TW201218592A - Switching power converters and switching control circuits therefor - Google Patents
Switching power converters and switching control circuits therefor Download PDFInfo
- Publication number
- TW201218592A TW201218592A TW100115546A TW100115546A TW201218592A TW 201218592 A TW201218592 A TW 201218592A TW 100115546 A TW100115546 A TW 100115546A TW 100115546 A TW100115546 A TW 100115546A TW 201218592 A TW201218592 A TW 201218592A
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- switching
- circuit
- switch
- period
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 25
- 238000001514 detection method Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 206010011469 Crying Diseases 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000004804 winding Methods 0.000 abstract description 4
- 230000003071 parasitic effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000630 rising effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 208000032365 Electromagnetic interference Diseases 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft
- G08G5/50—Navigation or guidance aids
- G08G5/51—Navigation or guidance aids for control when on the ground, e.g. taxiing or rolling
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Dc-Dc Converters (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
201218592 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種切換控制電路,特別是有關於 種用於切換功率轉換器之切換控制電路。 【先前技術】 功竿轉換器係用來將非調整過 壓或電流源。功率轉換器通常包括具有一次側線圈盘二欠 側線圈以提供隔離的變屋器或磁性元件。輕接一次側線圈 之切換開關用來控制將能量由一次側線圈轉移至二次側線 圈。功率轉換器係操作在高頻下以使得尺寸與重量可減少。 然而,切換開關之切換操作將產生切換損失及電磁干 擾(Electro_magnetic_interference ’ EMI)。第 j 圖係示反驰 式^率轉換器(fly_backp〇werc_erter),而其相關信號 之波形則顯示於第2圖。切換開關Q丨係用來切換變塵器 τ,且控制功率由變壓器丁丨之一次側線圈Np傳送至變壓器 Ο1,:::線圈NS。切換信!虎¥〇係產生來驅動切換開關 1田 ' 通期严日 1 丁⑽切換開關Q|#切換信號 ,存在變^中。#_„Qi變為關閉時, 之能量則透過整流放電至反驰式功率轉 及在此同時’根據跨在輸出電容器Co之電愿以 生反圈數比而於MIIT1之—次側線圈心來產 ^EVr(無顯示於第1圖)。因此,一旦切換 mrr,跨在切換_仏之電“等於輸入電愿 寄生電Μ r H D的能4儲存於虛擬 …’其中’虛擬寄生電容器cQ相當於切換開 201218592 關Q,之寄生電容器。在— 能量完全地放電,且俜在/史‘# 的俊交r丨之 η〇。Ύ 儲存在寄生電容CQ器之能量則透過變 。。σ 1人側線圈Νρ來反流至輪入電壓vw。寄生電容 器Co盥變壓哭T — L 丨N 了王电谷201218592 VI. Description of the Invention: [Technical Field] The present invention relates to a switching control circuit, and more particularly to a switching control circuit for switching a power converter. [Prior Art] A power converter is used to unregulated an overvoltage or current source. Power converters typically include a transformer or magnetic element having a primary side coil disk and two underside coils to provide isolation. A switch that is connected to the primary side coil is used to control the transfer of energy from the primary side coil to the secondary side coil. The power converter operates at high frequencies so that size and weight can be reduced. However, the switching operation of the switch will result in switching loss and electromagnetic interference (Electro_magnetic_interference' EMI). Figure j shows the flyback converter (fly_backp〇werc_erter) and the waveform of the associated signal is shown in Figure 2. The switch Q丨 is used to switch the dust collector τ, and the control power is transmitted from the primary side winding Np of the transformer D to the transformer Ο1, :::: coil NS. Switching letter! Tiger ¥〇 is generated to drive the switch 1 Tian 'passage period 1 D (10) switch Q|# switch signal, there is a change. #_„ When Qi is turned off, the energy is transmitted through the rectification to the reverse power transfer and at the same time 'according to the electrical cross-over ratio of the output capacitor Co to the MIIT1 - the secondary coil core To produce ^EVr (not shown in Figure 1). Therefore, once mrr is switched, the power across the switch _仏 "equal to the input power parasitic power Μ r HD is stored in the virtual ... 'where 'virtual parasitic capacitor cQ It is equivalent to switching off the parasitic capacitor of 201218592 and Q. In - the energy is completely discharged, and the 〇 / / 史 俊 俊 俊 俊 〇 〇 〇 〇 〇.能量 The energy stored in the parasitic capacitance CQ is transmissive. . The σ 1 human side coil Νρ is reversed to the wheeling voltage vw. Parasitic capacitance Co盥 transformer pressure crying T — L 丨N Wang Wanggu
,/ τ丨之—次側線圈電感器形成一諧振槽。A 中、、巧槽頻率fR可以式子⑴來表示: f〇 r-__ 2./Γ-y^Lp X cj 二j係表示寄生電容器Cq的電容值,Lp係表示變 £盗丁1之一次側線圈電感之電感值。 π在I振週d寄生電谷器Cq的能量來回地傳送至變壓 為T1之—_欠側線圈電感器。在功率轉換H具有延遲時間 Tq ’ ^係對應寄生電容器Cq放電直到電壓%至^達一最小 值所花費的時間。延遲時間%是準證振(quasi谓咖⑷ 的期間,且其可以式子⑵來表示: τ 1 .、示上所述,假使在跨越切換開關Ql之波谷電壓期間切 換開關Q丨導通’可達成柔性切換,以便最小化功率轉換器 的切換損失與電磁干擾(EMI)。 【發明内容】 本發明提供一種切換控制電路,適用於切換功率轉換 DO切換控制電路輕接切換開關以及變壓器之輔助線圈。 切換控制電路包括波谷偵測電路、波谷鎖定電路、以及脈 寬調變(pulse width modulation,PWM)電路。波谷偵測 電路接收來自變壓器之輔助線圈之反射電壓信號,以根據 反射電壓信號來輸出控制信號。波谷鎖定電路接收控制信 201218592 號,以在第-週期與第二週期根據該 =號’其中’第二週期接續於第-週期。脈寬 電路根據判斷信號來輸出切換信號。 本發明提供—種切換功率轉換器,包括切換開關、變 ^、以及切換控制電路。切換開關受切換信號所控制。 咖具有-次側線圈以及辅助線圏。切換控制電路轉接 切換開關以及變壓器之辅助線圈。切換控制電路包括波穴 侦測電路、波谷鎖定電路、脈寬調變(ρ_ _ modulatlon ’ PWM)電路。波谷偵測電路接收來自變舞器 :辅助線圈之反射電壓信號’以根據反射電壓信號來二 控制信號。反射電壓信號係在切換開關關閉時產 阻’且電阻搞接變壓器之輔助線圈。波谷鎖定電路接收控 制信號,以在第-週期與第二週期根據控制信號來輸出判 斷信號,其中,第二週期接續於第一週期。脈寬調變電路 耗接波谷鎖定電路以接收判斷信號,且根據判斷信號來輸 出切換信號以導通切換開關。 【實施方式】 為使本發明之上述目的、特徵和優點能更明顯易僅, 下文特舉-較佳實施例’並配合所關式,作詳細說明如 下。 第3圖係表示根據本發明之切換功率轉換器。其中, 切換控制電路30包括反饋端FB、電流感測端cs、電壓偵 =端DET、輸出端0UT、電源端vcc、以及參考端gnd。 ’交壓益τ丨包括一次側線圈Np、二次側線圈Ns、以及輔助 201218592 二欠側線圈㈣切換開關心二次側線圈化透 之於屮二4 Ds與輪出電容器c。來耦接切換功率轉換器 來:接切換:!:線圈〜透過第二整流器〜與電容器cst 、卫,電路30之電源端VCC,以將電源vcc提 供至切換控制電路30。 cc^ 人多閱第3圖’切換控制電路μ之電壓偵測端det 〇 而耦接辅助線圈na,其中,當切換開關 切換控制電路3Q接收來自電阻R2之反射電壓 =虎入。切換控制電路30之輸出端ουτ產生切換信號 動切換開關Ql。電流感測電阻Rs麵接切換開關 1 <于田切換開關Q1導通時,產生切換電流信號vcs。 I々換控制電路3G之電流感測端CSM接電流感測電 s 、接收切換m號Vcs。再者,切換控制電路 ^回授端FB耗接光耗合器35,以接收-回授信號Vfb。 ^麵合器35透過電阻31與懸器32而_切換功率轉換 以輸出端’以接收跨在輸出電容器c。之輸出信號ν。並 將該輸出信號v0轉換成回授信號VfB。 參閱第3圖’當切換開關Qi關閉時,切換控制電路3〇 透過電阻^ 來接收來自變壓器Τι之辅助線圈…的 反射電壓HvA。接著,切換控制電路3G偵測在一譜振 週』内%越切換開_ 之電邀是否接近於反射電壓信號 vA之-波谷電壓(valley v〇ltage),且偵測與前一諸振週 期比杈起來是否具有相同或更多之波谷數量。當偵測到相 同或Ϊ多之波谷數量時,切換控制電路30導通切換開關 Qi。這增加了切換功率轉換器之效率且避免雜訊。 201218592 第4圖係表示根據本發明實施例之切換控制電路。 切換控制電路30包括波谷偵測電路丨〇、波谷鎖定電路2〇、 最小關閉時間電路70、解鎖電路4〇、以及脈寬調變(pulse wuith modulation,PWM)電路50。波谷读測電路1〇包括 開關1〇1 '由電晶體100與102所組成之第一電流鏡、取 樣電阻rm、以及比較器103。第一電流鏡透過開關ι〇ι及 電阻Ri與r2 (顯示於第3圖)耦接變壓器丁丨之輔助線圈 Να。當切換開關Ql關閉時,開關1〇1接收來自電阻κ之 反射電壓㈣vA ’其中’反射電壓信號Va與跨在切換開 關Q!的電壓VD成比例。反射電壓信號¥八在諧振週期在正 電壓與負電壓間交替震盪。 當反射電壓信號vA處於負電壓時,開關1〇1導通,且 第一電流1丨流經開關UH。在此時’第—電流鏡鏡根據第 一電流L鏡射成為第二電流L。接著,耦接第一電流鏡之 取樣電阻RM接收第一電流I,且產生一波峰電壓信號Vm。 波峰電壓信號vM的大小也與跨越切換開關之電壓 成比例。波谷偵測電路10更包括波峰比較器1〇3,其接收 波峰電壓㈣VM以根據波峰電壓信號^與第—臨界電壓 vT1來產生一控制信號Sc (比較結果)。 〇〇波谷鎖定電路20包括計數器200、暫存器2(M、減法 益202、以及仲裁器2〇3。計數器2〇〇接收控制信號&, 以在每一週期内計數反射電壓信號VA的波谷數量並根據 計數結果來產生計數資料(例如c〇〜。其中,計數器 2〇〇曰叶數在-目前週期内所產生之反射電壓信号虎的波谷 數里。暫存益201儲存資料r〇〜R3,其中,資料R〇〜心 8 201218592 係有關於在前一週期所產生且來自計數器200之反射電壓 ^號VA的波谷數量。減法器2〇2分別耦接計數器2〇〇之輸 出以及暫存器201之輸出,以接收資料C〇〜C3及R〇〜R3, 並對貝料CG〜C3及Rq〜R3進行減法操作,以產生減法結 果貝料D〇〜D3。仲裁器203接收資料D〇〜D3以進行仲裁, 亚輪出—判斷信號SL至PWM電路500。一旦減法結果資 料DG 〇3不小於零(正值),判斷信號&被致能(enabiecj), 這表不與4 一諸振周期比較起來,偵測到相同或更多的波 谷數量。另一方面,當減法結果資料D0〜D3小於零(負 值),判斷信號SL被禁能(disabled ),這表示當與前一 s白振週期比較起來偵測到較少的波谷數量時波谷鎖定電路 20進行鎖定。 再次參閱第4圖,最小關閉時間電路70接收回授信號 VFB,以根據回授信號Vfb來產生最小關閉時間信號。 解鎖電路40接收此最小關閉時間信號Srt以及控制信號 sc,以偵測在最小關閉時間信號Srt之最小關閉時間後之 時間且偵測介於兩波谷間之時間。一旦最小關閉時間信號 SRT之最小關閉時間後之時間長於兩波谷間之時間,則解鎖 k號Sunlock被致能。 PWM電路50包括或閘5卜及閘52、以及正反器53。 或閘51接收知鎖彳§號sUNCL〇CK以及判斷信號&。及閘a 之一輸入耦接或閘51之輸出。及閘52之另一輸入則接收 敢小關閉時間信號SRT。及閘52產生輪出信號s52。正反界 53具有時脈端Ck、資料端D、重置端R、.以及輸出端q。 時脈端ck接收控制信號sc以致能切換信號vG。資料端〇 201218592 根據或閘5丨之輸出信號以及最小關閉時間信號sRT而被上 拉致能。重置端R耦接比較器60之輸出。比較器60耦接 回授端FB以及電流感測端CS,以分別接收回授信號Vfb 以及切換電流信號Vcs以重置正反器53並關閉切換信號 第5圖係表示根據本發明實施例之最小關閉時間電路 7〇。最小關閉時間電路7〇包括第一比較胃7〇1、反相器 702、電流源iREF、電容器〇7〇、第二比較器7〇6、以及或閘 而’最小關閉時間電路70還包括三個開關7〇3、7〇4、與 705。、第一比較器701接收回授信冑VFB以及第二臨界電壓 Vn以進行比較操作。反相器7〇2耦接第一比較器7⑴之輸 出。開關703接收回授信號Vfb2受到第一比較器之輸出 所控制。開關704接收第二臨界電壓ν τ 2且透過反相器7 〇 2 而受到第:比較器之輸出所控制。開M 7G5 _開關7〇3 5二且觉到切換信號%所控帝卜電流源1REF與電容器 70如於電源VCC與接地之間。第二比較器7〇6耗接電流 :上:與電容器C7〇間的一節點’且接收參考電壓、以 ^丁^操作。或閘7Q7減第二比較器之輸出且接 刀^號Vg。或閘707產生最小關閉時間信號SRT。 錯雷表示根據本發財_之_電路4g。在解 ^ . 正反态80、開關8卜電流源82、電容器83、 遇期内而*持電路84 —起形成—偵測電路’以偵測在每一 S7> 制在ί 1日及比較S 89 —起形成一限制電路,用以限 最小_的相。-併參_7圖,在切換開關Ql 201218592 導通後,反射電壓信號vA具有交替的正電壓與負電壓。當 波峰電壓k號VM的大小大於第一臨界電壓ντι時(見第4 圖),控制信號sc被致能。來自正反器80之輸出.信號s8〇 根據控制信號sc之上升緣而被禁能(如第6圖所示),此時 開關81被關閉,且由電流源82與電容器83所組成之充電 電路來產生斜坡信號s81。接著,最大電壓信號Vm#產生 於最大維持電路84(例如為一取樣電路)之輸出,並傳送至 比較器89之負輸入端。另,根據最小導通時間信號之 脈波寬度而於比較器89之正輸入端產生另一斜坡信號 S88。一旦斜坡信號Sss大於該最大電壓信號,解鎖信 號SUNL0CK則透過另一正反器890而被致能,且在一延遲 時間後透過延遲電路891來被禁能。 第8圖係表示根據本發明實施例之波谷鎖定電路2〇之 什數态200。計數器200為一四位元之計數器,其包括四 個正反|§ 204,以根據控制信號Sc之上升緣來產生資料c〇 〜C:3。每一正反器2〇4更具有重置端R,以根據切換信號 VG之上升緣而被重置。此計數器為習知計數器且已廣泛使 用’因此在此省略敘述。 第9圖係表示根據本發明實施例之波谷鎖定電路2〇之 暫存斋201。暫存器201具有輸入端ΪΝ〇〜ΪΝ3,以根據切 換信號vG之上升緣來接收由計數器2〇〇輸出之資料c〇〜 C3。暫存益201也具有輸出端〇〇〜〇3,以輸出資料〜 R3。 第10圖係表示根據本發明實施例之減法器202。減法 态202係由複數全加器(fuii adder)所組成,用以分別接 201218592 收資料C〇〜C3與r〇〜r 祐 法結果資料〇0〜〇3與咖^^接著’輪出減 結果資料NEG被致能;而當#、、。果為正值時’減法 資料NEG被禁能。 /、,·。果為負值時’減法結果 第11圖係表示根據本發每 裁 _ 包; 結果―,且 m成凌結果貧料NECJ。 操作後輸出判斷信號St。 / 在域軏 參閱第12A圖愈筮4岡,a_u μ 電㈣電終波第峰:=號r有交替的正 V V Λ/ w 久,电邕彳5唬VM之大小與第一電壓 -ΐ:雷r V4成反比。當波峰電壓信號Vm之大小大於第 二=:=代表有波谷產生,控制信號、被致能。 生的數目。4在第=喊~被致能的數目代表波谷產 在第-週期田卜^ 前週期)P2之波谷數量大於 變為高邏輯^週期)P1之波谷數量時’判斷信號Sl is = 能)。在此時,由於最小關閉時間信 位準’切換信號Vg根據此-控制信號 上开緣而破致能。 射電V2B圖及第4圖’在切換開關Ql關閉之後,反 閉=號V具有交替的正電壓與負電壓。一旦在最小關 —週期/11 時間長於兩波谷丁响間之時間,在第 於第_鎖信號SUNLOCK將致能。在第二週期p由 此以Γ/ΓΓ數量小於第-週期。ι之波谷數量,因 。琨、仍為禁能狀態(低邏輯位準)。此時若最小 12 201218592 關閉時間信號sRT為高邏輯位準,切換信號Vg根據控制信 唬sc之上升緣而被轉為高邏輯位準(導通狀態)。 根據上述,本發明實施例之切換控制電路,在切換開 關Q!關閉時,其可根據反射電壓信號乂八來偵測跨越切換 開關Q,之電壓VD是否接近於波谷電壓。此外,一旦每一 週期的波谷數量小於對應之前一週期的波谷數量,則在偵 、·ϊ到下波谷後才致能切換信號vG,以避免來自波谷切換 的雜訊。因此,本發明實施例之切換控制電路可在操作於 不同負載的情況下時’提供較高的效率給切換功率轉換器。 本發明雖以較佳實施例揭露如上,然其並非用以限定 本發明的範圍,任何所屬技術領域巾具有通常知識者,在 不脫離本發明之精神和範圍内,當可做些許的更動與潤 ΐ ’因此本發明之保護範圍當視後附之巾請專利範圍所界 定者為準。 1 【圖式簡單說明】 第1圖表示反馳式功率轉換器; ,2圖表示第丨圖中反驰式功率轉換器之信號波形; 第3圖表示根據本發明之切換功率轉換器; 第4圖表不根據本發明實施例,第3 換器之切換控制電路; am力率轉 路丄發明一4圖中⑽控制電 根據本發明實施例,帛4圖中切換控制電 弟7圖表示第3圖中切換功率轉換器之信號波形; 13 201218592 第8圖表示根據本發明實施例,第4圖中切換控制電 路之波谷鎖定電路的計數器; 第9圖表示根據本發明實施例,第4圖中切換控制電 路之波谷鎖定電路的暫存器; 第10圖表示根據本發明實施例,第4圖中切換控制電 路之波谷鎖定電路的減法器; 第11圖係表示根據本發明實施例,第4圖中切換控制 電路之波谷鎖定電路的仲裁器;以及 第12A及12B圖表示第3圖中切換功率轉換器之信號波 【主要元件符號說明】 ’ 第1圖: C〇〜輸出電容器; CQ〜虛擬寄生電容器;, / τ 丨 - the secondary side coil inductor forms a resonant tank. A, , and the groove frequency fR can be expressed by the formula (1): f〇r-__ 2./Γ-y^Lp X cj The second j system represents the capacitance value of the parasitic capacitor Cq, and the Lp system represents the change of the stolen 1 The inductance of the primary side coil inductor. π is transferred back and forth to the energy of the parasitic electric cell Cq at the I-period d to the under-torque inductor that is transformed into T1. The power conversion H has a delay time Tq ' ^ which corresponds to the time it takes for the parasitic capacitor Cq to discharge until the voltage % to ^ reaches a minimum value. The delay time % is the period of the quasi-symmetry (quasi), and it can be expressed by the equation (2): τ 1 . , as indicated above, if the switch Q 丨 is turned on during the valley voltage across the switch Q1 A flexible switching is achieved to minimize switching loss and electromagnetic interference (EMI) of the power converter. SUMMARY OF THE INVENTION The present invention provides a switching control circuit suitable for switching a power switching DO switching control circuit, a lightly switched switch, and an auxiliary coil of a transformer. The switching control circuit includes a valley detecting circuit, a valley locking circuit, and a pulse width modulation (PWM) circuit. The valley detecting circuit receives the reflected voltage signal from the auxiliary coil of the transformer to output according to the reflected voltage signal. The control signal. The valley lock circuit receives the control signal 201218592 to continue the first period according to the = number 'where the second period is in the first period and the second period. The pulse width circuit outputs the switching signal according to the determination signal. Providing a switching power converter including a switch, a change, and a switching control circuit The switch is controlled by the switching signal. The coffee has a secondary side coil and an auxiliary line 圏. The switching control circuit switches the switching switch and the auxiliary coil of the transformer. The switching control circuit includes a hole detecting circuit, a valley locking circuit, and a pulse width adjustment. Changing (ρ_ _ modulatlon ' PWM) circuit. The valley detecting circuit receives the reflected voltage signal 'from the dancer: the auxiliary coil to control the signal according to the reflected voltage signal. The reflected voltage signal is generated when the switch is turned off' and The resistor is connected to the auxiliary coil of the transformer. The valley lock circuit receives the control signal to output the determination signal according to the control signal in the first period and the second period, wherein the second period is continued in the first period. The valley locking circuit is configured to receive the determination signal, and output a switching signal according to the determination signal to turn on the switching switch. [Embodiment] The above objects, features and advantages of the present invention are made more obvious, and the following is a preferred embodiment. The example 'with the closed type is described in detail below. Fig. 3 shows the switching work according to the present invention. The switching control circuit 30 includes a feedback terminal FB, a current sensing terminal cs, a voltage detection terminal DET, an output terminal OUT, a power supply terminal vcc, and a reference terminal gnd. 'The voltage τ 丨 includes the primary side coil Np The secondary side coil Ns and the auxiliary 201218592 two underside coils (4) switch the secondary side coil of the switch to the second 4 Ds and the output capacitor c. To couple the switching power converter: switch:!: The coil is transmitted through the second rectifier ~ and the capacitor cst, the power supply terminal VCC of the circuit 30 to supply the power supply vcc to the switching control circuit 30. cc^ people read the third picture 'switching control circuit μ voltage detecting end det The auxiliary coil na is coupled to the auxiliary coil na, wherein the switching switch switching control circuit 3Q receives the reflected voltage from the resistor R2. The output terminal ο τ of the switching control circuit 30 generates a switching signal switching switch Q1. The current sensing resistor Rs is connected to the switch 1 < When the switch Y1 is turned on, the switching current signal vcs is generated. The current sensing terminal CSM of the I 々 control circuit 3G is connected to the current sensing s, and receives the switching m number Vcs. Furthermore, the switching control circuit ^ feedback terminal FB consumes the optical combiner 35 to receive-receive the signal Vfb. The facer 35 switches the power conversion through the resistor 31 and the susceptor 32 to the output terminal ′ to receive across the output capacitor c. The output signal ν. And converting the output signal v0 into a feedback signal VfB. Referring to Fig. 3, when the changeover switch Qi is turned off, the switching control circuit 3 receives the reflected voltage HvA from the auxiliary coil of the transformer 透过 through the resistor ^. Then, the switching control circuit 3G detects whether the % switching is open to the valley voltage of the reflected voltage signal vA in a spectral period, and detects the previous oscillation period. Whether it has the same or more troughs than it does. When the same or a large number of troughs is detected, the switching control circuit 30 turns on the switching switch Qi. This increases the efficiency of switching power converters and avoids noise. 201218592 Figure 4 shows a switching control circuit in accordance with an embodiment of the present invention. The switching control circuit 30 includes a valley detecting circuit 丨〇, a valley locking circuit 2, a minimum off time circuit 70, an unlocking circuit 4A, and a pulse width modulation (PWM) circuit 50. The valley reading circuit 1 includes a first current mirror composed of transistors 100 and 102, a sample resistor rm, and a comparator 103. The first current mirror is coupled to the auxiliary winding Να of the transformer through the switch ι〇ι and the resistors Ri and r2 (shown in Fig. 3). When the switch Q1 is turned off, the switch 1〇1 receives the reflected voltage (4) vA from the resistance κ, where the reflected voltage signal Va is proportional to the voltage VD across the switching switch Q!. The reflected voltage signal ¥8 alternately oscillates between the positive voltage and the negative voltage during the resonance period. When the reflected voltage signal vA is at a negative voltage, the switch 1〇1 is turned on, and the first current 1丨 flows through the switch UH. At this time, the first-current mirror is mirrored to the second current L according to the first current L. Then, the sampling resistor RM coupled to the first current mirror receives the first current I and generates a peak voltage signal Vm. The magnitude of the peak voltage signal vM is also proportional to the voltage across the switch. The valley detecting circuit 10 further includes a peak comparator 1〇3 that receives the peak voltage (4) VM to generate a control signal Sc (comparison result) based on the peak voltage signal ^ and the first threshold voltage vT1. The chopping valley lock circuit 20 includes a counter 200, a register 2 (M, a subtraction benefit 202, and an arbiter 2〇3. The counter 2 receives the control signal & to count the reflected voltage signal VA in each cycle. The number of troughs is generated according to the counting result (for example, c〇~. Among them, the counter 2 number of leaves is in the trough number of the reflected voltage signal generated by the current period. The temporary storage 201 storage data r〇 ~R3, wherein the data R〇~心8 201218592 is related to the number of troughs generated in the previous cycle and reflected from the counter 200, VA. The subtractors 2〇2 are respectively coupled to the output of the counter 2〇〇 and The output of the register 201 receives the data C〇~C3 and R〇~R3, and performs subtraction operations on the materials CG~C3 and Rq~R3 to generate subtraction results D〇~D3. The arbiter 203 receives The data D〇~D3 are used for arbitration, and the sub-rounding-judgment signal SL to the PWM circuit 500. Once the subtraction result data DG 〇3 is not less than zero (positive value), the judgment signal & is enabled (enabiecj), which indicates Compared with the 4 vibration cycles, The same or more troughs are detected. On the other hand, when the subtraction result data D0~D3 is less than zero (negative value), the judgment signal SL is disabled (disabled), which means that when compared with the previous s white vibration period The valley lock circuit 20 locks when less number of troughs is detected. Referring again to Fig. 4, the minimum off time circuit 70 receives the feedback signal VFB to generate a minimum off time signal based on the feedback signal Vfb. The minimum off time signal Srt and the control signal sc are detected to detect the time between the two wave valleys after the minimum off time of the minimum off time signal Srt. Once the minimum off time of the minimum off time signal SRT is detected When the time is longer than the time between the two waves, the unlocking of the Sunlock k is enabled. The PWM circuit 50 includes either the gate 5 and the gate 52, and the flip-flop 53. The gate 51 receives the lock 彳§ sUNCL〇CK and the determination signal And one of the gates a is coupled to the output of the gate 51. The other input of the gate 52 receives the dare to close the time signal SRT. The gate 52 generates the rounding signal s52. The front and back boundaries 53 have The pulse terminal Ck, the data terminal D, the reset terminal R, and the output terminal q. The clock terminal ck receives the control signal sc to enable the switching signal vG. The data terminal 〇201218592 according to the output signal of the gate or the minimum off time signal The reset terminal R is coupled to the output of the comparator 60. The comparator 60 is coupled to the feedback terminal FB and the current sensing terminal CS to receive the feedback signal Vfb and the switching current signal Vcs to reset respectively. The flip-flop 53 and the switching signal are turned off. Fig. 5 shows the minimum off-time circuit 7A according to an embodiment of the present invention. The minimum off time circuit 7A includes a first comparison stomach 〇1, an inverter 702, a current source iREF, a capacitor 〇7〇, a second comparator 7〇6, and or a gate and the 'minimum off time circuit 70 further includes three Switches 7〇3, 7〇4, and 705. The first comparator 701 receives the feedback signal VFB and the second threshold voltage Vn for comparison operation. The inverter 7〇2 is coupled to the output of the first comparator 7(1). The switch 703 receives the feedback signal Vfb2 which is controlled by the output of the first comparator. Switch 704 receives the second threshold voltage ν τ 2 and is controlled by the output of the comparator: through the inverter 7 〇 2 . Turn on M 7G5 _ switch 7〇3 5 2 and feel that the switching signal % is controlled by the current source 1REF and capacitor 70 as between the power supply VCC and ground. The second comparator 7〇6 draws current: upper: and a node ’ between the capacitor C7 and receives the reference voltage to operate. Or gate 7Q7 minus the output of the second comparator and the tool ^Vg. Or gate 707 produces a minimum off time signal SRT. The wrong mine indicates that the circuit 4g is based on this wealth. In the solution ^ positive and negative 80, switch 8 current source 82, capacitor 83, during the period * holding circuit 84 together - the detection circuit 'to detect at each S7> system on ί 1 and compare S 89 is used to form a limiting circuit for limiting the phase of the smallest _. - Referring to Figure 7, after the switch Ql 201218592 is turned on, the reflected voltage signal vA has alternating positive and negative voltages. When the magnitude of the peak voltage k number VM is greater than the first threshold voltage ντι (see Fig. 4), the control signal sc is enabled. The output from the flip-flop 80. The signal s8〇 is disabled according to the rising edge of the control signal sc (as shown in Fig. 6), at which time the switch 81 is turned off and the charging consists of the current source 82 and the capacitor 83. The circuit generates a ramp signal s81. Next, the maximum voltage signal Vm# is generated at the output of the maximum sustain circuit 84 (e.g., a sampling circuit) and is passed to the negative input of the comparator 89. In addition, another ramp signal S88 is generated at the positive input of comparator 89 based on the pulse width of the minimum on-time signal. Once the ramp signal Sss is greater than the maximum voltage signal, the unlock signal SUNL0CK is enabled through the other flip-flop 890 and is disabled by the delay circuit 891 after a delay time. Figure 8 is a diagram showing the state 200 of the valley lock circuit 2 in accordance with an embodiment of the present invention. Counter 200 is a four-bit counter that includes four positive and negative | § 204 to generate data c〇 ~ C: 3 based on the rising edge of control signal Sc. Each flip-flop 2〇4 further has a reset terminal R to be reset according to the rising edge of the switching signal VG. This counter is a conventional counter and has been widely used' so the description is omitted here. Fig. 9 is a view showing the temporary storage 201 of the valley lock circuit 2 according to the embodiment of the present invention. The register 201 has input terminals ΪΝ〇~ΪΝ3 for receiving the data c〇~C3 outputted by the counter 2〇〇 according to the rising edge of the switching signal vG. The temporary storage benefit 201 also has an output port 〇〇~〇3 to output data ~ R3. Figure 10 shows a subtractor 202 in accordance with an embodiment of the present invention. The subtraction state 202 is composed of a complex adder (fuii adder) for receiving the data of 201218592, respectively, C〇~C3 and r〇~r, the result data 〇0~〇3 and the coffee ^^ then 'rounding minus The result data NEG was enabled; and when #, ,. When the value is positive, the subtraction data NEG is disabled. /,,·. If the result is a negative value, the result of the subtraction is shown in Fig. 11. The result is _ packet according to the present invention; the result is - and m is the result of NECJ. The judgment signal St is output after the operation. / In the field 軏 Refer to Figure 12A, 筮 冈 4, a_u μ electric (four) electric final wave peak: = r has alternating positive VV Λ / w long, electric 邕彳 5 唬 VM size and the first voltage - ΐ : Ray r V4 is inversely proportional. When the magnitude of the peak voltage signal Vm is greater than the second =: = represents the generation of the valley, the control signal is enabled. The number of births. 4 In the first = shouting ~ the number of energized represents the trough production in the first cycle of the first cycle, the number of troughs of P2 is greater than the number of troughs of the high logic ^ cycle) P1 'judgment signal Sl is = can). At this time, the switching signal Vg is broken due to the opening of the control signal due to the minimum off time signal. The radio V2B diagram and the fourth diagram' have a positive positive voltage and a negative voltage after the switch Q1 is turned off. Once at the minimum off - period / 11 time is longer than the time between the two waves, the first _lock signal SUNLOCK will be enabled. In the second period p, the number of Γ/ΓΓ is less than the first period. The number of ι之波谷, because.琨, still disabled (low logic level). At this time, if the minimum 12 201218592 off time signal sRT is a high logic level, the switching signal Vg is turned to a high logic level (on state) according to the rising edge of the control signal ssc. According to the above, the switching control circuit of the embodiment of the present invention can detect whether the voltage VD across the switching switch Q is close to the valley voltage according to the reflected voltage signal when the switching switch Q! is turned off. In addition, once the number of troughs per cycle is less than the number of troughs corresponding to the previous cycle, the switching signal vG is enabled after the detection, the ϊ to the lower trough to avoid noise from valley switching. Therefore, the switching control circuit of the embodiment of the present invention can provide higher efficiency to the switching power converter when operating under different loads. The present invention is disclosed in the above preferred embodiments, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art will be able to make a few changes without departing from the spirit and scope of the invention. Run ΐ 'Therefore, the scope of protection of the present invention is subject to the scope defined by the patent application. 1 [Simple description of the drawing] Fig. 1 shows a flyback power converter; Fig. 2 shows a signal waveform of a flyback power converter in Fig. 3; Fig. 3 shows a switching power converter according to the present invention; 4 diagram is not according to the embodiment of the present invention, the switching control circuit of the third converter; am force rate conversion, invention 4, (10) control power according to an embodiment of the present invention, and the switching control electric brother 7 diagram 3, the signal waveform of the switching power converter is switched; 13 201218592 FIG. 8 shows a counter of the valley locking circuit of the switching control circuit in FIG. 4 according to an embodiment of the present invention; FIG. 9 shows a fourth diagram according to an embodiment of the present invention. a register of a valley lock circuit of a medium switching control circuit; FIG. 10 shows a subtractor of a valley lock circuit of the switching control circuit of FIG. 4 according to an embodiment of the present invention; and FIG. 11 is a diagram showing an embodiment of the present invention 4 is an arbiter for switching the valley locking circuit of the control circuit; and 12A and 12B are diagrams showing the signal wave of the switching power converter in FIG. 3 [Major component symbol description] 'Figure 1: C〇~transmission Out capacitor; CQ~virtual parasitic capacitor;
Ds〜整流器;Ds~rectifier;
Ns〜二次側線圈 Tl〜變壓器; VG〜切換信號; V〇〜輸出信號; NP〜一次側線圈; Q1〜切換開關; VD〜電壓; VIN〜輸入電壓; 第2圖: fR〜諧振槽頻率 T0N〜導通期間; VD〜電壓; T d〜放電時間; Tq〜延遲時間; VG〜切換信號;Ns ~ secondary side coil Tl ~ transformer; VG ~ switching signal; V 〇 ~ output signal; NP ~ primary side coil; Q1 ~ switch; VD ~ voltage; VIN ~ input voltage; Figure 2: fR ~ resonant tank frequency T0N~ conduction period; VD~ voltage; T d~ discharge time; Tq~ delay time; VG~ switching signal;
VlN〜輸入電壓; VR〜反射電壓信號; 第3圖: 14 201218592 30〜 / 切換控制電路; 31〜 電阻; 32〜 穩壓器; 35〜 光耦合器; C〇〜 輸出電容器; Cq〜 虛擬寄生電容器 Cst^ -電容器; CS〜 •電流感測端;‘ DA〜第二整流器; Ds〜 整流器; DET 〜電壓偵測端; FB〜 •反饋端; GNE >〜參考端; Na〜 輔助線圈; Np〜 一次側線圈; Ns〜 二次側線圈; OUT 〜輸出端; 〜切換開關; Ri ' R2〜電阻; Rs〜 電流感測電阻; 丁广 變壓器; VA〜 •反射電壓信號; Vcc" 〜電源; Vcs" 〜切換電流信號; Vfb" -回授信號; VD〜 •電壓; vG〜 /切換信號; VIN- -輸入電壓; V〇〜 -輸出信號; vcc 〜電源端; 第4 圖: 10〜 波谷偵測電路; 20〜 波谷鎖定電路; 40〜 解鎖電路; 50〜脈寬調變(PWM) 51〜 或閘; 52〜 及閘; 53〜 正反器; 60〜 比較器; 70〜 最小關閉時間電路 ;101- -開關; 100 、102〜電晶體; 103〜比較器; 200, -計數器; 201〜暫存器; 202- 〜減法器; 203- -仲裁器; 15 201218592 ck〜時脈端; CS〜電流感測端; D〜資料端; DET〜電壓偵測端; FB〜反饋端; 11〜第一電流; 工2/〜1弟二電流, R〜重置端; Rm〜取樣電阻; Q〜輸出端; s52〜輸出信號; Sc〜控制信號; sL〜判斷信號; SRT〜最小關閉時間信號 SuNLOCK〜解鎖信號, VA〜反射電壓信號; Vcc〜電源; VFB〜回授信號; V G〜切換信號; Vti〜第一臨界電壓; vM〜波峰電壓信號; 第5圖: 70〜最小關閉時間電路;701〜第一比較器; 702〜反相器; 703、704、705〜開關; 706〜第二比較器; 707〜或閘;VlN~ input voltage; VR~reflected voltage signal; Fig. 3: 14 201218592 30~ / switching control circuit; 31~ resistor; 32~ regulator; 35~ optocoupler; C〇~ output capacitor; Cq~ virtual parasitic Capacitor Cst^-capacitor; CS~• current sensing terminal; 'DA~second rectifier; Ds~rectifier; DET~voltage detection terminal; FB~•feedback terminal; GNE >~reference terminal; Na~ auxiliary coil; Np~ primary side coil; Ns~ secondary side coil; OUT ~ output terminal; ~ switcher; Ri ' R2 ~ resistor; Rs ~ current sense resistor; Ding Guang transformer; VA ~ • reflected voltage signal; Vcc"; Vcs " ~ switch current signal; Vfb " - feedback signal; VD ~ • voltage; vG ~ / switching signal; VIN - - input voltage; V 〇 ~ - output signal; vcc ~ power supply; 4: 10~ Valley detection circuit; 20~ valley lock circuit; 40~ unlock circuit; 50~ pulse width modulation (PWM) 51~ or gate; 52~ and gate; 53~ flip-flop; 60~ comparator; Small off time circuit; 101--switch; 100, 102~ transistor; 103~ comparator; 200, - counter; 201~ register; 202-~ subtractor; 203--arbiter; 15 201218592 ck~ Pulse terminal; CS ~ current sensing terminal; D ~ data terminal; DET ~ voltage detection terminal; FB ~ feedback terminal; 11 ~ first current; 2 / ~ 1 brother two current, R ~ reset terminal; Rm ~ Sampling resistor; Q~output; s52~output signal; Sc~ control signal; sL~judgment signal; SRT~minimum off time signal SuNLOCK~unlock signal, VA~reflected voltage signal; Vcc~power supply; VFB~ feedback signal; VG~switching signal; Vti~first threshold voltage; vM~peak voltage signal; Figure 5: 70~minimum off time circuit; 701~first comparator; 702~inverter; 703, 704, 705~ switch; 706~ second comparator; 707~ or gate;
Iref〜電流源, C70〜電容裔,Iref~ current source, C70~capacitor,
Srt〜最小關閉時間信號;Vcc〜電源; vFB〜回授信號; V G〜切換信號; Vref〜參考電壓, vT2〜第二臨界電壓; 第6圖: 40〜解鎖電路; 80〜正反.器; 81〜開關; 82〜電流源; 83〜電容器; 84〜最大維持電路; 16 201218592 85〜反相器; 86〜開關; 87〜電流源; 88〜電容器; 89〜比較器; 890〜正反器; 891〜延遲電路; S80〜輸出信號; $81、〜斜坡信號; Sc〜控制信號; sRT〜最小關閉時間信號; SuNLOCK〜解鎖信號; Vcc〜電源, VMAx〜最大電壓信號; vG〜切換信號; 第7圖: Q、泛〜正反器80之輸出 . Sc〜控制信號; sRT〜最小關閉時間信號 Ssi、S88〜斜坡信號; T〇ff,min〜最小關閉時間; Va〜反射電壓信號; Vmax〜最大電壓信號; V G〜切換信號; 第8圖: 200〜計數器; 204〜正反器; C〇...C3〜資料; Sc〜控制信號; Vd〜電壓; V G〜切換信號; 第9圖: 201〜暫存器; Co〜c3〜資料; IN0...IN3〜輸入端; 0〇〜03〜輸出端; R〇〜R3〜輸出資料; VG〜切換信號; 201218592 第ίο圖: 202〜減法器; C〇〜C3〜資料; D〇...D3〜減法結果資料;R〇〜Κ·3〜輸出資料; NEG〜減法結果資料; 第11圖: 90〜或閘; 91〜反或閘; 203〜仲裁器; D〇... D3〜減法結果資料; NEG〜減法結果資料; SL〜判斷信號; 第12A圖: P1〜第一週期(前一週期); P2〜第二週期(目前週期);Srt ~ minimum off time signal; Vcc ~ power supply; vFB ~ feedback signal; VG ~ switching signal; Vref ~ reference voltage, vT2 ~ second threshold voltage; Figure 6: 40 ~ unlock circuit; 80 ~ forward and reverse; 81~switch; 82~current source; 83~capacitor; 84~maximum sustain circuit; 16 201218592 85~inverter; 86~switch; 87~current source; 88~capacitor; 89~ comparator; 890~ forward and reverse ; 891 ~ delay circuit; S80 ~ output signal; $81, ~ ramp signal; Sc ~ control signal; sRT ~ minimum off time signal; SuNLOCK ~ unlock signal; Vcc ~ power, VMAx ~ maximum voltage signal; vG ~ switching signal; 7: Q, the output of the general-reverse device 80. Sc~ control signal; sRT~minimum off time signal Ssi, S88~ramp signal; T〇ff, min~minimum off time; Va~reflected voltage signal; Vmax~ Maximum voltage signal; VG~switching signal; Figure 8: 200~ counter; 204~ forward and reverse; C〇...C3~ data; Sc~ control signal; Vd~ voltage; VG~ switching signal; Figure: 201~ register; Co~c3~ data; IN0...IN3~ input; 0〇~03~output; R〇~R3~ output data; VG~switch signal; 201218592 ίο图: 202 ~ subtractor; C〇~C3~ data; D〇...D3~subtraction result data; R〇~Κ·3~ output data; NEG~subtraction result data; Figure 11: 90~ or gate; 91~反Or gate; 203~arbiter; D〇... D3~ subtraction result data; NEG~subtraction result data; SL~judgment signal; 12A diagram: P1~first period (previous period); P2~second period (current cycle);
Sc〜控制信號; 〜判斷信號; SRT〜最小關閉時間信號;; vG〜切換信號; vM〜波峰電壓信號;Sc~ control signal; ~ judgment signal; SRT ~ minimum off time signal;; vG ~ switching signal; vM ~ peak voltage signal;
Toff,min〜最小關閉時間; VT1〜第一臨界電壓; VVl/^V2^V3^V4'^"第·電壓, 第12B圖: P1〜第一週期(前一週期); P2〜第二週期(目前週期); sc〜控制信號; sL〜判斷信號; 18 201218592 sRT〜最小關閉時間信號;Toff, min~minimum off time; VT1~first threshold voltage; VVl/^V2^V3^V4'^"第电压,第12B图: P1~1st cycle (previous cycle); P2~2 Cycle (current cycle); sc~ control signal; sL~judgment signal; 18 201218592 sRT~minimum off time signal;
SuNLOCK〜解鎖信號;VA〜反射電壓信號; VG〜切換信號; VM〜波峰電壓信號;SuNLOCK~unlock signal; VA~reflected voltage signal; VG~switching signal; VM~peak voltage signal;
Toff,min〜最小關閉時間;VT1〜第一臨界電壓; Vvi、Vv2、Vv3、Vv4 〜第一電壓;Toff, min~minimum off time; VT1~first threshold voltage; Vvi, Vv2, Vv3, Vv4~first voltage;
Tvalley^ 波 。 19Tvalley^ wave. 19
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35372910P | 2010-06-11 | 2010-06-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201218592A true TW201218592A (en) | 2012-05-01 |
TWI416852B TWI416852B (en) | 2013-11-21 |
Family
ID=45098366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100115546A TWI416852B (en) | 2010-06-11 | 2011-05-04 | Switching power converter and its switching control circuit |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI416852B (en) |
WO (1) | WO2011156027A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI493844B (en) * | 2012-11-29 | 2015-07-21 | Power Forest Technology | Power converter control circuit |
TWI711255B (en) * | 2019-08-29 | 2020-11-21 | 大陸商昂寶電子(上海)有限公司 | System and method for reducing power loss of power converter |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9171472B2 (en) | 2013-04-09 | 2015-10-27 | Honeywell International Inc. | System and method for displaying symbology on an in-trail procedure display graphically and textually representative of a vertical traffic scenario and air-traffic-control negotiation |
CN105788371B (en) * | 2016-03-14 | 2017-12-22 | 中国民航大学 | A kind of busy airport runway that can improve takes off the Systematization method of utilization rate |
TWI605256B (en) * | 2016-10-04 | 2017-11-11 | 國立中山大學 | Valley detector for flyback convertor |
US12361834B2 (en) * | 2020-02-03 | 2025-07-15 | Honeywell International Inc. | Display of traffic information |
CN112329101A (en) * | 2020-10-30 | 2021-02-05 | 中国航空国际建设投资有限公司 | Method for evaluating clearance of airport runway |
US12300112B2 (en) | 2022-11-19 | 2025-05-13 | Arinc Incorporated | Pre-departure sequencing using multi-agent reinforcement learning |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6195609B1 (en) * | 1993-09-07 | 2001-02-27 | Harold Robert Pilley | Method and system for the control and management of an airport |
US7667647B2 (en) * | 1999-03-05 | 2010-02-23 | Era Systems Corporation | Extension of aircraft tracking and positive identification from movement areas into non-movement areas |
TWI277741B (en) * | 2005-08-16 | 2007-04-01 | System General Corp | Valley voltage detection apparatus |
US7248487B1 (en) * | 2006-06-01 | 2007-07-24 | Cambridge Semiconductor Limited | Switch mode power supply controllers |
US7742320B2 (en) * | 2007-05-07 | 2010-06-22 | Infineon Technologies Ag | Method and apparatus for regulating power in a flyback converter |
US8054656B2 (en) * | 2008-04-11 | 2011-11-08 | System General Corp. | Switching control circuit for a switching power converter |
US20100100257A1 (en) * | 2008-10-22 | 2010-04-22 | Chris Brinton | Visual airport surface and terminal area data system |
-
2011
- 2011-03-09 WO PCT/US2011/027694 patent/WO2011156027A1/en active Application Filing
- 2011-05-04 TW TW100115546A patent/TWI416852B/en active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI493844B (en) * | 2012-11-29 | 2015-07-21 | Power Forest Technology | Power converter control circuit |
TWI711255B (en) * | 2019-08-29 | 2020-11-21 | 大陸商昂寶電子(上海)有限公司 | System and method for reducing power loss of power converter |
US11532983B2 (en) | 2019-08-29 | 2022-12-20 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for reducing power loss of power converters |
US12057764B2 (en) | 2019-08-29 | 2024-08-06 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for a controller for reducing power loss of power converters |
Also Published As
Publication number | Publication date |
---|---|
WO2011156027A1 (en) | 2011-12-15 |
TWI416852B (en) | 2013-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201218592A (en) | Switching power converters and switching control circuits therefor | |
US20210328516A1 (en) | Output-side controller with switching request at relaxation ring extremum | |
CN102208871B (en) | Switching power converter and its switching control circuit | |
JP5694494B2 (en) | Method and apparatus for controlling the maximum output power of a power converter | |
CN101944858B (en) | power converter | |
CN101295872B (en) | System and method for providing overcurrent and overpower protection for power converter | |
JP5532794B2 (en) | Synchronous rectification control device, control method, and isolated switching power supply | |
EP2176944B1 (en) | Standby operation of a resonant power converter | |
JP4620151B2 (en) | Non-contact power transmission circuit | |
CN103036396B (en) | Power converter and integrated circuit controller | |
JP5699470B2 (en) | Switching power supply | |
CN101741246A (en) | Over power compensation in switched mode power supplies | |
JP5170241B2 (en) | Isolated switching power supply | |
Liu | High efficiency optimization of LLC resonant converter for wide load range | |
CN107134919B (en) | Reducing audible noise in a power converter | |
TW201208259A (en) | Regulator and synchronized pulse generator thereof | |
Huang et al. | Analytical switching cycle modeling of bidirectional high-voltage flyback converter for capacitive load considering core loss effect | |
US20130194847A1 (en) | Universal power conversion methods and systems | |
TW202234811A (en) | Reduced power consumption for llc resonant converter under light load | |
KR20180118138A (en) | High Frequency Multilevel Rectification | |
CN103973117A (en) | Voltage sensing in voltage converter | |
Li et al. | High performance dc-dc converter for wide voltage range operation | |
TWI489759B (en) | Power conversion system and method | |
JP5857702B2 (en) | Switching power supply | |
CN101083400A (en) | Power supply device for an electronic device |