc. Further, 'the compound having two or more ethylenically unsaturated bonds in the above molecule' may, for example, be an ester of an unsaturated carboxylic acid and a polyhydroxy compound, or a (meth)acryloyloxy group-containing acid salt. Ethylene (meth) acrylate compound and polyisocyanate compound (meth) acrylate phthalate, and (meth) acrylate or hydroxy (meth) acrylate compound and polyepoxide epoxy ( Mercapto) acrylates and the like. - Solvent-forming component or solvent of resin component - Solvent as a resin-forming component or a resin component (hereinafter referred to as "resin solvent"), the solubility of the resin-forming component or the resin component is lower than that of the south liquid One or more selected from the group consisting of water and an organic solvent. As the resin solvent, in addition to the solubility of the resin-forming component or the resin component, it is necessary to satisfy the following conditions: the dispersibility of the black material is higher than that of the black material dispersion; and the black material dispersion When mixed, the dispersibility of the black material or the solubility of the resin component or the resin-forming component does not decrease. When the conditions are not satisfied, even if the "black material dispersion" and the "solution of the resin-forming component or the resin component" are stably present, when the two are mixed to form a black resin composition, phase separation occurs. The aggregation or precipitation of a black material, the precipitation of a resin component or a resin component, etc., make it impossible to obtain a favorable black resin composition. In this regard, if the same or similar solvent can be selected as 157917. Doc •42· 201219465 Resin solvent and black material dispersion can avoid this problem, so it is better. In addition, as the above organic solvent, the organic solvent used in the above black material dispersion can be used in the same manner. Further, in the above-mentioned black resin composition, in order to improve the dispersibility of the black material and to improve the dispersion stability in the same manner as the black material dispersion, it is preferred to use a dispersant and/or a dispersing aid in combination. In particular, when a polymer dispersant is used as a dispersing agent, since it is excellent in temporal dispersion stability, it is preferable that the dispersing agent or the dispersing aid is the same as those described in the black material, and therefore the description thereof is omitted. Detailed description. Further, when a dispersion liquid containing a dispersant and/or a dispersing aid is selected as the black material dispersion liquid of the present embodiment, and the black material dispersion liquid is used as a raw material of the black resin composition, the dispersion liquid may be used as it is. A dispersant or dispersing aid of both. The reason for this is that the dispersant or the dispersing aid is such that the surface of the black material is a substance having an affinity for a dispersion medium or a solvent by modifying the surface of the black material. Therefore, if the characteristics of the dispersion medium or the solvent are not changed, it is not necessary. Treatment with other types of dispersants or dispersing aids. - Method for Producing Black Resin Composition - The black resin composition described above can be prepared by at least selecting the above black material and resin forming component and/or resin component, and optionally adding a black material dispersion medium or resin. The solvent of the component or the resin component is further mixed and dispersed by adding other components such as a photopolymerization initiator or a dispersant. Also, regarding these black materials, black material dispersion medium, 1579l7. Doc •43· 201219465 The combination of the resin forming component, the resin component, the resin forming component or the resin component is as described above. In this case, a black resin composition can be prepared by previously preparing a black material dispersion, adding a resin forming component or the like, or a photopolymerization initiator to dissolve it. Further, it can be prepared by mixing a previously prepared black material dispersion liquid, a solution obtained by dissolving a resin forming component or the like, or a photopolymerization initiator. The mixing and dispersing method is a treatment of a mixed liquid in which a black material or a resin forming component is mixed, by a known dispersion treatment method such as an ultrasonic disperser, a paint shaker, a ball mill, a bead mill, or an Eiger mill. Yes, but in terms of improving dispersibility, it is preferred to use a bead mill. Further, a plurality of dispersion methods may be used in combination. Further, in the case of using a black material dispersion prepared in advance, the above-described dispersion treatment method is not carried out in the production of the black resin composition, and the black material dispersion liquid and the solution for dissolving the resin component or the like are sufficiently provided. (When mixing and stirring are possible) (Substrate with black film) The substrate with the black film of the present embodiment is formed by providing the first black film of the present embodiment described above on the substrate. Specifically, for example, it is produced by patterning a layer formed on the light-transmitting substrate by the above-described black resin composition as described above. The substrate is not particularly limited, and examples thereof include a glass substrate and a plastic substrate (organic polymer substrate). Further, examples of the shape thereof include a flat plate, a film shape, and a sheet shape. Moreover, as the plastic substrate, plastic 157917 is preferred. Doc -44- 201219465 Film, plastic film, etc. The material of the glass substrate is not particularly limited, and may be, for example, suitably selected from the group consisting of soda glass, alkali glass, and alkali-free glass. The material of the plastic substrate is not particularly limited, and may be, for example, cellulose acetate, polystyrene, or polyethylene terephthalate (pET, p〇iyethyiene) depending on the use or use conditions. Terephthalate), polyether, polyimine, epoxy resin, stupid oxy resin, polycarbonate (PC, p〇lycarb〇nate), polyvinylidene fluoride, triacetyl cellulose, polyether sulfone (PES, Polyether sulfone), polyacrylate, etc. Moreover, the method of patterning the layer formed using the above-mentioned black resin composition is not particularly limited, and as described above, the alkali-soluble resin, the photopolymerization initiator, and the ethylenically unsaturated compound may be contained in the black resin composition. The black resin composition is formed into a layered shape to form a coating film having light (ultraviolet) photosensitivity, and the coating film is exposed to a pattern and then developed to form a black film. It is composed of post-exposure or post-bake special steps. Regarding the above-described patterning step of exposure, development, and the like, a well-known method can be used. However, for example, when it is used as a black matrix for an image display device, the paragraph number of the Japanese Patent Laid-Open Publication No. 2〇〇6_251〇95 〇 The method of forming the light-shielding image described in the method of the present invention, or the method of forming the light-shielding image described in paragraphs 0116 to 0126 of JP-A No. 6-251237, is also preferably used in the present embodiment. Further, the above black resin composition was also used, and an ink jet method was used, based on 157917. Doc •45- 201219465 The method of directly forming a patterned layer on a material. In this case, it is not necessary to provide photosensitivity to the coating film of the black resin composition, but the black resin composition to be used must be excellent in ejectability (stability in ejection amount or ejection direction) from a minute inkjet nozzle. After being ejected and attached to the substrate, the film is in a high viscosity state without flowing out or deforming. Therefore, a method of adjusting the viscosity of the black resin composition or adding an auxiliary agent for providing the shake resistance is used. A well-known method can be used for this step, but for example, when it is used as a black matrix for an image display device, the paragraph number 〇〇29 to 〇〇3 of Japanese Patent Laid-Open Publication No. 2008-i16895 can be used. The method described in 丨. The substrate to which the black film is attached in this embodiment can be used as a black matrix substrate in which a black matrix (light-shielding film) is omitted, and is preferably used for producing a color filter. " The film thickness of the black film as the black matrix substrate is preferably 〇 2 ^ above, 5. 0 μΓΠ or less, especially good. 2 μβ1 or more and 4 〇 μιη or less. Further, since the first black film of the present embodiment is used as the black film in the black matrix substrate, even the film has a high optical density. (Image Display Device) The first black film of the present embodiment can be preferably used in various image display devices. Examples of the image display device include a plasma display device, a self-luminous display device such as an EL display device, a CRT (four) ray tube, a cathode ray tube display device, a liquid crystal display device, and the like, which are used for liquid crystal display. This device can be used significantly in the case of a device or an EL display device. Doc • 46 · 201219465 The effect of the black film of the embodiment. Here, examples of the type of the liquid crystal display device include STN (Super-twisted nematic), TN (twisted nematic), VA (Vertical Alignment), and lPS. (in-plane switching, transverse electric field switching type), OCS (optical communication system), and R-OCB (Reflective Optically Compensated Bend). Since the first black film of the present embodiment has a high degree of blackness and a relatively high resistivity, it can be preferably used as a member for an image display device using the light blocking property (light antireflection property) and the south resistivity. . Examples of the members include a black matrix in a liquid crystal display device or a self-luminous display device, and a color filter or black stripes using the same, and are separated between pixels of respective colors in a liquid crystal display device or a self-luminous display device. The light shielding wall, the separator between the substrates filled with the liquid crystal in the liquid crystal display device, and the like. YU Ying: When the black matrix and the color filter using the above are used, the thickness of the black matrix can be reduced because the black color is smaller than η. As a result, since the surface of the obtained color filter has high flatness, the liquid 曰曰T device including the color filter does not cause cell gap unevenness between the color grading sheet and the substrate, and the color The occurrence of unequal display defects is improved. Furthermore, because of the volume resistivity, ^ _ _ hand season, such as COA mode or BOA mode of liquid crystal display elements or spontaneous shackles. & display device, even in the black matrix and pixel drive wiring contact room privacy. In the case of a dome shape, the driving failure of the 7L member caused by the short circuit of the wiring or the like is not caused. In addition, when applied to the shading wall 戍 4 kn. k, the volume resistivity is also higher than 157917. Doc 201219465 is high, so there is no short circuit between the pixels, so there is no driving failure of the components. Further, since the degree of blackness is high, the thickness of the light-shielding wall can be made small, and the contrast of the enlarged light-emitting region under each pixel can be improved, or the density of the light-emitting element can be increased with the decrease of the pixel interval. Further, it can be applied to a contrast-enhanced film or the like by using a high light absorptivity. <Second Invention> Next, the second invention will be described. (Black film) The second black film having infrared transmittance in the present embodiment is characterized in that it contains a black material and a resin component, and the average particle diameter of the black material in the film is 1 nm or more and 100 nm. Hereinafter, the transmittance (T560) per 1 μm thickness at a wavelength of 560 nm is less than 40%, and the optical density (OD560) based on the transmittance at a wavelength of 560 nm and the optical density based on the transmittance at a wavelength of 950 nm (OD950) The ratio (OD950/OD560) is 0. 35 or less (There is a case where "optical density based on transmittance" is simply referred to as "optical density"). Further, the second black film of the present embodiment also has sufficient light blocking properties and a high volume resistivity as those of the first black film. Further, in the present embodiment, the wavelength band of visible light is "the short wavelength limit is 360 to 400 nm, and the long wavelength limit is 760 to 830 nm" according to JIS-Z8 120, and is set to 380 nm or more and less than 800 nm. . Further, light having a wavelength of 800 nm or more and 1 mm or less is made into infrared rays, and light having a wavelength of 800 nm or more and 2500 nm or less is made into near-infrared rays. Furthermore, the above mentioned 157917. Doc-48-201219465, "Optical Density" refers to the above-mentioned formula when the transmittance is τ (%), and the "infrared transmission black film" in the present embodiment means 3. 0% or more of the infrared transmission film. Further, in the present embodiment, the transmittance (Two) at a wavelength of 56 〇 nm is selected as an index indicating the transmittance because the wavelength is located substantially at the center of the visible light band, and is widely used as a wavelength representing visible light. Here, T56〇 is set to less than 40°/. The reason is that if the visible light transmittance is less than 40%, the film can be regarded as black in appearance (visually observed). That is, the reason is that the visible light transmittance of the member covering the light-emitting portion or the light-receiving portion of the remote controller is not 40°/. It is difficult to observe the internal light-emitting element or the light-receiving element via the member, and the inside can be regarded as a state concealed by the black film. D. 56 is preferably 37. /. The following 'better is 35% or less. Further, the lower limit of τ560 is not particularly limited, but the detection limit of the measuring device is 〇 〇〇〇〇〇 1% or so. Further, the ratio of the optical density (OD56q) at a wavelength of 560 nm to the optical density (〇D95〇) at a wavelength of 95 〇 nm (ODmq/OD56) is 0. Below 35, the necessary amount of transmitted light can be obtained especially for light of 950 nm which is mostly used for wireless remote controllers. OD95〇/〇D56〇 is preferably 0. 32 or less 'better is 0. 30 or less. Furthermore, the lower limit of od95Q/od56() is 〇. 1 or so. Further, in the second black film of the present embodiment, the ratio of 〇d56() to the optical density (ODNIR) at each wavelength in the near-infrared (NIR) wavelength region of 800 nm or more and 2500 nm or less (ODNIR/〇) D56()) is preferably 0. 40 or less. If ODNIR/OD56() is 0. Below 40's have a shading of visible light 157917. Doc-49-201219465, and can obtain a sufficient amount of transmitted light for various near-infrared lasers for industrial use or infrared rays for positioning black matrix patterns, and therefore can be preferably used as an infrared-transmitting black film. ODN丨R/〇D560 is preferably 0. 37 or less, further preferably 0 35 or less β, and the lower limit of ODNIR/〇D56〇 is 0. In the second black film of the present embodiment, the integral ratio of the black material is preferably set to 1 〇 volume. /. Above 25% by volume. By setting the volume fraction to this range, sufficient light-shielding property can be ensured in the visible light region when a black film is formed, and a high transmittance can be obtained for light above the near-infrared region. That is, the volume fraction of the 3⁄4 black material is less than one. If the volume is 5%, the black material is too small, so there is a case where the light-shielding property in the visible light region is insufficient. On the other hand, the reason is that if the volume fraction of the black material exceeds 25 volume Μ, the infrared transmission black film has metallic luster, so that the transmittance of light above the near-infrared region is also lowered, and even if it does not occur In the case of metallic luster, since the amount of the black material is too large, there is a case where the transmittance of light in the near-infrared region is also lowered. The volume fraction of the above black material is more preferably set to 2. It is more preferably 0% by volume or more and 2% by volume or less, and more preferably 2% by volume or more and 15% by volume or less. Further, in the second black film of the embodiment, the volume fraction of the black material can be calculated from the density of each component constituting the infrared ray transmitting black film and the weight of each component added at the time of coating. The volume of each component was determined. Further, the resin component is volatilized by decomposition or oxidation at a relatively low temperature. In contrast, since the black material is a metal, & is stable up to a high temperature, 157,917. Doc •50- 201219465 Therefore, the weight ratio of the resin component to the black material in the black film can be determined according to the weight change of the black film by thermogravimetric analysis (TG), and on the other hand, the resin is determined by component analysis. The substance of each component and the black material can be used to determine the specific gravity of the two substances. Therefore, the ratio of the obtained weight ratio to the respective components can be used to determine the volume of the black material in the second black film of the present embodiment. In the second black film of the present embodiment, the average dispersed particle diameter of the black material in the film is preferably 1 nm or more and 丨〇〇 nm or less, but preferably 2 nm or more and 80 nm or less. If it is 5 nm or more and 5 〇 nm or less, it is more preferable. If the average dispersed particle diameter in the film is 丨〇〇 nm or less, Rayleigh scattering in the infrared region due to the presence of fine particles of a black material can be suppressed. Or Mie scattering can suppress the decrease in the transmittance of infrared rays. That is, as described below, the black material in the present embodiment has light transmittance in the infrared region, but as before, if it is only dispersed in the resin When the average primary particle diameter of the metal fine particles is in the range of i nm or more and 2 〇〇 nm or less, the Rayleigh scattering or the Mie scattering generated in the infrared region cannot be suppressed, and as a result, sufficient infrared transmission cannot be obtained. However, in the present embodiment, Rayleigh scattering or Mie scattering is suppressed by setting the average dispersed particle diameter in the black film to 100 nm or less, and sufficient transmission characteristics can be obtained in the infrared region. In the optical element, in order to prevent the influence of Rayleigh scattering or Mie scattering of visible light, it is generally considered that the average dispersed particle diameter of the dispersed fine particles is preferably 20 nm or less. However, Rayleigh scattering or Mie scattering has a wavelength based on the generating mechanism thereof. Dependence, so compared to visible light longer wavelength infrared 157917. Doc -51- 201219465 In the case of the line, the allowable particle size is enlarged, and the infrared transmittance in the present embodiment does not require a high degree of transmission of the optical element, and allows slight scattering, so that the average dispersed particle size can be Expand to 1〇〇nm. On the other hand, the average dispersion enthalpy of the black material in the film in the present embodiment is 1 nm or more. The reason for this is that the crystallinity of the particles is lowered when the average particle diameter is less than 1 (10), so that the absorption state of visible light may become unstable, and sufficient blackness may not be obtained. The average dispersed particle diameter of the black material in the infrared-transmitting black medium in the present embodiment can be obtained by using a FIB (focused ion beam) or the like to cut the obtained infrared-transmissive black film into a sheet shape in the cross-sectional direction, using a transmission electron microscope. (TEM, Transmission Electr〇n Micr〇sc〇py) was obtained by observing the particles of the black material in the sheet. In other words, a specific number (usually 10 or more) of particles is randomly selected from the TEM photograph to measure the particle diameter, and the average value thereof may be an average dispersed particle diameter. Further, since the particles of the present embodiment are substantially spherical, the maximum diameter of each particle may be set to the particle diameter of the particles. - Black material - As the black material in the present embodiment, it is preferable to select metal fine particles containing silver and tin as main components. Here, the term "silver and tin as main components" means at least metal fine particles. Two kinds of silver and tin are contained, and the total content of silver and tin is 5% by mass or more based on the total amount of the metal fine particles. In other words, the component and the content are defined relative to the entire metal fine particles, and the components and contents of the respective particles are not specified. Metal microparticles having a particle size of 1 nm to several hundreds nm have been known (Neil 157917. Doc •52·201219465 meters of metal microparticles) exhibit various tones by absorption by surface plasmons of metal. It is also known that the color tone (ie, absorption wavelength) varies depending on the composition or particle size of the metal microparticles. . In the present embodiment, it is preferable to select a metal fine particle which exhibits a black color in the visible light region and a transmittance of a certain value or more in the infrared light region by adjusting the composition or the particle diameter. Silver and tin as the main component of the metal particles. As the metal fine particles containing silver and tin as main components, silver tin alloy fine particles or mixed fine particles of silver tin alloy fine particles and silver fine particles can be preferably used. Here, in the case where the metal fine particles containing silver and tin as main components are silver tin alloy fine particles, the content ratio of the silver component in the silver tin alloy fine particles, that is, the ratio of the silver component to the total amount of silver and tin ( Silver/(silver+tin): mass%) is preferably 45 mass% or more and 95 mass%. More preferably, it is 50% by mass or more and 95% by mass or less, and more preferably 6% by mass or more and % by mass. /〇The following. When the metal fine particles containing silver and tin as main components are fine particles of silver tin alloy fine particles and silver fine particles, the content of the silver component in the mixed fine particles of the silver tin alloy fine particles and the silver fine particles, that is, the silver component The ratio (silver/(silver + tin): mass%) relative to the total amount of silver and tin is preferably 45 mass%. Above, 95 quality. More preferably, it is 50% by mass or more and 95% by mass or less, and more preferably 6% by mass or more and % by mass or less. The reason why the content ratio of the above silver component is limited to the above range is that if 157917. Doc •53·201219465 When the ratio of the silver component is 45 mass% or more and 95 mass% or less, the reflectance of visible light does not become high, and a black film having a sufficient blackness is obtained, and sufficient light blocking property can be obtained. And the black film also has infrared transmittance. Further, when the preferred content range of the silver component is a predetermined amount of the silver tin alloy fine particles or the mixed fine particles of the silver tin alloy fine particles and the silver fine particles, the preferred content range of the silver component in the entire fine particle portion is indicated. The person's are not intended to indicate a preferred range of content of the silver component in each particle. Further, in the present embodiment, the above-mentioned so-called silver-tin alloy fine particles are not limited to the crystal structure of the silver-tin alloy, and it is possible to clearly determine that the silver-tin alloy has a crystal structure having silver. First, as an example of a crystal structure having a silver-tin alloy, it is known that when a silver-tin alloy is represented by a chemical formula Agl_xSnx (X is a real number), the range of χ is 0. 118SXS 0. Phase 2 and 〇 of 2285. 237g XS 0. ε phase of 25 (according to Binary Alloy Phase Diagram, ρ. 94-97). Further, as a crystal structure having silver, one of the silver atoms in the silver crystal is replaced by a tin atom while maintaining the structure of the silver crystal, but it is expressed as an (Ag) phase in the above literature. It is considered that when the chemical formula AgiYSnY (Y is a real number) indicates a silver-tin alloy having the silver crystal structure, γ is 〇. <Y^ 0.115. Further, in the above chemical formula, Y = 0 (AgiSn()) corresponds to the silver single phase, that is, corresponds to the silver fine particles, and therefore is excluded from the range of the above-defined Y which is defined as the silver tin alloy fine particles. However, as the metal fine particles mainly containing silver and tin as the main component of the 157917.doc -54·201219465 black material, silver tin alloy fine particles or mixed fine particles of silver tin alloy fine particles and silver fine particles are preferable. Therefore, the black material may also include γ=0. Further, the black material containing the silver tin alloy fine particles or the mixed fine particles of the silver tin alloy fine particles and the silver fine particles contains substantially no tin fine particles. Here, the term "substantially free of tin fine particles" means that the presence of a substance having a crystal structure of tin is not confirmed in the analysis by the X-ray diffraction method. When the black material contains tin fine particles, the light blocking property of the black light-shielding film formed using the black material is drastically lowered. The method for producing the black material in the present embodiment is not particularly limited as long as the composition and the particle diameter are obtained, and a gas phase reaction method, a spray pyrolysis method, a liquid phase reaction method, or a cold method can be applied; Metal microparticle synthesis method such as method or hydrothermal synthesis method, but especially when silver tin alloy fine particles or mixed fine particles of silver tin alloy fine particles and silver fine particles are selected as a black material, it is preferable to use the metal microparticles. A liquid phase reaction method such as microparticles. As the liquid phase reaction method, it is preferred to use an aqueous reaction system, for example, a method in which a silver compound solution is dropped into a tin colloidal dispersion, a method of alloying tin with silver, or a dispersion in which silver colloid and tin colloid coexist. Silver tin alloy fine particles and silver fine particles are formed by adding an oxidizing agent or a reducing agent to the method of alloying silver with tin. In the production method, the reaction conditions (for example, 'the ratio of tin to silver (silver ion), the enthalpy of the reaction liquid, the reaction temperature, the reaction time, the kind or amount of the oxidizing agent or the reducing agent, etc.) are appropriately adjusted. The amount of silver-tin alloy fine particles generated, the amount of silver fine particles generated 157917.doc -55-201219465 (including the case where substantially no silver is formed, that is, only silver-tin alloy fine particles are formed), and then silver-tin alloy fine particles and The ratio of the amount of silver particles produced. Further, in order to uniformly disperse the black material in the resin component or to improve the affinity between the black material and the resin component, it is preferred to treat the surface of the black material with a surface treatment agent or a dispersant in advance. These surface treatment agents or dispersing agents may be selected from known ones depending on the material of the resin component or the method of dispersing the black material in the resin component, but as described below, the s agent or dispersing agent at the surface may be adjusted. In the same manner, the second black film of the present embodiment was obtained by adjusting the dispersion method or the dispersion conditions and allowing the black material to be well dispersed in the resin component. The dispersant is preferably a polymer dispersant, and examples thereof include a urethane dispersant, a modified polyester dispersant, a polycarboxylate 'polyalkyl sulfate, and polyvinylpyrrolidone. (pvp), polyvinyl alcohol (pVA), polyacrylamide, etc. Further, when a black film is formed by curing a resin component (a component for forming a resin component) by the following black resin composition, it can be maintained. A polymer dispersant having a preferred structure of dispersibility of a black material, which may be selected from a random copolymer, a comb-shaped copolymer, a fluorene copolymer, a BAB copolymer, a polymer having a hydrophilic group at both ends, and a terminal A polymer having a hydrophilic group or the like is considered to have a high compatibility with a solvent having high compatibility with a resin component or a resin-forming component, in other words, a resin component, a resin component, a resin component, and a resin component. When the dispersibility of the black material in the solvent having high solubility is high, a random copolymer and a comb-shaped copolymer are preferable. 157917.doc -56-201219465 Specific examples of the dispersing agent include EFKA (manufactured by EFKA Chemicals BV (EFKA) Co., Ltd.), Disperbyk (manufactured by BYK-Chemie Co., Ltd.), Disparlon (manufactured by Nanmoto Chemical Co., Ltd.), and SOLSPERS (Zeneca). Manufactured by the company, KP (manufactured by Shin-Etsu Chemical Co., Ltd.), p〇iyfi〇w (manufactured by Kyoeisha Chemical Co., Ltd.), etc. Further, examples of the surface treatment agent include a coupling agent such as a decane coupling agent and a titanium coupling agent. The black material has a high degree of blackness due to the properties of the material itself, is excellent in light-shielding properties of visible light, and has infrared transmittance. Further, by controlling the dispersed particle diameter, the scattering of infrared rays by the particles is also suppressed. Further, since it is made of an inorganic material, the chemical stability is also high, and there is no fear of fading or the like even when exposed to ultraviolet rays such as sunlight or fluorescent lamps. <Resin component - Any one of the inorganic resin and the organic resin may be used as the resin component, if the black material is dispersed and there is no strong absorption in the wavelength region of the infrared ray to be used. Although it is not particularly limited, an organic resin such as an acrylic resin, an epoxy resin, a polyester resin, or a polyurethane resin, and a liquid crystal or a mems (^^〇electromechanical, MEMS) can be preferably used. System) Resinizing the mouth and the like with a photoresist. Further, X ‘ may be added with a filler containing an inorganic substance for increasing the hardness of the film or for adjusting the film = refractive index, or an additive for improving the adhesion to the coated substrate.乍 丙烯酸 丙烯酸 丙烯酸 丙烯酸 丙烯酸 丙烯酸 丙烯酸 丙烯酸 丙烯酸 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The choice of monomers, oligomers, and prepolymer-based polymers. Examples of the polymer include decyl poly(meth)acrylate, cyclohexyl poly(meth)acrylate, polyethylene glycol di(meth)acrylate, and poly-trimethylolpropane di( A (meth) acrylate resin such as fluorenyl acrylate or poly-pentaerythritol tetra(meth) acrylate. Here, "(meth)acrylate" means "acrylate or methacrylate". The same is true below. Moreover, examples of the epoxy resin include glycerin polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerin polyglycidyl ether, polyglycerol diglycidyl ether, and phenol novolak type epoxy resin. Cresol novolak type epoxy resin, bisphenol type epoxy resin, trisphenol decane type epoxy resin, copolymer of glycidyl (mercapto) acrylate and styrene epoxy resin, glycidyl group Copolymer epoxy resin, styrene and (meth)acrylic acid 曱s曰 copolymer epoxy resin, glycidyl (fluorenyl) acrylate and cyclohexyl maleimide copolymer epoxy resin, and lanthanide ring Oxygen resin, etc. The polyester-based resin is not limited as long as it is usually used as a coating material, and examples thereof include polycarboxylic acids such as adipic acid, sebacic acid, and isophthalic acid, and ethylene glycol and trishydroxypropylpropane. A condensation polymer of a polyol or the like. Further, the polyurethane resin is not limited as long as it is usually used for a coating material. For example, a polyamino phthalate resin in which an isocyanate group and a polyol are chain-extended is preferred. The polyhydric alcohol may, for example, be a polyester polyol, a polyether polyol or an acrylic polyol. - Other components - The second black film of the present embodiment may contain various components such as a filler in addition to the above-mentioned black material and resin, 157917.doc -58 - 201219465. The filler may be used for the purpose of increasing the hardness of the black film or adjusting the refractive index. As the filler, an inorganic substance, particularly an inorganic oxide, is preferable and preferable. The dispersed particle diameter of the filler must not cause scattering of infrared rays. Therefore, the average dispersed particle diameter in the black film is preferably (10) or less. As the filler for increasing the hardness of the black film, an inorganic oxide having a refractive index equivalent to that of the resin component is preferable, and in terms of easiness of obtaining or price, etc., it is preferable to make the stone (two) Oxide eve) microparticles. In the case of adjusting the refractive index, for the purpose of increasing the refractive index, for example, a fine particle containing a high refractive index material such as zirconia or titania may be used, and a low refractive index may be used. In the case of the purpose, for example, it is only necessary to use fine particles having a low refractive index such as a nanoporous vermiculite or a hollow vermiculite. Further, in the black film of the second embodiment of the present embodiment, the fine particles composed of the silver tin alloy fine particles and the silver fine particles used as the black material are blacker than the carbon black or titanium black used as the black material in the previous spot color film. It is higher, so as described above, the content in the film can be reduced to a range of 1.0% by volume or more and 25% by volume or less. Therefore, even if a substance other than a black material is added, the film formation property or the characteristics of the film itself can be maintained, so that such a filler can be added. - Method for Producing Black Film - The second black film of the present embodiment is formed by molding the following black resin composition into a layer on a substrate. Further, the black resin composition of the present embodiment contains at least the resin composition of the black material, the resin-forming component or the resin component of the present embodiment, and includes a black paint or the like. 157917.doc 59·201219465 The substrate to be used is not particularly limited as long as it is selected according to the method of use or the form of use of the black film. For example, except for an inorganic substrate such as glass, the hardness is as high as that of an acrylic substrate or a polycarbonate substrate. A higher substrate 'is a structure having an infrared transmission black film. Also, if PET (polyethylene terephthalate), or PEN (Polyethylene Naphtahalate, polyethylene naphthalate), PES ((Polyethylene sulfone 'polyphosphorus), TAC (triacetyl cellulose, triethyl) A polymer film or the like which is a cellulose film or the like can also obtain a flexible infrared ray transmitting black film. The method of applying the black resin composition (coating film forming method) is also not particularly limited. Coating method, flow coating method, spray coating method, dip coating method, film coating method, gravure coating method, knife coating method, bar coating method, inkjet method, etc. by hardening or making the obtained coating film When the solvent is volatilized and removed, a second black film can be obtained. Further, when the black film is obtained by curing, when the black resin composition contains a solvent, the solvent in the coating film is first removed to form a coating. A cloth-dried film (a film-like form which becomes a solid by removing a solvent, and hardening of the resin component hardly occurs, and the film which is re-dissolved in a solvent by contact with a solvent) is hardened, and the coating film is hardened. As hardening In the method, the temperature at which the thermal polymerization is started can be heated to the monomer, the oligomer, and the prepolymer of the resin component raw material, and when the addition reaction starts to be in the form of a clear shape, as long as the reaction initiator is reacted It is sufficient to apply heat or light. In addition, the coating film of the black resin composition containing the ultraviolet ray-sensitive resin component 157917.doc 201219465 is irradiated with ultraviolet light (exposure). The process of developing and obtaining a complicated shape is briefly described. The exposure method is not particularly limited. If it is a flat shape, exposure can be easily performed by using a commercially available ultraviolet exposure device and a photomask. The ultraviolet laser can be used as a light source to scan the fine laser beam, thereby directly engraving the pattern into the coated dry film, that is, direct writing (straight engraving). The development method is also not particularly limited, as long as the dipping type is used. Or a usual method such as stirring, etc. Further, the conditions of the exposure or development are as long as the raw materials of the resin components used or the desired shape are suitable. As a preferred example of the resin composition raw material, for example, a photoresist material is used for exposing and developing the coated dry film to obtain a complicated shape, and the following black matrix is exemplified. <Black material dispersion liquid and black resin composition> The black material dispersion liquid and the black resin composition for forming the second black film of the present embodiment can be obtained, for example, as follows. First, prepare black materials. As the black material, the above-mentioned metal fine particles containing silver and tin as main components are preferable, and in particular, fine particles composed of silver tin alloy fine particles and silver fine particles can be more preferably used. Further, as for the production method thereof, for example, a liquid phase reaction method as described above is also preferably used. Here, the metal (in the black) is mainly composed of a metal having a hydrophilic surface as well as a liquid phase reaction method which can be preferably produced by a liquid reaction system. Therefore, in order to uniformly mix such a black material in the raw material of the resin 157917.doc 201219465, it is necessary to be directly dispersed in the state of the resin component raw material, or to disperse the black material in a high compatibility with the resin forming component or the like. In the solvent. Therefore, it is preferred to subject the black material to a surface treatment using a polymer dispersant or a surface treatment agent. In the following description, the polymer dispersant and the surface treatment agent are collectively referred to as "polymer dispersant or the like". Moreover, the said resin component raw material is as follows. In the surface treatment, the amount of the polymer dispersant or the like bonded to the surface of the black material is preferably 5% by mass or more and 3% by mass or less based on the total amount of the black material. Further, there is a better range depending on the composition of the black material or the primary particle diameter and the composition of the following resin component raw materials in which the black material is dispersed and mixed. The reason for this is to form a coating film from a black resin composition formed using the black material, and to form an infrared-transmitting black film, in order to ensure the dispersibility of the black material in the coating film or in the black film. It is necessary to strictly adjust the amount of the polymer dispersant equal to the amount added in the black material in advance. That is, when the amount of the polymer dispersant or the like is small, there is a case where a small amount of the polymer dispersant or the like is generated in one of the surfaces of the black material particles, and the resin component raw material or solvent in the portion is affinity. Sexual reduction. Further, since the black material particles remain in affinity with each other, the black material is dispersed in the resin component raw material or the solvent, and a part of the black material particles having a small amount of coating from the polymer dispersant or the like is agglomerated. On the other hand, when the amount of the polymer dispersant or the like is too large, the dispersant itself may be a factor that lowers the dispersibility. In addition, when the fat-forming component of the tree 157917.doc-62·201219465 is hardened to form a black film, there is an excessive polymer dispersant or the like which inhibits the curing by polymerization of the resin-forming component, and a sufficient film cannot be obtained. The situation of strength. Further, when a photoresist or the like is used for the cured resin, the development property in the development step after exposure with light is also cited as a reason. In order to strictly adjust the amount of the polymer dispersant to be added to the black material, it is preferred to add a polymer dispersant or the like to the aqueous solvent in which the black material particles having a hydrophilic surface are dispersed, and to impart a drop or the like. After the surface of the particles is subjected to a coating treatment such as a polymer dispersant, the solvent is removed by, for example, evaporation, and the black material particles are dried. In this manner, a sub-dispersant or the like can be added to the black material particles.里心门刀进: 'Even when it is surface-treated with a polymer dispersant or the like, it disperses and treats the unevenness of the sentence, so that the surface-treated black material particles are dispersed in the resin component raw material and the tree is eight κ The adsorption and desorption of black material particles by a solvent such as a weight dispersant in a solvent having a high raw material amount: a dispersing sword of a scorpion, etc., and a coating of each particle, thereby ensuring, and, Uniform dispersion. On the other hand, in the surface treatment, if the white-stopping treatment method is used, it is not preferable. In the treatment method, the polymer dispersant is added to the aqueous solvent having the hydrophilic surface, and the black material is coated and processed. In the case of a face-to-face lamp, a molecular dispersant, etc., or a centrifugal separation, etc. will be coagulated by coating treatment. 157917.doc •63·201219465 The black material particles of the polyprecipitate are separated from the solvent, and the Drying is carried out to carry out surface treatment using a polymer dispersant. Alternatively, the particles subjected to the coating treatment with the polymer dispersant are directly extracted and dispersed in a nonaqueous solvent in an aqueous system or a polar solvent to carry out solvent substitution. However, in these methods, a part of the polymer dispersant or the like remains in the separated aqueous solution, so that the amount of the polymer dispersant or the like is less than the designed amount. Therefore, as described above, there is a possibility that problems such as aggregation of black material particles with each other may occur. Further, since it is difficult to estimate the amount of the polymer dispersant or the like remaining in the solution, it is difficult to additionally add a corresponding amount of the polymer dispersant or the like, and if the amount is small, the amount of the polymer dispersant or the like is insufficient. The problem cannot be solved. On the other hand, when the amount of addition is excessive, the amount of the polymer dispersant or the like is excessive, which may cause problems such as curing of the resin-forming component. Further, the amount of water in the coloring material which has been surface-treated by the obtained polymer dispersant or the like is preferably 2 (% by mass or less)* with respect to the treated particles. The reason for this is to prevent the aggregation of the black material particles or the whitening of the resin, etc., in the case where the resin-shaped μ-hardened external-transmissive black film is formed by the black resin composition shape m ^ described below. In the case where the solvent and the water having a higher phasing purity with the resin d are contained together in the coating film, there is a case where the moisture content is relatively increased by drying and removing the solvent having high compatibility with the resin component raw material. When the value exceeds a certain value, the solubility parameter in the coating film largely changes, causing a phenomenon in which the particles are agglomerated or the resin is whitened. The reason is that in order to prevent this problem of 157917.doc •64·201219465, it is necessary to reduce the moisture content of the black resin composition in advance, and it is preferable to use the surface treatment of the polymer dispersant or the like which is most likely to cause moisture mixing. , try to reduce the amount of water in the black material. As a method of reducing the amount of water of the black material which is subjected to the surface treatment using such a polymer dispersant or the like, a method of removing only the solvent, for example, a method of drying the black material particles using an evaporator or the like, may be preferably used. . 〃 / On the other hand, for example, there is also a method of removing the moisture by subjecting the surface-treated black material to heat for a long time by using a dryer of 15 〇 or more'. However, in this case, the low molecular dispersant volatilizes or Decomposition, which causes a change or deterioration in the amount of the dispersant, is therefore poor. Next, a black resin composition containing a black material surface-treated with a polymer dispersant or the like and a resin component raw material is produced. Here, the resin component raw material is a liquid component, and the resin component is formed by curing or solvent distillation, and includes a monomer, an oligomer, and a prepolymer (resin forming component) which form a resin component. The method further includes dissolving a resin component in a solvent, and further including dissolving a monomer, an oligomer, and a prepolymer which form a resin component in a solvent. When the monomer, the oligomer, and the prepolymer which form the resin component are in the form of a liquid, the monomer, the oligomer, and the prepolymer may be directly used as a resin component raw material to mix and disperse the black material therein. And a black resin composition was produced. Further, the resin component or the solid monomer, the oligomer, and the prepolymer may be dissolved in a suitable solvent to form a liquid solution, or the above-mentioned monomer, oligomer, and prepolymerized in a liquid state. A solution obtained by diluting a solvent in a solvent 157917.doc -65 - 201219465 as a raw material of a resin component, in which a black material is mixed and dispersed to prepare a black resin composition. Further, the black paint may include the above filler or the following additives. In the present embodiment, the black material which has been surface-treated with a polymer dispersant or the like may be mixed and dispersed in a state of fine particles in a resin component raw material to form a black resin composition, or may be prepared in advance. A black material dispersion liquid (hereinafter referred to as a "dispersion liquid") in which a black material is dispersed in a solvent having high compatibility with a resin component raw material, and the dispersion liquid is mixed with a resin component raw material to form a black color. Resin composition. Further, in the black material dispersion, the above filler may be dispersed in advance, or the following additives may be dissolved in advance. The black material in the black resin composition or the black material dispersion has an average dispersed particle diameter of 100 nm or less, preferably 50 nm or less. The average dispersed particle diameter of the black material in the black film produced using the coating or dispersion can be controlled to 1 by setting the average dispersed particle diameter in the black resin composition or the black material dispersion to 1 〇〇 nm or less. Below 〇〇 nm, as a result, the decrease in the transmittance of infrared rays due to Rayleigh scattering or Mie scattering in the infrared region is suppressed. Further, the above-mentioned average dispersed particle diameter can be measured by using a particle size measuring device (for example, Microtrac 9340-UPA, manufactured by Nippon Machine Co., Ltd.) using a dynamic light scattering method to determine the particle size distribution of the prepared black resin composition or the like. It is 5 〇 number on the small particle size side of the number distribution. Find the value of Λ. As the resin component raw material, a monomer, an oligomer, and a prepolymer (resin forming component) which form a resin component can be preferably used. 157917.doc -66- 201219465 Examples of the monomer of the acrylic resin include methyl (meth) acrylate, cyclohexyl (decyl) acrylate, and ethylene glycol di(decyl) acrylate. Diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylic acid vinegar, trimethyl methacrylate tris(sub)acrylic acid Ester, trimethylolethane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and glycerol (mercapto)propionate vinegar Acrylic acid g; 2 - hydroxy group-containing monoethyl (meth) acrylate, 2 hydroxypropyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate And a polyester compound, an amino phthalate compound, a bisphenol (meth) acrylate compound, and a fluorenyl (meth) acrylate compound, etc., as an oligomer or prepolymer For example, poly(methyl) methacrylate, poly(meth)acrylic acid cyclohexanone, polyethyl b A poly(meth) acrylate resin such as diol di(indenyl) acrylate, poly-trimethylolpropane tris(meth) acrylate, or poly-pentaerythritol tetra(indenyl) acrylate. Further, as the acrylic resin, for example, "ACRYDIC"-based "fired-type acrylic resin" manufactured by DIC (Stock Co., Ltd.) can be used. Further, examples of the monomer, oligomer, and prepolymer of the epoxy resin include glycerin polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerin polyglycidyl ether, and polypropylene glycol diglycidyl ether. , phenol novolak type epoxy resin, nonylphenol novolak type epoxy resin, bisphenol type epoxy resin, lanthanum epoxy resin, trisphenol decane type epoxy resin, glycidyl (fluorenyl) acrylate vinegar Copolymer of styrene, epoxy resin, glycidyl group (曱157917.doc •67·201219465) propylene oxime and copolymer of stupid ethylene and methyl (meth) acrylate a copolymer of fluorenyl acrylate and cyclohexylmaleimide, a prepolymer such as a oxy-resin or the like before crosslinking. In the present embodiment, as described below, the coating-dried film can be exposed and developed to form a black film having a complicated design or an improved shape. The resin-forming component preferably has ultraviolet rays. Photosensitive J·sheng. Further, by using a resin-forming component having ultraviolet ray sensitivity, it can also be used as a black photoresist for forming a black pattern. Here, as the resin having ultraviolet ray sensitivity, there are a negative type (developing and leaving the photosensitive portion) and a positive type (removing the photosensitive portion by development), but it is preferably a negative type. The reason is that the black film or the black material of the present embodiment has a light-shielding property against ultraviolet rays. Therefore, in the exposed portion (ultraviolet irradiation portion), the bottom β of the film is liable to become insufficiently light-sensitive, and in the case of a positive type. At the time, it becomes easy to generate a residual film', so it is preferable to prevent the influence from being negative. The resin component having ultraviolet ray sensitivity may be a commercially available photoresist material, or may be used in the above acrylic resin, epoxy resin, polyester resin, or polyurethane resin. A photoreactive agent is added. As the commercially available photoresist material, those using liquid crystal or MEMS are preferably used because they are formed into a permanent film by heat-hardening a film formed of the photoresist materials. . As the above-mentioned commercially available photoresist compound, for example, "Lipoxy" PR series, SPC series manufactured by Showa Polymer Co., Ltd., or "ZCR1569H" manufactured by Sakamoto Chemical Co., Ltd., or the like can be used. Further, it is more preferable to use a light 157917.doc-68-201219465 resist component (other than a pigment) which is a commercially available pigment-dispersed photoresist for forming a black matrix of liquid crystal or a color filter. Further, a reaction initiator for curing the resin component raw materials may be added to the black resin composition. The reaction initiator is a substance which initiates/promotes the polymerization of the resin component by generating a radical by heat or light. Examples of the photoreaction initiator include Ciba Specialty.
Chemicals公司之 Darocure 系列(例如 i173 等)、或 irgacur4 列(例如 651、184、908、2959、OXE01、OXE02 等)等。可 單獨使用該等’亦可組合使用2種以上。 如此’藉由使樹脂形成成分具有光硬化性,可將樹脂形 成成分視為負型光阻劑。 作為樹脂成分原料所使用之溶劑、或黑色材料分散液所 使用之溶劑,若為可保持所使用之樹脂成分(原料)之溶解 性及黑色材料之分散性者,則無特別限定,例如可列舉: 曱醇、乙醇、乙二醇單甲醚、乙二醇單丁醚 '乙二醇單乙 醚、丙二醇單甲醚、丙二醇單丁醚、丙二醇單乙醚、丙二 醇單甲醚乙酸酯、甲基乙基酮、及曱基異丁基酮等。 再者,樹脂成分原料及黑色材料分散液所使用之溶劑具 有充分的相溶性係當然的,但於樹脂成分原料中包含溶劑 之情形時,該溶劑、與黑色材料分散液中之溶劑之間亦需 要充分的相溶性。於相溶性不足之情形時,於將兩者混合 而製作黑色樹脂組合物之情形時,有可能引起黑色材料之 凝聚或沈澱、塗料之不均化。 用以獲得上述黑色樹脂組合物或黑色材料分散液之混合 分散可藉由如下步驟進行:使用超音波分散機、塗料^ 157917.doc •69· 201219465 器球磨機、珠磨機、艾格爾研磨機(E咖應^等公知之 混合分散機,設定如可獲得上述黑色材料之平均分散粒經 之分散條件,對黑色材料與包含樹脂成分原料或溶劑等之 混合液進行分散處理。 進而於混合黑色材料時’除進行用以調整黏度或分散狀 態之溶劑之追加、或上述填充材或硬化劑之添加以外亦 可進行用以提高膜之硬度之低分子量之交聯劑之添力” 又亦可於不使所形成之紅外線透射性黑色膜之特性劣化 之範圍内添加用以提高所形成之紅外線透射性黑色膜與塗 佈基材之密接性之矽院偶合劑等。 <包含黑色膜之附有膜之基材> 如上所述,本實施形態之第2黑色膜係形成於適當的基 板上,因此藉由使該第2黑色膜形成於基材上,可獲得2 含紅外線透射性黑色膜之附有膜之基材。 作為上述基材,可同樣地使用於上述黑色膜之形成令所 列舉之基板。作為其形狀,可列舉:平板、膜狀、片狀 等。藉由預先使該基材成為所需之形狀,或對所獲得之包 含紅外線透射黑色膜之附有膜之基材進行成型加工,可獲 得無線遠程控制器等之信號套等製品。又,若於基材上以 矩陣圖案形成黑色膜,則可獲得黑色矩陣。此外,無關基 材之形狀、黑色膜之形態,於基材上形成有本實施形態之 第2黑色膜者全部包含於本實施形態之附有膜之基材中。 <圖像顯示裝置> 本實施形態之具有紅外線透射性之第2黑色膜可較佳地 1579l7.doc •70- 201219465 用作構成圖像形成裝置中之顯示元件等之構成元件。即, 本實施形態之圖像顯示裝置只要於裝置内具有本實施形態 之黑色膜即可,其態樣可為於裝置内包含本實施形態之附 有膜之基材者,亦可為其他。作為上述圖像形成裝置,可 列舉.電壤顯示器顯示裝置、EL顯示裝置、CRT顯示裝 置、液晶顯不裝置等,其中於用於液晶顯示裝置或EL顯示 裝置之情形時,可顯著地發揮本實施形態之黑色膜之效 果。 例如,如上所述,藉由使用具有紫外線感光性之樹脂形 成成分,可將黑色塗料用作作為液晶之黑色矩陣或彩色濾 光片形成用之顏料分散光阻劑(黑色光阻劑)。並且,可將 藉此形成之本實施形態之第2黑色膜用作液晶等之圖像顯 示裝置用黑色矩陣或彩色濾光片。 即,若於黑色矩陣用基板上形成使用上述黑色塗料之塗 佈乾燥膜後,藉由曝光、顯影而形成黑色矩陣圖案,進而 藉由熱硬化等使黑色矩陣圖案硬化而進行永久膜化,則可 製作使用本實施形態之紅外線透射性黑色膜之黑色矩陣。 進而,藉由將該黑色矩陣圖案與彩色濾光片元件/圖案組 合’可製作彩色濾光片。 此處,於上述COA方式或BOA方式之黑色矩陣中,必需 直接位置對準陣列與黑色矩陣圖f,但本實施形態之第2 黑色膜具有紅外線透射性,進而原理上塗佈乾燥膜亦具有 紅外線透射性,因此可較為容易地讀取85〇〜95〇 nm之波長 範圍之使用紅外線之位置對準信號。因此,亦可較為容易 157917.doc •71· 201219465 地製作COA方式或BOA方式之黑色矩陣。 本實施形態之圖像顯示裝置除上述彩色濾光片以外,通 常由電極基板、偏光薄膜、位相差薄膜、背光、分隔件、 視角補償薄膜、反射防止薄膜、光擴散薄膜、防眩薄膜等 各種構件構成,本實施形態之黑色膜亦可視需要應用於該 專構件等中。 實施例 以下,藉由實施例具體地說明本發明,但本發明不受該 等實施例任何限定。 〈第1發明之實施例及比較例> (各測定、評價方法) 以下表示實施例或比較例中所採用之材料及片材之特性 等之各測定或評價方法。 -黑色材料中之銀成分之含有率_ 黑色材料(銀錫合金微粒子或該銀錫合金微粒子與銀微 粒子之混合微粒子)中之銀成分之含有率係利用電子探針 微量分析器(ΕΡΜΑ: JXA8800,日本電子公司製造)分析黑 色材料粉末之壓粉體,藉由使用波長分散型χ射線分光器 疋丨生及疋置分析測疋粉末中之錫及銀之含有比率(質量 比)而求出。 -黑色材料分散液及黑色樹脂組合物中之黑色材料粒子之 平均分散粒徑、粒度分佈指標- 對所製備之黑色材料分散液或黑色樹脂組合物,使用應 用動態光散射法之粒度分佈測定裝置(Micr〇trac 934(Κ 157917.doc -72· 201219465 UPA,日機裝公司製造),測定該分散液之粒度分佈,根 據所獲得之分佈結果利用算術平均來求出體積平均粒徑 (MV值),將該值設為平均分散粒徑。又,根據上述測定之 粒度分佈算出粒度之累積分佈(體積基準),求出與累積值 9〇〇/。相對應之粒徑(累積90%徑),設為粒度分'佈指標 D90%。 θ 不 -黑色膜中之黑色材料粒子之平均分散粒徑、粒度分佈俨 標- 曰 使用FIΒ (聚焦離子束)於剖面方向上切割所製作之黑色 膜试樣使其薄片化,利用穿透式電子顯微鏡(tem : j跡 2010’日本電子公司製造)觀察切割面。自觀察視野選取 任意粒子職,粒子形狀為大致球狀,因此將各粒子像 近似為相同面積之圓,將該圓之直徑設為該粒子之粒徑。 根據所獲得之結果求出粒徑之累積分佈,將與g積值5〇% 相對應之粒徑(中值粒徑)設為膜中之黑色材料之平均粒 徑,將與累積值90%相對應之粒徑(累積9〇%徑)設為粒度 分佈指標D90。/。。再者’黑色膜,之累積值均為個數基 準。 -黑色膜之體積電阻率、比介電係數_ 選擇藉由濺鍍法使IT0膜成膜於表面之玻璃基板作為成 膜基板’對成膜於該基板上之黑色膜,利用lcr福以 (LCR meter4284A ’ Agilent公司製造)測定比介電係數,使 用絕緣電阻計(超高電阻/微小電流計R834〇A,adc公司製 化)測疋體積電阻率《再者,比介電係數測定係於丨kHzq 157917.doc -73- 201219465 V下實施’體積電阻率測定係施加DC(direct current,直 流)5 V而實施。 -黑色膜之光學密度· 選擇藉由濺鑛法使ITO膜成膜於表面之玻璃基板作為成 膜基板’將於該基板上成膜有黑色膜之附有黑色膜之玻璃 基板作為试樣’使用透射率密度計(RT_12〇,TECHKON公 司製造)測定透射率,將玻璃基板單體(無膜)之測定值設為 參考值’藉此獲得黑色膜之光學密度(〇D值:〇ptical Densty) 〇 其次’使用觸針式表面形狀測定器(p_1(),KLA Tencor 公司製造)測定黑色膜之膜厚,利用上述方法獲得之黑色 膜之OD值除以膜厚(單位μιη),藉此獲得每i 之光學密 度。 (實施例Α1) -黑色膜之製作- 於銀錫膠體液(銀錫合金微粒子與銀微粒子之混合微粒 子为散液,住友大阪水泥公司製造,固形物成分:質量 %,平均分散粒徑:10 nm,粒度分佈指標D9〇% : 4〇 nm,銀成分之含量:9 i質量%。分散劑種:聚胺基甲酸酯 系無規共聚物,分散劑添加量:! 5質量份)中,以固形物 成分體積比(銀錫膠體:光阻劑)成為3 : 97之方式添加以多 g忐性丙稀酸酯為樹脂形成成分之光阻劑(分散介質: PGMEA,固形物成分:i質量%),藉由超音波處理進行分 散而製成黑色塗料。再者,上述固形物成分體積比為添加 157917.doc -74· 201219465 比0 繼而’利用上述方法測定該黑色塗料之粒度分佈,結果 平均分散粒彳f為13 nm,粒度分佈指標D90%為48 nm。 繼而’使用藉由濺鍍法成膜有厚15〇 nm之ITO膜之玻璃 基板(旭硝子公司製造彩色濾光片用玻璃板「AN100」), 使用旋轉式塗佈機塗佈上述製備之黑色塗料,進行1分鐘 真空乾燥後’於加熱板上以12〇〇c進行3〇秒鐘預烘烤而 獲得乾燥膜厚0.5 μιη之塗佈膜。 其後’自塗佈膜側使用3 kW高壓水銀,以1〇〇 mJ/cm2之 曝光條件實施全面曝光。繼而,藉由氫氧化鉀〇1%水溶液 進行顯影後,利用純水停止顯影,以2〇〇〇c對玻璃基板進 行1時間後烘烤,而獲得附有黑色膜之玻璃基板。再者, 此階段中之黑色膜厚為0 5 μιη。 -評價_ 對形成於上述所獲得之玻璃基板上之黑色膜,按照上述 條件測定光學密度、體積電阻率及比介電係數。又,相按 照同條件使用形成於玻璃基板上之黑色膜,藉由上述方法 t作ΤΕΜ觀㈣試樣’進行其之TEM觀察,藉此求出膜中 平均分散粒徑及膜十粒度分佈指標D9〇%。 ' 彙總結果示於第1表。再去,银,*〆 丹考,第1表係關於黑色膜之評價 之實施例、比較例。 (實施例A2) 除於實施例A1之黑色獏之匍於士 m 、 匕联之製作中,以固形物成分體積比 成為7 · 9 3之方式添加光阻惑| α从 兀丨且劑以外,以與實施例A1相同之 1579l7.doc 201219465 方式製作附有黑色膜之基材,進行相同的評價。 彙總結果示於第1表。 (實施例A3) 除於實施例A1之里声眩夕制从丄 …、色膜之製作中,以固形物成分體積比 成為20:80之方式添加光阻劑以外,以與實施例ai相同之 方式製作附有黑色膜之基材,進行相同的評價。 彙總結果示於第1表。 (實施例A4) 除於貫施例A1之黑色膜之塑从a I作中,以固形物成分體積比 成為23: 77之方式添加光阻劑以外以與實施例ai相同之 方式製作附有黑色膜之基材,進行相同的評價。 彙總結果示於第1表。 (實施例A5) 除於實施例A1之黑色膜之贺你Λ 联11作中,以固形物成分體積比 成為25:75之方式添加光阻劑以外,以與實施例A1相同之 方式製作附有黑色膜之基材,進行相同的評價。 彙總結果示於口表。再者,於本實施例中,於比介電 係數之測定中,值不穩定,而無法進行測定…般認為其 原因在於:作為膜體(bulk)之體積電阻率係維持於較高之 狀態,但黑色材料之體積分率較高,因此膜内形成局部性 的導電通道部分…般認為其與實施例^亦相同。 (實施例A6) 除於實施例A1之黑色膜之製作中,以固形物成分體積比 成為30:70之方式添加光阻劑以外,以與實施例μ相同之 157917.doc -76- 201219465 方式製作附有黑色膜之基材,進行相同的評價。 囊總結果示於第1表。 (實施例A7) 於實施例A1之黑色膜之製作中,使用銀錫膠體液(銀锡 • 纟金微粒子與銀微粒子之混合微粒子分散液,住友大阪水 泥公司製造’固形物成分:30質量%,平均分散粒徑: 180 nm,粒度分佈指標D9〇%: 5〇〇 nm,銀成分之含量: 91質量%,分散劑種:聚胺基甲酸酯系無規共聚物,分散 劑添加量:15質量份)作為原料分散液,除此以夕卜,以與 實施例Ai相同之方式製作附有黑色膜之基材,進行相同的 評價。 彙總結果示於第1表。 (實施例A8) 於實施例A1之黑色膜之製作中,使用銀錫膠體液(銀锡 合金微粒子與銀微粒子之混合微粒子分散液,住友大阪水 泥公司製造,固形物成分:3〇質量%,平均分散粒徑:ι〇 nm,粒度分佈指標D90%: 4〇nm,銀成分之含量:6〇質量 %,分散劑種:聚胺基甲酸酯系無規共聚物,分散劑添加 量:15質量份)作為原料分散液,除此以外,以與實施例Chemicals' Darocure series (eg i173, etc.), or irgacur4 columns (eg 651, 184, 908, 2959, OXE01, OXE02, etc.). These may be used alone or in combination of two or more. Thus, by making the resin-forming component photocurable, the resin-forming component can be regarded as a negative-type photoresist. The solvent used for the resin component raw material or the solvent used for the black material dispersion liquid is not particularly limited as long as it can maintain the solubility of the resin component (raw material) to be used and the dispersibility of the black material, and for example, : sterol, ethanol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether 'ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, methyl Ethyl ketone, decyl isobutyl ketone, and the like. Further, it is a matter of course that the solvent used for the resin component raw material and the black material dispersion liquid has sufficient compatibility, but when the solvent component raw material contains a solvent, the solvent and the solvent in the black material dispersion liquid are also Need sufficient compatibility. In the case where the compatibility is insufficient, when the black resin composition is prepared by mixing the two, there is a possibility that aggregation or precipitation of the black material or unevenness of the coating material may occur. The mixed dispersion for obtaining the above black resin composition or black material dispersion can be carried out by using an ultrasonic disperser, a coating, a 157917.doc, a 69·201219465 ball mill, a bead mill, and an EGGER grinder ( E coffee is prepared by a well-known mixing disperser, and the dispersion condition of the average dispersion particle of the above-mentioned black material is obtained, and the mixture of the black material and the resin component raw material or solvent is dispersed. Further, the black material is mixed. In addition to the addition of a solvent for adjusting the viscosity or dispersion state, or the addition of the above-mentioned filler or curing agent, the addition of a low molecular weight crosslinking agent for increasing the hardness of the film may be performed. A broth coupling agent or the like for improving the adhesion between the formed infrared ray transmitting black film and the coated substrate is not added to the range in which the characteristics of the formed infrared ray transmitting black film are deteriorated. The substrate having a film> As described above, since the second black film of the present embodiment is formed on a suitable substrate, the second black film is formed. A substrate having a film containing an infrared ray transmitting black film can be obtained on the substrate. The substrate can be similarly used for the substrate described in the above-mentioned black film formation. A flat panel, a film, a sheet, etc. A wireless remote controller or the like can be obtained by subjecting the substrate to a desired shape in advance or by molding a obtained substrate having a film containing an infrared ray transmitting black film. Further, if a black film is formed in a matrix pattern on a substrate, a black matrix can be obtained. Further, the shape of the substrate and the form of the black film are not formed on the substrate. All of the black film are included in the film-attached substrate of the present embodiment. <Image display device> The second black film having infrared transmittance in the present embodiment can preferably be 1579l7.doc • 70- 201219465 is used as a constituent element constituting a display element or the like in the image forming apparatus. That is, the image display device of the present embodiment may have a black film of the present embodiment in the device, and the aspect thereof may be The substrate including the film of the present embodiment may be other than the above, and the image forming apparatus may be a magnetic display display device, an EL display device, a CRT display device, or a liquid crystal display device. In the case of being used in a liquid crystal display device or an EL display device, the effect of the black film of the present embodiment can be remarkably exhibited. For example, as described above, a black paint can be formed by using a resin-forming component having ultraviolet light sensitivity. It is used as a pigment dispersion resist (black photoresist) for forming a black matrix or a color filter as a liquid crystal. Further, the second black film of the present embodiment formed thereby can be used as an image of a liquid crystal or the like. A black matrix or a color filter is used for the display device. That is, after the coating dry film using the black paint is formed on the black matrix substrate, a black matrix pattern is formed by exposure and development, and further, by heat curing or the like. When the black matrix pattern is hardened and permanently formed, a black matrix using the infrared ray transmitting black film of the present embodiment can be produced. Further, a color filter can be produced by combining the black matrix pattern with the color filter element/pattern. Here, in the black matrix of the COA method or the BOA method, it is necessary to directly align the array and the black matrix f, but the second black film of the present embodiment has infrared transmittance, and in principle, the coated dry film also has Infrared transmission property makes it easy to read the positional alignment signal using infrared rays in the wavelength range of 85 〇 to 95 〇 nm. Therefore, it is also easier to create a black matrix of COA mode or BOA mode by 157917.doc •71· 201219465. The image display device of the present embodiment generally includes an electrode substrate, a polarizing film, a retardation film, a backlight, a separator, a viewing angle compensation film, an antireflection film, a light diffusion film, and an antiglare film, in addition to the color filter. The black film of the present embodiment can also be applied to the special member or the like as needed. EXAMPLES Hereinafter, the present invention will be specifically described by examples, but the present invention is not limited by the examples. <Examples and Comparative Examples of the First Invention> (Each Measurement and Evaluation Method) Each measurement or evaluation method of the properties of the materials and sheets used in the examples or the comparative examples is shown below. - The content of the silver component in the black material _ The content of the silver component in the black material (silver tin alloy fine particles or the mixed fine particles of the silver tin alloy fine particles and the silver fine particles) is determined by using an electron probe micro analyzer (ΕΡΜΑ: JXA8800) , manufactured by Nippon Denshi Co., Ltd.) Analysis of the powder of the black material powder, which is obtained by measuring the content ratio (mass ratio) of tin and silver in the powder by using a wavelength-dispersive X-ray spectrometer . - Average Dispersion Particle Size and Particle Size Distribution Index of Black Material Particles in Black Material Dispersion and Black Resin Composition - For the prepared black material dispersion or black resin composition, a particle size distribution measuring device using dynamic light scattering method is used. (Micr〇trac 934 (Κ 157917.doc -72· 201219465 UPA, manufactured by Nikkiso Co., Ltd.), the particle size distribution of the dispersion was measured, and the volume average particle diameter (MV value) was determined by arithmetic mean based on the obtained distribution result. The value is defined as the average dispersed particle diameter. The cumulative distribution (volume basis) of the particle size is calculated from the particle size distribution measured above, and the particle diameter corresponding to the cumulative value of 9 〇〇 / is obtained (accumulated 90% diameter) ), the particle size is divided into 'cloth index D90%. θ No--the average dispersed particle size and particle size distribution of the black material particles in the black film 曰 - 黑色 Black produced by cutting in the cross-sectional direction using FIΒ (focused ion beam) The film sample was flaky, and the cut surface was observed by a transmission electron microscope (manufactured by JEOL Ltd., Japan). Since the shape is substantially spherical, the particle image is approximated to a circle of the same area, and the diameter of the circle is set as the particle diameter of the particle. Based on the obtained result, the cumulative distribution of the particle diameter is obtained, and the value of the product with g is 5 The particle diameter (median diameter) corresponding to 〇% is the average particle diameter of the black material in the film, and the particle diameter (cumulative 9〇% diameter) corresponding to the cumulative value of 90% is defined as the particle size distribution index D90. In addition, the 'black film, the cumulative value is the number basis. - The volume resistivity of the black film, the specific dielectric coefficient _ Select the glass substrate on which the IKO film is formed on the surface by sputtering to form a film. The substrate was used to measure the specific dielectric constant of a black film formed on the substrate by using LCR (LCR meter 4284A 'Agilent), and an insulation resistance meter (Ultra High Resistance/Micro Current Meter R834〇A, manufactured by Adc Corporation) was used. The volume resistivity is measured. In addition, the specific dielectric coefficient is measured at 丨kHzq 157917.doc -73-201219465 V. The volume resistivity measurement system is implemented by applying DC (direct current) 5 V. Optical density of black film · Choose to make IT by splashing A glass substrate on which a film of O is formed on the surface is used as a film-forming substrate. A glass substrate with a black film and a black film formed on the substrate is used as a sample. The transmittance is measured using a transmittance density meter (RT_12〇, manufactured by TECHKON Co., Ltd.). Transmittance, the measured value of the glass substrate monomer (without film) is taken as a reference value 'by thereby obtaining the optical density of the black film (〇D value: 〇ptical Densty) 〇 second' using the stylus type surface shape measuring device (p_1 (), manufactured by KLA Tencor Co., Ltd.) The film thickness of the black film was measured, and the OD value of the black film obtained by the above method was divided by the film thickness (unit μιη), whereby the optical density per i was obtained. (Example Α1) - Production of black film - Silver-tin colloidal liquid (mixed fine particles of silver-tin alloy fine particles and silver fine particles are dispersed liquid, manufactured by Sumitomo Osaka Cement Co., Ltd., solid content: mass%, average dispersed particle diameter: 10 Nm, particle size distribution index D9〇%: 4〇nm, content of silver component: 9 i mass%. Dispersant species: polyurethane-based random copolymer, dispersant addition amount: ! 5 parts by mass) A photoresist having a composition ratio of solid content (silver-tin colloid: photoresist) of 3:97 is added as a resin to form a component (dispersion medium: PGMEA, solid content: i mass%), dispersed by ultrasonic treatment to make a black paint. Further, the volume ratio of the solid matter component is 157917.doc -74·201219465 ratio 0, and then the particle size distribution of the black paint is determined by the above method, and the average dispersed particle size f is 13 nm, and the particle size distribution index D90% is 48. Nm. Then, a glass substrate (a glass plate "AN100" for color filters manufactured by Asahi Glass Co., Ltd.) having an ITO film having a thickness of 15 nm was formed by a sputtering method, and the black paint prepared above was applied by a spin coater. After vacuum drying for 1 minute, the film was prebaked on a hot plate at 12 ° C for 3 seconds to obtain a coating film having a dry film thickness of 0.5 μm. Thereafter, 3 kW of high-pressure mercury was used from the side of the coated film, and full exposure was performed under exposure conditions of 1 〇〇 mJ/cm 2 . Then, development was carried out by a 1% aqueous solution of potassium hydroxide, and development was stopped with pure water, and the glass substrate was baked at 2 ° C for 1 hour to obtain a glass substrate with a black film. Furthermore, the black film thickness in this stage is 0 5 μιη. - Evaluation _ The optical density, volume resistivity and specific dielectric constant of the black film formed on the glass substrate obtained above were measured under the above conditions. Further, the black film formed on the glass substrate was used according to the same conditions, and the TEM observation was carried out by the above method t as the sample (4), thereby obtaining the average dispersed particle size in the film and the particle size distribution index of the film. D9〇%. The summary results are shown in Table 1. Further, silver, *〆 丹考, the first table is an example and a comparative example regarding the evaluation of the black film. (Example A2) In addition to the black 貘 匍 匍 、 、 、 、 、 、 、 、 、 、 、 、 、 、 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加 添加A substrate coated with a black film was produced in the same manner as in Example A1, and the same evaluation was carried out. The summary results are shown in Table 1. (Example A3) In the preparation of the color film, in the production of the color film, the addition of the photoresist to the volume ratio of the solid content of 20:80 was the same as in Example a1. The substrate with the black film was produced in the same manner, and the same evaluation was performed. The summary results are shown in Table 1. (Example A4) The plastic film of the black film of Example A1 was prepared in the same manner as in Example a except that the photoresist was added in such a manner that the volume ratio of the solid content component was 23:77. The substrate of the black film was subjected to the same evaluation. The summary results are shown in Table 1. (Example A5) In the same manner as in Example A1, except that a photoresist was added in such a manner that the volume ratio of the solid content component was 25:75, in addition to the black film of Example A1, The substrate with a black film was subjected to the same evaluation. The summary results are shown in the mouth table. Further, in the present embodiment, in the measurement of the specific dielectric constant, the value is unstable, and the measurement cannot be performed. It is considered that the reason is that the volume resistivity as the bulk is maintained at a high state. However, the volume fraction of the black material is relatively high, so that a portion of the conductive passage portion is formed in the film, which is considered to be the same as in the embodiment. (Example A6) In the preparation of the black film of Example A1, a photoresist was added in such a manner that the volume ratio of the solid content component was 30:70, and the same as Example 157917.doc-76-201219465 A substrate with a black film was produced, and the same evaluation was performed. The total results of the capsules are shown in Table 1. (Example A7) In the production of the black film of Example A1, a silver tin colloidal liquid (mixed fine particle dispersion of silver tin • gold fine particles and silver fine particles, manufactured by Sumitomo Osaka Cement Co., Ltd.) solid content: 30% by mass was used. , Average dispersed particle size: 180 nm, particle size distribution index D9〇%: 5〇〇nm, content of silver component: 91% by mass, dispersant species: polyurethane-based random copolymer, dispersant addition amount : 15 mass parts) As a raw material dispersion liquid, the base material with a black film was produced in the same manner as Example Ai, and the same evaluation was performed. The summary results are shown in Table 1. (Example A8) In the production of the black film of Example A1, a silver tin colloidal liquid (mixed fine particle dispersion of silver tin alloy fine particles and silver fine particles, manufactured by Sumitomo Osaka Cement Co., Ltd., solid content: 3〇% by mass, was used. Average dispersed particle size: ι〇nm, particle size distribution index D90%: 4〇nm, content of silver component: 6% by mass, dispersant species: polyurethane-based random copolymer, amount of dispersant added: 15 parts by mass) as a raw material dispersion, in addition to the examples
• A1相同之方式製作附有黑色膜之基材,進行相同的評價Y 彙總結果示於第1表。 (實施例A9) 於實施例八丨之黑色膜之製作中,使用銀錫膠體液(銀錫 合金微粒子與銀微粒子之混合微粒子分散液,住友大阪水 157917.doc -77· 201219465 泥公司製造,固形物成分:30質量%,平均分散粒徑:1〇 nm,粒度分佈指標D90% : 40 nm,銀成分之含量:91質量 %,分散劑種:聚胺基甲酸酯系無規共聚物,分散劑添加 量:5質量份)作為原料分散液,除此以外,以與實施例幻 相同之方式製作附有黑色膜之基材,進行相同的評價。 彙總結果示於第1表。 (實施例A10) 於實施例A1之黑色膜之製作中,使用銀錫膠體液(銀錫 合金微粒子與銀微粒子之混合微粒子分散液,住友大阪水 泥公司製造’固形物成分:30質量%,平均分散粒徑:1〇 nm,粒度分佈指標D90% : 40nm,銀成分之含量:pi質量 〇/〇,分散劑種:聚胺基甲酸酯系無規共聚物,分散劑添加 量.5 0質量份)作為原料分散液,除此以外,以與實施例 A1相同之方式製作附有黑色膜之基材,進行相同的評價。 彙總結果示於第1表。 (比較例A1) 於實施例A1之黑色膜之製作中,使用碳黑(商品名 「HA3」,Tokai Carbon公司製造)來代替銀錫膠體液,與 實施例1同樣地以碳黑與樹脂形成成分之體積比成為丨〇:9〇 之方式添加光阻劑,與實施例A〗同樣地進行分散處理,藉 此獲得碳黑分散塗料。再者,於比較例A1中未使用分散 劑。 使用上述碳黑分散塗料,以與實施例同之方式製作 附有黑色膜之基材’進行相同的評價。 157917.doc -78- 201219465 彙總結果示於第1表。再者,本比較例中之黑色膜體積 電p且率較低而表現導電性’因此無法進行比介電係數之測 定。其於比較例A4、A5、A6中亦相同。 (比較例A2) 於實施例A1之黑色膜之製作中,使用銀錫膠體液(銀錫 合金微粒子與銀微粒子之混合微粒子分散液,住友大阪水 泥公司製造,固形物成分:3〇質量%,平均分散粒徑: 22〇 nm,粒度分佈指標D9〇%: 55〇 nm,銀成分之含量: 91質量/。’为散劑種:聚胺基曱酸酯系無規共聚物,分散 诏添加量.1 5質量份)作為原料分散液’除此以外,以與 實施例A1相同之方式製作时黑色膜之基材,進行相同的 評價。 囊總結果不於第1表。 (比較例A3) 於實施例A1之黑色膜之製作中,使用銀錫膠體液(銀錫 合金微粒子與銀微粒子之混合微粒子分散液,住友大阪水 泥公司製造,固形物成分:3〇質量%,平均分散粒徑: 170 rnn,粒度分佈指標D9〇%: 65〇⑽,銀成分之含量: 91質量% 散劑種:《胺基甲酸醋系無規共聚物,分散 劑添加量:15質量份)作為原料分散液,❺此以外,以與 實施例A1相同之方式製作时黑色狀純,進行相同的 評價。 彙總結果示於第1表。 (比較例A4) 157917.doc -79· 201219465 以固形物成分體積比 以與實施例A1相同之 同的評價。 除於實施例A1之黑色膜之製作中 成為3 0 · 7 0之方式添加光阻劑以外 方式製作附有黑色膜之基材,進行才目 彙總結果示於第1表。 (比較例A5) 除於實施例A1之黑色膜之製作由 , μ T ’以固形物成分體積比 成為3 5:6 5之方式添加光阻劑以冰 外’以與實施例八丨相同之 方式製作附有黑色膜之基材,進彳千-π %仃相同的評價。 彙總結果示於第1表。 (比較例Α6) 於保溫於6(TC之純水200…中,添加將錫(sn)膠體(平均 粒徑:20 nm,固形物成分:2〇質量%,住友大阪水泥公 司製造)15 g、銀(Ag)膠體(平均粒徑:7 nm,固形物成 分.20質量%,住友大阪水泥公司製造)6〇 g、聚乙烯吡咯 啶酮(PVP)(商品名「kl5」,東京化成工業公司製造)〇75 g溶解於水100ml而成之溶液,而製成膠體溶液。 繼而,將該膠體溶液於保持於60.°C之狀態下攪拌60分 鐘’其後,照射5分鐘超音波。繼而,藉由離心分離使該 膠體溶液濃縮,而獲得固形物成分為15質量%之A液》 繼而,於該A液中,以A液中之固形物成分與聚乙稀醇 (PVA)之體積比成為50:50之方式添加PVA水溶液,利用超 音波分散機(Sonifier450,BRANSON ULTRASONICS公司 製造)進行分散處理後,靜置1小時,而製成黑色微粒子分 散塗料。再者,分散劑未使用。繼而’利用旋塗法將該塗 157917.doc -80- 201219465 料塗佈於厚度1.1 mm之玻璃基板上,而製成黑色塗佈膜。 此處係藉由調整分散液中之水分量而使塗佈膜之厚度為 〇.5 μΓΏ。其後,使用加熱裝置於200。(:下對該附有塗佈膜 之玻璃基板進行1小時加熱,而獲得附有黑色膜之玻璃基 板。使用該附有黑色膜之玻璃基板等,進行與實施例幻相 同之評價。 彙總結果示於第1表。 (比較例Α7) 於實施例Α1之黑色膜之製作中,使用銀錫膠體液(銀錫 合金微粒子與銀微粒子之混合微粒子分散液,住友大阪水 泥公司製造’固形物成分:3〇質量%,平均分散粒徑:ι〇 nm,粒度分佈指標D9〇% : 4〇nm,銀成分之含量:μ質量 /〇刀散劑種.聚胺基甲酸酯系無規共聚物,分散劑添加 里.3質量份)作為原料分散液,除此以外,以與實施例μ 相同之方式製作附有黑色膜之基材,進行相同的評價。 彙總結果示於第1表。 (比較例A8) 於實施例八!之黑色膜之製作中,使用銀錫膠體液(銀錫 合金微粒子與銀微粒子之混合微粒子分散液,住友大阪水 泥公司製造’固形物成分:3〇質量%,平均分散粒徑:ι〇 nm,粒度分佈指標D9〇%: 4〇nm,銀成分之含量:91質量 =,·分散懸1絲f 減共聚物,分散劑添加 置· 70質量份)作為原料分散液,除此以外,以與實施例 相同之方式製作附有黑色膜之基材,進行相同的評價。 157917.doc -81 - 201219465 囊總結果不於第1表D (比較例A9) 於實施例A1之黑色膜之製作中,使用銀錫膠體液(銀錫 合金微粒子與銀微粒子之混合微粒子分散液,住友大阪水 泥公司製造’固形物成分:3〇質量%,平均分散粒徑:ι〇 ⑽,粒度分佈指標㈣。〆。:4〇 nm,銀成分之含量:μ質量 %,分散劑種:錢酸系,分散㈣加量:7Qff 原料分散液,除此以外,以與實施例AM同之 為 有黑色膜之基材,進行相同的評價。 工製作附 棄總結果不於第1表。 157917.doc *82- 201219465 比較例 A9 混合微 粒子 〇 ο >1000 >1000 m >1000 >1000 "«t o v> V〇 — 比較例 A8 混合微 粒子 〇 ο 聚胺基 甲酸 酯系 〇 s (N ο (Ν οο m <N Ml v〇 — 比較例 A7 混合微 粒子 〇 ο 聚胺基 甲酸 酯系 Ο >1000 m S 对 >1000 tn w> V〇 比較例 A6 混合微 粒子 〇 沄 1 »n 2 Vi CO 00 1 比較例 A5 混合微 粒子 〇 ο 聚胺基 甲酸 酯系 们 Ό m 00 1 比較例 A4 混合微 粒子 〇 ο 聚胺基 甲酸 酯系 w*i «η m CO 00 〇 1 比較例 A3 混合微 粒子 〇 ο V) ν〇 聚胺基 甲酸 酯系 vn <n m m 5 o c^. VO 比較例 A2 混合微 粒子 〇 <N (N *r> 聚胺基 甲酸 酯系 ζΙ ro 等 p \D 比較例 A1 CJ||£ 1 Ο Ο t 1 S 寸 (N 〇 § ο m η 00 o r^· 1 實施例 A10 混合微 粒子 ο Ο 聚胺基 甲酸 酯系 S 窆 CO ΓΛ § 沄 o «η v〇 对· 實施例 A9 混合微 粒子 ο ο 聚胺基 甲酸 酯系 s 对 m 寸 p <n vq 實施例 A8 混合微 粒子 S ο ο 聚胺基 甲酸 酯系 o m ο (N p >n v〇 对· 實施例 A7 混合微 粒子 5: § *—« ο 聚胺基 甲酸 酯系 *η m 00 § in (Ν 〇 «〇 o >n V〇 "St 實施例 A6 混合微 粒子 S ο ο 聚胺基 甲酸 酯系 u-i m oc 00 cn 00 Wl 1 實施例 A5 混合微 粒子 S ο ο 聚胺基 甲酸 酯系 Ό 'm 笃 »n (N QI cs t/t 實施例 A4 混合微 粒子 ο ο 聚胺基 甲酸 酯系 m m CN cn 卜 <ό *n (N 實施例 A3 混合微 粒子 S ο ο 聚胺基 甲酸 酯系 VI m 2 9 00 uS «Λ 〇 CN 實施例 A2 混合微 粒子 ο ο 聚胺基 甲酸 酯系 V) m 卜 O m (N tn 〇 vd 實施例 A1 混合微 粒子 ο ο 聚胺基 甲酸 酯系 V"» m <Ν jri 〇 >n 分散微粒子 銀成分含有率(質 量%) 平均分散粒徑 (nm) 粒度分佈指標 D90% 分散劑種 分散劑添加量 (質量份) 平均分散粒徑 _Μ_ 粒度分佈指標 D90% 8·靼这 <R N無 蓉耷¥ 染令 回邮 平均分散粒徑 _(腦)_______ 粒度分佈指標 D90% 光學密度 (OD/μηι) 體積電阻率 (Ω· cm) 比介電係數 蜮《3本本φ鉍挺 »: 如!菜: »: «3茑W眾靼 -83- 157917.doc 201219465 (彩色濾光片特性) -黑色矩陣之製作_ 將使用實施例A1至A10中製備之各黑色塗料作為各遮光 性感光性樹脂組合物塗佈液,使用通常之包含網狀圖案 (線寬20 μπι)之圖案掩膜作為黑色矩陣圖案排除,使用曰 本專利特開2009-75446號公報之段落編號0301中記載之黑 色矩陣製作方法’於1〇 cm角之TFT元件基板上獲得使實施 例A1至A9之黑色膜形成為網狀圖案而成之黑色矩陣。 -彩色瀘、光片之製作、評價- 對具有上述所獲得之實施例A1至A10之黑色膜之黑色矩 陣(遮光圖像),利用使用日本專利特開2006_251237號公報 之段落編號0158至0170中記載之轉印型感光性樹脂薄膜之 彩色濾光片製作方法’形成紅色、綠色、藍色之特定尺 寸、形狀之著色圖案,於TFT元件基板上製作彩色濾光 片。 繼而,於與TFT元件基板上之彩色濾光片相對向之位置 配置設置有透明共通電極之對向電極基板,於彩色遽光片 與對向電極基板間封入液晶材料,而形成液晶胞。所獲得 之液晶胞之雙面貼附偏光板,進而,於Tft元件美板之背 面側配置作為背光之白色LED。 對以此種方式製作之COA方式之液晶顯示裝置進行顯示 特性評價。其結果,確認包含使用上述各黑色矩陣之彩色 滤光片之液晶顯示裝置表現良好的顯示特性。 根據上述實施例A1至A10之結果’可知藉由使用本發明 157917.doc • 84 - 201219465 …色材料散液製備之黑色塗料而形成之黑色膜與比較 二:不之黑色膜相比’於膜中微小粒徑之黑色材料微粒子 均勻地分散,黑色膜之光學密度或電氣特性優異。 又以本發明之黑色膜為黑色矩陣之彩色遽光片於液晶 顯示裝置中表現良好的顯示特性。 <第2發明之實施例及比較例> (各測定、評價方法) 以下表示實施例或比較例中所採用之㈣及片材之特性 等之各測定或評價方法。 •黑色材料中之銀成分之含有率_ 黑色材料(銀錫合金微粒子或該銀錫合金微粒子與銀微 粒子之混合微粒子)中之銀成分之含有率係藉由利用電子 探針微量分析H(EPMA,日本電子公司製造,;χΑ88〇〇)分 析黑色材料粉末之壓粉體,藉由定性及定量分析測定粉末 中之錫及銀之含有比率(質量比)而求出。 •利用高分子分散劑進行了表面處理之黑色粉末中之水分 量與高分子分散劑量- 包含利用高分子分散劑進行表面處理並使其乾燥而成之 黑色材料之黑色粉末之水分量及高分子分散劑量係使用 TG-DTA(Rigaku公司製造,TG-8210)對黑色粉末進行測 疋。根據DTA之結果’將室溫至120°c為止之重量減少設 為依附於水分之蒸發者’將140。(:至500t為止之重量減少 設為依附於而分子分散劑之熱分解者,根據各溫度範圍内 之重量減少量,獲得水分量及高分子分散劑量。 157917.doc •85· 201219465 -黑色膜之可見光區域中之光學密度· 黑色膜之可見光域中之光學密度(OD值:Optical Densty) 係使用透射率密度計(TECHKON公司製造:RT-120)對附 有黑色膜之玻璃基板進行測定,將玻璃基板單體(無膜)之 測定值設為參考值,藉此獲得紅外線透射黑色膜本身之 OD值。 -黑色膜之透射率及各波長之光學密度比- 黑色膜之透射率係針對黑色膜付玻璃基板,使用分光光 度計測定370〜2500 nm之分光透射率,將玻璃基板單體(無 膜)設為參考值而求出黑色膜之各波長下之光透射率。再 者,上述分光光度計係根據測定波長與測定光量,併用曰 立製作所公司製造之U-4100(測定波長範圍:200〜2500 nm,檢測限制:0.001%)、大塚電子公司製造之MCPC-3700(測定波長範圍:300〜1000 nm,檢測限制: 0.000001%) 〇 另一方面,各波長之光學密度比係根據由上述獲得之波 長560 nm下之透射率(T56Q)、波長800 nm下之透射率 (T8〇g)、波長950 nm下之透射率(Τ95〇)、波長1064 nm下之 透射率(Τι 064)、波長1500 nm下之透射率(Ti5。〇)、波長2000 nm下之透射率(Τ2_)、波長2500 nm下之透射率(丁25〇〇)之 值、與各波長之透射率,藉由下述式(1)算出光學密度(OD 值),而求出波長800 nm至2500 nm(NIR)之各波長下之0D 值、與波長560 nm下之OD值之比(ODnir/〇D56〇)。 OD=-log(T/100)…⑴ 157917.doc -86 - 201219465 -黑色材料之黑色膜中之平均分散粒徑_ 黑色材料之黑色膜中之平均分散粒徑係使用FIB將所獲 得之黑色膜於剖面方向上切取為薄片狀,利用穿透式電子 顯微鏡(TEM,曰本電子公司製造,jEM_21〇〇f)觀察膜剖 面之黑色材料之粒子形狀,並且自TEM照片中隨機選擇5〇 個粒子,測定其粒徑(最大徑),將其平均值設為平均分散 粒徑。 再者,因本實施形態之粒子為大致球狀,故將各粒子之 最大徑設為該粒子之粒徑亦無問題。 (實施例B1) -黑色膜之形成- 於保溫於60 C之純水200 ml中添加錫(sn)膠體分散液(平 均一次粒徑:20 nm,固形物成分:20質量%,住友大阪 水泥公司製造)15.0 g、銀(Ag)膠體(平均粒徑:7 nm,固 形物成分:20質量%,住友大阪水泥公司製造)6〇 〇 g、及 0.75質量%聚乙烯吡咯啶酮(PVP,東京化成工業公司製 造,商品名:K15)水溶液1〇〇 g’而製成膠體溶液。 繼而,一面攪拌該膠體溶液,一面於其中慢慢地滴加 0·〇5 mol/1之硝酸水溶液75 g’進而,添加1〇〇質量%之檸 檬酸水溶液45〇.0 g,而製成混合液。 繼而,使用磁力攪拌器於6(TC下對該混合液進行1〇小時 授摔使其反應’其後’糟由離心分離’進行清洗及濃縮, 而獲得黑色粒子濃度15.0質量%之膠體液a。其後,於該膠 體液A.100.0 g中添加7.5 g櫛形胺基甲酸酯系高分子分散劑 157917.doc -87 - 201219465 (BYK-Chemie公司製造,商品名:Disper Bykl61,不揮發 分:30質量%)後,利用蒸發器進行溶劑除去及乾燥,而獲 得黑色粉末A。利用上述方法測定所獲得之黑色粉末八之 水分量與高分子分散劑量,結果水分量為15質量%,高分 子分散劑量為13.05質量%。 利用粉末X射線繞射法鑑定該黑色粉末A中之生成相, 結果未確認錫之存在,而確認銀錫合金相(Ag3Sn及/或 Agjn結構)、銀相(Ag結構)之存在。再者,於銀錫合金相 中Ag3Sn及Agjn之X射線繞射圖案近似,因此無法鑑定係 生成2成分中任一者,或係兩種成分均生成。又,所謂銀 相’係表示具有銀晶體結構之相,而不限定於銀成分 100%,有可能錫固溶。 進而,利用電子探針微量分析器(EPMA)對黑色粉末A之 壓粉體進行分析’根據錫及銀之含有比率求出銀成分之比 率(銀/(銀+錫):質量比),結果為91.3質量%。 於所獲得之黑色粉末A : 17.25 g中添加丙二醇單甲醚乙 酸酿82.75 g,藉由照射20分鐘超音波,獲得黑色分散液 A。於該黑色分散液a : 50 g中丙烯酸系樹脂溶液 (KAYARAD ZCR-1569H,日本化藥公司製造,不揮發 分:70質量%)8·78 g及二季戊四醇六丙烯酸酯丨.54 g作為 樹脂成分原料’進而添加丙二醇單曱醚乙酸酯061 g後, 利用超音波分散機進行5分鐘處理,放置1小時而製成黑色 塗料A » 測定該黑色塗料A中之黑色材料之平均分散粒徑,結果 157917.doc • 88· 201219465 為 22 nm。 利用旋塗法將上述黑色塗料A塗佈於厚度0.7 mm之無驗 玻璃基板上,而製成黑色之塗佈膜。此處,藉由調整旋塗 之轉速來控制塗膜之厚度,而使加熱硬化後之紅外線透射 黑色膜之厚度成為1.0 μιη 〇 繼而,使用加熱裝置,於大氣中在23〇〇c下對形成有上 述塗佈膜之玻璃基板進行!小時加熱,而獲得附有紅外線 透射性黑色膜A-1之玻璃基板。 -黑色膜之評價-•光學特性之評價 使用上述所獲得之附有紅外線透射性黑色膜A·〗之玻璃 基板’利用上述方法,測定可見光域中之光學密度_ 值:Optical Densty)、與波長56〇 nm、綱 nm、95〇 ⑽、 H)64 nm、1500 nm、2〇〇〇 nm 及25〇〇 nm下之各透射率 (T(%))。又’根據該等透射率求出光學密度⑽卜囊總处 果示於第2表、第3表。 (ODNiR)、與波長560 nm下之伞風〜Α / m卜之先學密度(OD56Q)之比 (ODNiR/OD56。)之值示於第4表。 .黑色材料之黑色膜中之平均分散粒徑 對上述紅外線透射性黑色膜Α],按照上述方法,利用 穿透式電子顯微鏡™)觀察膜中之黑色材料之 狀。將膜剖面之TEM觀察照片示 於圖1。又,根據續 照片測定分散粒子之粒徑而求出 叨尺出+均分散粒徑。將結果— 157917.doc -89- 201219465 併示於第4表。再者,利用上述方法測定之膜中之黑色材 料之體積分率為10體積%。 (實施例B2) 使用實施例B1所獲得之黑色塗料A,以加熱硬化後之膜 厚成為0.5 μιη之方式調整旋塗之轉速,除此以外,利用與 實施例Β1相同之方法,獲得附有紅外線透射性黑色臈A·] 之玻璃基板。 使用所獲得之附有紅外線透射性黑色膜Α2之玻璃基 板’以與實施例m相同之方式,對黑色膜之光學特性及膜 中之黑色材料之平均分散粒#等進行評價。將結果示於第 2表〜第4表。 (實施例B3) 使用實施例B1中獲得之黑色塗料a,w加熱硬化後之膜 厚成為0.13 μιη之方式調整旋塗之轉速,除此以外,利用 與實施例Β1相同之方法’獲得附有紅外線透射性黑色膜Α_ 3之玻璃基板。 使用所獲得之附有紅外線透射性黑色膜α_3之玻璃基 板以與實施例Β1相同之方式,對黑色膜之光學特性及膜 中之黑色材料之平均分散粒徑等進行評價。將結果示於第 2表〜第4表。 (實施例Β4) 於實施例Β1中獲得之黑色分散液A5〇 g中進而添加丙烯 酸系樹脂溶液(KAYARAD ZCR-1569H,日本化藥公司製 ^不揮發分:70質量%)42.〇9 g及二季戊四醇六丙烯酸酯 157917.doc 201219465 7.37 g作為樹脂成分原料,進而添加丙二醇單甲醚乙酸酯 g利用超音波分散機進行5分鐘處理,放置1小時而 製成“、、色塗料B。繼而,除使用該黑色塗料B以外,利用 八貫施例B1相同之方法,獲得附有紅外線透射性之黑色膜 B-1之玻螭基板。 使用所獲得之附有紅外線透射性黑色膜B-1之玻璃基 板’以與實施例B1相同之方式’對黑色膜之光學特性及膜 中之黑色材料之平均分散粒徑等進行評價。將結果示於第 2表〜第4表》 (實施例Β5) -黑色膜之形成- 於保概於60 C之純水200 ml中添加錫(Sn)膠體分散液(平 均-人粒徑.2〇 nm,固形物成分:2〇質量%,住友大阪 水泥公司製造)15.0 g、銀(Ag)膠體(平均粒徑:7⑽,固 形物成分:20質量% ’住友大阪水泥公司製造)6〇 〇 及 0.75質量%聚乙烯吡咯啶酮(pvp : t京化成工業公司製 造,商品名:K15)水溶液100g,而製成膠體溶液。 繼而’ φ攪拌該膠體溶液,一面於其中慢慢地滴加 0.05 mol/ι之硝酸水溶液75 g,進而’添加1〇〇質量%之檸 檬酸水溶液450.〇 g而製成混合液。 繼而’使用磁力_器於6n:下對該混合液進行48小時 _使其反應’其後’藉由離心分離進行清洗及濃縮,而 獲得黑色粒子濃度15.G質量%之膠體液C。其後,於該膠體 液C100.0 g中添加7·5 g櫛形胺基甲酸g旨系高分子分散劑 157917.doc •91· 201219465 (BYK-Chemie公司製造,商〇々 冏 〇〇名「Disper Bykl61」,不揮 發分:30質量°/〇)後,利用篆取 ,备七器進仃溶劑除去及乾燥,而 獲得黑色粉末C。利用上述之古 1之方法測定所獲得之黑色粉末 C之水分量與高分子分散劑晉_田,、 双則里’結果水分量為1·5質量0/〇, 高分子分散劑量為13.03質量〇/〇。 利用粉末X射線繞射法對該里Α^丄 Τ忑黑色粉末C中之生成相進行 鑑定’結果未㈣錫之存在,而確認銀錫合金(Ag3Sn及/ 或Ag4Sn)相、銀(Ag)相之存在。再者,與實施例m相同, 銀相中有可能固溶有錫。 進而,㈣電子探針微量分析器(ΕΡΜΑ)分析黑色粉末c 之壓粉體,根據錫及銀之含右屮盎七山μ上、 Α _ 有比率求出銀成分之含有比率 (銀/(銀+錫):質量比),結果為88 2質量%。 繼而’除於實施例m之黑色塗料Α之製備中使用黑色粉 末C來代替黑色粉末A以外,以與黑色塗料a之製備相同之 方式獲得黑色塗料L又,除使用該黑色塗料CjX外,利 用與實施例B1相同之方法,獲得附有紅外線透射性黑色膜 C-1之玻璃基板。 使用所獲得之附有紅外線透射性黑色膜Cd之玻璃基 板,以與實施例B1相同之方式,對黑色膜之光學特性及膜 中之黑色材料之平均分散粒徑等進行評價。將結果示於第 2表~第4表。 (實施例B6) 使用貫施例B 5中獲得之黑色塗料c,以加熱硬化後之膜 厚成為0.5 μπι之方式調整旋塗之轉速,除此以外,利用與 157917.doc •92- 201219465 實施例B5相同之方法,獲得附有紅外線透射性黑色膜c_2 之玻璃基板。 使用所獲得之附有紅外線透射性黑色膜c_2之玻璃基 板’以與實施例B1相同之方式,對黑色膜之光學特性及膜 中之黑色材料之平均分散粒徑等進行評價。將結果示於第 2表〜第4表。 (實施例B7) 使用實施例B5甲獲得之黑色塗料c,以加熱硬化後之膜 厚成為0.13 μιη之方式調整旋塗之轉速,除此以外,利用 與實施例Β5相同之方法,獲得附有紅外線透射性黑色膜& 3之玻璃基板。 使用所獲得之附有紅外線透射性黑色膜c_3之玻璃基 板,以與實施例B1相同之方式,對黑色膜之光學特性及膜 中之黑色材料之平均分散粒徑等進行評價。將結果示於第 2表〜第4表。 (實施例B8) 於實施例B1中獲得之黑色分散液A50 g中進而添加丙烯 酸系樹脂溶液(KAYARAD ZCR-1569H,日本化藥公司製 造,不揮發分:70質量%)2·〇5 g及二季戊四醇六丙稀酸醋 0.36 g作為樹脂成分原料,進而添加丙二醇單甲醚乙酸酯 〇·61 g,利用超音波分散機進行5分鐘處理,放置工小時而 製成黑色塗料D'繼而’除使用該黑色塗料D以外,利用 與實施例扪相同之方法,獲得附有紅外線透射性黑色膜D_ 1之玻璃基板。 、 157917.doc •93- 201219465 使用所獲得之附有紅外線透射性黑色膜D-i之玻璃基 板’以與實施例B 1相同之方式,對黑色膜之光學特性及膜 中之黑色材料之平均分散粒徑等進行評價。將結果示於第 2表〜第4表。 (實施例B9) 除於實施例B1令之黑色粉末a之製備中將梳齒狀胺基甲 酸醋系高分子分散劑(BYK_Chemie公司製造,商品名 Disper Bykl61 ’不揮發分:3〇質量%)設為12」g以外,以 與黑色粉末A相同之方式製備黑色粉末E。 於所獲得之黑色粉末E: 18.75 g中添加丙二醇單甲醚乙 酸酯81_25 g,並照射2〇分鐘超音波,藉此獲得黑色分散液 E »於該黑色分散液E5〇 g中進而添加丙烯酸系樹脂溶液 (KAYARAD ZCR.1569H,日本化藥公司製造,不揮發 分.70質量%)7.37 g及二季戊四醇六丙烯酸醋丨29 g作為 樹脂成分原料,進而添加丙二醇單甲醚乙酸酯〇6ι 利 用超音波分散機進行5分鐘處理,放置〗小時而製成黑色塗 _。繼而,除使用該黑色塗料E以外,利用與實施例⑴ 相同之方法,獲得附有紅外線透射性黑色膜E]之玻璃基 板。 使用所獲得之附有紅外線透射性黑色膜之玻璃基 板,以與實施例m相同之方式,對黑色膜之光學特性及膜 中之黑色材料之平均分散粒徑等進行評價。將結果示於第 2表〜第4表。 (比較例B1) 157917.doc •94· 201219465 於碳黑(Seast3(HAF),Tokai Carbon(股份有限公司)製 造)15 g中添加掷形胺基甲酸醋系高分子分散劑(Βγκ_ Chemie公司製造,商品名:Disper Bykl61,不揮發分: 30質量%)2·5 g、丙二醇單曱醚乙酸酯84.25 g,照射2〇分 鐘超音波’藉此獲得黑色分散液F。 再者,取出黑色分散液F之一部分,利用蒸發器進行溶 劑除去及乾燥而製成黑色粉末F後,利用上述方法測定該 黑色粉末F之水分量與高分子分散劑量,結果水分量為〇.丄 質:E %以下。另一方面,因於測定溫度範圍内亦產生碳零 本身之質量減少,故無法測定高分子分散劑量。 其次,於該黑色分散液F50 g中添加丙烯酸系樹脂溶液 (KAYARAD ZCR-1569H,曰本化藥公司製造,不揮發 分:70質量%)8.86 g及二季戊四酵六丙烯酸酯1 55 g作為 樹脂成分原料,進而添加丙二醇單曱醚乙酸酯〇6丨g後, 利用超音波分散機進行5分鐘處理,放置1小時而製成黑色 塗料F。 測定該黑色塗料F中之碳黑之平均分散粒徑,結果為145 nm ° 除於實施例B1之黑色膜之形成中使用黑色塗料F來代替 黑色塗料A以外,利用與實施例B1相同之方法,獲得附有 黑色膜F-1之玻璃基板。 使用所獲得之附有黑色膜F-丨之玻璃基板,以與實施例 B1相同之方式’對黑色膜之光學特性及膜中之黑色材料之 平均分散粒徑等進行評價。將結果示於第2表〜第4表。 157917.doc -95· 201219465 再者’利用與實施例B1相同之方法,藉由Tem對所獲得 之黑色膜F-1進行觀察。將膜剖面之TEM觀察照片示於圖 2。根據該觀察照片’利用與實施例Β丨相同之方法亦嘗試 對分散之碳黑之平均分散粒徑進行測定,碳黑粒子形成較 大之凝聚體’為如於膜中形成網路之觀察像,因此無法確 認各粒子之形狀或尺寸,而無法算出分散粒徑。 (比較例B2) 使用比較例B1中獲得之黑色塗料F ,以加熱硬化後之膜 厚成為0.5 μιη之方式調整旋塗之轉速,除此以外,利用與 比較例Β 1相同之方法,獲得附有黑色膜f_2之玻璃基板。 使用所獲得之附有黑色膜F-2之玻璃基板,以與實施例 B1相同之方式,對黑色膜之光學特性及膜中之黑色材料之 平均分散粒徑等進行評價。將結果示於第2表〜第4表。再 者’碳黑之平均分散粒徑因與比較例81相同之理由而無法 算出。 (比較例B3) 使用比較例B1中獲得之黑色塗料f,以加熱硬化後之膜 厚成為0.13 μιη之方式調整旋塗之轉速,除此以外,利用 與比較例Β1相同之方法’獲得附有黑色膜F_3之玻璃基 板。 使用所獲得之附有黑色膜F-3之玻璃基板,以與實施例 B1相同之方式對黑色膜之光學特性及膜中之黑色材料之平 均分散粒徑等進行評價。將結果示於第2表〜第4表。再 者’碳黑之平均分散粒徑因與比較例Β1相同之理由而無法 157917.doc -96· 201219465 算出。 (比較例B4) 於比較例m中製作之黑色分散液F: 16 g中進而添加丙 烯酸系樹脂溶液(KAYARAD ZCR-1569H,曰本化藥八刁 製造’不揮發分:70質量%)16.33 §及二季戊四醇六丙:酸 醋2.86 g作為樹脂成分原料,進而添加丙二醇單甲驗乙酸 酯3.68 g,利用超音波分散機進行5分鐘處理,放置【小時 而製成黑色塗料G。繼而,除使用該黑色塗料G以外,利 用與實施例B1相同之方法,獲得附有黑色膜之玻璃基 板。 土 使用所獲得之附有黑色膜之玻璃基板,以與實施例 B1相同之方式,對黑色膜之光學特性及膜中之黑色材料之 平均分散粒徑等進行評價。將結果示於第2表〜第4表。再 者,碳黑之平均分散粒徑因與比較例m相同之理由而無法 算出。 … (比較例B5) 除於實施例B1中之黑色粉末A之製備中將梳齒狀胺基曱 酸酯系高分子分散劑(BYK_Chemie公司製造,商品名 Disper Bykl61,不揮發分·· 30質量%)之添加量設為丨5 g 以外,利用與黑色粉末A相同之方法獲得黑色粉末H。使 用該黑色粉末Η,以與實施例B1相同之方式嘗試黑色分散 液之製作,但無法獲得充分的分散狀態,而無法製作分散 液。將結果示於第2表(因於比較例B5〜B8中不能形成膜或 膜性狀不良,故不進行光學密度等之評價)。 (比較例B6) 157917.doc •97- 201219465 除於實施例B1中之黑色粉末a之製備中將梳齒狀胺基甲 酸醋系高分子分散劑(BYK-Chemie公司製造,商品名• A substrate with a black film was produced in the same manner as A1, and the same evaluation was performed. Y Summary results are shown in Table 1. (Example A9) In the production of the black film of the eighth example, silver tin colloidal liquid (mixed fine particle dispersion of silver tin alloy fine particles and silver fine particles, manufactured by Sumitomo Osaka Water 157917.doc -77· 201219465 Mud Company) was used. Solid content: 30% by mass, average dispersed particle size: 1 〇 nm, particle size distribution index D90%: 40 nm, content of silver component: 91% by mass, dispersant species: polyurethane-based random copolymer A substrate with a black film was produced in the same manner as in the Example except that the amount of the dispersant added was 5 parts by mass as the raw material dispersion, and the same evaluation was carried out. The summary results are shown in Table 1. (Example A10) In the production of the black film of Example A1, silver tin colloidal liquid (mixed fine particle dispersion of silver tin alloy fine particles and silver fine particles, manufactured by Sumitomo Osaka Cement Co., Ltd.) solid content: 30% by mass, average Dispersed particle size: 1 〇 nm, particle size distribution index D90%: 40 nm, content of silver component: pi mass 〇 / 〇, dispersant species: polyurethane-based random copolymer, dispersant addition amount. 5 0 A substrate having a black film was produced in the same manner as in Example A1 except that the raw material dispersion was used, and the same evaluation was carried out. The summary results are shown in Table 1. (Comparative Example A1) In the production of the black film of Example A1, carbon black (trade name "HA3", manufactured by Tokai Carbon Co., Ltd.) was used instead of the silver tin colloidal liquid, and carbon black and resin were formed in the same manner as in Example 1. The volume ratio of the components was changed to 〇: 9 添加, and a photoresist was added, and dispersion treatment was carried out in the same manner as in Example A to obtain a carbon black dispersion paint. Further, no dispersant was used in Comparative Example A1. The same evaluation was carried out by using the above carbon black dispersion paint to produce a substrate with a black film in the same manner as in the examples. 157917.doc -78- 201219465 The summary results are shown in Table 1. Further, the black film in this comparative example had a small electric volume p and exhibited a low conductivity, so that the specific dielectric constant could not be measured. It is also the same in Comparative Examples A4, A5, and A6. (Comparative Example A2) In the production of the black film of Example A1, a silver-tin colloidal liquid (mixed fine particle dispersion of silver-tin alloy fine particles and silver fine particles, manufactured by Sumitomo Osaka Cement Co., Ltd., solid content: 3〇% by mass, was used. Average dispersed particle size: 22 〇 nm, particle size distribution index D9 〇%: 55 〇 nm, content of silver component: 91 mass /. 'for powder species: polyamine phthalate random copolymer, amount of dispersed cerium added In the same manner as in Example A1, the substrate of the black film was produced in the same manner as in Example A1 except that the amount of the raw material dispersion was '1,5 parts by mass. The total result of the capsule is not in Table 1. (Comparative Example A3) In the production of the black film of Example A1, a silver-tin colloidal liquid (mixed fine particle dispersion of silver-tin alloy fine particles and silver fine particles, manufactured by Sumitomo Osaka Cement Co., Ltd., solid content: 3〇% by mass, was used. Average dispersed particle size: 170 rnn, particle size distribution index D9〇%: 65〇(10), content of silver component: 91% by mass Powder type: “Amino acid vinegar-based random copolymer, dispersant addition amount: 15 parts by mass) The raw material dispersion liquid was produced in the same manner as in Example A1 except that it was black, and the same evaluation was carried out. The summary results are shown in Table 1. (Comparative Example A4) 157917.doc -79· 201219465 The same evaluation as in Example A1 was carried out in the solid content ratio. In the production of the black film of Example A1, a substrate having a black film was prepared in addition to the photoresist added in the form of 3 0 · 70, and the results are shown in Table 1. (Comparative Example A5) The black film of Example A1 was produced by adding a photoresist to the outside of the ice in the form of a volume ratio of the solid content of 3 5:6 5 in the same manner as in the example of the gossip. The method was to fabricate a substrate with a black film, and the same evaluation was performed for a thousand-π % 。. The summary results are shown in Table 1. (Comparative Example 6) 15 g of tin (sn) colloid (average particle diameter: 20 nm, solid content: 2% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.) was added to 6 (TC pure water 200...). Silver (Ag) colloid (average particle size: 7 nm, solid content. 20% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.) 6〇g, polyvinylpyrrolidone (PVP) (trade name "kl5", Tokyo Chemical Industry Co., Ltd. The company made a solution of 75 g dissolved in 100 ml of water to prepare a colloidal solution. Then, the colloidal solution was stirred while maintaining at 60 ° C for 60 minutes. Thereafter, the ultrasonic wave was irradiated for 5 minutes. Then, the colloidal solution is concentrated by centrifugation to obtain a liquid A having a solid content of 15% by mass. Then, in the liquid A, the solid content in the liquid A and the polyethylene glycol (PVA) are used. A PVA aqueous solution was added in a volume ratio of 50:50, and the dispersion treatment was carried out by an ultrasonic disperser (Sonifier 450, manufactured by BRANSON ULTRASONICS Co., Ltd.), and then allowed to stand for 1 hour to prepare a black fine particle-dispersed paint. Further, the dispersant was not used. Then, using the spin coating method 157917.doc -80- 201219465 The material is coated on a glass substrate with a thickness of 1.1 mm to form a black coating film. Here, the thickness of the coating film is 〇.5 by adjusting the amount of water in the dispersion. After that, the glass substrate with the coating film was heated for 1 hour using a heating device to obtain a glass substrate with a black film. The glass substrate with a black film or the like was used. The evaluation results are the same as those in the embodiment. The summary results are shown in Table 1. (Comparative Example 7) In the production of the black film of Example ,1, silver tin colloidal liquid (mixed microparticle dispersion of silver tin alloy fine particles and silver fine particles) was used. Liquid, Sumitomo Osaka Cement Co., Ltd. manufactures 'solid content: 3〇% by mass, average dispersed particle size: ι〇nm, particle size distribution index D9〇%: 4〇nm, content of silver component: μ mass / sickle powder. A substrate having a black film was produced in the same manner as in Example μ except that a polyurethane-based random copolymer and a dispersant were added in an amount of 3 parts by mass as a raw material dispersion liquid, and the same was carried out. Evaluation. Summary results (Comparative Example A8) In the production of the black film of the eighth embodiment, silver tin colloidal liquid (mixed fine particle dispersion of silver tin alloy fine particles and silver fine particles, manufactured by Sumitomo Osaka Cement Co., Ltd.) was used. 3〇% by mass, average dispersed particle size: ι〇nm, particle size distribution index D9〇%: 4〇nm, content of silver component: 91 mass=,·dispersion suspension 1 wire f minus copolymer, dispersant addition set 70 A substrate having a black film was produced in the same manner as in the Example except that the raw material dispersion was used as the raw material dispersion, and the same evaluation was carried out. 157917.doc -81 - 201219465 Total results of the capsules are not in Table 1 (Comparative Example A9) In the preparation of the black film of Example A1, silver tin colloidal liquid (mixed fine particle dispersion of silver tin alloy fine particles and silver fine particles) was used. Sumitomo Osaka Cement Co., Ltd. manufactures 'solid content: 3〇% by mass, average dispersed particle size: ι〇(10), particle size distribution index (4). 〆: 4〇nm, content of silver component: μ mass%, dispersant species: The acid-based, dispersed (four) addition amount: 7Qff raw material dispersion liquid, and the same evaluation as the substrate having the black film as in the example AM. The total result of the production and disposal was not in Table 1. 157917.doc *82- 201219465 Comparative Example A9 Mixed Microparticles 〇ο >1000 >1000 m >1000 >1000 "«to v> V〇 - Comparative Example A8 Mixed Microparticles 〇 Polyurethane System 〇s (N ο (Ν οο m <N Ml v〇 - Comparative Example A7 Mixed Fine Particles 〇 Polyurethane System Ο > 1000 m S Pair > 1000 tn w > V〇 Comparative Example A6 Mixed Microparticles 〇沄1 »n 2 Vi CO 00 1 Comparative Example A5 Mixed microparticles 〇 聚 聚 系 00 00 1 Comparative example A4 Mixed microparticles 〇 ο 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚 聚〇polyurethane vn <nmm 5 oc^. VO Comparative Example A2 Mixed microparticles 〇<N (N *r> Polyurethane ζΙ ro et al p \D Comparative Example A1 CJ|| £ 1 Ο Ο t 1 S inch (N 〇§ ο m η 00 or^· 1 Example A10 Mixed granules ο 聚 Polyurethane system S 窆CO ΓΛ § 沄o «η v〇 对 · Example A9 Mixed microparticles ο ο poly urethane system s vs. m inch p < n vq Example A8 Mixed microparticles S ο ο Polyurethane om ο (N p > nv〇 对 · Example A7 Mix Microparticles 5: § *—« ο Polyurethane system *η m 00 § in (Ν 〇«〇o >n V〇"St Example A6 Mixed microparticles S ο ο Polyurethane system Ui m oc 00 cn 00 Wl 1 Example A5 Mixed microparticles S ο ο Polyurethane system Ό 'm 笃»n (N QI Cs t/t Example A4 Mixed microparticles ο 聚 聚 酯 mm CN & ό n * n (N Example A3 Mixed microparticles S ο ο Polyurethane VI m 2 9 00 uS «Λ CN Example A2 Mixed microparticles ο ο Polyurethane V) m Bu O m (N tn 〇vd Example A1 Mixed microparticles ο Polyurethane V"» m <Ν Jri 〇>n Silver content of dispersed fine particles (% by mass) Average dispersed particle size (nm) Particle size distribution index D90% Dispersant type Dispersant addition amount (parts by mass) Average dispersed particle size _Μ_ Particle size distribution index D90% 8 ·靼 & RN RN 耷 耷 染 染 回 回 回 回 回 平均 平均 平均 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 脑 90 90 90 90 90 90 3 3 3 3 3 3 3 3 3 3 3 3 3 The book φ铋挺»:如!菜: »: «3茑W靼靼-83- 157917.doc 201219465 (Color filter characteristics) - Black matrix production _ will use the black prepared in Examples A1 to A10 The coating material is used as a coating liquid for each light-shielding photosensitive resin composition, and a normal package is used. A pattern mask having a mesh pattern (line width of 20 μm) is excluded as a black matrix pattern, and a black matrix fabrication method described in paragraph No. 0301 of Japanese Patent Laid-Open Publication No. 2009-75446 is used. A black matrix in which the black films of Examples A1 to A9 were formed into a mesh pattern was obtained on the substrate. - Color enamel, production of light sheet, evaluation - The black matrix (shading image) of the black film having the above-obtained Examples A1 to A10 is used in paragraph numbers 0158 to 0170 of Japanese Patent Laid-Open Publication No. 2006-251237 The method for producing a color filter for a transfer-type photosensitive resin film is described in which a color pattern of a specific size and shape of red, green, and blue is formed, and a color filter is formed on a TFT element substrate. Then, a counter electrode substrate provided with a transparent common electrode is disposed at a position facing the color filter on the TFT element substrate, and a liquid crystal material is sealed between the color filter sheet and the counter electrode substrate to form a liquid crystal cell. A polarizing plate was attached to both sides of the obtained liquid crystal cell, and a white LED as a backlight was disposed on the back side of the Tft element. The display characteristics of the COA liquid crystal display device produced in this manner were evaluated. As a result, it was confirmed that the liquid crystal display device including the color filters of the respective black matrices exhibited good display characteristics. According to the results of the above embodiments A1 to A10, it can be seen that the black film formed by using the black paint prepared by using the 157917.doc • 84 - 201219465 color material dispersion liquid is compared with the comparison two: no black film The fine particles of the black material having a small particle size are uniformly dispersed, and the black film is excellent in optical density or electrical characteristics. Further, the color light-receiving sheet in which the black film of the present invention is a black matrix exhibits good display characteristics in a liquid crystal display device. <Examples and Comparative Examples of Second Invention> (Each Measurement and Evaluation Method) Each measurement or evaluation method of (4) and characteristics of the sheet used in the examples or the comparative examples is shown below. • The content of the silver component in the black material _ The content of the silver component in the black material (silver-tin alloy fine particles or the mixed fine particles of the silver-tin alloy fine particles and the silver fine particles) is determined by using an electron probe to analyze H (EPMA) , manufactured by Nippon Denshi Co., Ltd.; χΑ88〇〇) Analyze the powder of the black material powder, and determine the content ratio (mass ratio) of tin and silver in the powder by qualitative and quantitative analysis. • Moisture content and polymer dispersion amount in a black powder surface-treated with a polymer dispersant - moisture content and polymer of a black powder containing a black material which is surface-treated with a polymer dispersant and dried The dispersion amount was measured by using TG-DTA (manufactured by Rigaku Co., Ltd., TG-8210). According to the result of DTA, the weight reduction from room temperature to 120 °c is set as the evaporator attached to the water. (: The weight reduction up to 500t is set as the thermal decomposition of the molecular dispersant, and the amount of water and the amount of polymer dispersion are obtained according to the weight reduction in each temperature range. 157917.doc •85· 201219465 - Black film Optical density in the visible light region · Optical density in the visible light region of the black film (OD value: Optical Densty) The glass substrate with a black film was measured using a transmittance densitometer (manufactured by TECHKON: RT-120). The measured value of the glass substrate monomer (without film) is set as a reference value, thereby obtaining the OD value of the infrared transmission black film itself. - The transmittance of the black film and the optical density ratio of each wavelength - the transmittance of the black film is The black film-coated glass substrate was measured for the light transmittance at 370 to 2500 nm using a spectrophotometer, and the glass substrate alone (without film) was used as a reference value to determine the light transmittance at each wavelength of the black film. The spectrophotometer is based on the measurement wavelength and the amount of measurement light, and is U-4100 (measurement wavelength range: 200 to 2500 nm, detection limit: 0.001%) manufactured by 曰立株式会社. MCPC-3700 manufactured by Electronics Co., Ltd. (measurement wavelength range: 300 to 1000 nm, detection limit: 0.000001%) 〇 On the other hand, the optical density ratio of each wavelength is based on the transmittance at a wavelength of 560 nm obtained by the above (T56Q) Transmittance at a wavelength of 800 nm (T8〇g), transmittance at a wavelength of 950 nm (Τ95〇), transmittance at a wavelength of 1064 nm (Τι 064), and transmittance at a wavelength of 1500 nm (Ti5.〇) The transmittance (Τ2_) at a wavelength of 2000 nm, the transmittance at a wavelength of 2,500 nm (D = 25 Å), and the transmittance at each wavelength, and the optical density (OD value) is calculated by the following formula (1). And find the ratio of the 0D value at each wavelength of the wavelength from 800 nm to 2500 nm (NIR) to the OD value at the wavelength of 560 nm (ODnir/〇D56〇). OD=-log(T/100)...(1) 157917.doc -86 - 201219465 - Average Dispersion Particle Size in Black Film of Black Material _ Average Dispersion Particle Size in Black Film of Black Material Using FIB, the obtained black film is cut into a sheet shape in the cross-sectional direction, using Penetrating electron microscope (TEM, manufactured by Sakamoto Electronics Co., jEM_21〇〇f) In the particle shape, 5 particles were randomly selected from the TEM photograph, and the particle diameter (maximum diameter) was measured, and the average value thereof was defined as the average dispersed particle diameter. Further, since the particles of the present embodiment were substantially spherical, Therefore, the maximum diameter of each particle is set to the particle diameter of the particle. (Example B1) - Formation of black film - Tin (sn) colloidal dispersion is added to 200 ml of pure water kept at 60 C (average Primary particle size: 20 nm, solid content: 20% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.) 15.0 g, silver (Ag) colloid (average particle size: 7 nm, solid content: 20% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd. 6 g, and 0.75 mass% of polyvinylpyrrolidone (PVP, manufactured by Tokyo Chemical Industry Co., Ltd., trade name: K15) in an aqueous solution of 1 〇〇 g' to prepare a colloidal solution. Then, while stirring the colloidal solution, 75 g of an aqueous solution of nitric acid of 0·〇5 mol/1 was gradually added thereto, and further, a solution of 45 〇.0 g of a citric acid aqueous solution of 1% by mass was added thereto. Mixture. Then, the mixture was washed and concentrated by a magnetic stirrer at 6 (TC for 1 hour), and then washed and concentrated by centrifugation to obtain a colloidal liquid having a black particle concentration of 15.0% by mass. Then, 7.5 g of a guanidine-based polymer dispersant 157917.doc -87 - 201219465 (manufactured by BYK-Chemie Co., Ltd., trade name: Disper Bykl61, non-volatile matter) was added to the colloidal liquid A.100.0 g. After the solvent was removed and dried by an evaporator to obtain a black powder A. The water content of the obtained black powder and the polymer dispersion amount were measured by the above method, and as a result, the moisture content was 15% by mass, which was high. The molecular dispersion amount was 13.05 mass%. The formation phase in the black powder A was identified by powder X-ray diffraction, and as a result, the presence of tin was not confirmed, and the silver-tin alloy phase (Ag3Sn and/or Agjn structure) and the silver phase (Ag) were confirmed. In addition, in the silver-tin alloy phase, the X-ray diffraction pattern of Ag3Sn and Agjn is approximated, so that it is impossible to identify any one of the two components, or both components are generated. The silver phase ' indicates a phase having a silver crystal structure, and is not limited to 100% of the silver component, and may be dissolved in tin. Further, the powder of the black powder A is analyzed by an electron probe microanalyzer (EPMA)' The ratio of the silver component (silver/(silver + tin): mass ratio) was determined from the content ratio of tin and silver, and was 91.3 mass%. The obtained black powder A: 17.25 g was added with propylene glycol monomethyl ether acetate. 82.75 g, a black dispersion A was obtained by irradiating for 20 minutes of ultrasonic waves. The black dispersion a : 50 g of an acrylic resin solution (KAYARAD ZCR-1569H, manufactured by Nippon Kayaku Co., Ltd., nonvolatile content: 70% by mass 8·78 g and dipentaerythritol hexaacrylate 丨.54 g as a resin component raw material' and further added 061 g of propylene glycol monoterpene ether acetate, and then treated with an ultrasonic disperser for 5 minutes, and left for 1 hour to make black. Coating A » Determines the average dispersed particle size of the black material in the black coating A, and the result is 157917.doc • 88· 201219465 is 22 nm. The above black coating A is applied to a glass substrate having a thickness of 0.7 mm by spin coating. on A black coating film is formed. Here, the thickness of the coating film is controlled by adjusting the rotation speed of the spin coating, and the thickness of the infrared transmission black film after heat curing is 1.0 μm, and then a heating device is used. The glass substrate on which the above-mentioned coating film was formed was heated in an atmosphere at 23 ° C for a while to obtain a glass substrate with an infrared-transmitting black film A-1. - Evaluation of black film - Evaluation of optical characteristics Using the glass substrate with the infrared-transmitting black film A· obtained as described above, the optical density _ value in the visible light region is measured by the above method, and the wavelength is 56 〇 nm, the order nm, 95 〇 (10), H) Transmittance (T(%)) at 64 nm, 1500 nm, 2 〇〇〇 nm, and 25 〇〇 nm. Further, the optical density (10) obtained from the transmittances is shown in Tables 2 and 3. The value of (ODNiR) and the ratio of the precursor density (OD56Q) of the umbrella wind ~ Α / m b at the wavelength of 560 nm (ODNiR / OD56) is shown in Table 4. .Average Dispersion Particle Diameter in Black Film of Black Material For the above-mentioned infrared ray transmitting black film Α], the shape of the black material in the film was observed by a transmission electron microscope (TM) according to the above method. A TEM observation photograph of the film cross section is shown in Fig. 1. Further, the particle diameter of the dispersed particles was measured based on the continuous photograph, and the particle size distribution and the uniform particle diameter were determined. The results - 157917.doc -89 - 201219465 are shown in Table 4. Further, the volume fraction of the black material in the film measured by the above method was 10% by volume. (Example B2) The same procedure as in Example 1 was carried out except that the black paint A obtained in Example B1 was adjusted to have a rotation speed of 0.5 μm so that the film thickness after heat curing was 0.5 μm. A glass substrate of infrared ray transmitting black 臈A·]. The optical characteristics of the black film and the average dispersed particles # of the black material in the film were evaluated in the same manner as in Example m using the obtained glass substrate with the infrared ray transmitting black film Α2. The results are shown in Tables 2 to 4. (Example B3) The same procedure as in Example Β1 was used except that the black paint a was obtained in Example B1, and the film thickness after heat hardening was 0.13 μm, and the number of rotations of the spin coating was adjusted. Infrared transmissive black film Α 3 glass substrate. The optical characteristics of the black film and the average dispersed particle diameter of the black material in the film were evaluated in the same manner as in Example 1 using the obtained glass substrate with the infrared-transmitting black film α_3. The results are shown in Tables 2 to 4. (Example Β4) Further, an acrylic resin solution (KAYARAD ZCR-1569H, manufactured by Nippon Kayaku Co., Ltd., non-volatile content: 70% by mass) was further added to the black dispersion A5〇g obtained in Example 421. And dipentaerythritol hexaacrylate 157917.doc 201219465 7.37 g As a resin component raw material, propylene glycol monomethyl ether acetate g was further added and treated by an ultrasonic disperser for 5 minutes, and left for 1 hour to prepare ",, color paint B. Then, a glass substrate with a black film B-1 having an infrared transmittance was obtained by the same method as that of the eighth embodiment B1 except that the black paint B was used. The obtained infrared light transmitting black film B- was used. The glass substrate of 1 was evaluated in the same manner as in Example B1 for the optical characteristics of the black film and the average dispersed particle diameter of the black material in the film. The results are shown in Tables 2 to 4 (Examples) Β5) - Formation of black film - Adding tin (Sn) colloidal dispersion in 200 ml of pure water of 60 C (average - human particle size. 2 〇 nm, solid content: 2 〇 mass%, Sumitomo Osaka Cement Made by the company) 15.0 g, silver (Ag) colloid (average particle diameter: 7 (10), solid content: 20% by mass - manufactured by Sumitomo Osaka Cement Co., Ltd.) 6〇〇 and 0.75 mass% of polyvinylpyrrolidone (pvp: t-King Kasei Industrial Co., Ltd., trade name: K15) An aqueous solution of 100 g is prepared into a colloidal solution. Then, the colloidal solution is stirred, and 75 g of a 0.05 mol/m aqueous solution of nitric acid is slowly added thereto, and then a 1 wt% aqueous solution of citric acid is added. The mixture was made into a mixture of 〇g. Then, the mixture was subjected to 48 hours by a magnetic force at 6n: the reaction was carried out, and then it was washed and concentrated by centrifugation to obtain a black particle concentration of 15. G% by mass of colloidal liquid C. Thereafter, 7·5 g of hydrazine carboxylic acid is added to the colloidal liquid C 100.0 g, which is a polymer dispersing agent 157917.doc •91·201219465 (manufactured by BYK-Chemie Co., Ltd., After the trade name "Disper Bykl61", non-volatile content: 30 mass ° / 〇), the solvent was removed and dried by using a solvent to obtain a black powder C. The water content of the obtained black powder C and the polymer dispersing agent Jin_tian, and Shuangzhili' result water content is 1.5 mass 0/〇, and the polymer dispersed dose is 13.03 mass. 〇/〇. The powder X-ray diffraction method was used to identify the formation phase in the black powder C. The result was that the presence of tin was not observed, and the silver-tin alloy (Ag3Sn and/or Ag4Sn) phase, silver (Ag) was confirmed. The existence of the phase. Further, as in the example m, tin may be solid-solved in the silver phase. Further, (4) Electron probe micro analyzer (ΕΡΜΑ) analyzes the powder of the black powder c, and determines the content ratio of the silver component based on the ratio of tin and silver containing the right 屮 屮 山 μ 、 ( ( ( Silver + tin): mass ratio), the result was 88 2% by mass. Then, except that the black powder C was used in place of the black powder A in the preparation of the black paint crucible of Example m, the black paint L was obtained in the same manner as the preparation of the black paint a, except that the black paint CjX was used. A glass substrate with an infrared-transmitting black film C-1 was obtained in the same manner as in Example B1. Using the obtained glass substrate with the infrared ray transmitting black film Cd, the optical characteristics of the black film and the average dispersed particle diameter of the black material in the film were evaluated in the same manner as in Example B1. The results are shown in Tables 2 to 4. (Example B6) Using the black paint c obtained in Example B 5, the rotation speed of the spin coating was adjusted so that the film thickness after heat hardening became 0.5 μm, and the use was performed with 157917.doc •92-201219465. In the same manner as in Example B5, a glass substrate with an infrared-transmitting black film c_2 was obtained. The optical characteristics of the black film and the average dispersed particle diameter of the black material in the film were evaluated in the same manner as in Example B1 using the obtained glass substrate with the infrared-transmitting black film c_2. The results are shown in Tables 2 to 4. (Example B7) The same procedure as in Example Β5 was carried out except that the black paint c obtained in Example B5 was adjusted to have a rotational speed of 0.13 μm so that the film thickness after heat hardening was 0.13 μm. Infrared transmissive black film & 3 glass substrate. Using the obtained glass substrate with the infrared ray transmitting black film c_3, the optical characteristics of the black film and the average dispersed particle diameter of the black material in the film were evaluated in the same manner as in Example B1. The results are shown in Tables 2 to 4. (Example B8) Further, an acrylic resin solution (KAYARAD ZCR-1569H, manufactured by Nippon Kayaku Co., Ltd., nonvolatile matter: 70% by mass) 2·〇5 g was further added to the black dispersion A50 g obtained in Example B1. 0.36 g of dipentaerythritol hexaacetic acid vinegar was used as a raw material of the resin component, and further, propylene glycol monomethyl ether acetate 〇·61 g was added, and it was treated by an ultrasonic disperser for 5 minutes, and placed in a black paint D' and then A glass substrate with an infrared-transmitting black film D-1 was obtained by the same method as in Example 以外 except that the black paint D was used. , 157917.doc • 93-201219465 using the obtained glass substrate with infrared-transmitting black film Di' in the same manner as in Example B1, the optical properties of the black film and the average dispersed particles of the black material in the film The diameter is evaluated. The results are shown in Tables 2 to 4. (Example B9) A comb-shaped amino carboxylic acid-based polymer dispersant (manufactured by BYK_Chemie Co., Ltd., trade name Disper Bykl 61 'nonvolatile content: 3% by mass) was prepared in the preparation of the black powder a in Example B1. Black powder E was prepared in the same manner as in the case of black powder A except that it was set to 12"g. Add propylene glycol monomethyl ether acetate 81_25 g to the obtained black powder E: 18.75 g, and irradiate for 2 超 ultrasonic waves, thereby obtaining a black dispersion E » further adding acrylic acid to the black dispersion E5〇g Resin solution (KAYARAD ZCR.1569H, manufactured by Nippon Kayaku Co., Ltd., nonvolatile content: 70% by mass) 7.37 g and dipentaerythritol hexaacrylate ruthenium ruthenium 29 g as a resin component raw material, further adding propylene glycol monomethyl ether acetate 〇6ι The ultrasonic wave disperser was used for 5 minutes, and the hour was set to make a black paint_. Then, a glass substrate with an infrared-transmitting black film E] was obtained by the same method as in Example (1) except that the black paint E was used. The optical properties of the black film and the average dispersed particle diameter of the black material in the film were evaluated in the same manner as in Example m using the obtained glass substrate with an infrared-transmitting black film. The results are shown in Tables 2 to 4. (Comparative Example B1) 157917.doc •94·201219465 Adding a smear-type hydroxyacetic acid-based polymer dispersant to 15 g of carbon black (Seast 3 (HAF), manufactured by Tokai Carbon Co., Ltd.) (manufactured by Βγκ_ Chemie Co., Ltd.) , trade name: Disper Bykl61, non-volatile: 30% by mass) 2·5 g, propylene glycol monoterpene ether acetate 84.25 g, irradiated for 2 超 ultrasonic wave 'by this to obtain a black dispersion F. Further, one part of the black dispersion liquid F is taken out, and after removing the solvent by the evaporator and drying to prepare the black powder F, the water content of the black powder F and the polymer dispersion amount are measured by the above method, and the water content is 〇. Tannin: E% or less. On the other hand, since the mass of carbon zero itself is also reduced in the measurement temperature range, the polymer dispersion amount cannot be measured. Next, an acrylic resin solution (KAYARAD ZCR-1569H, manufactured by Sakamoto Chemical Co., Ltd., nonvolatile matter: 70% by mass) 8.86 g and dipentaerythra hexaacrylate 1 55 g were added as the black dispersion F50 g. The resin component raw material was further added with propylene glycol monoterpene ether acetate 〇6丨g, and then treated by an ultrasonic disperser for 5 minutes, and left for 1 hour to prepare a black paint F. The average dispersed particle diameter of the carbon black in the black paint F was measured and found to be 145 nm. The same method as in Example B1 was used except that the black paint F was used instead of the black paint A in the formation of the black film of Example B1. A glass substrate with a black film F-1 was obtained. Using the obtained glass substrate with a black film F-丨, the optical characteristics of the black film and the average dispersed particle diameter of the black material in the film were evaluated in the same manner as in Example B1. The results are shown in Tables 2 to 4. 157917.doc -95· 201219465 Further, the obtained black film F-1 was observed by Tem in the same manner as in Example B1. A TEM observation photograph of the film cross section is shown in Fig. 2 . According to the observation photograph, "the average dispersed particle diameter of the dispersed carbon black was also measured by the same method as in Example ,, and the carbon black particles formed a larger aggregate" as an observation image forming a network in the film. Therefore, the shape or size of each particle could not be confirmed, and the dispersed particle diameter could not be calculated. (Comparative Example B2) The same procedure as in Comparative Example Β 1 was carried out except that the black paint F obtained in Comparative Example B1 was used to adjust the number of rotations of the spin coating so that the film thickness after heat curing was 0.5 μm. A glass substrate having a black film f_2. Using the obtained glass substrate with the black film F-2, the optical characteristics of the black film and the average dispersed particle diameter of the black material in the film were evaluated in the same manner as in Example B1. The results are shown in Tables 2 to 4. Further, the average dispersed particle diameter of the carbon black could not be calculated for the same reason as in Comparative Example 81. (Comparative Example B3) Using the black paint f obtained in Comparative Example B1, the rotation speed of the spin coating was adjusted so that the film thickness after heat curing was 0.13 μm, and the same method as in Comparative Example '1 was used. Glass substrate of black film F_3. Using the obtained glass substrate with the black film F-3, the optical characteristics of the black film and the average dispersed particle diameter of the black material in the film were evaluated in the same manner as in Example B1. The results are shown in Tables 2 to 4. Further, the average dispersed particle diameter of carbon black was not calculated by the same reason as in Comparative Example 157, 157917.doc -96·201219465. (Comparative Example B4) The black dispersion liquid F prepared in Comparative Example m: 16 g was further added with an acrylic resin solution (KAYARAD ZCR-1569H, manufactured by Sakamoto Chemical Co., Ltd. 'nonvolatile matter: 70% by mass) 16.33 § And dipentaerythritol Hexapropane: 2.86 g of vinegar as a resin component raw material, and further added 3.68 g of propylene glycol monoacetate acetate, which was treated by an ultrasonic disperser for 5 minutes, and placed in an hour to form a black paint G. Then, a glass substrate with a black film was obtained in the same manner as in Example B1 except that the black paint G was used. Soil The optical characteristics of the black film and the average dispersed particle diameter of the black material in the film were evaluated in the same manner as in Example B1 using the obtained glass substrate with a black film. The results are shown in Tables 2 to 4. Further, the average dispersed particle diameter of carbon black could not be calculated for the same reason as in Comparative Example m. (Comparative Example B5) In the preparation of the black powder A in Example B1, a comb-shaped amino phthalate-based polymer dispersant (manufactured by BYK_Chemie Co., Ltd., trade name Disper Bykl61, non-volatile content··30 mass) Black powder H was obtained by the same method as black powder A except that the addition amount of %) was set to 丨5 g. Using this black powder, the production of a black dispersion was attempted in the same manner as in Example B1, but a sufficient dispersion state could not be obtained, and a dispersion could not be produced. The results are shown in the second table (due to the inability to form a film or film properties in Comparative Examples B5 to B8, evaluation of optical density or the like was not performed). (Comparative Example B6) 157917.doc •97-201219465 In addition to the preparation of the black powder a in Example B1, a comb-shaped amino methacrylate-based polymer dispersant (manufactured by BYK-Chemie Co., Ltd., trade name)
Disper Bykl61 ’不揮發分:3〇質量%)之添加量設為25 g以 外’利用與黑色粉末A相同之方法獲得黑色粉末I。除使用 該黑色粉末I以外,利用與實施例B丨相同之方法,製作附 有黑色膜1-1之玻璃基板,但膜表面存在大量凝聚物,而產 生較多針孔,因此確認不適於膜物性之測定。將結果示於 第2表。 (比較例B7) 除於實施例B1中之黑色粉末A之製備中使用多羧酸系高 分子分散劑(花王(股)公司製造,商品名:p〇IZ521,不揮 發分:30質量%)7,5 g來代替梳齒狀胺基甲酸酯系高分子分 散劑(BYK-Chemie公司製造,商品名Disper Bykl61,不揮 發分30質量%)以外,以與黑色粉末a相同之方式獲得黑色 粉末J。使用該黑色粉末J,以與實施例扪相同之方式嘗試 黑色分散液之製作,但無法獲得充分的分散狀態,而無法 製作分散液。將結果示於第2表。 (比較例B8) 除於實施例B1中之黑色粉末a之製備中中途中斷高分子 分散劑處理後之利用蒸發器之乾燥,並將水分量設為$ 2 質量。/。以外’以與黑色粉末A相同之方式製備黑色粉末K: 除使用該黑色粉末Κ以外,利用與實施例扪相同之方法, 製作附有黑色膜Κ·1之玻璃基板,但確認於旋塗後之溶劑 蒸發過程中,塗膜產生凝聚,塗膜面成為渾白之狀態 結果示於第2表。 157917.doc •98· 201219465 <<N姝 t 無古· Φ瑤 •πϋί Όϋί jnU Όβί •βδί Qfii 良好 分散不良I 針孔 分散不良 渾白 OD值 (可見 光區域) 〇 cn 〇 ^t Ο r- CN cn 〇 >4.0 Ο rn 〇 ΓΠ 寸 d 〇 1 1 1 1 膜厚 (μιη) ο ρ 〇 〇 ο ο 〇 m T-H 〇 〇 ο 〇 〇 〇 cn Ο 〇 1 〇 1 〇 p 膜中之黑色材料百分率 體積分率 (體積%) ο 〇 〇 *«-ί CS ο 〇 Η 〇 ^Τ) ο 00 00 00 〇 1 〇 1 〇 f ^ \ΰί ΦΊ ^ w ν〇 r*H vn 〆 U-) 1 1 1 1 1 1 樹脂 成分2) ⑪+⑫ ⑪+⑫ ⑪+⑫ ⑪+⑫ ⑪+⑫ ⑪+⑫ ⑪+⑫ ⑪+⑫ ⑪+⑫ ⑪+@ ⑪+⑫ ⑪+⑫ ⑪+⑫ 1 ⑪+⑫ 1 ⑪+⑫ 黑色粉末 水分量(質量%) F"H yn f—Η **·Η 1—* in 〇 〇 〇 〇 *Ti in T-H (N 分散劑量 (質量%) 13.05 13.05 13.05 13.05 13.03 13.03 13.03 13 05 20.55 1 1 1 1 〇 CS 34.05 13.12 13.26 分散劑種類υ Θ Θ ㊀ Θ Θ ㊀ Θ Θ Θ Θ Θ Θ Θ ㊀ Θ Θ Θ 銀成分含有率 (質量%) m 5; ON cn ON rn Os CN οό 00 00 00 CS 〇6 00 cn OS cn 1—Η ON 1 1 1 1 ΓΠ On CO m 5; CO On 種類 銀錫合金+銀 銀錫合金+銀 銀錫合金+銀 銀錫合金+銀 l銀錫合金+銀 銀錫合金+銀 銀錫合金+銀 銀錫合金+銀 銀錫合金+銀 碳黑 碳黑 碳黑 碳黑 銀錫合金+銀 銀錫合金+銀 銀錫合金+銀 銀錫合金+銀 實施例B1 實施例B2 實施例B3 實施例B4 |實施例Β5 |實施例Β6 |實施例B7 | 1實施例B8 1 實施例B9 比較例B1 |比較例B2 比較例B3 比較例B4 比較例B5 比較例Β6 比較例B7 比較例B8 IS 键爱νξτ4ίΟΒν#Μ@ l(N>nZIOd?F 鉍nr<<T*i3i:® Η695ι-Ή3ζανΉνΛν^^^^<<«^-4Β® φ^迴率((Ν191-^a JadssfF孩nr^alu-l^Aa ㊀ 蘅趄令(1 -99· 157917.doc 201219465 2500 nm 1 OD2500 0.34 0.11 0.06 0.06 0.38 0.16 0.11 0.53 0.34 1.00 ΟΛΟ 0.18 0.30 O % 45.9 77.4 86.5 87.0 41.3 69.7 77.8 29.9 46.0 9.98 40 A 65.4 49.6 2000 nm 〇〇2000 1 0.43 0.16 0.05 0.05 0.46 0.20 0.09 0.70 0.43 (N 0.47 0.18 0.34 /—s δ ο 37.4 69.3 88.3 89.0 34.4 63.7 81.3 21.4 37.5 7.58 33.7 66.4 46.1 i 1500 nm 〇Dl500 0.73 0.30 0.09 0.09 0.76 0.33 0.12 v〇 • 0.73 00 rn 0.59 0.20 0.42 't 18.8 50.2 80.7 81.1 17.5 46.7 75.0 6.92 18.7 4.19 25.8 63.2 38.1 B a 〇Pl〇64 1.06 0.45 0.12 0.12 1.08 0.46 0.14 1.57 1.06 1.80 0.75 0.28 0.55 g 's 8.69 35.8 75.3 75.4 8.34 34.4 72.3 2.69 8.66 On 17.8 53.0 28.2 i o ON 〇〇950 VO 0.50 0.12 0.12 1.19 0.53 0.14 1.80 1.17 2.00 0.82 0.31 0.61 ^ P> 6.85 31.5 75.0 76.0 6.44 29.6 71.8 0.16 6.83 0.99 15.0 49.5 24.3 800 nm ODsoo 寸· 0.62 0.17 0.17 00 rn 0.59 0.14 2.16 1.41 2.31 0.97 0.35 0.72 H 3.89 23.9 67.3 68.1 4.16 25.5 72.0 0.69 3.90 0.49 10.8 44.9 18.9 560 nm i OD560 3.89 1.89 0.51 0.50 3.70 1.83 0.44 5.83 3.87 3.28 1.39 0.48 1.04 /—-N 0·013 1.29 31.3 31.4 0.020 1.48 36.0 0.00015 0.014 0.050 4.11 33.5 9.12 1實施例B1 1 實施例B2 1實施例B3 1實施例B4 |實施例B5 實施例B6 |實施例B7 實施例B8 |實施例B9 CQ ja 比較例B2 比較例B3 比較例B4 -100- 157917.doc 201219465 膜中平均分散粒徑(ran) 1 t 1 1 光學濃度比 OD250〇/〇D56〇 0.09 0.06 0.13 0.12 0.10 0.09 0.25 0.09 1 0.08 0.30 0.29 0.39 0.29 OD2〇〇〇/OD56〇 〇 0.08 0.11 0.10 0.13 0.11 0.20 0.12 0.11 0.34 0.34 0.38 0.32 OD1500/OD56O 0.19 0.16 0.18 1 0.18 0.20 0.18 0.28 0.20 ! 0.18 0.42 0.42 0.42 0.40 OD1064/OD56O 0.27 0.24 0.24 024 0.29 0.25 0.32 0.27 1 0.27 0.55 0.54 0.58 ! 0.53 OD950/OD56O ! 0.30 0.27 0.24 0.24 0.32 0.29 0.32 0.31 0.30 0.61 0.59 0.64 0.59 OD800/OD560 0.36 0.33 0.34 0.33 0.37 0.32 0.32 0.37 1 036 0.70 0.70 0.73 0.70 |實施例B1 |實施例B2 |實施例B3 實施例B4 實施例B5 |實施例B6 實施例B7 實施例B8 實施例B9 比較例B1 比較例B2 比較例B3 比較例B4 • 101 - 157917.doc 201219465 如第2表〜第4表所示,確認實施例B1至B 9之紅外線透射 性黑色膜之可見光區域之遮光性較高,但於近紅外線區域 中亦表現優異之透射性。又,確認即便使膜中之黑色材料 之含量、或膜厚本身變化,黑色材料之分散粒徑或各波長 下之透射特性亦未見差異,而維持較高之可見光遮光性與 優異之紅外線透射性,由此確認藉由控制膜中之黑色材料 含量、或膜厚本身,可調節作為黑色濾光片之密度。 另一方面,於比較例B i至B4中,可見光區域與紅外線 區域中之透射率無太大變化,而不具有紅外線區域中之透 射性。 囚此 入,尕比較例B5中,高分子分散劑之添加 量過少 „ ~ 無法使黑色粉末充分地分散,而無法製備分散液。又於 =較例B6中,高分子分散劑之添加量過多而分散狀態不穩 7因此於形成黑色媒時產生黑色粉末之凝聚,而無法獲 得良好的黑色膜。又,於比較細中,黑色粉末與高分子 分散劑之親和性較差1色粉末未由高分子分散劑充分地 被覆’因此黑色粉末本身之分散性較差而無法製備分散 液。進而,於比較例B8中,黑色粉末中之水分量過多,因 此於形成黑色膜時(溶劑禮 (劑之揮發時)產生渾白。推測其原因 在於:與所含有 T曰相,合性良好之溶劑變少,反之,相 溶性較差之水之合吾知 相對增加,因此樹脂中析出一部分 水,而膜之外觀看起來較白。 (彩色渡光片特性) -黑色矩陣之製作_ 157917.doc 201219465 將使用實施例B 1〜B9中製備之各黑色塗料作為各遮光性 感光性樹脂組合物塗佈液,使用通常之包含網狀圖案(線 寬20 μηι)之圖案掩膜作為黑色矩陣圖案排除,使用曰本專 利特開2009-75446號公報之段落編號〇3〇1中記載之黑色矩 陣製作方法,於10 cm角之TFT元件基板上獲得使實施例 B1〜B9之黑色膜形成為網狀圖案之黑色矩陣。 此時,因塗佈膜具有紅外線透射性,故於圖案形成中, 可較為容易地進行相對於基板上之TFT元件之細線圖案之 位置對準。 -彩色濾光片之製作、評價_ 於具有上述所獲得之實施例B1〜B9之黑色膜之黑色矩陣 (遮光圖像)上,利用使用日本專利特開2〇〇6251237號公報 之段落編號0158至0170中記載之轉印型感光性樹脂薄膜之 彩色濾光片製作方法,形成紅色、綠色 '藍色之特定尺 寸、形狀之著色圖案,而TFT元件基板上製作彩色濾光 片0 繼而’於與TFT元件基板上之彩色濾、光片相對向之位置 配置設置有透料通電極之對向電極基板,於彩色渡光片 與對向電極基板間封人液晶材料,而形成液晶胞。將偏光 板貼附於所獲得之液晶胞之雙面,進而,於tft元件基板 之背面側配置作為背光之白色LED ^ 對以此種方式製作之COA方式之液晶顯示裝置之顯示特 性進行評價》其結果,確認包含上述使用各黑色矩陣之彩 色濾光片之液晶顯示裝置表現良好的顯示特性。尤其是, 157917.doc •103- 201219465 因此可良好地進 因TFT元件與黑色矩陣之位置對準良好, 行R、G、B各色間之混色防止。 產業上之可利用性 本發明之黑色膜及使用其之附有黑色膜之基材可較佳地 用於以液晶赫it件或錢EL元件等為代表之顯示元件或 使用其之圖像顯示裝置中…本發明之紅外線透射性黑 色膜對可見光具有優異之遮光性,且對紅外線具有一定值 以上之透射性,因此可較佳地用於以紅外線無線遙控器之 發光部或受光部之護套為代表之各種黑色護套。進而,亦 可應用於COA方式或BOA方式之黑色矩陣等,因此亦可較 佳地用於各種圖像顯示裝置中。 【圖式簡單說明】 請、實施例B1中獲得之紅外光透射性黑色膜剖面之電 子顯微鏡觀察照片。 圖2係比較例^中獲得之黑色膜剖面之電子顯微鏡觀察 照片。 157917.doc • 104·Disper Bykl 61 'non-volatile content: 3 〇 mass%) was added in an amount of 25 g or more. Black powder I was obtained by the same method as that of the black powder A. A glass substrate with a black film 1-1 was produced in the same manner as in Example B except that the black powder I was used. However, a large amount of aggregates were formed on the surface of the film, and a large number of pinholes were formed, so that it was confirmed that it was not suitable for the film. Determination of physical properties. The results are shown in the second table. (Comparative Example B7) A polycarboxylic acid-based polymer dispersant (manufactured by Kao Corporation, trade name: p〇IZ521, nonvolatile content: 30% by mass) was used in the preparation of the black powder A in Example B1. Black, in the same manner as the black powder a, except for the comb-like urethane-based polymer dispersant (manufactured by BYK-Chemie Co., Ltd., trade name Disper Bykl 61, nonvolatile content: 30% by mass) Powder J. Using this black powder J, the production of a black dispersion was attempted in the same manner as in Example ,, but a sufficient dispersion state could not be obtained, and a dispersion could not be produced. The results are shown in the second table. (Comparative Example B8) In the preparation of the black powder a in the example B1, the drying by the evaporator after the treatment of the polymer dispersant was interrupted, and the moisture content was set to $2 by mass. /. Preparation of black powder K in the same manner as in the case of the black powder A: A glass substrate with a black film Κ·1 was produced in the same manner as in Example 除 except that the black powder was used, but it was confirmed after spin coating. In the solvent evaporation process, the coating film was agglomerated, and the film surface was whitened. The results are shown in Table 2. 157917.doc •98· 201219465 <<N姝t 无古· Φ瑶•πϋί Όϋί jnU Όβί •βδί Qfii Good dispersion I I pinhole dispersion poor white OD value (visible light region) 〇cn 〇^t Ο r - CN cn 〇>4.0 Ο rn 〇ΓΠ inch d 〇1 1 1 1 film thickness (μιη) ο ρ 〇〇ο ο 〇m TH 〇〇ο 〇〇〇cn Ο 〇1 〇1 〇p film black Material percentage volume fraction (% by volume) ο 〇〇*«-ί CS ο 〇Η 〇^Τ) ο 00 00 00 〇1 〇1 〇f ^ \ΰί ΦΊ ^ w ν〇r*H vn 〆U-) 1 1 1 1 1 1 Resin composition 2) 11+12 11+12 11+12 11+12 11+12 11+12 11+12 11+12 11+12 11+@ 11+12 11+12 11+12 1 11+12 1 11+12 Black powder moisture (% by mass) F"H yn f—Η **·Η 1—* in 〇〇〇〇*Ti in TH (N Dispersing dose (% by mass) 13.05 13.05 13.05 13.05 13.03 13.03 13.03 13 05 20.55 1 1 1 1 〇CS 34.05 13.12 13.26 Dispersant type Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Silver content (% by mass) m 5; ON cn ON rn Os CN οό 00 00 00 CS 〇6 00 cn OS cn 1—Η ON 1 1 1 1 ΓΠ On CO m 5; CO On Silver tin alloy + silver silver tin alloy + silver silver tin alloy + Silver silver tin alloy + silver l silver tin alloy + silver silver tin alloy + silver silver tin alloy + silver silver tin alloy + silver silver tin alloy + silver carbon black carbon black carbon black carbon black silver tin alloy + silver silver tin alloy + silver Silver tin alloy + silver silver tin alloy + silver Example B1 Example B2 Example B3 Example B4 | Example Β 5 | Example Β 6 | Example B7 | 1 Example B8 1 Example B9 Comparative Example B1 | Comparative Example B2 Comparative Example B3 Comparative Example B4 Comparative Example B5 Comparative Example Β 6 Comparative Example B7 Comparative Example B8 IS Key Love νξτ4ίΟΒν#Μ@ l(N>nZIOd?F 铋nr<<T*i3i:® Η695ι-Ή3ζανΉνΛν^^^^< ;<«^-4Β® φ^回率((Ν191-^a JadssfF孩nr^alu-l^Aa A 蘅趄令 (1 -99· 157917.doc 201219465 2500 nm 1 OD2500 0.34 0.11 0.06 0.06 0.38 0.16 0.11 0.53 0.34 1.00 ΟΛΟ 0.18 0.30 O % 45.9 77.4 86.5 87.0 41.3 69.7 77.8 29.9 46.0 9.98 40 A 65.4 49.6 2000 nm 〇〇2000 1 0.43 0.16 0.05 0.05 0.46 0.20 0.09 0.70 0.43 (N 0 .47 0.18 0.34 /—s δ ο 37.4 69.3 88.3 89.0 34.4 63.7 81.3 21.4 37.5 7.58 33.7 66.4 46.1 i 1500 nm 〇Dl500 0.73 0.30 0.09 0.09 0.76 0.33 0.12 v〇• 0.73 00 rn 0.59 0.20 0.42 't 18.8 50.2 80.7 81.1 17.5 46.7 75.0 6.92 18.7 4.19 25.8 63.2 38.1 B a 〇Pl〇64 1.06 0.45 0.12 0.12 1.08 0.46 0.14 1.57 1.06 1.80 0.75 0.28 0.55 g 's 8.69 35.8 75.3 75.4 8.34 34.4 72.3 2.69 8.66 On 17.8 53.0 28.2 io ON 〇〇950 VO 0.50 0.12 0.12 1.19 0.53 0.14 1.80 1.17 2.00 0.82 0.31 0.61 ^ P> 6.85 31.5 75.0 76.0 6.44 29.6 71.8 0.16 6.83 0.99 15.0 49.5 24.3 800 nm ODsoo inch · 0.62 0.17 0.17 00 rn 0.59 0.14 2.16 1.41 2.31 0.97 0.35 0.72 H 3.89 23.9 67.3 68.1 4.16 25.5 72.0 0.69 3.90 0.49 10.8 44.9 18.9 560 nm i OD560 3.89 1.89 0.51 0.50 3.70 1.83 0.44 5.83 3.87 3.28 1.39 0.48 1.04 /—-N 0·013 1.29 31.3 31.4 0.020 1.48 36.0 0.00015 0.014 0.050 4.11 33.5 9.12 1 Example B1 1 Example B2 1 Example B3 1 Example B4 | Example B5 Example B6 | Example B7 Example B8 | Example B9 CQ ja Comparative Example B2 Comparative Example B3 Comparative Example B4 -100- 157917.doc 201219465 Average dispersed particle size (ran) in the film 1 t 1 1 Optical density ratio OD250〇/〇D56〇0.09 0.06 0.13 0.12 0.10 0.09 0.25 0.09 1 0.08 0.30 0.29 0.39 0.29 OD2〇〇〇/OD56〇〇0.08 0.11 0.10 0.13 0.11 0.20 0.12 0.11 0.34 0.34 0.38 0.32 OD1500/OD56O 0.19 0.16 0.18 1 0.18 0.20 0.18 0.28 0.20 ! 0.18 0.42 0.42 0.42 0.40 OD1064/OD56O 0.27 0.24 0.24 024 0.29 0.25 0.32 0.27 1 0.27 0.55 0.54 0.58 ! 0.53 OD950/OD56O ! 0.30 0.27 0.24 0.24 0.32 0.29 0.32 0.31 0.30 0.61 0.59 0.64 0.59 OD800/OD560 0.36 0.33 0.34 0.33 0.37 0.32 0.32 0.37 1 036 0.70 0.70 0.73 0.70 |Example B1 |Example B2 | Example B3 Example B4 Example B5 | Example B6 Example B7 Example B8 Example B9 Comparative Example B1 Comparative Example B2 Comparative Example B3 Comparative Example B4 • 101 - 157917.doc 201219465 As shown in Table 2 to Table 4 It was confirmed that the visible light regions of the infrared-transmitting black films of Examples B1 to B9 have high light-shielding properties, but also exhibit excellent transmittance in the near-infrared region. Further, it was confirmed that even if the content of the black material in the film or the film thickness itself was changed, the dispersion particle diameter of the black material or the transmission characteristics at each wavelength did not differ, and the high visible light shielding property and the excellent infrared transmission were maintained. Therefore, it was confirmed that the density of the black filter can be adjusted by controlling the content of the black material in the film or the film thickness itself. On the other hand, in Comparative Examples B i to B4, the transmittance in the visible light region and the infrared ray region did not change much, and the transmittance in the infrared ray region was not obtained. In the case of Comparative Example B5, the amount of the polymer dispersant added was too small. ~~ The black powder could not be sufficiently dispersed, and the dispersion could not be prepared. In addition, in Example B6, the amount of the polymer dispersant added was too large. However, the dispersion state is unstable. Therefore, the black powder is agglomerated when a black medium is formed, and a good black film cannot be obtained. Further, in a relatively fine manner, the affinity between the black powder and the polymer dispersant is poor. The molecular dispersant was sufficiently coated. Therefore, the dispersibility of the black powder itself was poor, and the dispersion could not be prepared. Further, in Comparative Example B8, the amount of water in the black powder was too large, so when a black film was formed (solvent ritual) When it is white, it is presumed that the reason is that the solvent having good compatibility with the T 含有 phase is less, and conversely, the water having poor compatibility is relatively increased, so that a part of water is precipitated in the resin, and the film is Appearance looks white. (Colored light film characteristics) - Black matrix production _ 157917.doc 201219465 Each of the black paints prepared in Examples B 1 to B9 will be used as each The photo-sensitious resin composition coating liquid is used as a black matrix pattern by using a pattern mask which usually has a mesh pattern (line width of 20 μm), and the paragraph number 〇3 of the Japanese Patent Laid-Open Publication No. 2009-75446 is used. In the method for producing a black matrix described in the above, a black matrix in which the black films of the examples B1 to B9 are formed into a mesh pattern is obtained on a TFT element substrate having a corner of 10 cm. In this case, since the coating film has infrared transmittance, Therefore, in the pattern formation, the alignment of the thin line pattern with respect to the TFT elements on the substrate can be performed relatively easily. - Production and evaluation of the color filter - Black film having the above-obtained Examples B1 to B9 In the black matrix (shading image), a red color filter is formed by a color filter manufacturing method using a transfer type photosensitive resin film described in paragraphs 0158 to 0170 of JP-A-2-6251237. 'The color pattern of the specific size and shape of the blue color, and the color filter 0 is formed on the TFT element substrate, and then the color filter and the light sheet on the TFT element substrate are opposed to each other. a counter electrode substrate provided with a through-electrode through electrode, and a liquid crystal material is sealed between the color light-passing sheet and the counter electrode substrate to form a liquid crystal cell. The polarizing plate is attached to both sides of the obtained liquid crystal cell, and further A white LED as a backlight is disposed on the back side of the tft element substrate. ^ The display characteristics of the COA liquid crystal display device produced in this manner are evaluated. As a result, it is confirmed that the color filter including each of the black matrices described above is included. The liquid crystal display device exhibits good display characteristics. In particular, 157917.doc •103-201219465 can be well placed, and the position of the TFT element and the black matrix is well aligned, and the color mixture between the R, G, and B colors is prevented. Industrial Applicability The black film of the present invention and the substrate with the black film using the same can be preferably used for display elements represented by liquid crystal Hiter or money EL elements or the like, or image display using the same In the device, the infrared ray transmitting black film of the present invention has excellent light blocking properties for visible light and has a transmittance of a certain value or more for infrared rays, and thus can be preferably used for the light-emitting portion or the light-receiving portion of the infrared wireless remote controller. The sleeve is a variety of black jackets. Further, it can be applied to a black matrix or the like of the COA method or the BOA method, and therefore can be preferably used in various image display devices. BRIEF DESCRIPTION OF THE DRAWINGS An electron microscope observation photograph of a cross section of an infrared light transmitting black film obtained in Example B1. Fig. 2 is an electron microscope observation photograph of a cross section of a black film obtained in Comparative Example. 157917.doc • 104·