TW201218426A - Vertical electrode structure LED and manufacturing method thereof - Google Patents
Vertical electrode structure LED and manufacturing method thereof Download PDFInfo
- Publication number
- TW201218426A TW201218426A TW99137113A TW99137113A TW201218426A TW 201218426 A TW201218426 A TW 201218426A TW 99137113 A TW99137113 A TW 99137113A TW 99137113 A TW99137113 A TW 99137113A TW 201218426 A TW201218426 A TW 201218426A
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor layer
- type semiconductor
- substrate
- electrode structure
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims abstract description 82
- 239000000758 substrate Substances 0.000 claims description 49
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 12
- 239000010931 gold Substances 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 238000001312 dry etching Methods 0.000 claims description 3
- 230000005496 eutectics Effects 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- -1 inscription Chemical compound 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 229910002601 GaN Inorganic materials 0.000 description 8
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 8
- 239000010949 copper Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910001080 W alloy Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 210000004508 polar body Anatomy 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
201218426 六 [0001] 發明說明: 【發明所屬之技術領域】 本發明涉及一種發光二極體及其製造方法,尤其涉及一 種特殊波段光線的垂直電極結構發光二極體及其製造方 法。 [0002] ❹ [0003] 〇 【先前技術】 垂直結構發光二極體一般包括一基板 '基板上的p型半導 體層、發光層、η型半導體層及半導體層上形成的電 極。由於η型半導體層如氮化鎵層在生長過程中至少大於 4微米其才能具有較隹的晶格品質。然’當該垂直結構發 光二極體應甩於特殊波段光線尤其是近紫沐光(波長為 365nm-420nm) ’垂直結構奋光二極體發出的光線存在 容易被η型半導體層吸收,如果η型半導體層的厚度過大 ,容易出現光線被過多吸收的問題。 【發明内容】 有鑒於此,有必要提供一種具有較佳品質為氮化鎵層且 具有較佳出光效率的垂直結構發光二極體及其製造方法 [0004] 一種垂直電極結構發光二極體,包括基板、設置在基板 上的Ρ型半導體層、η型半導體層、及設置於ρ型半導體層 與η型半導體層之間的發光層,該η型半導體層為氮化鎵 層,該η型半導體層的厚度的範圍在1. 5微米至3. 5微米之 間。 一種垂直電極結構發光二極體的製造方法,其包括:提 供一襯底’在該襯底上依次生長η型半導體層、發光層及 099137113 表單編號Α0101 第3頁/共17頁 0992064731-0 [0005] 201218426 襯底的P型半導體層;提供一導電的基板,該基板的一表 面設有P型電極,將襯底、η型半導體層、發光層及p型半 導體層倒置安置在基板的另一表面上,並使Ρ型半導體層 與該基板固定連接;將襯底與η型半導體層分離;通過幹 式蝕刻或者濕式蝕刻制程將η型半導體層的厚度減少至 1.5微米至3. 5微米之間;及在η型半導體層上製作η型電 極。 [0006] 通過對該η型半導體層的厚度的設置,使得該垂直電極結 構發光二極體具有較佳的出光面積及自我吸收效率。 【實施方式】 [0007] 下面將結合附圖對本發明實施例作進一步的詳細說明。 [0008] 請參閱圖1及圖2,本發明實施方式提供的垂直電極結構 發光二極體100包括一基板10及形成在基板10上的氮化鎵 基半導體發光結構20。該氮化鎵基半導體發光結構20包 括一置於基板10上的Ρ型半導體層21形成在該ρ型半導體 層21上的發光層22以及形成在所述發光層22上遠離基板 10的η型半導體層23。所述η型半導體層23還設有η型的 第一電極30,基板10背面鍍有ρ型的第二電極80。 [0009] 所述基板10的材料為導電材料,可以為碳化矽(SiC)、矽 (Si)、砷化鎵(GaAs)、銅(Cu)、銅鎢合金(Cu/W)、鍺 (Ge)、或鎳(Ni)等導電基底。在其他實施例中,該基板 10與P型半導體層21之間設置有一反射層(圖未示),該 反射層的材料可以為錄(Ni)、銀(Ag)、銘(A1)、金 (Au)或者錄、銀、銘、金之任意兩種材料或者兩種以 上材料的合金。該反射層可以是由分別連接基板10、ρ型 099137113 表單編號A0101 第4頁/共17頁 0992064731-0[Technical Field] The present invention relates to a light-emitting diode and a method of manufacturing the same, and, in particular, to a vertical electrode structure light-emitting diode of a special wavelength band and a method of manufacturing the same. [0002] 先前 [Prior Art] A vertical structure light-emitting diode generally includes a substrate, a p-type semiconductor layer on a substrate, a light-emitting layer, an n-type semiconductor layer, and an electrode formed on the semiconductor layer. Since an n-type semiconductor layer such as a gallium nitride layer is at least larger than 4 μm during growth, it can have a relatively good lattice quality. However, when the vertical structure of the light-emitting diode should be in a special band of light, especially near-violet light (wavelength is 365nm-420nm), the light emitted by the vertical structure of the light-emitting diode is easily absorbed by the n-type semiconductor layer, if η The thickness of the type semiconductor layer is too large, and there is a problem that light is excessively absorbed. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a vertical structure light-emitting diode having a preferred quality of gallium nitride layer and having better light-emitting efficiency and a method for fabricating the same. [0004] A vertical electrode structure light-emitting diode, a substrate, a Ρ-type semiconductor layer disposed on the substrate, an n-type semiconductor layer, and a light-emitting layer disposed between the p-type semiconductor layer and the n-type semiconductor layer, wherein the n-type semiconductor layer is a gallium nitride layer, the n-type 5微米之间。 The thickness of the semiconductor layer between 1. 5 microns to 3. 5 microns. A method for fabricating a vertical electrode structure light-emitting diode, comprising: providing a substrate on which an n-type semiconductor layer, a light-emitting layer, and a 099137113 form number Α0101, page 3/17 pages 0992064731-0 are sequentially grown on the substrate. 0005] 201218426 a P-type semiconductor layer of a substrate; providing a conductive substrate, a surface of the substrate is provided with a P-type electrode, and the substrate, the n-type semiconductor layer, the light-emitting layer and the p-type semiconductor layer are placed upside down on the substrate a surface of the n-type semiconductor layer is reduced to a thickness of 1.5 micron to 3.5 by a dry etching or a wet etching process. Between the micrometers; and an n-type electrode is formed on the n-type semiconductor layer. By setting the thickness of the n-type semiconductor layer, the vertical electrode structure light-emitting diode has a better light-emitting area and self-absorption efficiency. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, a vertical electrode structure LED assembly 100 according to an embodiment of the invention includes a substrate 10 and a gallium nitride based semiconductor light emitting structure 20 formed on the substrate 10. The gallium nitride based semiconductor light emitting structure 20 includes a light emitting layer 22 formed on the p-type semiconductor layer 21 by a germanium-type semiconductor layer 21 disposed on the substrate 10, and an n-type formed on the light emitting layer 22 away from the substrate 10. Semiconductor layer 23. The n-type semiconductor layer 23 is further provided with an n-type first electrode 30, and a back surface of the substrate 10 is plated with a p-type second electrode 80. [0009] The material of the substrate 10 is a conductive material, which may be tantalum carbide (SiC), bismuth (Si), gallium arsenide (GaAs), copper (Cu), copper-tungsten alloy (Cu/W), germanium (Ge). Or a conductive substrate such as nickel (Ni). In other embodiments, a reflective layer (not shown) is disposed between the substrate 10 and the P-type semiconductor layer 21, and the material of the reflective layer can be recorded (Ni), silver (Ag), Ming (A1), gold. (Au) Any two materials of recording, silver, Ming, and gold or alloys of two or more materials. The reflective layer may be connected to the substrate 10, respectively, p type 099137113 Form No. A0101 Page 4 / Total 17 Page 0992064731-0
201218426 半導體層21的兩層金屬共晶而成D201218426 Two layers of metal eutectic of semiconductor layer 21
[0010] ο [0011] ❹ 所述η型半導體層23為η型氮化鎵層。當本發明垂直電極 結構發光二極體100工作時,所述η型半導贌層23其厚度Η 越小,貝彳η型半導體層23對光的自我吸收越少,使得垂直 電極結構發光二極體100的光特性顯示越好;然而11型半 導體層23其厚度Η越小,垂直電極結構發光二·極體1〇〇的 電流擴散長度Ls就越小,使得垂直電極結構發光一極體 100的發光面積S越小,從而影響了垂直電梯結構發光一 極體100的發光效率。經過實驗驗證,當所述11空半導體 層23的厚度Η的範圍在1.5微米至3. 5微米之間時,可以 使得垂直電極結構發光二極—I 00的光電特性顯示較好因 此發光效率可以最佳化。優選地:該n型半導體層23的厚 度Η範圍在2微米至2. 5微米之間為最佳冗厚度。在本實施 例中’該η型半導體層23的厚度η為2. 5律米。 請一併參閱圖3,為本發明垂直電極結構發光二極體1〇〇 在其η型半導體層23的厚度Η&〇到4微米變化時垂直電極 結構發光二極聽的综合發光敢率C的變化圖。其中線3 表示厚度Η從0到4微米變化時垂直電極結構發光二極體 100的發光面積S與厚度Η的比例關係;線1)表示厚度 到4微米變化時垂直電極結構發光二極體1〇〇的自我吸收 效率Q與厚度Η的比例關係;線0則表示η型半導體層23的 厚度Η從〇到4微米變化時,垂直電極結構發光二極體1〇〇 的綜合發光效率C與厚度Η的比例關係。由圖中可知,當 厚度Η在1. 5微米至3. 5微米之間取值時,垂直電極結構發 光二極體100的綜合發先效率具有較高的值;當厚度}1在2 099137113 表單編號Α0101 第5頁/共17 頁 0992064731-0 201218426 微米至2. 5微米之間取值時,綜合發光效率具有最優化的 值。 [0012] 本發明垂直電極結構發光二極體1 00的製造方法包括以下 步驟: [0013] 首先,請參閱圖4,在襯底50上依次生長η型半導體層23a 、η型半導體層23a上的發光層22及遠離襯底50的p型半 導體層21。其中該襯底50的材料為藍寶石(Sapphire), 該η型半導體層23a為η型氮化鎵層。為了生長具有較佳的 晶格品質,此時η型半導體層23的厚度大於或等於4微米 〇 [0014] 其次,請參閱圖5,提供一基板10及其背面的ρ型第二電 極8 0 ’該基板10的材料為導電材料,可以為碳化砍 (SiC)、矽(Si)、砷化鎵(GaAs)、銅(Cu)、銅鎢合金 (Cu/W)、鍺(Ge)、或鎳(Ni)等導電基底;將襯底50、η 型半導體層23、發光層22及ρ型半導體層21倒置安置在基 板10上,使Ρ型半導體層21固定在基板10上。在其他實施 例中,可以在基板10上、ρ型半導體層21上分別鍵一層金 屬,然後通過共晶將兩層金屬結合在一起,從而將Ρ型半 導體層21固定在基板10並同時形成一反射層。該反射層 的材料可以為錄(Ni)、銀(Ag)、銘(Α1)、金(Au) 或者鎳、銀、銘、金之任意兩種材料或者兩種以上材料 的合金。 [0015] 接下來,請參閱圖6,通過鐳射剝離、化學剝離或者機械 研磨或者其他方法使襯底50與η型半導體層23a分離,此 099137113 表單編號A0101 第6頁/共17頁 0992064731-0 201218426 時η型半導體層23a的厚度大於4微米。 [0016] 然後,如@7所示,通崎絲刻或者 型半導體層仏的厚度Η減少至U微米至3.如= 未之間。在本實_巾,咐導體層_厚 微米。 二b [0017] 最後’請再次參考圖1, 一電極30。 在η型半導體層23上製作n型的第[0011] The n-type semiconductor layer 23 is an n-type gallium nitride layer. When the vertical electrode structure light-emitting diode 100 of the present invention is operated, the thickness Η of the n-type semiconductor layer 23 is smaller, and the self-absorption of light by the beryllium-n-type semiconductor layer 23 is less, so that the vertical electrode structure emits light. The better the light characteristic of the polar body 100 is displayed; however, the smaller the thickness Η of the 11-type semiconductor layer 23, the smaller the current diffusion length Ls of the vertical electrode structure of the light-emitting diode 1 ,, so that the vertical electrode structure emits a polar body. The smaller the light-emitting area S of 100, the more the luminous efficiency of the vertical elevator structure light-emitting body 100 is affected. It is experimentally verified that when the thickness Η of the 11-semiconductor layer 23 is in the range of 1.5 μm to 3.5 μm, the photoelectric characteristics of the vertical electrode structure light-emitting diode-I 00 can be made better, and thus the luminous efficiency can be improved. optimization. Preferably, the n-type semiconductor layer 23 has a thickness Η ranging from 2 μm to 2.5 μm. 5的米米。 The thickness η of the n-type semiconductor layer 23 is 2. 5 law meters. Please refer to FIG. 3 together, which is a comprehensive luminous brilliance rate of the vertical electrode structure of the vertical electrode structure of the light-emitting diode 1 in the thickness of the n-type semiconductor layer 23 when the thickness of the n-type semiconductor layer 23 is changed to 4 micrometers. Change chart. Wherein the line 3 represents a proportional relationship between the light-emitting area S of the vertical electrode structure light-emitting diode 100 and the thickness Η when the thickness Η varies from 0 to 4 μm; the line 1) represents the vertical electrode structure light-emitting diode 1 when the thickness is changed to 4 μm. The ratio of the self-absorption efficiency Q of the crucible to the thickness Η; the line 0 indicates the total luminous efficiency C of the vertical electrode structure of the light-emitting diode 1〇〇 when the thickness η of the n-type semiconductor layer 23 varies from 〇 to 4 μm. The proportional relationship of thickness Η. As can be seen from the figure, when the thickness Η is between 1.5 μm and 3.5 μm, the integrated initial efficiency of the vertical electrode structure LED 100 has a higher value; when the thickness is 1 1 at 2 099137113 Form No. Α0101 Page 5 of 17 0992064731-0 201218426 When the value is between microns and 2. 5 microns, the overall luminous efficiency has an optimum value. [0012] The manufacturing method of the vertical electrode structure light-emitting diode 100 of the present invention includes the following steps: First, referring to FIG. 4, the n-type semiconductor layer 23a and the n-type semiconductor layer 23a are sequentially grown on the substrate 50. The light emitting layer 22 and the p-type semiconductor layer 21 away from the substrate 50. The material of the substrate 50 is sapphire, and the n-type semiconductor layer 23a is an n-type gallium nitride layer. In order to grow with better lattice quality, the thickness of the n-type semiconductor layer 23 is greater than or equal to 4 micrometers. [0014] Next, referring to FIG. 5, a substrate 10 and a p-type second electrode 80 on the back thereof are provided. The material of the substrate 10 is a conductive material, which may be carbonized chopped (SiC), bismuth (Si), gallium arsenide (GaAs), copper (Cu), copper-tungsten alloy (Cu/W), germanium (Ge), or A conductive substrate such as nickel (Ni); the substrate 50, the n-type semiconductor layer 23, the light-emitting layer 22, and the p-type semiconductor layer 21 are placed upside down on the substrate 10, and the germanium-type semiconductor layer 21 is fixed on the substrate 10. In other embodiments, a metal layer may be respectively bonded on the substrate 10, the p-type semiconductor layer 21, and then the two layers of metal may be bonded together by eutectic, thereby fixing the germanium-type semiconductor layer 21 to the substrate 10 and simultaneously forming a Reflective layer. The material of the reflective layer may be any one of two materials or two or more materials of Ni (Ni), Silver (Ag), Ming (Α1), Gold (Au) or nickel, silver, Ming, and gold. [0015] Next, referring to FIG. 6, the substrate 50 is separated from the n-type semiconductor layer 23a by laser lift-off, chemical peeling or mechanical polishing or other methods, this 099137113 Form No. A0101 Page 6 / Total 17 Page 0992064731-0 The thickness of the n-type semiconductor layer 23a is greater than 4 μm at 201218426. [0016] Then, as indicated by @7, the thickness Η of the Tosaki wire-type or type semiconductor layer Η is reduced to U micron to 3. For example, no. In this real _ towel, 咐 conductor layer _ thick micron. b [0017] Finally, please refer again to FIG. 1, an electrode 30. Making an n-type on the n-type semiconductor layer 23
[0018] 綜上所述,本發明符舍,明專利要件,爰依法提出專利 申請。惟,以上所述者僅為本發明之較佳實施例,舉凡 熟悉本案技藝之人士,在爰依本發明精神所作之等效修 飾或變化,皆應涵蓋於以下之申請專利範圍内。 【圖式簡單說明】 [0019] 圖1為本發明實施方式中垂直電極結構發光二極體的剖面 示意圖。 ❾ [0020] 圖2為圖1中垂直電極結構發光二極體的俯視圖。 [0021]圖3為本發明垂直電極結構發光二極體的综合發光效率與 η型半導體層的厚度的關係圖。 [0022] 圖4至圖7為本發明垂直電極結構發光二極體的製造過程 【主要元件符號說明】 [0023] 垂直電極結構發光二極體:1〇〇 [〇〇24]基板:10 099137113 表單編號Α0101 第7頁/共17頁 0992064731-0 201218426 [0025] 氮化鎵基半導體發光結構:20 [0026] p型半導體層:21 [0027] 發光層:22 [0028] η型半導體層:23、2 3a [0029] 第一電極:3 0 [0030] 厚度:Η [0031] 電流擴散長度:Ls[0018] In summary, the invention is in accordance with the requirements of the patent, and the patent application is filed according to law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art of the present invention should be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0019] FIG. 1 is a schematic cross-sectional view showing a vertical electrode structure light-emitting diode according to an embodiment of the present invention. 2 is a top plan view of the vertical electrode structure light emitting diode of FIG. 1. 3 is a graph showing the relationship between the overall luminous efficiency of the vertical electrode structure light-emitting diode and the thickness of the n-type semiconductor layer of the present invention. 4 to FIG. 7 are manufacturing processes of a vertical electrode structure light-emitting diode according to the present invention. [Main component symbol description] [0023] Vertical electrode structure light-emitting diode: 1〇〇[〇〇24] substrate: 10 099137113 Form No. 1010101 Page 7 of 17 0992064731-0 201218426 [0025] Gallium nitride-based semiconductor light-emitting structure: 20 [0026] p-type semiconductor layer: 21 [0027] Light-emitting layer: 22 [0028] n-type semiconductor layer: 23, 2 3a [0029] First electrode: 3 0 [0030] Thickness: Η [0031] Current diffusion length: Ls
[0032] 自我吸收效率:Q[0032] Self-absorption efficiency: Q
[0033] 發光面積:S[0033] Light-emitting area: S
[0034] 襯底:50 [0035] 第二電極:80[0034] Substrate: 50 [0035] Second electrode: 80
[0036] 綜合發光效率:C 099137113 表單編號A0101 第8頁/共17頁 0992064731-0[0036] Comprehensive luminous efficiency: C 099137113 Form No. A0101 Page 8 of 17 0992064731-0
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99137113A TW201218426A (en) | 2010-10-29 | 2010-10-29 | Vertical electrode structure LED and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99137113A TW201218426A (en) | 2010-10-29 | 2010-10-29 | Vertical electrode structure LED and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201218426A true TW201218426A (en) | 2012-05-01 |
Family
ID=46552495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99137113A TW201218426A (en) | 2010-10-29 | 2010-10-29 | Vertical electrode structure LED and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201218426A (en) |
-
2010
- 2010-10-29 TW TW99137113A patent/TW201218426A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6092798B2 (en) | Manufacturing method of semiconductor device | |
TWI305960B (en) | Light emitting diode and method manufacturing the same | |
JP2007013093A (en) | Light emitting diode | |
JP2012054422A (en) | Light-emitting diode | |
JP6367175B2 (en) | Semiconductor light emitting device | |
CN101807636A (en) | Nitride semiconductor light emitting element | |
JP4886869B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
CN102332521A (en) | Gallium nitride-based light-emitting diode with point-like distributed N electrodes and preparation method thereof | |
TW201044632A (en) | Light emitting diode and method for producing the same, and lamp | |
CN106463596B (en) | The manufacturing process of luminescent device | |
JP2004207508A (en) | Light emitting element and its manufacturing method thereof | |
CN102104233A (en) | High-reflectivity light-emitting diode chip with vertical structure and preparation method thereof | |
JP4789716B2 (en) | LIGHT EMITTING DIODE WITH VERTICAL STRUCTURE AND MANUFACTURING METHOD THEREOF | |
TW518770B (en) | Light-emitting-diode-chip on the basis of InGaN and its method of manufacturing | |
KR20080053180A (en) | Support substrate for semiconductor light emitting device and semiconductor light emitting device of high performance vertical structure using the support substrate | |
JP2006525674A (en) | Light emitting device and manufacturing method thereof | |
JP5792694B2 (en) | Semiconductor light emitting device | |
KR20090119259A (en) | Vertical light emitting diode package and manufacturing method thereof | |
TWI307175B (en) | Non-substrate light emitting diode and fabrication method thereof | |
KR20080053181A (en) | Support substrate for semiconductor light emitting device and semiconductor light emitting device of high performance vertical structure using the support substrate | |
TW201019505A (en) | Opto-electronic device structure | |
CN100508231C (en) | A light emitting diode and its manufacturing method | |
TW201318236A (en) | Gallium nitride light-emitting diode with enlarged area and manufacturing method thereof | |
JP2011517084A (en) | Reflective contacts for semiconductor light emitting devices | |
TWI324403B (en) | Light emitting diode and method manufacturing the same |