201216139 六、發明說明: 【發明所屬之技術領域】 本發明係關於為一種觸控面板,特別是關於一種電容式近接感測暨觸 控偵測裝置與方法。 【先前技術】201216139 VI. Description of the Invention: [Technical Field] The present invention relates to a touch panel, and more particularly to a capacitive proximity sensing and touch detection device and method. [Prior Art]
隨著光電科技的發展’近接切換裝置已被大量運用在不同的機器上, 例如:智慧性手機、運輸工具之購票系統、數位照像機、遙控器與液晶螢 幕等。常見的近接切換裝置(Proximity Device)包括如近接感測器(proxim丨ty sensor)與觸控面板(touch panel)等。其中,近接感測器之運作方式為:當 一物體靠近感測器之感應範圍内,近接感測器在觸及該物體或不觸及物體 的狀況下,經由近接感應之方式得知該物體接近近接感測器所在之位置。 近接感測器將感應所得之信號轉變為一電子訊號,系統或機器會依據該電 子訊號做出適當的反應,達成控制系統狀態之目的。觸控面板則用於觸碰 座標之計算,如單點觸碰座標或者多點觸碰座標之計算。 近接感測器又稱近接開關(Proximity Switch),應用在許多液晶電視、 電源開關、家電開關、門禁系統、手持式遙控器與手機等,近年來,更是 這些裝置與設備不可或缺的角色之一。它負責偵測物體是否靠近,以便讓 控制器了解目前物體所在之位置。以家電應用來說,近接感測器被大量用 在燈源的控制上,只要靠近近接感測器或碰觸近接感測器,依據感測訊號 燈源就可進行開或關之動作。而近接感測器之種類及外型琳琅滿目,係為 長方型、四方型、圓柱型、圓孔型、溝型、多點型等。依其原理可分成以 下4種類型:電感式、電容式、光電式與磁氣式。 201216139 由上可知’近接感測器與觸控面板的應用領域差異極大,分別做為切 換開關與觸碰座標之計算。以目前的技術而言,並未有如何處理近接感測 器與觸控面板兩者的整合應用技術。因此,如何能整合近接感測器與觸控 面板兩者,進而讓近接感測器的短距離空間感測功能與觸碰座標偵測功能 整合,成為可讓電子設備大幅增加應用功能可能性的研究方向。 【發明内容】 繁於以上習知麟_題,本發贿供—種電容式近贼紐觸控偏 測裝置’誠侧空間中物件進人觸控面板的感應範圍的情形。 本發明係提出-種電容式近接感應暨觸控_裝置,包括以下主要元 件:電容式觸控面板與控制單元β其令,電容式觸控面板具有複數個X轴 電極與Υ軸電極,X軸電極與γ軸電極用以侧至少一個物件之接近而產 生感應喊’並侧物件之繼而產生觸觀號。控解元連接電容式觸 控面板並具有近接伽鳩式_碰_模式,#執行近接侧模式時,依 據感應訊缝生近接資料;錄摘碰伽獄時,依侧觀號計算物 件之至少一座標資料。 本發明更提供—種電容式近域_觸㈣·置,包括以下主要元 件:電容式觸減板無制單元力,電容式觸控面板具有複數個X抽 電極與Υ軸電極’ X軸電極與些γ _極用以侧至少―個物件之接近而 產生感應訊號,並_物件之觸_產生觸碰赠。控制單元連接電容式 觸控面板並具有近接偵測模式與觸碰偵測模式,當執行近接侧模式時, 依據感應訊號產生Ζ軸近接眘祖.A „ 迎接貢枓,讀_碰_料時,絲觸碰訊號 計算該物件之至少一座標資料。 201216139 本發明尚提供一種電容式近接感應暨觸控偵測方法,運用於具有複數 個X軸電極與丫軸電極之一電容式觸控面板,X軸電極與Y軸電極用以偵 測物件之接近而產生感應訊號,並偵測至少一個物件之觸碰而產生觸碰訊 • 號,包含以下步驟:提供電容式觸控面板近接偵測模式;執行近接偵測模 式;依據一工作時序,偵測物件進入X軸電極與Y軸電極之空間感應區所 產生之些感應訊號,依據工作時序與感應訊號,依序產生近接資料;及依 據工作時序、X軸電極與Y軸電極所對應之近接資料,計算物件之一 X軸 Φ 移動趨勢、一γ軸移動趨勢與一z轴移動趨勢。 為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特 舉數個較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 本發明運用電容式難面板本身所具有的近贼應魏,將所偵測到 的近接感應訊號輸出為近接資料,並依據近接資料計算出各個維度的移動 趨勢,再依據各個維度的移動趨勢來計算近接空間當中的手勢判斷,進而 •輸出為控制指令。其中’本發明運用一控制單元來實現觸控感測與近接感 測功能,並藉由單-匯流排輸出代表近接感應訊號結果的近接資料與代表 觸碰座標的座標資料。 電容式觸控面板主要分輔’分別絲面電容式觸控面板與投射電容 式觸控面板。投射電容式觸控面板具有可躺多關_魏,然而,近 年來,也有廠商將表面電容式觸控面板製作為可侧多點觸碰的功能。無 論何種電容式觸控面板,凡具有多點觸碰_功能的電容式觸控面板結 構,無論是單層或兩層的結構,本發明均可運用之。因此以下各電容式 201216139 觸控面板的實施例,僅為本發明為說明起見所列舉者,並非用以限定本發 明。 首先,請參考第1A圖,其為本發明之電容式近接感應暨觸控偵測裝置 之功能方塊圖第一實施例,其為以扁平三角形垂直排列於單層的實施例。 電容式近接感應暨觸控偵測裝置1包含有:觸控面板n、連接板24與控 制單元22。其中’觸控面板扣上有三角電極2〇_1〜20-20,分別以三角電 極20-1/20-2、三角電極20-3/2CM、三角電極20-5/20-6、三角電極 20-7/20-8、三角電極20-9/20-10、三角電極20-11/20-12、三角電極 20-13/20-14、三角電極20-15/20-16、三角電極20-17/2CM8、三角電極 20-19/20-20為Y軸配對排列。亦即,三角電極間彼此絕緣且以χ轴至少 兩個與一 Y軸至少兩個設置,三角電極係用來偵測物件之接近而產生一感 應訊號並用來偵測物件之觸碰而產生觸碰訊號。控制單元22當中包含有: 觸控偵測電路14、近接偵測電路16與控制電路18。控制單元22透過連 接板24連接觸控面板1彳,並具有_近接偵賴式與—觸碰細模式,當 執行近接侧赋時,依顧應城產纽齡料;#執行麻侧模式 時,依據觸碰訊號計算物件之至少一座標資料。 在控制單元22當中,近接_電路16經由連接板24連接觸控面板 11 ’用以接收感應訊號並產生近接資料;觸控偵測電路14經由連接板24 連接觸控面板11 ’用以接收該觸碰訊號並計算觸碰座標;控制電路18連 接近接侧電路16與觸控铜電路14,贱控制近接侧模式與觸㈣ 測模式之祕執行,麟該近接資料無廳座標傳輸料。須注意,第 1A圖的近接侧· 16、觸控侧電路14與控制電路π的連接關係, 201216139 僅為本發明為說明起見所列舉者,並非用以限定本發明。 此外’本發明亦可將可偵測多點觸碰座標的電容式觸控面板以選擇性 偵測的方式來進行近接感測控制。例如,第1B圖即為選擇了第ία圖當中 . 的三角電極20-1/20-2、三角電極20-7/20-8、三角電極20_13/20-14、三角 - 電極20·19/20_2〇作為選擇近接偵測模式的偵測電極,其餘的電極不做近 接偏測用。具體的作法後續將會描述之。 §把電容式觸控面板當作空間的近接偵測之用時,近接偵測電路16的 • 偵測輸出結果有兩種,分別為一階近接資料與多階近接資料。其中一階近 接資料係為物件進入電容式觸控面板的近接感應空間後,所輸出的一位元 '貝料。多階近接資料則為依據物件之接近距離而產生之不同感應量大小, 可輸出多位元資料,例如,二位元、三位元、四位元…。 以下,將於第3A〜5B圖說明輸出一階近接資料的近接偵測,並於第 6A〜8E Η綱輸好接近㈣料的近觀測,並且,皆以第1A圖當中的 、軌跡101與軌跡作為實施例。其中,軌跡101係為由觸控面板糾的 ^ 左上移動至左下。執跡102係、為由觸控面板11的左上移動至右上。以下分 別說明之。 首先’請參考第2 ® ’其為運用本發_容式近接感縫觸控偵測裝 置中觸控面板電極感應細於γ轴之示_,其為輸料—階近接資料之 實施例。第2圖綱了每個三角電極於A_A軸向看過糾電極感應範園, 其最大感舰離為_D1,實際_雜#視實_電極設計為準,且每 個電極感絲圍4卜50大略相同。只要有物件進入電極感應範圍4卜5〇當 -角電極11即會產生感應訊號,而近接感測電路即會產生一階近 201216139 接資料。 第3A圖係為運用本發明電容式近接感應暨觸控侧裝置中,物件經過 Y軸於不同時序之偵測示意圖,其為沿A-A剖面之示意圓且輸出為一階近 接資料之實施例。第3A圖係為第1A圖中的軌跡1〇1經過A_A剖面之示意 圖,因此,三角電極 20-1、20-3、20-5、20-7、20-9、20-11、20-13、20-15、 20-17與20-19等,分別在不同的時序T1〜T6偵測到物件2而產生感應訊 號。 接著,請參考第3Β圖,其為運用本發明電容式近接感應暨觸控偵測裝 置中,物件經過Υ轴於不同時序所輸出之近接資料示意圖,其為輸出為一 階近接資料之實施例。由第3Α圖、第3Β圖可計算得物件2於Υ轴的移動 速度。 第3Β圖為第3Α圖的實施例中所輸出的近接資料封包示意圖,可以發 現,在時序Τ1時,分別有三角電極2〇-1、20-3感測到感應訊號,而近接 偵測電路16也輸出對應的一階近接資料。時序Τ2時,分別有三角電極 20-1、20-3、20-5、20-7感測到感應訊號,而近接偵測電路16也輸出對應 的一階近接資料。時序Τ3時,分別有三角電極20-3、20-5、20-7、20-9 感測到感應訊號,而近接偵測電路16也輸出對應的一階近接資料。時序 Τ4時,分別有三角電極20-9、20-11、20-13、20-15感測到感應訊號,而 近接偵測電路16也輸出對應的一階近接資料。時序Τ5時,分別有三角電 極20-13、20-15、20-17、20-19感測到感應訊號,而近接偵測電路16也 輸出對應的一階近接資料。時序Τ6時,分別有三角電極20-17、20-19感 測到感應訊號,而近接偵測電路16也輸出對應的一階近接資料。 201216139 由第犯圖的資料可知,在時序Τ1〜Τ6,有負γ軸的移動趨勢產生。 而此移動趨勢的速度’可以時序Τ1〜Τ6當中的封包移動速度來計算而得。 例如’取時序Τ2時封包的中心為三角電極2〇 3、2〇 5之間取時序丁5 .時封包的中心為三角電極2〇-15、20-17之間,即可計算得負Υ轴的移動速 度。 接著由第4Α圖、第4Β圖的實施例,可計算得χ軸的移動趨勢。 第4Α圖係為運用本發明電容式近接感應暨觸控細製置中,物件經過 馨X轴於不同時序之偵測示意圖,其為其為沿Β_Β剖面之示意紅輸出為一 階近接資料之實施例,物件以第1Α圖的軌跡1〇2移動。由於第1Α圖的觸 控面板11當中的三角電極皆為爲平三角電極結構,於是,在父轴向僅有 兩個二角電極分佈。如第4Α圖所示者,在Β_Β剖面,有三角電極201與 三角電極20-2。 由第4Α圖可發現,在時序Τ1〜Τ6,物件2由三角電極咖的近接感 應範圍移動至二角電極20·2的近賊應範圍。於是,可以計算得χ軸的移 φ 動趨勢》 接著,請參考第4Β圖’其為運用本發明電容式近接感應暨觸控偵測裝 置中’物件經過X軸於不同時序所輸出之近接資料示意圖,其為輸出為_ 階近接資料之實施例,並以三角電極20-^20-^的輸出資料為範例。在時 序T1時,分別有三角電極20J、20_3、20_5、20_7感測到感應訊號,而 近接偵測電路16也輸出對應的一階近接資料。時序丁2時,分別有三角電 極20-1、20-3、20-5、20-7感測到感應訊號,而近接偵測電路16也輸出 對應的一階近接資料。時序T3時,分別有三角電極20-1、20-2、20-3、 201216139 2CM ' 、20-6、20-7、20-8感測到感應訊號,而近接偵測電路16也輸 出對應的—階近接資料。時序Τ4時,分別有三角電極20-1、20-2、20-3、 2CM ' 20-5、20-6、20-7、20-8感測到感應訊號,而近接偵測電路16也輸 出對應的-階近接資料。時序Τ5時,分別有三角電極20.-2、20-4、20-6、 20-8感測到感應訊號,而近接偵測電路16也輸出對應的一階近接資料。時 序丁6時’分別有三角電極2〇_2、2〇_4、20-6、20-8感測到感應訊號,而 近接偵測電路16也輸出對應的一階近接資料。 由第4Β圖的資料可知,在時序丁1〜丁6,有正χ軸的移動趨勢產生。 由第2圖的近接偵測感應範圍41〜50可知,實際的感應範圍會因為電 極的设計而有所不同。例如’以空間角0眶代表感應範圍41〜5Q的ζ抽垂 直夾角。S空間角0max的限制下,在物件最接近面板的狀況,將有靠近物 件的°卩刀電極方賴應’這與雜巾進人錢細是侧的原理。 第5A圖即為說明快觸碰到觸控面板^的物件移動狀況,其同樣以轨 跡101來做模擬’其為運用本發明電容式近接感應闕控彳細裝置中,物 件、.生過Y軸於不同時序之侧示意圖,其為沿Α·Α剖面之示意圖且輸出為 1¾近接資料且於接近面板之實施例。由第5八圖可發現,由於空間角的限 制在時序T1 T6之間,只有部分的三角電極可债測到物件。With the development of optoelectronic technology, the proximity switching device has been widely used in different machines, such as smart phones, transportation ticket purchasing systems, digital cameras, remote controls and LCD screens. Common Proximity Devices include, for example, a proximity sensor and a touch panel. Wherein, the proximity sensor operates in a manner that when an object is in proximity to the sensing range of the sensor, the proximity sensor senses that the object is close to the proximity by touching the object or not touching the object. The location of the sensor. The proximity sensor converts the induced signal into an electronic signal, and the system or machine responds appropriately according to the electronic signal to achieve the purpose of controlling the state of the system. The touch panel is used to calculate the coordinates of the touch, such as the calculation of single touch coordinates or multi-touch coordinates. Proximity sensors, also known as Proximity Switches, are used in many LCD TVs, power switches, home appliance switches, access control systems, handheld remote controls and mobile phones. In recent years, they have been indispensable for these devices and devices. one. It is responsible for detecting the proximity of an object so that the controller knows where the current object is. In the case of home appliance applications, the proximity sensor is used in a large number of sources to control the light source. As long as it is close to the proximity sensor or touches the proximity sensor, the light source can be turned on or off according to the sensing signal source. The types and appearances of proximity sensors are numerous, such as rectangular, square, cylindrical, round, groove, and multi-point. According to its principle, it can be divided into the following four types: inductive, capacitive, photoelectric and magnetic. 201216139 It can be seen from the above that the application fields of proximity sensors and touch panels are extremely different, and they are used as calculations for switching switches and touch coordinates. In the current technology, there is no integrated application technology for how to handle both proximity sensors and touch panels. Therefore, how to integrate both the proximity sensor and the touch panel, thereby integrating the short-distance spatial sensing function of the proximity sensor with the touch coordinate detection function, becomes a possibility that the electronic device can greatly increase the application function. research direction. [Summary of the Invention] In the above-mentioned literary _ _ questions, this bribe supply - a kind of capacitive thief new touch-biasing device 'in the side space of the object into the sensing range of the touch panel. The present invention provides a capacitive proximity sensing and touch device, comprising the following main components: a capacitive touch panel and a control unit β. The capacitive touch panel has a plurality of X-axis electrodes and a x-axis electrode, X The shaft electrode and the γ-axis electrode are used to approach the at least one object to generate an inductive shouting 'and the side object to generate an antennae. The control unit is connected to the capacitive touch panel and has a proximity gamma _ _ _ mode. When the near side mode is executed, the proximity data is generated according to the sensing stitch; when the gambling is recorded, the object is calculated according to the side view. A standard information. The invention further provides a capacitive close-range _ touch (four) setting, comprising the following main components: the capacitive touch panel has no unit force, and the capacitive touch panel has a plurality of X pump electrodes and a x-axis electrode 'X-axis electrode The γ _ pole is used to generate an inductive signal by approaching at least one object, and the _ object touch _ generates a touch gift. The control unit is connected to the capacitive touch panel and has a proximity detection mode and a touch detection mode. When the proximity mode is executed, the Ζ axis is closely connected according to the sensing signal. A „ greet Gongga, read _ touch _ material The wire touch signal calculates at least one of the standard materials of the object. 201216139 The present invention further provides a capacitive proximity sensing and touch detection method, which is applied to a capacitive touch panel having a plurality of X-axis electrodes and a x-axis electrode The X-axis electrode and the Y-axis electrode are used to detect the proximity of the object to generate an inductive signal, and detect the touch of at least one object to generate a touch signal, including the following steps: providing capacitive touch panel proximity detection Mode; performing a proximity detection mode; detecting an inductive signal generated by the object entering the space sensing area of the X-axis electrode and the Y-axis electrode according to a working sequence, sequentially generating the proximity data according to the working sequence and the sensing signal; The working sequence, the proximity data corresponding to the X-axis electrode and the Y-axis electrode, and the X-axis Φ movement tendency, a γ-axis movement tendency and a z-axis movement tendency of the object are calculated. The above and other objects, features, and advantages of the present invention will become more apparent and understood. The near thief of the difficult panel itself should send Wei to detect the proximity sensor signal as the proximity data, and calculate the movement trend of each dimension according to the proximity data, and then calculate the proximity space according to the movement trend of each dimension. The gesture judgment and, in turn, the output is a control command. The present invention uses a control unit to implement the touch sensing and proximity sensing functions, and outputs the proximity data and the representative touch representing the result of the proximity sensing signal by the single-bus bar output. Coordinated information of the coordinates. Capacitive touch panels are mainly divided into 'silent surface capacitive touch panels and projected capacitive touch panels. Projected capacitive touch panels have multiple reclining _Wei, however, in recent years, there are also The manufacturer has made the surface capacitive touch panel as a multi-touch function on the side. No matter what kind of capacitive touch panel, it has multiple touches. The functional capacitive touch panel structure can be applied to the present invention regardless of whether it is a single layer or a two-layer structure. Therefore, the following embodiments of the capacitive 201216139 touch panel are merely for the purpose of description of the present invention. The first embodiment of the capacitive proximity sensor and touch detection device of the present invention is a vertical block arranged vertically on a single layer. The capacitive proximity sensor and touch detection device 1 comprises: a touch panel n, a connection board 24 and a control unit 22. wherein the touch panel is provided with triangular electrodes 2〇_1~20-20, The triangular electrode 20-1/20-2, the triangular electrode 20-3/2CM, the triangular electrode 20-5/20-6, the triangular electrode 20-7/20-8, the triangular electrode 20-9/20-10, The triangular electrode 20-11/20-12, the triangular electrode 20-13/20-14, the triangular electrode 20-15/20-16, the triangular electrode 20-17/2CM8, and the triangular electrode 20-19/20-20 are the Y axis Paired arrangement. That is, the triangular electrodes are insulated from each other and at least two are disposed on the at least two axes and one Y-axis. The triangular electrodes are used to detect the proximity of the object to generate an inductive signal and are used to detect the touch of the object to generate a touch. Touch signal number. The control unit 22 includes: a touch detection circuit 14, a proximity detection circuit 16, and a control circuit 18. The control unit 22 is connected to the touch panel 1 through the connection board 24, and has a _ proximity detection type and a touch touch mode. When performing the near side assignment, the yuecheng yue age material is used; Touch the signal to calculate at least one of the data of the object. In the control unit 22, the proximity circuit 16 is connected to the touch panel 11' via the connection board 24 for receiving the sensing signal and generating the proximity data. The touch detection circuit 14 is connected to the touch panel 11' via the connection board 24 for receiving the Touching the signal and calculating the touch coordinates; the control circuit 18 is connected to the proximity side circuit 16 and the touch copper circuit 14, and controls the secret mode of the near side mode and the touch (four) mode, and the adjacent data has no hall coordinate transmission material. It should be noted that the connection side 16 of the first embodiment, the connection relationship between the touch side circuit 14 and the control circuit π, 201216139 is only for the purpose of illustration of the present invention, and is not intended to limit the invention. In addition, the present invention can also perform proximity sensing control by selectively detecting a capacitive touch panel capable of detecting multi-touch coordinates. For example, Fig. 1B shows the triangular electrode 20-1/20-2, the triangular electrode 20-7/20-8, the triangular electrode 20_13/20-14, and the triangular electrode 20·19/ in which the ία map is selected. 20_2〇 is used as the detection electrode for the proximity detection mode, and the remaining electrodes are not used for the proximity measurement. Specific practices will be described later. § When the capacitive touch panel is used as a proximity detection for the space, the proximity detection circuit 16 has two detection output results, which are first-order close-up data and multi-step near-end data. The first-order close-in data is the one-bit material that is output after the object enters the proximity sensing space of the capacitive touch panel. The multi-order close-in data is a different amount of inductance generated according to the proximity distance of the object, and can output multi-bit data, for example, two bits, three bits, four bits... In the following, the proximity detection of the output first-order close-up data will be described in FIGS. 3A to 5B, and the near-observation of the near-fourth material is obtained in the 6A-8E, and both are in the 1A diagram, the track 101 and The trajectory is taken as an embodiment. The track 101 is moved from the upper left to the lower left by the touch panel. The trace 102 is moved from the upper left to the upper right by the touch panel 11. The following is explained separately. First, please refer to Section 2 ® for the use of the _ 式 近 感 感 触控 触控 触控 电极 电极 电极 电极 电极 电极 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控 触控Figure 2 shows that each triangular electrode sees the correction electrode in the A_A axis, and its maximum sense is _D1, the actual _ miscellaneous 视 electrode design is correct, and each electrode is surrounded by 4 50 is roughly the same. As long as there is an object entering the electrode sensing range 4 〇 5 - - the angle electrode 11 will generate an inductive signal, and the proximity sensing circuit will produce a first order near 201216139. Fig. 3A is a schematic diagram showing the detection of objects passing through the Y-axis at different timings in the capacitive proximity sensing and touch-side device of the present invention, which is an embodiment in which a schematic circle along the A-A profile is output and the first-order proximity data is output. Fig. 3A is a schematic diagram of the track 1〇1 in Fig. 1A passing through the A_A section, and therefore, the triangular electrodes 20-1, 20-3, 20-5, 20-7, 20-9, 20-11, 20- 13, 20-15, 20-17, 20-19, etc., respectively, detecting the object 2 at different timings T1 to T6 to generate an inductive signal. Next, please refer to FIG. 3 , which is a schematic diagram of the proximity data outputted by the object through the Υ axis at different timings in the capacitive proximity sensing and touch detection device of the present invention, which is an embodiment in which the output is first-order contiguous data. . The moving speed of the object 2 on the x-axis can be calculated from the third and third maps. The third diagram is a schematic diagram of the proximity data packet outputted in the embodiment of the third diagram. It can be found that when the timing is Τ1, the triangular electrodes 2〇-1, 20-3 respectively sense the sensing signal, and the proximity detecting circuit 16 also outputs corresponding first-order proximity data. When the timing is Τ2, the triangular electrodes 20-1, 20-3, 20-5, and 20-7 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. When the timing is Τ3, the triangular electrodes 20-3, 20-5, 20-7, 20-9 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. At timing Τ4, the triangular electrodes 20-9, 20-11, 20-13, 20-15 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. When the timing is Τ5, the triangular electrodes 20-13, 20-15, 20-17, 20-19 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. At timing Τ6, the triangular electrodes 20-17, 20-19 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. 201216139 It can be seen from the data of the first map that there is a tendency to move with a negative γ-axis in the timings Τ1 to Τ6. The speed of this moving trend can be calculated from the packet moving speed in the sequence Τ1 to Τ6. For example, when taking the timing Τ2, the center of the packet is the timing between the triangular electrodes 2〇3 and 2〇5. When the center of the packet is between the triangular electrodes 2〇-15 and 20-17, the negative Υ can be calculated. The speed at which the axis moves. Next, from the embodiments of the fourth and fourth figures, the movement tendency of the x-axis can be calculated. The fourth figure is a schematic diagram of detecting the object through the X-axis at different timings by using the capacitive proximity sensing and the touch fine-precision device of the present invention, and the schematic red output along the Β_Β profile is the first-order close-in data. In the embodiment, the object moves in the track 1〇2 of the first drawing. Since the triangular electrodes in the touch panel 11 of Fig. 1 are all flat triangular electrode structures, only two dichroic electrodes are distributed in the parent axis. As shown in Fig. 4, in the Β_Β cross section, there are a triangular electrode 201 and a triangular electrode 20-2. It can be found from Fig. 4 that, in the timings Τ1 to Τ6, the object 2 is moved from the proximity sensing range of the triangular electrode coffee to the near thief range of the two-corner electrode 20·2. Therefore, the movement trend of the χ axis can be calculated. Next, please refer to FIG. 4 'which is the proximity data of the object through the X-axis at different timings in the capacitive proximity sensor and touch detection device of the present invention. The schematic diagram is an embodiment in which the output is _-order close-in data, and the output data of the triangular electrode 20-^20-^ is taken as an example. In the timing T1, the triangular electrodes 20J, 20_3, 20_5, 20_7 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. When the timing is 2, the triangular electrodes 20-1, 20-3, 20-5, 20-7 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. At timing T3, the triangular electrodes 20-1, 20-2, 20-3, 201216139 2CM ', 20-6, 20-7, 20-8 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding signals. - order near data. When the timing is Τ4, the triangular electrodes 20-1, 20-2, 20-3, 2CM '20-5, 20-6, 20-7, 20-8 respectively sense the sensing signals, and the proximity detecting circuit 16 also Output the corresponding - order proximity data. When the timing is Τ5, the triangular electrodes 20.-2, 20-4, 20-6, 20-8 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. At the same time, the triangular electrodes 2〇_2, 2〇_4, 20-6, 20-8 sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. As can be seen from the data in Fig. 4, in the case of the timing D1 to D6, there is a tendency to move the positive axis. It can be seen from the proximity detection sensing ranges 41 to 50 of Fig. 2 that the actual sensing range differs depending on the design of the electrodes. For example, 'the angle of space 眶 represents the vertical angle of the sensing range 41~5Q. Under the limitation of the S-space angle 0max, in the condition that the object is closest to the panel, there will be a principle that the 卩 电极 电极 靠近 靠近 ” ” ” ” ” ” ” ” ” ” ” ” ” ” Figure 5A shows the movement of the object touching the touch panel ^, which is also simulated by the trajectory 101. It is used in the capacitive proximity sensor 彳 control device of the present invention. A schematic view of the Y-axis at different timings, which is a schematic diagram along the Α·Α profile and output as a close-up data and in proximity to the panel. It can be found from Fig. 8 that since the space angle is limited between the timings T1 and T6, only a part of the triangular electrodes can measure the object.
輸出封包如第5B圖所示,其為運用本發明電容式近接感應暨觸控摘測 裝置中’物件㈣γ轴於不_序所輸出之近接資料示賴,其為輸出為 一階近接雜且於觀祕之實_。麵序了1時,财三角電極2CM 感測到感應訊號, 而近接偵測電路16也輸㈣應的—階近接資料。時序 T2時’分別有三角電極20-1、 20-3、204、20-7感測到感應訊號,而近 201216139 接偵測電路16也輸出對應的一階近接資料。時序T3時,分別有三角電極 20-7、20-9、20-11、20-13感測到感應訊號,而近接偵測電路16也輸出 對應的一階近接資料。時序Τ4時,分別有三角電極20-11、20-13、20-15 . 感測到感應訊號,而近接偵測電路16也輸出對應的一階近接資料。時序 . Τ5時,分別有三角電極20-15、20-17、20-19感測到感應訊號,而近接摘 測電路16也輸出對應的一階近接資料。時序Τ6時,僅有三角電極20-19 感測到感應訊號,而近接偵測電路16也輸出對應的一階近接資料。 φ 就本發明而言,使用者採用何種空間移動軌跡來運動,必須經過觸控 面板11的近接偵測方能獲知。就第5Β圖的一階近接資料而言,同樣可看 到在時序Τ1〜Τ6期間,物件2由三角電極20-1朝三角電極20-19移動, 亦即,移動趨勢為負Υ軸方向。 依據近接偵測電路16所輸出的一階近接資料,控制電路18可據以計 算X軸、Υ軸相對座標、移動趨勢或X、Υ軸平面手勢。最終,控制單元 22可輸出一階近接資料’ X、γ轴相對座標,或平面手勢指令。 第3Α-5Β圖之實施例係採用-階近接資料來進行空間中的二維運動判 斷。對於三維的物件位置、移動趨勢、移動軌跡之雌,麵運用多階近 接資料來進行1用錯近接資料,可獲得較多的資訊,相對地,其需要 較複雜的運算方能獲得所需的資訊。 接著’請參考第6Α圖,其為第1Α_實施财,電極感應範圍於丫 軸之示意圖,其為沿Α·Α剖面之示賴且輪出為多階近接資料之實施例, 為了說明起見’僅描感應範圍61〜64。感應範圍6卜64在第6α圖中,係 以不同的半徑減擬雜況’其說明了以不同辭徑距料,由於感應 201216139 量的大小不同,近接偵測電路16將會輸出不同的多階近接資料。不同的多 階近接資料代表不同的感應量’也代表了物件2與觸控面板11不同的空間 距離。 接著’請參考第6Β圖’其為運用本發明電容式近接感應暨觸控偵測裝 置中觸控面板電極感應範圍於X轴之示意圖,其為沿Β-Β剖面之示意圖且 輸出為多階近接資料之實施例》由於三角電極為扁平狀的電極,因此,三 角電極20-1、20-2的空間感應範圍71、72概如第6Β圖所示。同樣地, 在不同的半徑範圍内’由於感應量的大小不同,近接偵測電路16將會輸出 不同的多階近接資料。不同的多階近接資料代表不同的感應量,也代表了 物件2與觸控面板11不同的空間距離。 以下’將於第7Α~8Ε圖說明輸出為多階近接資料的情形。 請參考第7Α圖,其為運用本發明電容式近接感應暨觸控偵測裝置中, 物件經過Υ軸於不同時序之偵測示意圖,其為沿Α_Α剖面之示意圖且輸出 為多階近接資料之實施例。由圖中可發現,在時序Τ1〜Τ6的時間間隔中, 物件2由靠近三角電極20-5、20-7的上方逐漸朝三角電極20-19接近。因 此’其有負Υ軸的移動趨勢以及負Ζ軸的移動趨勢。由圖中也可概略看出, 物件2於時序Τ1〜Τ6㈣間間隔中,每個時序所進入的近接感應範圍不 同。實際的近接資料輸出,請參考第7Β圖’其為運用本發明電容式近接感 應暨觸控侧裝置中,物件經過γ轴於不同時序所輸出之近接資料示意 圖,其為輸出為多階近接資料之實施例。 第7Β圖令,在時序T1時,三角電極20-3、20-5、20-7、20_9感測 到感應訊號’而近接偵測電路16也輸出對應的多階近接資料。時序丁2時, 12 201216139 分別有三角電極20-5、20-7、20-9、20-11、20-13感測到感應訊號’而近 接偵測電路16也輸出對應的多階近接資料。時序T3時’分別有二角電極 20-9、20-11、20-13、20-15、20-17感測到感應訊號,而近接偵測電路16 也輸出對應的多階近接資料。時序T4時’分別有三角電極20-11、20-13、 20-15、20-17、20-19感測到感應訊號,而近接偵測電路16也輸出對應的 多階近接資料。時序T5時,分別有三角電極20-15、20-17、20-19感測到 感應訊號,而近接偵測電路16也輸出對應的多階近接資料。時序T6時, φ 僅有三角電極20-19感測到感應訊號,而近接偵測電路16也輸出對應的多 階近接資料。多階近接資料的實際數值,請參考第7C〜7E圖。 第7C圖為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過γ 軸於T1與T2時所輸出之近接資料示意圖。在時序π,三角電極、 20-5、20-7、20-9所代表的多階近接資料分別為,、2、2、,,數值大者代 表感應量大。在時序T2,三角電極20-5、20-7、20-9、2111、2Q_13 代表的多階近接資料分別為2、3、6、6、3。 ⑽个㈣电㈣迎職應豐觸控偵測装置中,物件經過Y 軸於丁3與T4時所輸出之繼料示意圖。在時序T3,三角電極2〇 9 2〇-11、2〇_13、_、歸所代表的多階近接資料分別為3、4、7、7 4。在時序丁4 ’ 三角電極 20-11、20-13、20-15、20-17 多階近接資料分勒5、7、1Q、1Q、厂 、·19所代表的 第7Ε圖為運用本發明電容式近接感應暨觸 轴於Τ5與Τ6時所輸出之近接資料示意圖 物件經過Υ 2〇·17、卿所代表的多階近接資料分別為8、12 13三角電極2〇书、 12、13。在時序丁6,三角 13 201216139 電極20_19所代表的多階近接資料為13。 藉由第7C〜7E圖的感應量大小值,可推算出物件在㉔的相對距離。 亦即’以感應量最大的-個或數個的平均值換算為物件與觸控面板於z輪 的相對距離。運耻相對距離的變化’可計算出z _移動趨勢與垂直移 動手勢等資訊。 第8A〜8E圖則說明了以B-B剖面看過去的三角電極對物件2的感應與 多階近接資料的輸出結果。 睛參考第8A圖’其為運用本發明電容式近接感應暨觸剧貞測裝置中, 物件經過X轴於不同時序之偵測示意圖,其為沿A_A剖面之示意圖且輸出 為多階近接資料之實施例。由此圖可發現,在時序T1~T6過程中,物件2 由空間中的左上移至右下。亦即,有產生正χ軸與負γ轴的移動趨勢。 請參考第8Β圖,其為運用本發明電容式近接感應暨觸控偵測裝置中, 物件經過X軸於不同時序所輸出之近接資料示意圖,其為輸出為多階近接 資料之實施例。 第8Β圖中,在時序Τ1時,三角電極20-1、20-3、20-5、20-7感測 到感應訊號,而近接偵測電路16也輸出對應的多階近接資料。時序Τ2時, 分別有三角電極20-1、20-3、20-5、20-7感測到感應訊號,而近接偵測電 路16也輸出對應的多階近接資料。時序Τ3時,分別有三角電極2〇-1、 20-2、20-3、20·4、20-5、20-6、20-7、20-8 感測到感應訊號,而近接偵 測電路16也輸出對應的多階近接資料。時序Τ4時,分別有三角電極20-1、 20-2、20-3、20~4、20-5、20-6、20-7、20-8 感測到感應訊號’而近接偵 測電路16也輸出對應的多階近接資料。時序Τ5時,分別有三角電極20-1、 201216139 20-2、20-3、20·4、20-5、20-6、20-7、20-8 感測到感應訊號,而近接偵 測電路16也輸出對應的多階近接資料。時序Τ6時,有三角電極20-2、 2CM、20-6、20-8感測到感應訊號’而近接偵測電路16也輸出對應的多階 近接資料。The output packet is as shown in FIG. 5B, which is a close-in data of the output of the object (four) γ-axis in the capacitive proximity sensor and the touch-sampling device of the present invention, which is a first-order near-mixed output. In the secret of the secret _. When the surface sequence is 1, the financial triangle electrode 2CM senses the sensing signal, and the proximity detection circuit 16 also inputs (four) the corresponding-order proximity data. At the timing T2, the triangular electrodes 20-1, 20-3, 204, and 20-7 sense the sensing signals, and the 201216139 connection detecting circuit 16 also outputs the corresponding first-order proximity data. At timing T3, the triangular electrodes 20-7, 20-9, 20-11, 20-13 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. At timing Τ4, there are triangular electrodes 20-11, 20-13, 20-15 respectively. The sensing signal is sensed, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. Timing . At 5 o'clock, the triangular electrodes 20-15, 20-17, 20-19 respectively sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. At timing Τ6, only the triangular electrodes 20-19 sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding first-order proximity data. φ For the purposes of the present invention, the spatial movement trajectory used by the user to move must be known by the proximity detection of the touch panel 11. As for the first-order close-up data of Fig. 5, it can also be seen that during the timings Τ1 to Τ6, the object 2 is moved by the triangular electrode 20-1 toward the triangular electrode 20-19, that is, the moving tendency is the negative x-axis direction. Based on the first-order proximity data output by the proximity detection circuit 16, the control circuit 18 can calculate the X-axis, the 相对-axis relative coordinates, the movement trend, or the X-axis plane gesture. Finally, control unit 22 may output a first-order proximity data 'X, a y-axis relative coordinate, or a flat gesture command. The third embodiment of the Figure 3-5 uses the -th order proximity data to perform two-dimensional motion decisions in space. For three-dimensional object position, movement trend, and moving trajectory, the face uses multiple-order close-in data to perform 1 error-to-use data, which can obtain more information. In contrast, it requires more complicated calculations to obtain the required information. News. Then, please refer to the figure of Figure 6, which is the first Α_ implementation, the electrode sensing range is on the 丫 axis, which is an example of the Α·Α profile and the round-out is multi-step splicing data. See 'Only the sensing range 61~64. The sensing range 6 b 64 is in the 6th graph, and the noise is reduced by different radii. It shows that the distance is different. Because the magnitude of the sensing 201216139 is different, the proximity detecting circuit 16 will output differently. Near-term data. Different multi-level proximity data represents different inductive quantities' also represents a different spatial distance between the object 2 and the touch panel 11. Then, please refer to FIG. 6 for a schematic diagram of the touch panel electrode sensing range on the X-axis in the capacitive proximity sensing and touch detecting device of the present invention, which is a schematic diagram along the Β-Β section and the output is multi-step. In the embodiment of the proximity data, since the triangular electrodes are flat electrodes, the spatial sensing ranges 71 and 72 of the triangular electrodes 20-1 and 20-2 are as shown in Fig. 6 . Similarly, in different radius ranges, the proximity detection circuit 16 will output different multi-order proximity data due to the difference in the amount of inductance. Different multi-order close-up data represent different inductive quantities, and also represent different spatial distances between the object 2 and the touch panel 11. The following 'will be described in the 7th to 8th pictures to illustrate the situation of multi-level proximity data. Please refer to FIG. 7 , which is a schematic diagram of detecting the object through different axes at different timings by using the capacitive proximity sensing and touch detecting device of the present invention, which is a schematic diagram along the Α Α section and the output is multi-order near-connected data. Example. As can be seen from the figure, in the time interval of the timings Τ1 to Τ6, the object 2 is gradually approached toward the triangular electrodes 20-19 from above the triangular electrodes 20-5, 20-7. Therefore, it has a tendency to move with a negative axis and a tendency to move with a negative axis. As can be seen from the figure, the object 2 is in the interval between the timings Τ1~Τ6(4), and the proximity sensing range entered by each timing is different. For the actual near-input data output, please refer to the figure 7Β', which is a schematic diagram of the proximity data outputted by the γ-axis at different timings in the capacitive proximity sensor and touch-side device of the present invention, which is a multi-order near-end data output. An embodiment. In the seventh embodiment, at timing T1, the triangular electrodes 20-3, 20-5, 20-7, 20_9 sense the inductive signal ' and the proximity detecting circuit 16 also outputs the corresponding multi-order close-in data. When the timing is 2, 12 201216139 respectively, the triangular electrodes 20-5, 20-7, 20-9, 20-11, 20-13 sense the sensing signal', and the proximity detecting circuit 16 also outputs the corresponding multi-order near data. . At timing T3, the two-corner electrodes 20-9, 20-11, 20-13, 20-15, and 20-17 sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding multi-level proximity data. At timing T4, the triangular electrodes 20-11, 20-13, 20-15, 20-17, 20-19 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. At timing T5, the triangular electrodes 20-15, 20-17, 20-19 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. At timing T6, only the triangular electrode 20-19 senses the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-level proximity data. For the actual values of the multi-step proximity data, please refer to the 7C~7E diagram. FIG. 7C is a schematic diagram of the proximity data outputted by the γ-axis at T1 and T2 in the capacitive proximity sensing and touch detection device of the present invention. At the time sequence π, the multi-order close-in data represented by the triangular electrodes, 20-5, 20-7, and 20-9 are respectively, 2, 2, and 2, and the larger value represents a larger amount of induction. At the timing T2, the multi-order close-in data represented by the triangular electrodes 20-5, 20-7, 20-9, 2111, and 2Q_13 are 2, 3, 6, 6, and 3, respectively. (10) (4) Electricity (4) The schematic diagram of the output of the object in the touch detection device, the output of the object through the Y axis at D3 and T4. At the timing T3, the multi-order close-in data represented by the triangular electrodes 2〇9 2〇-11, 2〇_13, _, and return are 3, 4, 7, and 7 respectively. In the case of the chronological 4' triangular electrodes 20-11, 20-13, 20-15, 20-17, the multi-stage close-in data distribution 5, 7, 1Q, 1Q, factory, · 19 represents the seventh diagram of the application of the present invention The capacitive proximity sensor and the contact shaft are outputted from the Τ5 and Τ6. The schematic data of the object is Υ2〇·17, and the multi-stage close-up data represented by Qing is 8, 12 13 triangular electrode 2 、, 12, 13. In the timing D6, the triangle 13 201216139 electrode 20_19 represents a multi-order close-in data of 13. The relative distance of the object at 24 can be derived from the magnitude of the inductive amount in Figures 7C to 7E. That is, the average value of the one or more inductive amounts is converted into the relative distance between the object and the touch panel on the z wheel. The change in the relative distance of the shame can be calculated from the z _ movement trend and the vertical movement gesture. Figs. 8A to 8E illustrate the results of the sensing of the triangular electrode to the object 2 and the multi-order proximity data viewed in the B-B section. The eye is referred to FIG. 8A', which is a schematic diagram of detecting the object through different X-axis at different timings by using the capacitive proximity sensing and touch detection device of the present invention, which is a schematic diagram along the A_A profile and outputted as multi-order near-connected data. Example. From this figure, it can be found that during the timings T1 to T6, the object 2 is moved from the upper left to the lower right in the space. That is, there is a tendency to generate a positive x-axis and a negative gamma axis. Please refer to FIG. 8 , which is a schematic diagram of the proximity data outputted by the object through the X-axis at different timings in the capacitive proximity sensing and touch detection device of the present invention, which is an embodiment in which the output is multi-order near-link data. In Fig. 8, when the timing Τ1, the triangular electrodes 20-1, 20-3, 20-5, 20-7 sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. When the timing is Τ2, the triangular electrodes 20-1, 20-3, 20-5, and 20-7 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding multi-order short-circuit data. When the timing is Τ3, the triangular electrodes 2〇-1, 20-2, 20-3, 20·4, 20-5, 20-6, 20-7, 20-8 sense the sensing signal, and the proximity detection Circuit 16 also outputs corresponding multi-level proximity data. When the timing is Τ4, the triangular electrodes 20-1, 20-2, 20-3, 20~4, 20-5, 20-6, 20-7, 20-8 respectively sense the sensing signal' and the proximity detecting circuit 16 also outputs corresponding multi-level proximity data. When the timing is Τ5, the triangular electrodes 20-1, 201216139 20-2, 20-3, 20·4, 20-5, 20-6, 20-7, 20-8 sense the sensing signal, and the proximity detection Circuit 16 also outputs corresponding multi-level proximity data. At timing Τ6, the triangular electrodes 20-2, 2CM, 20-6, 20-8 sense the sensing signal' and the proximity detecting circuit 16 also outputs the corresponding multi-stage proximity data.
由第8Β圖的資料改變趨勢可知,物件2採取正X軸的平行移動方式 進行移動。在搭配第8Α圖來看’物件2位於觸控面板11上方時,由於三 角電極20-1、20-2兩者有感應範圍的差異,因此,可模擬三角電極2〇_ι、 20-2分別有重心53與重心54。並藉由近接資料的大小來推算出其距離重 心53、54的距離’即可取得物件2與觸控面板扣相對的ζ轴距離。 多階近接資料的實際數值,請參考第8C〜8E圖。 第8C圖係為運用本發明電容式近接感應暨觸控侧裝置巾,物件經過 X轴於T1與T2時所輸出之近接資料示意圖。在時序T1,三角電極2〇1、 20_3、20-5、20-7所代表的多階近接資料分別為2、3、3、2,數值大者代 表感應量大。辦序T2 ’三㈣極咖、2Q_3、2Q 5、2Q 7所代表的多 階近接資料分別為4、5、5、4。 第圖係為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過 X軸於T3與T4時所輸出之近接資料示意圓。在時序了3,三角電極2〇个 20-2、2Q_3、2(Μ、咖、跡 2Q 7、2Q 8 ___料分別 5 2 4、1。在時序T4,三角電極2〇1、23、 204、20-5、20-6、20-7 _吓代衣的夕階近接資料分別為3、5、4 心6、3、4。由第8C、8D圖可發現物件2正由靠近三角電極脱 刀住*近:角電極2〇·2的重心54的部分,並且,有逐漸接 15 201216139 控面板11的趨勢。 第8E圖係為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過 X軸於丁5與丁6時所輸出之近接資料示意圖。在時序T5,三角電極2(M、 20-2、2M、2(M、2Q_5、2Q_6、2Q_7、2Q_8所代表的多階近接資料分別 20-8所代表的多階近接資料為7、9、8、6。 因此,由第8B圖與第8C〜8E圖的感應量移動與大小值的變化,可推 算出物件在z軸的相對距離,運用此相對距離的變化,可計算出z轴的移 動趨勢與垂直移動手勢等資訊。 總括來說,依據近接偵測電路16所輸㈣多階近接㈣,控制電路 18可據以計算X軸、γ軸、z軸相對座標、移動趨勢或)(、γ轴平面手勢 或三維手勢或垂直手料。最終,控鮮元22可輸出多階近接資料,X、 Y、Z軸相對座標,或平斜勢指令,或垂直手勢指令、三維手勢指令。 由第1A〜8E圖的實施例可知,本發明可運用具有三角電極的單層電容 式觸控面板來實現空間㈣物件近接姻,進而取得㈣㈣物件近接資 料、物件移動趨勢、物件手勢^可讓目前僅有觸碰躺功能的電容式觸 控面板增加物件三維近顧_摘,財制板的近場手勢控制。 示了單層—角電極外’雙層的電極配置,如自電容式觸控面板或互電 容式觸控面鮮,她補⑽三_姉舰。以下, 列舉數個實施例說明之。 凊參考第9A圖,其為其為本發明之電容式近接感應暨觸控侧裝置之 功能方酬第二實施例1 9A圖之觸控面板12所示者為—般投射電容式 201216139 觸控面板常使用的鑽石結構電極,其為以χ軸電極15、Y軸電極13分別 設置於兩層的結構》控制單元22的結構與功能則與第1Α圖者相同以下 不再贅述。 f 9Β圖係為其為本發明之電容式近接感應暨觸控偵測裝置之功能方 塊圖第二實施例中選擇近接偵測模式之示意圖。第9Β圓說明了本發明亦可 將可偵測多闕碰座翻電容式觸控面板以選雜細的方絲進行近接 感測控制。例如,第9Β圖即為選擇了第9Α圖當中的γ轴電極γι、丫4、 泰 1等X軸電極X1、X4、X7...X3m+1等電極作為選擇近接偵測 .模式的_電極,其餘的電極不做近接制用作法後續將會描述 之。 第9C圖係為其為本發明之電容式近接感應暨觸控侧裝置之功能方 塊2第三實施例。第9A圖之觸控面板17所示者為_般投射電容式觸控面 板常使用的條形結構電極,其細χ軸電極21、丫轴電極19分別設置於 兩層的結構。控制單元22的結構與功能則與第1Α圖者相同,不再資述。 第9D圖係為其為本發明之電容式近接感應暨觸控偵測裝置之功能方 塊圖第三實施例中選擇近接偵測模式之示意圖。第㈣圖說明了本發明亦 可將可偵測多點觸碰座標的電容式觸控面板以選擇性偵測的方式來進行近 接感測控制。例如,第9D圖即為選擇了第9C圖當中的Υ軸電極Υ1、Υ4、 Γ^ΓΓ #,X|it^X1 'X4'X7-X3m+1 ^ 工]測電極’其餘的電極不做近接_用。具體的作法後續將會描述 之。 以下’將舉㈣㈣物㈣嫩_物物纖偵測功能 17 201216139 之實施例》 首先’睛參考第1〇A圖’其為運用第9C圖中本發明電容式近接感應 暨觸控偵測裝置之第三實施例中γ電極層之剖面示意圖,其為沿A_A剖面 之示意圖。由圆中可觀察到,感應範圍8卜9()為丫軸電極於A_A剖面的感 應範圍,其最大可感應範圍為D1。 第10B圖係為運用第9c圖中本發明電容式近接感應暨觸控摘測裝置 之第二實施例中Y電極層之剖面示意圖,其為沿B_B剖面之示意圖。由圖 中可觀察到,感應範圍82為γ轴電極丫2於B_B剖面的感絲圍,其最大 可感應範圍為D1。不同的相對高度為D2、D3、D4、D5..·,當物件進入不 同的感應綱時,近接侧電路16即會產生不_紐近接資料。 第10C圖係為運用第9D圖中本發明電容式近接感應暨觸控細裝置 之第三實施例中X電極層之剖面示意圖,其為沿Β·Β剖面之示意圖。由圓 十可觀察到’感應範圍91〜伽為X軸電極於Β-Β剖面的感應範圍,其最 大可感應範圍為D1。 第10D圖係為運用第9D圖中本發明電容式近接感應暨觸控侧裝置 之第三實施例中X電極層之剖面示意圖,其為沿A_A剖面之示意圖。由圖 中可觀察到,感應軸92為X軸電極X2於A-A麻的錢綱,其最大 可感應ίε*圍為D1。不同的蝴高度為D2、的、%、D5...,當物件進入不 同的感應細時,近接_電路16即會產生不_多階近接資料。 U下’僅列舉-移動軌跡為例’來分別說明本發賴全掃描式與選擇 掃描式的近接侧。其中,第11AH1L圖為全掃描式近接偵測的實施例, 第12A~12K圖則為選擇掃描式近接侧的實施例。 201216139 首先,請參考第11A圖,其為運用本發明電容式近接感應暨觸控偵測 裝置中’物件以軌跡103經過觸控面板17之偵測示意圖。亦即,物件係以 負Y轴且以負Z轴進行運動。以下,將由第11B〜11L圖說明本發明如何取 得X轴相對座標、Y轴相對座標與Z軸相對座標以及此一移動趨勢。 請參考第11B圖’其為運用第11A圖中之執跡1〇1於本發明電容式近 接感應暨觸控偵測裝置之第三實施例中Y電極層之偵測剖面示意圖,其為 沿A-A剖面之示意圖。由圖中可發現,物件2於時序T1〜T6,由觸控面板 17的靠近Y轴電極Y3、Y4上方,移動至γ轴電極的右側。由於物件2於 不同時序經過不同的電極感應範圍,因此,將有不同的電極會因此而產生 感應量的變化。 請參考第11C圖,其為第11B圖中運用本發明電容式近接感應暨觸控 偵測裝置中,物件於Y軸在不同時序所輸出之多階近接資料示意圖。 第11C圖中,在時序T1時,Y轴電極Y2、Y3、Y4、Y5感測到感應 訊號,而近接偵測電路16也輸出對應的多階近接資料。時序T2時,分別 有Y軸電極Y3、Y4、Y5、Y6、Y7感測到感應訊號,而近接偵測電路16 也輸出對應的多階近接資料。時序T3時,分別有Y軸電極Y5、Y6、Y7、 Y8、Y9感測到感應訊號,而近接偵測電路16也輸出對應的多階近接資料。 時序74時,分別有Υ轴電極Υ6、Υ7、Υ8、Υ9、Υ10感測到感應訊號, 而近接偵測電路16也輸出對應的多階近接資料。時序Τ5時’分別有Υ軸 電極Υ8、Υ9、Υ10感測到感應訊號,而近接偵測電路16也輸出對應的多 階近接資料。時序Τ6時,僅有Υ軸電極Υ10感測到感應訊號’而近接偵 測電路16也輸出對應的多階近接資料。多階近接資料的實際數值’請參考 201216139 第11D〜1仆圖。 , 圖為第11C圖中於T1與T2時所輸出之近接資料示意圖。亦即, 以感應量最大的—個或數個的平均值換算為物件與输面板於Z轴的相對 距離。運用本翻電容式近接感應暨觸控侧裝置中,物件經過丫抽於T1 與T2時所輪出之近接資料*意圖。在時序Τ1,γ轴電極η、γ3、γ4、 Y5所代表的錢近接資料分別為彳、2、2、1,數值姑代表祕量大。 在’ Y軸電極Y3、Y4、Y5、Y6、Y7所代表的多階近接資料分別 為 2、3、6、6、3。 第圆為第11C圖中於丁 3與丁4時所輸出之近接資料示意圖。亦即, 以感應量最大的-個或數個的平均值換算為物件與觸控面板於z抽的相對 距離。運用本發明電容式近接感應暨觸控偵測裝置中,物件經過Y轴於打 與T4時所輸出之近接資料示意圖。在時序丁3,γ轴電極丫5、丫6、丫7、 4。在時序Τ4,Υ軸 Υ8、Υ9所代表的多階近接資料分別為3、4、7、7、 電極 Υ6、Υ7、Υ8、Υ9、 Υ1〇所代表的多階近接資料分別為5、7、10、10It can be seen from the data change trend of Fig. 8 that the object 2 is moved by the parallel movement of the positive X-axis. When looking at the figure 8 above, when the object 2 is located above the touch panel 11, since the triangular electrodes 20-1 and 20-2 have different sensing ranges, the triangular electrodes 2〇_ι, 20-2 can be simulated. There are center of gravity 53 and center of gravity 54 respectively. By calculating the distance from the center of gravity 53, 54 by the size of the proximity data, the distance between the object 2 and the touch panel buckle can be obtained. For the actual values of the multi-step proximity data, please refer to Figures 8C to 8E. Figure 8C is a schematic diagram of the proximity data output by the capacitive proximity sensor and the touch side device towel when the object passes through the X axis at T1 and T2. At the timing T1, the multi-order close-in data represented by the triangular electrodes 2〇1, 20_3, 20-5, and 20-7 are 2, 3, 3, and 2, respectively, and the larger value represents a larger amount of inductance. The sequence of T2 ‘three (four) espresso, 2Q_3, 2Q 5, 2Q 7 represents the multi-level proximity data of 4, 5, 5, and 4 respectively. The figure is a schematic circle of the proximity data outputted by the object through the X-axis at T3 and T4 in the capacitive proximity sensor and touch detection device of the present invention. At the timing of 3, the triangular electrodes 2 are 20-2, 2Q_3, 2 (Μ, 咖, 2Q 7, 2Q 8 ___ respectively 5 2 4, 1 respectively. At the timing T4, the triangular electrodes 2〇1, 23, 204, 20-5, 20-6, 20-7 _ The sneakers of the sneakers are 3, 5, 4 hearts 6, 3, and 4. The 8C and 8D figures show that the object 2 is close to the triangle. The electrode is disengaged* near: the part of the center of gravity 54 of the corner electrode 2〇·2, and there is a tendency to gradually connect the 15201216139 control panel 11. The 8E is a capacitive proximity sensor and touch detection device using the present invention. In the middle, the close-up data of the output of the object through the X-axis at the D5 and D6. At the timing T5, the triangular electrode 2 (M, 20-2, 2M, 2 (M, 2Q_5, 2Q_6, 2Q_7, 2Q_8 represents) The multi-order proximity data represented by the multi-order close-in data is 20, 8, 8, and 6. Therefore, the movement of the magnitude and the change of the magnitude of the magnitude of the 8B and 8C to 8E maps can be used to derive the object. In the relative distance of the z-axis, using the change of the relative distance, information such as the z-axis movement trend and the vertical movement gesture can be calculated. In summary, according to the proximity detection circuit 16, the (four) multi-order near (4) The control circuit 18 can calculate the X-axis, the γ-axis, the z-axis relative coordinate, the movement trend or (), the γ-axis plane gesture or the three-dimensional gesture or the vertical hand material. Finally, the control element 22 can output the multi-order proximity data. , X, Y, Z axis relative coordinates, or flat oblique command, or vertical gesture command, three-dimensional gesture command. From the embodiment of Figures 1A to 8E, the present invention can be used with a single layer capacitive touch with a triangular electrode The panel is used to realize the space (4) the object is close to the marriage, and then the (4) (4) object close-in data, the object moving trend, the object gesture ^ can make the capacitive touch panel with only the touch-and-lie function increase the object three-dimensional close-up _ pick, the financial board Near-field gesture control. Shows the single-layer-corner electrode' double-layer electrode configuration, such as self-capacitive touch panel or mutual-capacitive touch surface, she complements (10) three _ 姊. Below, enumerate several implementations For example, reference is made to FIG. 9A, which is the function of the capacitive proximity sensor and the touch side device of the present invention. The second embodiment 1 is shown in the touch panel 12 of FIG. 201216139 touch surface A commonly used diamond structure electrode is a structure in which the x-axis electrode 15 and the Y-axis electrode 13 are respectively provided in two layers. The structure and function of the control unit 22 are the same as those of the first figure, and will not be described below. For the second embodiment of the functional block diagram of the capacitive proximity sensing and touch detection device of the present invention, a schematic diagram of the proximity detection mode is selected. The ninth circle illustrates that the present invention can also detect the multi-spot The flip-flop type touch panel selects the fine square wire for the proximity sensing control. For example, the 9th drawing is the γ-axis electrode γι, 丫4, 泰1, and other X-axis electrodes X1 and X4 in the 9th drawing. The X7...X3m+1 electrode is used as the _electrode for the proximity detection mode. The remaining electrodes are not used for the proximity method. Fig. 9C is a third embodiment of the functional block 2 of the capacitive proximity sensing and touch side device of the present invention. The touch panel 17 shown in Fig. 9A is a strip-shaped structure electrode which is commonly used for a projected capacitive touch panel, and the thin-axis electrode 21 and the x-axis electrode 19 are respectively disposed in a two-layer structure. The structure and function of the control unit 22 are the same as those of the first figure, and will not be described again. FIG. 9D is a schematic diagram of a proximity detection mode selected in the third embodiment of the capacitive proximity sensor and touch detection device of the present invention. The figure (4) illustrates that the present invention can also perform proximity sensing control by selectively detecting a capacitive touch panel capable of detecting multi-touch coordinates. For example, the 9D image shows that the remaining electrodes are not selected in the C-axis electrode Υ1, Υ4, Γ^ΓΓ #, X|it^X1 'X4'X7-X3m+1 ^^ Close to _ use. The specific practices will be described later. The following 'will be (4) (four) things (four) tender _ object fiber detection function 17 201216139 embodiment" first "eye reference to Figure 1A" which is the use of the capacitive magnetic proximity sensing and touch detection device of the present invention A schematic cross-sectional view of the gamma electrode layer in the third embodiment, which is a schematic view along the A_A cross section. It can be observed from the circle that the sensing range 8b9() is the sensing range of the 丫-axis electrode in the A_A profile, and the maximum inductive range is D1. Fig. 10B is a schematic cross-sectional view showing the Y electrode layer in the second embodiment of the capacitive proximity sensing and touch picking device of the present invention in Fig. 9c, which is a schematic view along the B_B cross section. As can be seen from the figure, the sensing range 82 is the circumference of the γ-axis electrode 丫2 in the B_B section, and the maximum inductive range is D1. The different relative heights are D2, D3, D4, D5..·, when the object enters different sensing classes, the near-side circuit 16 will generate no-near data. Fig. 10C is a schematic cross-sectional view showing the X electrode layer in the third embodiment of the capacitive proximity sensing and touch sensing device of the present invention in Fig. 9D, which is a schematic view along the Β·Β cross section. It can be observed from the circle 10 that the sensing range 91 to gamma is the sensing range of the X-axis electrode in the Β-Β profile, and the maximum inductive range is D1. Fig. 10D is a schematic cross-sectional view showing the X electrode layer in the third embodiment of the capacitive proximity sensing and touch side device of the present invention in Fig. 9D, which is a schematic view along the A_A cross section. As can be seen from the figure, the sensing shaft 92 is the X-axis electrode X2 in the A-A hemp, and its maximum inductive ίε* is D1. Different butterfly heights are D2, %, D5... When the object enters different sensing fines, the proximity circuit 16 will generate no-multiple-order proximity data. U is 'only enumerated - the moving track is taken as an example' to describe the proximity side of the full scan type and the selective scan type, respectively. The 11th AH1L diagram is an embodiment of full scan proximity detection, and the 12A-12K diagram is an embodiment of selecting a scanning proximity side. 201216139 First, please refer to FIG. 11A, which is a schematic diagram of detecting the object trajectory 103 passing through the touch panel 17 by using the capacitive proximity sensor and touch detection device of the present invention. That is, the object moves with a negative Y-axis and a negative Z-axis. Hereinafter, how the present invention obtains the X-axis relative coordinates, the Y-axis relative coordinates, and the Z-axis relative coordinates, and this movement tendency will be described by Figs. 11B to 11L. Please refer to FIG. 11B, which is a schematic cross-sectional view of the Y electrode layer in the third embodiment of the capacitive proximity sensing and touch detecting device of the present invention using the trace 1 in FIG. 11A. Schematic diagram of the AA profile. As can be seen from the figure, the object 2 is moved from the top of the touch panel 17 near the Y-axis electrodes Y3 and Y4 to the right side of the γ-axis electrode at timings T1 to T6. Since the object 2 passes through different electrode sensing ranges at different timings, different electrodes will cause a change in the amount of inductance. Please refer to FIG. 11C, which is a schematic diagram of the multi-step proximity data outputted by the object in the Y-axis at different timings in the capacitive proximity sensor and touch detection device of the present invention. In Fig. 11C, at timing T1, the Y-axis electrodes Y2, Y3, Y4, Y5 sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. At the timing T2, the Y-axis electrodes Y3, Y4, Y5, Y6, and Y7 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. At the timing T3, the Y-axis electrodes Y5, Y6, Y7, Y8, and Y9 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding multi-stage proximity data. At timing 74, the x-axis electrodes Υ6, Υ7, Υ8, Υ9, Υ10 respectively sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order splicing data. At the time of Τ5 o', the xenon electrodes Υ8, Υ9, Υ10 respectively sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order splicing data. At timing Τ6, only the x-axis electrode Υ10 senses the inductive signal' and the proximity detection circuit 16 also outputs the corresponding multi-order spur data. For the actual value of the multi-step proximity data, please refer to 201216139 11D~1 servant diagram. The figure is a schematic diagram of the proximity data outputted at T1 and T2 in Figure 11C. That is, the average value of one or several of the largest inductive quantities is converted into the relative distance between the object and the panel on the Z axis. In this flip-flop proximity sensing and touch-side device, the object is intruded by the object when it is pumped to T1 and T2. In the time series Τ1, the money close-up data represented by the γ-axis electrodes η, γ3, γ4, and Y5 are 彳, 2, 2, and 1, respectively, and the numerical value represents a large amount of secret. The multi-order close-in data represented by the 'Y-axis electrodes Y3, Y4, Y5, Y6, and Y7 are 2, 3, 6, 6, and 3, respectively. The first circle is a schematic diagram of the close-up data outputted in the case of D3 and D4 in Fig. 11C. That is, the average value of one or several of the largest inductive amounts is converted into the relative distance between the object and the touch panel. In the capacitive proximity sensor and touch detection device of the present invention, the close-up data of the object output through the Y-axis and the T4 is used. In the timing D3, the γ-axis electrodes 丫5, 丫6, 丫7, 4. In the sequence Τ4, the multi-order close-in data represented by the Υ axis Υ8 and Υ9 are 3, 4, 7, 7, 7, Υ6, Υ7, Υ8, Υ9, Υ1〇, respectively, which are 5, 7, respectively. 10, 10
第圖為第11C圖中於Τ5與丁6時所輪出之近接資料示意圖。在時 序T5,Y軸電極Y8、Y9、Y10所代表的多階近接資料分別為8、12、$ 在時序T6,Y軸電極Y10所代表的多階近接資料為。 藉由第11D~11F圖的感應量大小值,可推算出物件在z軸的相對距 離”亦即,以感應量最大的-個或數個辭均值換算為物件與離面板於z 軸的相對距^運用此㈣距_變化,可計算出z轴的移動麟與垂直 移動手勢等資訊。亦即’單從Y _掃描週期,即可取得丫減相對座標、 20 201216139 移動趨勢,以及z轴的相對座標與移動趨勢。至於x轴的相對座標與移動 趨勢,則必須以X轴的掃描偵測控制取得,請參考第MG-hl圖。 第11G圖係為運用第11A圖中之執跡101於本發明電容式近接感應費 • 觸控偵測裝置之第三實施例中X電極層之偵測剖面示意圖 ,其為沿B-B别 面之示意圖。第11H圖係為運用第11A圖中之執跡101於本發明電容式近 接感應暨觸控偵測裝置之第三實施例中X電極層之偵測剖面示意圖,其為 , 沿A-A剖面之示意圖。參考此兩圖可發現,從不同的角度來看,即可看出 # 物件2的移動。在第11G圖中,物件2係為負Z轴的運動;在第11H圖中, 物件2同樣為負Z軸的運動,並無具體的X軸運動。換句話說,若物件2 具有X軸運動,當由第11G圖可看出端倪。當然,可於後續的多階近接資 料的輸出順序以及輸出的大小,了解物件2於X轴的相對座標、移動趨勢, 以及物件2於Z軸的相對座標、移動趨勢。 接著’請參考第11丨圖,其為第11G、11H圖中運用本發明電容式近 接感應暨觸控偵測裝置中,物件於X軸在不同時序所輸出之多階近接資料 不意圖。 第111圖中,在時序T1時,X軸電極X1、X2、X3感測到感應訊號, 而近接偵測電路16也輸出對應的多階近接資料。時序T2時,分別有X軸 電極X1、X2、X3、X4感測到感應訊號,而近接偵測電路16也輸出對應 的多階近接資料。時序T3時,分別有X軸電極X1、X2、X3、X4感測到 感應訊號,而近接偵測電路16也輸出對應的多階近接資料。時序T4時, 分別有X軸電極X1、X2、X3、X4感測到感應訊號’而近接偵測電路16 也輸出對應的多階近接資料。時序T5時’分別有X轴電極X1、X2、X3、 21 201216139 X4感測到感應訊號’而近接偵測電路16也輸出對應的多階近接資料。時 序T6時,有X軸電極X1、X2、X3感測到感應訊號,而近接偵測電路16 也輸出對應的多階近接資料。 接著,晴參考第11J圖,其為第11丨圖中於丁1與T2時所輸出之近接 資料示意圖。在時序T1,X轴電極X1、Χ2、Χ3所代表的多階近接資料分 別為1、2、1,數值大者代表感應量大。在時序丁2,χ軸電極χι、χ2、 Χ3、Χ4所代表的多階近接資料分別為3、5、3、2。 第11Κ圖係為第111®中於Τ3與Τ4時所輸出之近接資料示意圖。在 時序Τ3,X減極Χ1、Χ2、Χ3、Χ4所代表的多階近接資料分別為5、7、 5、3 ’數值大者代表感應量大。在時序丁4,X軸電極、χ2、Χ3、Χ4 所代表的多階近接資料分別為7、9、7、4。 第11L圖係為第11丨圖中於Τ5與Τ6時所輸出之近接資料示意圖。在 時序Τ5,X轴電極Χ1、Χ2、Χ3、Χ4所代表的多階近接資料分縣9、”、 9、7,數值大者代表感應量大。在時序Τ6,χ軸電極幻、χ2、χ3所代表 的多階近接資料分別為11、13、11。 藉由第11M1L圖的感應量大小值,可推算出物件在ζ轴的相對距離。 亦即’以Μ«大的-個絲_平均雜料物件與臟面板於ζ轴 的相對距離。運耻相對距離的變化’可計算出ζ軸的鑛趨勢與垂直移 動手勢等資訊。亦即’單從X軸的掃描週期,即可取得X _相對座標、 移動趨勢,以及Ζ軸的相對座標與移動趨勢。 綜合第11Α〜11L目的說明,當可明瞭本發明可取得在電容式觸控面板 的空間感應範_ ’於空間中的X轴相對座標、γ軸相對座標與ζ軸相對 22 201216139 座標。同時’運用不同時序所取得的多階近接資料,可計算出乂轴移動趨 勢、γ軸移動趨勢。最終,可計算得空間中的手勢,而進行三維的手勢操 控。 . 接著,以下將以第DA〜12K圖來說明本發明的選擇掃描式的近接偵測 ,方式,同樣可計算得空間巾的x軸對座標、γ_馳標與z軸相對座 標。同時,運用不同時序所取得的多階近接資料,可計算出χ袖移動趨勢、 γ軸移動趨勢。最終,可計算得空間中的手勢,而進行三維的手勢操控。 • 請參考第12Α圖,其為運用第”Α ®中之獅1〇1於本發明電容式近 接感應暨觸控偵測裝置之第三實施例中γ電極層之偵測剖面示意圖,其為 沿Α-Α剖面之示意圖。由圖中可發現,由於僅有γ軸電極γι、γ4 γ7、 Υ10被致能,·’僅有此_電極於丫卿斜可偵測物件之近接感應。 其中,物件2於時序Τ1〜Τ6 ’由觸控面板17的靠近γ軸電極γ3、γ4上 方,移動至Υ軸電極的右側,動作同第11Β圖時的情形。由於物件2於不 @時序經過不_電減應範圍,因此,财不同的電極會@此而產生感 ^ 應量的變化。 請參考第12B圓’其為第12A圖中運用本發明電容式近接感應暨觸控 偵測裝置中,物件於Y軸在不同時序所輸出之多階近接資料示意圖。 第12B圖中,在時序T1時,γ軸電極丫4感測到感應訊號,而近接偵 測電路16也輸出對應的多階近接資料。時序T2時,分別有γ轴電極γ4、 Υ7感測到感應訊號,而近接偵測電路16也輸出對應的多階近接資料。時 序Τ3時,僅有Υ軸電極Υ7感測到感應訊號’而近接偵測電路16也輸出 對應的多階近接資料。時序Τ4時,分別有γ轴電極γ7、γι〇感測到感應 23 201216139 訊號,而近接偵測電路16也輸出對應的多階近接資料。時序T5時,僅有 Υ軸電極Υ10感測到感應訊號,而近接偵測電路16也輸出對應的多階近接 資料。時序Τ6時’僅有γ軸電極γι〇感測到感應訊號,而近接偵測電路 16也輸出對應的多階近接資料。多階近接資料的實際數值,請參考第 11D~11F 圖。 第12C圖為第12B圖中於T1與T2時所輸出之近接資料示意圖。亦 即,以感應量最大的一個或數個的平均值換算為物件與觸控面板於z軸的 相對距離。運用本發明電容式近接感應暨觸控偵測裝置中,物件經過γ軸 於T1與T2時所輸出之近接資料示意圖。在時序丁1,γ軸電極所代表 的多階近接資料分別為2,數值大者代表感應量大。在時序Τ2,γ轴電極 Y4、Y7所代表的多階近接資料分別為3、3。 第12D圖為第12B圖中於T3與T4時所輸出之近接資料示意圖。亦 即,以感應#最大的-個或數個的平均值換算為物件與難面板於z轴的 相對距離。運用本發明電容式近接感缝觸㈣職置中,物件經過丫轴 於T3與T4時所輸出之近接資料示意圖。在時序丁3,丫轴電極丫7所代表 的多階近接資料分別為7。在時序Τ4, γ轴電極γ7、所代表的多階近 接資料分別為7、7。 第12Ε圖為第12Β圖中於Τ5與Τ6時所輸出之近接資料示意圖。在 時序Τ5,Υ軸電極Υ10所代表的多階近接資料分別為13。在時序刊,γ 軸電極Υ10所代表的多階近接資料為13。 藉由第12Α〜12Ε圖的感應量大小值,可推算出物件在Ζ轴的相對距 離。亦即,以祕量最大的-個或數個的平均值換算為物件與觸控面板於ζ 24 201216139 抽的相_。獅___,可計算出z㈣移動趨勢與垂直 勢等貝訊’亦即’單從γ軸的掃描週期,即可取得Y轴的相對座標、 移動趨勢,以及Z轴的相對座標與移動趨勢。至於乂軸的相對座標與移動 趨勢’則必須以x轴的掃描偵測控制取得,請參考第12F〜12K圖。The figure is a schematic diagram of the close-up data taken at the time of Τ5 and D6 in Figure 11C. In the order T5, the multi-order close-in data represented by the Y-axis electrodes Y8, Y9, and Y10 are 8, 12, and $, respectively, at the timing T6, and the multi-order close-in data represented by the Y-axis electrode Y10 is. By the magnitude of the inductive quantity of the 11D~11F graph, the relative distance of the object in the z-axis can be derived", that is, the maximum or the number of the mean values of the inductive amount is converted into the relative value of the object and the off-axis on the z-axis. From the use of this (four) distance _ change, you can calculate the z-axis mobile lining and vertical movement gestures, etc., that is, 'single from the Y _ scan cycle, you can get the reduction relative coordinates, 20 201216139 movement trend, and z-axis The relative coordinates and movement trend of the x-axis. The relative coordinates and movement trend of the x-axis must be obtained by the X-axis scan detection control. Please refer to the MG-hl diagram. The 11G diagram is the use of the trace in Figure 11A. 101 is a schematic cross-sectional view of the X electrode layer in the third embodiment of the capacitive proximity sensing fee detecting device according to the present invention, which is a schematic diagram along the other side of the BB. The 11H figure is used in the 11A FIG. 101 is a schematic cross-sectional view showing the X electrode layer in the third embodiment of the capacitive proximity sensing and touch detecting device of the present invention, which is a schematic view along the AA cross section. Referring to the two figures, it can be found from different From the perspective, you can see that the movement of object 2 In Figure 11G, object 2 is a negative Z-axis motion; in Figure 11H, object 2 is also a negative Z-axis motion with no specific X-axis motion. In other words, if object 2 has X The axis motion can be seen from the 11G diagram. Of course, the relative coordinates of the object 2 on the X axis, the movement trend, and the object 2 on the Z axis can be obtained from the output order of the subsequent multi-order proximity data and the size of the output. Relative coordinates and movement trend. Then, please refer to Figure 11 for the 11G and 11H diagrams. In the capacitive proximity sensor and touch detection device of the present invention, the object is outputted at different timings on the X axis. In the 111th figure, at the timing T1, the X-axis electrodes X1, X2, and X3 sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-level proximity data. At the timing T2, respectively The X-axis electrodes X1, X2, X3, and X4 sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. At the timing T3, the X-axis electrodes X1, X2, X3, and X4 are respectively sensed. To the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order When the timing is T4, the X-axis electrodes X1, X2, X3, and X4 respectively sense the sensing signal', and the proximity detecting circuit 16 also outputs the corresponding multi-stage proximity data. At the timing T5, there are the X-axis electrodes X1 respectively. X2, X3, 21 201216139 X4 senses the sensing signal' and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. At the timing T6, the X-axis electrodes X1, X2, X3 sense the sensing signal, and the proximity signal The detection circuit 16 also outputs the corresponding multi-order proximity data. Next, the reference is shown in Fig. 11J, which is a schematic diagram of the proximity data outputted in the 11th diagram at the time of D1 and T2. At the timing T1, the X-axis electrode X1. The multi-order near-end data represented by Χ2 and Χ3 are 1, 2, and 1, respectively, and the larger value represents the large amount of induction. In the timing D2, the multi-order close-in data represented by the x-axis electrodes χι, χ2, Χ3, and Χ4 are 3, 5, 3, and 2, respectively. Figure 11 is a schematic diagram of the proximity data outputted at Τ3 and Τ4 in the 111th. In the sequence Τ3, the multi-order close-in data represented by X minus Χ1, Χ2, Χ3, and Χ4 are 5, 7, 5, and 3', respectively. In the timing D4, the X-axis electrodes, χ2, Χ3, Χ4 represent the multi-order close-in data of 7, 9, 7, and 4, respectively. The 11th figure is a schematic diagram of the close-up data outputted at Τ5 and Τ6 in the 11th figure. In the sequence Τ5, the multi-order near-station data represented by the X-axis electrodes Χ1, Χ2, Χ3, and Χ4 are divided into counties 9, “, 9, and 7. The larger value represents the large amount of induction. At the timing Τ 6, the 电极 axis electrodes are illusory, χ 2 The multi-order close-in data represented by χ3 is 11, 13, and 11. The relative distance of the object on the x-axis can be derived from the magnitude of the inductive quantity of the 11M1L map. That is, 'Μ大大-丝丝_ The relative distance between the average miscellaneous material and the dirty panel on the yaw axis. The change of the relative distance of the shame can calculate the mine trend and vertical movement gesture of the ζ axis. That is, the scan cycle from the X axis can be obtained. X _ relative coordinates, movement trend, and relative coordinates and movement trend of the Ζ axis. Comprehensive 11th ~ 11L purpose description, when it can be seen that the invention can obtain the space sensing modal in the capacitive touch panel _ 'X in space The relative coordinate of the axis, the relative coordinate of the γ axis and the axis of the 22 axis are opposite to the 201216139 coordinates. At the same time, the multi-step near-end data obtained by different timings can be used to calculate the movement trend of the 乂 axis and the movement trend of the γ axis. Finally, the space can be calculated. Gesture while doing three-dimensional Gesture manipulation. Next, the selective scanning proximity detection method of the present invention will be described below with reference to FIGS. DA~12K, and the x-axis pair coordinates, γ_camps and z-axis relative coordinates of the space towel can also be calculated. At the same time, using the multi-step proximity data obtained by different timings, the movement trend of the sleeves and the movement trend of the γ-axis can be calculated. Finally, the gestures in the space can be calculated and the three-dimensional gestures can be controlled. • Please refer to Figure 12 It is a schematic cross-sectional view of the gamma electrode layer in the third embodiment of the capacitive proximity sensing and touch detecting device of the present invention using the lion 〇1〇1 in the first Α®, which is along the Α-Α profile schematic diagram. It can be seen from the figure that since only the γ-axis electrodes γι, γ4 γ7, and Υ10 are enabled, the 'only electrode' is in proximity sensing of the detectable object. The object 2 is moved from the upper side of the γ-axis electrodes γ3 and γ4 of the touch panel 17 to the right side of the y-axis electrode at the timing Τ1 to Τ6', and the operation is the same as in the case of the eleventh figure. Since the object 2 does not pass through the range of non-electrical reduction, the different electrodes will have a change in the sense. Please refer to the 12th round circle, which is a schematic diagram of the multi-stage close-up data outputted by the object on the Y-axis at different timings in the capacitive proximity sensor and touch detection device of the present invention. In Fig. 12B, at the timing T1, the γ-axis electrode 丫 4 senses the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order splicing data. At the timing T2, the γ-axis electrodes γ4 and Υ7 respectively sense the sensing signals, and the proximity detecting circuit 16 also outputs the corresponding multi-order splicing data. When the timing is Τ3, only the x-axis electrode Υ7 senses the sensing signal' and the proximity detecting circuit 16 also outputs the corresponding multi-order splicing data. When the timing is Τ4, the γ-axis electrodes γ7 and γι〇 respectively sense the sensing 23 201216139 signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. At the timing T5, only the x-axis electrode Υ 10 senses the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order spur data. When the timing is Τ6, only the γ-axis electrode γι〇 senses the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. For the actual values of multi-step proximity data, please refer to Figures 11D~11F. Figure 12C is a schematic diagram of the proximity data outputted at T1 and T2 in Figure 12B. That is, the average value of one or several of the largest inductive amounts is converted into the relative distance between the object and the touch panel on the z-axis. In the capacitive proximity sensing and touch detecting device of the present invention, the close-up data of the object output through the γ axis at T1 and T2 is schematically illustrated. In the case of the chronograph 1, the multi-order close-in data represented by the γ-axis electrode is 2, and the larger value represents the large amount of induction. In the timing Τ2, the multi-order close-in data represented by the γ-axis electrodes Y4 and Y7 are 3 and 3, respectively. Figure 12D is a schematic diagram of the proximity data outputted at T3 and T4 in Figure 12B. That is, the average value of the sensing - the largest one or several is converted into the relative distance between the object and the hard panel on the z-axis. By using the capacitive proximity sensing seam contact (four) of the present invention, the schematic diagram of the proximity data outputted by the object through the boring axis at T3 and T4 is shown. In the timing D3, the multi-order close-in data represented by the x-axis electrode 丫7 is 7, respectively. In the timing Τ4, the γ-axis electrode γ7 and the multi-step near-term data represented are 7,7, respectively. Figure 12 is a schematic diagram of the close-up data outputted at Τ5 and Τ6 in Figure 12. At the timing Τ5, the multi-order close-in data represented by the x-axis electrode Υ10 is 13, respectively. In the time series, the multi-order close-in data represented by the γ-axis electrode Υ10 is 13. The relative distance of the object on the x-axis can be derived from the magnitude of the inductive magnitude of the 12th to 12th. That is, the average value of one or several of the most secret is converted into the phase of the object and the touch panel. The lion ___ can calculate the z (four) movement trend and the vertical potential, etc., that is, the scanning period of the γ axis alone can obtain the relative coordinates of the Y axis, the moving tendency, and the relative coordinates and movement tendency of the Z axis. As for the relative coordinates and movement trend of the x-axis, it must be obtained by the x-axis scan detection control. Please refer to the 12F~12K picture.
第2F圖係為運用第以目中之軌跡於本發明電容式近接感應暨 觸控债測裝置之第三實施例中X電極層之個剖面示意圖,其為沿B-B剖 示思圖第12G圖係為運用第11A圖中之轨跡1〇1於本發明電容式近 接感應暨觸控_裝置之第三實施财χ電極層之侧示意圖,其為 沿Α-Α剖面之示意圖參考此_可發現,從不關角度來看,即可看出 物件2的移動。在第12f圖中,物件2係為負ζ軸的運動;在第12G圖中, 物件2同樣為負z軸的運動’並無具體的χ軸運動。換句話說,若物件2 具有X轴運動’當由第12F圖可看出端悅。當然、,可於後續的多階近接資 料的輸出順序以及輸出的大小,了解物件2於\轴的相對座標、移動趨勢, 以及物件2於Z軸的相對座標、移動趨勢。 接著’請參考第12H圖’其為第12F、12G圖中運用本發明電容式近 接感應暨觸控偵測裝置中’物件於X轴在不同時序所輸出之多階近接資料 示意圖。 第12H圖中’在時序T1時,X軸電極χι感測到感應訊號,而近接偵 測電路16也輸出對應的多階近接資料。時序丁2時,分別有X轴電極X1、 X4感測到感應訊號’而近接偵測電路16也輸出對應的多階近接資料。時 序丁3時’分別有X軸電極X1、X4感測到感應訊號,而近接偵測電路16 也輪出對應的多階近接資料。時序丁4時,分別有X轴電極X1、Χ4感測到 25 201216139 感應訊號,而近接偵測電路16也輸出對應的多階近接資料。時序T5時, 分別有X轴電極Χ1、Χ4感測到感應訊號’而近接偵測電路16也輸出對應 的多階近接資料。時序Τ6時,有X轴電極Χ1感測到感應訊號,而近接偵 測電路16也輸出對應的多階近接資料。 接著’請參考第121圖,其為第12Η圖中於Τ1與Τ2時所輸出之近接 資料示意圖。在時序Τ1,Χ轴電極Χ1所代表的多階近接資料分別為彳。在 時序Τ2,X軸電極χι、χ4所代表的多階近接資料分別為3、2。 第12J圖係為第12Η圖中於Τ3與Τ4時所輸出之近接資料示意圖。在 時序Τ3 ’ X軸電極X1、Χ4所代表的多階近接資料分別為5、3。在時序 T4,X軸電極Χ1、χ4所代表的多階近接資料分別為7、4。 第12K圖係為第12H圖中於丁5與T6時所輸出之近接資料示意圖。 在時序Τ5,X軸電極X1、Χ4所代表的多階近接資料分別為9、7。在時序 Τ6,X軸電極χι所代表的多階近接資料分別為糾。 藉由第12F〜12Κ圖的感應量大小值,可推算出物件在ζ轴的相對距 離。亦即,以感應量最大的-個或數個的平均值換算為物件與觸控面板於二 軸的相對距離1用此相對距離的變化,可計算出ζ轴的移動趨勢與垂直 移動手_訊。亦即,單從_掃描職,即可取得)(軸_對座標、 移動趨勢,《及Ζ軸的相對座標與移動趨勢。 總括來說’絲近接伽以路16峨出衫階近接資料,控制電路 18可據以計算X軸、丫轴、ζ軸相對座標、移動趨勢或X、丫轴平面手勢 或三維手料《手勢等。最終,控鮮元22可輪蛉階近接倾,χ、 Υ、Ζ轴相對座標’或平面手勢指令,或垂直手勢指令、三維手勢指令。 26 201216139 綜合第12A韻圖的說明,當可明瞭本發明可取得在電容式觸控面板 的空間感絲_’於空間中的X轴相對座標、Y_對座標與Z軸相對 座標。同時’運用不同時序所取得㈣近編,可輸χ轴移動趨 勢、Y軸移動趨勢。最終,可計算得空間中的手勢,而進行三維的手勢操 控。亦即’以選擇掃描式的近接偵測,同樣可達到全掃描式的近翻測所 需的資料。祿X _絲、γ軸姆座標_社,_式的近接 偵測解析度可較高。 • 自敵的實_可知’鋪單元U實社所包含断接個模式與觸 碰偏測模式,其中的近接偵測模式可包含全掃描式、選擇掃描式兩種或其 中之一。 #接下來’請參考第13圖’其說明了本發明如何運用電容式觸控面板來 十算付手勢的不忍圖。第13圖為運用本發明之電容式近接感應暨觸控偵測 裝置’戶賴測出之移動趨勢,再由移動趨勢判斷手勢之示意圖。在不同的 掃也區間的物件移動’本發明可取得不_掃描區間的移動趨勢円〜%。 •若近接資料為一階近接資料時,移動趨勢僅能判斷其為平面之移動 趨勢’進而判斷出平面的空間移動手勢,第13 _實施例為劃圓。若近接 資料為多階近接資料時’每個移動趨勢P1〜p6將包含有X抽丫抽與z轴 的移動趨勢資訊。因此,將可判斷第13 _手勢為三維手勢。 以下’將以數個流程圖說明本發明所揭露的方法。 。月參考第14圖’其為本發明之電容式近接感應暨觸控偵測方法流程 圖’ *^近接_模式之-實施例,包含以下步驟: 步驟110 .開啟電容式馳面板之_階近接侧模式。 27 201216139 步驟112 .依據工作時序,分別偵測物件進入各電極之空間感應區所產 生之感應訊號。 步驟114 .依據工作時序,依據各電極所輸出之感應訊號產生一階近接 資料。 步驟116 :依據X轴、γ軸之各電極所對應之一階近接資料計算該物件 於X軸、Y轴之移動趨勢。 步驟118 .依據X軸、γ軸移動趨勢,產生一平面手勢指令。 亦即’依照第14圖的步驟’最基本的可以取得χ軸、γ軸的移動趨勢, 進而可以取得空間巾的平面手勢指令。此外,本實關之方法可適用於前 述的不同電容式觸控面板的電極配置。 接著’請參考第15 @,其為本發明之電容式近接感舰觸控偵測方法 流程圖’多階近接偵測模式之一實施例,包含以下步驟: 步驟120 :開啟電容式觸控面板之近接偵測模式。 步驟122 :依據工作時序’分別偵測物件進入電極之空間感應區所產生 之感應訊號。 步驟124 ··依據工作時序與各電極所輸出之感應訊號產生多階感應資 料。 步驟126 :依據多個工㈣序中X軸之各電極所對應之多階感應資料, 計算該物件於X轴與Ζ轴之移動趨勢。 步驟128 :依據多個工作時序中Υ軸之各電極所對應之多階感應資料, 計算該物件於Υ軸與Ζ轴之移動趨勢。 步驟130 :依據X軸與Υ軸移動趨勢,產生平面手勢指Α。 28 201216139 麵132 ·依據你、丫軸與2軸移動趨勢’產生三維手勢指令。 亦即’依照第15圖的步驟,最基本的可以取得X轴、丫轴z轴的移 動趨勢’進而可以取得平面手勢齡或者空間巾的三維手勢指令此外, .亦職麵巾飾轉錢手雜令的㈣。糾,本魏狀方法可適 . 用於前述的不同電容式觸控面板的電極配置。 第圖係為本發明之電容式近接感應暨觸控摘測方法流程圖,多階近 接侧模式之另—實施例,包含以下步驟: Φ 步驟12Q :開啟電容式觸控面板之近接細模式。 步驟122 :依據工作時序,分別债測物件進入電極之空間感應區所產生 之感應訊號。 步驟124 :依據工作時序與各電極所輸出之感應訊號產生多階感應資 料。 步驟125 :依據X軸之各電極所對應之多階感應資料,計算該物件於各 時序之X轴與Ζ軸相對空間座標。 馨 步驟127 :依據Υ軸之各電極所對應之多階感應資料,計算該物件於各 時序之Υ轴與Ζ轴相對空間座標》 步驟129 :依據各時序於X軸、γ軸與ζ軸之相對空間座標,產生X、γ 軸與Ζ軸移動趨勢。 步驛130 :依據X轴與Υ軸移動趨勢,產生平面手勢指令。 步驟132 :依據X轴、Υ軸與Ζ轴移動趨勢,產生三維手勢指令。 亦即,依照第16圖的步驟,最基本的可以取得X軸、γ軸、ζ軸的相 對座標以及物件的移動趨勢,進而可以取得平面手勢指令或者空間令的一 29 201216139 維手勢指令,此外,亦可於步驟中增加取得垂直手勢指令的步驟。此外, 本實施例之方法可適用於前述的不同電容式觸控面板的電極配置。 第17圖係為本發明之電料近接錢_控侧紐雜圖,選擇近 接偵測模式之一實施例,包含以下步驟: 步驟140 :開啟電容式觸控面板之選擇近接偵測模式。 步驟142 :依據工作時序’分職測物件進人經選擇之電極之空間感應 區所產生之感應訊號。 步驟144 :絲轉時雜各_狀輯出之歧城產生多階 感應資料。 步驟146 :依據多個工作時序巾X軸之各經選擇之電極所對應之多階感 應資料,計算該物件於X軸與Z軸之移動趨勢。 步驟148 :依據多個功時序中γ軸之各經選擇之電極所之多階感 應資料,汁算該物件於γ軸與z軸之移動趨勢。 步驟150 :依據X軸與γ軸移動趨勢,產生平面手勢指令。 步驟152 :依據X軸、γ軸與z軸移動趨勢,產生三維手勢指令。 亦即’依照第17圖的步驟,最基本的可以取得父轴、丫轴、z抽物件 移動趨勢,進而可以取得平面+勢指令或者空間中的三維手勢指令,此外, 亦可於步射增加特技彻旨令尋驟。崎,本實補之方法可適 用於前述的不同電容式觸控面板的電極配置。 第18圖係為本發明之電容式近接感應暨觸控偵測方法流程圖,選擇近 接偵測模式之另—實施例,包含以下步驟: 步驟140 ··開啟電容式觸控面板之選擇近接綱模式。 201216139 步驟142 .依虹作時序,分別侧物件進人輯擇之電極之空間感應 區所產生之感應訊號。 步驟144··依據工作時序與各經選擇之電極所輸出之感應訊號產生多階 感應資料。 . 步驟145 :依據X轴之各經選擇之電極所對應之多階感應資料,計算該 物件於各時序之X軸與2軸相對空間座標。 步驟147 ·依據γ轴之各經選擇之電極所對應之多階感應資料,計算該 φ 物件於各時序之γ軸與Z軸相對空間座標。 步驟149 :依據各時序於X轴、γ轴與z軸之相對空間座標,產生χ、丫 軸與Ζ軸移動趨勢。 步驟150 :依據X軸與γ軸移動趨勢,產生平面手勢指令。 步驟152 :依據X轴、γ轴與Ζ軸移動趨勢,產生三維手勢指令。 #即’依照第18圖的步驟’最基本的可以取得X軸、丫軸、ζ轴的相 對座標以及物件的移麟勢’進而可以取得平面手勢齡或者空間中的三 釀維手勢指令,此外,亦可於步驟中增加取得垂直手勢指令的步驟。此外, 本實施例之方法可適用於前述的不同電容式觸控面板的電極配置。 此外’在第16〜18圖的實施例中,若為三角電極的觸控面板,計算物 件於工作時序賴狀丫滅標’魏據⑽之兩個電極所產生之感應訊 號’以重心暨三角定位法計算出Υ轴座標。 雖然本發明之齡實補《如上所述,财並_錄定本發明, 任何熟習相關技藝者,在不脫離本發明之精神和範圍内,當可作些許之更 動與潤飾’因此本發明之專利保護範圍須視本說明書所附之申請專利範圍 31 201216139 所界定者為準。 【圖式簡單說明】 第1A圖係為其為本發明之電容式近接感應暨觸控偵測裝置之功能方 塊圖第一實施例; 第1B圖係為其為本發明之電容式近接感應暨觸控制裝置之功能方 塊圖第一實施例中選擇近接偵測模式之示意圖; . 第2圖係為運用本發明電容式近接感應暨觸控伯測裝置中觸控面板電 極感應範圍於丫轴之示意圖,其為輸出為—階近接資料之實施例; 鲁 第3A圖係為運用本發明電容式近接感應暨觸控偵測褒置中,物件經過 丫轴於不同時序之偵測示意圖’其為沿Α·Α剖面之示意圖且輸出為一階近 接資料之實施例; 第3Β圖係為運用本發明電容式近接感應暨觸控侧裝置中,物件經過 Υ轴於不同時序所輸出之近接㈣示賴,其為輸出為―階近接資料之實 施例; 第4Α圖係為運用本發明電容式近接感應暨觸控_裳置中,物件經過 _ X轴於不同時序之偵測示意圖,其為其為沿Β_Β剖面之示意圖且輸出為—· 階近接資料之實施例; 第4Β圖係為運用本發明電容式近接感應暨觸控偵測裝置中物件經過 X軸於不同時序所輸出之近接示意圖,其為輸出為―階近接資料之實 施例; 第5Α圖係為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過 Υ轴於不同時序之偵測示意圖,其為沿Α-Α剖面之示意圆且輸出為—階近 32 201216139 接資料且於接近面板之實施例; 胃5B圖係為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過 轴;不门時序所輪出之近接資料示意圖’其為輸出為一階近接資料且於 接近面板之實施例; . 第6A圖係為運用本發明電容式近接感應暨觸控偵測裝置中觸控面板 電極感應範圍於丫轴之示意圖,其為沿A-A剖面之示意圖且輸出為多階近 接資料之實施例; • 第6B圖係為運用本發明電容式近接感應暨觸控偵測裝置中觸控面板 電極感應範圍於X轴之示意圖,其為沿日七剖面之示意圖且輸出為多階近 接資料之實施例; 第7A圖係為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過 Y軸於不同時序之侧示意圖,其為沿A_A剖面之示意圖且輸出為多階近 接資料之實施例; 第7B圖係為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過 ♦ 丫轴於不同時序所輸出之近接資料示意圖,其為輸出為多階近接資料之實 ‘ 施例; 第7C圖係為運用本發明電容式近接感應暨觸控偵測裝置申,物件經過 Y軸於1Ί與T2時所輸出之近接資料示意圖; 第7D圖係為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過 Y轴於T3與T4時所輸出之近接資料示意圖; 第7E圖係為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過 Y轴於T5與T6時所輸出之近接資料示意圖; 33 201216139 第8A圖係為運用本發明電容式近接感應暨觸控偵測裝置中,物件經過 X轴於不同時序之_示意圖,其為沿Α_Α·之示_且輪出為多階近 接資料之實施例; 第8Β圖縣運用本發明電容式近接感應暨觸控偵職置中,物件經過 X軸於不同時序所輸出之近接龍示意圖,其騎出為多階近接資料之實 施例; 第8C圖係為運用本發明電容式近接感應暨觸控偵測裳置中,物件經過 X軸於Τ1與Τ2時所輸出之近接資料示意圖; 第8D圖係為運用本發明電容式近接感應暨觸控_裝置中,物件經過 X軸於Τ3與Τ4時所輸出之近接資料示意圖; 第8Ε圖係為運用本發明電容式近接感應暨觸控摘測裝置中,物件經過 X軸於Τ5與Τ6時所輸出之近接資料示意圖; 第9Α圖係為其為本發明之電容式近接感應暨觸控侦測裝置之功能方 塊圖第二實施例; 第9Β圖係為其為本發明之電容式近接感應暨觸控摘測裝置之功能方 塊圖第二實施例中選擇近接偵測模式之示意圖; 第9C圖係為其為本發明之電容式近接感應暨觸控偵測裝置之功能方 塊圖第三實施例; 第9D圖係為其為本發明之電容式近接感應暨觸控偵測裝置之功能方 塊圓第三實施例中選擇近接偵測模式之示意圖; 第10Α圖係為運用第9C圖中本發明電容式近接感應暨觸控摘測裝置 之第三實施例中Y電極層之剖面示意圖,其為沿A_A剖面之示意圖; 34 201216139 第10B圖係為運用第9C圖中本發明電容式近接感應暨觸控偵測裝置 之第二實施例中丫電極層之剖面示意圖,其為沿B_B剖面之示意圖; 第10C圖係為運用第9D圖中本發明電容式近接感應暨觸控偵測裝置 . 之第二實施例中X電極層之剖面示意圖 ’其為沿B-B剖面之示意圖; 第10D圖係為運用第9D圖中本發明電容式近接感應暨觸控偵測裝置 之第二實施例中X電極層之剖面示意圖,其為沿A-A剖面之示意圖; 第11A圖係為運用本發明電容式近接感應暨觸控偵測裝置中物件以 鲁軌跡101經過觸控面板17之_示意圖; 第11B圖係為運用第11Α®中之健1〇1於本發明電容式近接感應暨 觸控镇測裝置之第三實施例中Υ電極層之細剖面示意圖,其為沿Α-Α剖 面之示意圖; 第11C圖係為第11Β圖中運用本發明電容式近接感應暨觸控偵測裝置 物件於Υ轴在不同時序所輸出之多階近接資料示意圖; 帛11D圖係為第11C圖中於T1與Τ2時所輸出之近接資料示意圖; _ 第11Ε嶋為第11C圖巾於了3與了4騎輸丨之近接資料示意圖; 第仰圖係為第加圖中於丁5與丁6時所輸出之近接資料示意圖; 第11G圓係為運用第m圖中之軌跡1〇1於本發明電容式近接感應暨 觸控制裝置之第三實施例中χ電極層之偵測剖面示意圖,其為沿Β_日剖 面之示意圖; 第Η圖係為運用第m圖中之執跡1〇1於本發明電容式近接感應暨 觸控制裝置之第二實施例中X電極層之偵測剖面示意圖,其為沿从剖 面之不意圖; e 35 201216139 第111圖係為第11G、11H圖中運用本發明電容式近接感應暨觸控偵 測裝置中’物件於X轴在不同時序所輸出之多階近接資料示意圖; 第11J圖係為第111圖中於丁1與丁2時所輸出之近接資料示意圖; 第11K圖係為第UI圖中於丁3與丁4時所輸出之近接資料示意圖; 第1礼圖係為第1Ή圖中於丁5與丁6時所輸出之近接資料示意圖; 第12Α圓係為運用第iiAgj中之轨跡1〇1於本發明觉容式近接感應暨 觸控镇測裝置之第三實施例中丫電極層之偵測剖面示意圖,其為沿A-A剖 面之示意圖且採用選擇近接偵測模式; 第12日圖係為第12A圖中運用本發明電容式近接感應暨觸控偵測裝置 中,物件於Y轴在不同時序所輸出之多階近接資料示意圖; 第12C圖係為第12B _中於T1與T2時所輸出之近接資料示意圖; 第12D圖係為第12B圖中於丁3與丁4時所輸出之近接資料示意圖; 第12ED係為第12Β圖中於丁5與丁6時所輸出之近接資料示意圖; 第12F圖係為運用第11Ai]中之軌跡1〇1於本發明電容式近接感應暨 觸控债測裝置之第三實施例中χ電極層之摘測剖面示意圖 ,其為沿Β-Β剖 面之示意圖且採用選擇近接偵測模式; 第12G圖係為運用第11Α圖中之軌跡1〇1於本發明電容式近接感應暨 觸控偵測裝置之第三實施例中χ電極層之偵測剖面示意圖,其為沿Α-Α剖 面之示意圖且採用選擇近接偵測模式; 第12Η圖係為第12F、12G圖中運用本發明電容式近接感應暨觸控偵 測裝置中’物件於X軸在不同時序所輸出之多階近接資料示意圖; 第Ί2Ι圖係為第12H圖中於丁1與T2B夺所輸出之近接資料示意圖; 36 201216139 第12J圖係為第12H圖中於T3與T4時所輸出之近接資料示意圖; 第12Κ圖係為第12Η圖中於丁5與Τ6時所輸出之近接資料示意圖; 第13圖係為運用本發明之電容式近接感應暨觸控偵測裝置,所偵測出 之移動趨勢,再由移動趨勢判斷手勢之示意圖; « 第14圖係為本發明之電容式近接感應暨觸控偵測方法流程圖,一階近 接偵測模式之一實施例; 第15圖係為本發明之電容式近接感應暨觸控偵測方法流程圖,多階近 φ 接偵測模式之一實施例; 第16圖係為本發明之電容式近接感應暨觸控偵測方法流程圖,多階近 接偵測模式之另一實施例; 第17圖係為本發明之電容式近接感應暨觸控偵測方法流程圖,選擇近 接偵測模式之一實施例;及 第18圖係為本發明之電容式近接感應暨觸控偵測方法流程圖,選擇近 接偵測模式之另一實施例。 • 【主要元件符號說明】 I、 3、4 電容式近接感應暨觸控偵測裝置 2 物件 II、 12、17 觸控面板 13 Υ軸電極 14 觸控偵測電路 15 X軸電極 16 近接偵測電路 37 201216139 18 控制電路 19 Y軸電極 20-1-20-20 電極 21 X軸電極 22 控制單元 24 連接板 感應範圍 41、42、43、44、45、46、47、48、49、50 51、52 感應範圍 53、54 重心 61、62、63、64、71、72 感應範圍 感應範圍 感應範圍 81、82、83、84、85、86、87、88、89、90 91、92、93、94、95、96、97、98、99、100 101、102、103、105 軌跡 D1〜D5 距離 D21〜D22 距離 P1、P2、P3、P4、P5、P6 移動趨勢 T1〜T6 時序 382F is a schematic cross-sectional view of the X electrode layer in the third embodiment of the capacitive proximity sensing and touch sensing device of the present invention, which is the second ray of FIG. The schematic diagram of the side of the third implementation of the capacitive electrode layer of the capacitive proximity sensing and touch device of the present invention using the track 1〇1 in FIG. 11A, which is a schematic diagram along the Α-Α profile. It is found that the movement of the object 2 can be seen from a close point of view. In Fig. 12f, the object 2 is a motion of the negative ζ axis; in Fig. 12G, the object 2 is also a negative z-axis motion ′ without specific χ axis motion. In other words, if the object 2 has an X-axis motion', it can be seen from the 12F view. Of course, the relative coordinates of the object 2 on the \ axis, the moving tendency, and the relative coordinates and movement tendency of the object 2 on the Z axis can be obtained in the subsequent output order of the multi-stage close-in data and the size of the output. Then, please refer to FIG. 12H, which is a schematic diagram of the multi-stage close-up data outputted by the object in the capacitive proximity sensor and touch detection device of the present invention at different timings on the X-axis in the 12F and 12G drawings. In Fig. 12H, at the timing T1, the X-axis electrode 感1 senses the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order splicing data. When the timing is 2, the X-axis electrodes X1 and X4 respectively sense the sensing signal ’, and the proximity detecting circuit 16 also outputs the corresponding multi-order proximity data. When the timing is 3, the X-axis electrodes X1 and X4 respectively sense the sensing signal, and the proximity detecting circuit 16 also rotates the corresponding multi-order proximity data. When the timing is 4, the X-axis electrodes X1 and Χ4 respectively sense the 25 201216139 sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-level proximity data. At the timing T5, the X-axis electrodes Χ1 and Χ4 respectively sense the sensing signal ’, and the proximity detecting circuit 16 also outputs the corresponding multi-order Snapshot data. When the timing is Τ6, the X-axis electrode Χ1 senses the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding multi-order splicing data. Then, please refer to Fig. 121, which is a schematic diagram of the proximity data outputted at Τ1 and Τ2 in Fig. 12. In the timing Τ1, the multi-order close-in data represented by the x-axis electrode Χ1 is 彳. In the sequence Τ2, the multi-order close-in data represented by the X-axis electrodes χι and χ4 are 3 and 2, respectively. Fig. 12J is a schematic diagram of the close-up data outputted at Τ3 and Τ4 in Fig. 12. The multi-order close-in data represented by the timing Τ3' X-axis electrodes X1 and Χ4 are 5 and 3, respectively. At timing T4, the multi-order close-in data represented by the X-axis electrodes Χ1 and χ4 are 7, 4, respectively. Fig. 12K is a schematic diagram of the close-up data outputted at the time of D5 and T6 in Fig. 12H. In the sequence Τ5, the multi-order close-in data represented by the X-axis electrodes X1 and Χ4 are 9, 7 respectively. In the timing Τ6, the multi-order close-in data represented by the X-axis electrode χι is respectively corrected. The relative distance of the object on the x-axis can be derived from the magnitude of the inductive amount in Figures 12F to 12. That is, the average value of one or several of the most inductive quantities is converted into the relative distance between the object and the touch panel on the two axes. With the change of the relative distance, the movement tendency of the x-axis and the vertical movement hand can be calculated. News. That is, it can be obtained from _scanning, (axis, symmetry, movement trend, and the relative coordinates and movement trend of the Ζ axis. In summary, the wire is close to the gamma road 16 峨 阶 近 近, The control circuit 18 can calculate the X-axis, the 丫-axis, the ζ-axis relative coordinate, the movement trend or the X, the 丫 axis plane gesture or the three-dimensional hand gesture, etc. Finally, the control element 22 can be rim-up, χ, Υ, Ζ axis relative coordinates ' or plane gesture command, or vertical gesture command, three-dimensional gesture command. 26 201216139 Comprehensive description of the 12th rhyme diagram, when it can be seen that the present invention can obtain the spatial sense of the capacitive touch panel _' The X-axis relative coordinates in the space, the Y_pair coordinates and the Z-axis relative coordinates. At the same time, 'using different timings to obtain (4) close-up, the axis movement trend and the Y-axis movement trend can be transmitted. Finally, the space can be calculated. Gestures, and three-dimensional gesture control. That is, 'select scanning type proximity detection, can also achieve the full scan type of near-flip measurement required information. Lu X _ silk, γ axis coordinates _ community, _ type The proximity detection resolution can be higher. The enemy's real_ knows that the paving unit U has a disconnect mode and a touch bias mode, and the proximity detection mode may include two or one of full scan and scan select. Please refer to FIG. 13 for a description of how the present invention uses a capacitive touch panel to calculate the gesture of the gesture. FIG. 13 is a schematic diagram of the capacitive proximity sensor and touch detection device of the present invention. The movement trend, and then the movement trend judges the schematic diagram of the gesture. The object movement in different sweeping intervals 'The invention can obtain the movement trend of the non-scanning interval 円~%. · If the proximity data is the first-order proximity data, move The trend can only judge it as the moving trend of the plane' and then determine the spatial movement gesture of the plane. The 13th _ embodiment is rounding. If the proximity data is multi-order proximity data, 'each moving trend P1~p6 will contain X The movement trend information of the z-axis is extracted. Therefore, the 13th gesture can be judged as a three-dimensional gesture. The following will describe the method disclosed by the present invention in several flowcharts. The flow chart of the capacitive proximity sensing and touch detection method of the ''^^ _ mode' embodiment includes the following steps: Step 110. Turn on the near-side mode of the capacitive mode panel. 27 201216139 Step 112. Timing, respectively detecting the sensing signals generated by the objects entering the space sensing area of each electrode. Step 114. According to the working sequence, the first-order proximity data is generated according to the sensing signals output by the electrodes. Step 116: According to the X-axis and the γ-axis A step-by-step data corresponding to each electrode calculates the movement tendency of the object on the X-axis and the Y-axis. Step 118. According to the X-axis and γ-axis movement trends, a plane gesture command is generated. That is, 'Steps according to Figure 14' At the most basic, the movement trend of the x-axis and the γ-axis can be obtained, and the plane gesture command of the space towel can be obtained. In addition, the method of the present invention can be applied to the electrode configurations of the different capacitive touch panels described above. Then, please refer to the 15th @, which is an embodiment of the multi-step proximity detection mode of the capacitive proximity sensing ship touch detection method of the present invention, comprising the following steps: Step 120: Turn on the capacitive touch panel The proximity detection mode. Step 122: Detect the sensing signals generated by the object entering the space sensing area of the electrode according to the working sequence. Step 124 · Generate multi-level sensing data according to the working sequence and the sensing signals output by the electrodes. Step 126: Calculate the moving tendency of the object on the X-axis and the x-axis according to the multi-level sensing data corresponding to each electrode of the X-axis in the plurality of (four) sequences. Step 128: Calculate the moving tendency of the object on the x-axis and the x-axis according to the multi-level sensing data corresponding to each electrode of the x-axis in the plurality of working sequences. Step 130: Generate a planar gesture finger according to the X axis and the x axis moving trend. 28 201216139 Face 132 • Generates 3D gesture commands based on your, axis and 2 axis movement trends. That is, 'in accordance with the steps of Figure 15, the most basic can obtain the movement trend of the X-axis, the z-axis of the x-axis, and then can obtain the three-dimensional gesture command of the plane gesture age or the space towel. In addition, the face towel decoration money hand Miscellaneous (four). Correction, this method is suitable for the electrode configuration of the different capacitive touch panels described above. The figure is a flow chart of the capacitive proximity sensing and touch extraction method of the present invention, and another embodiment of the multi-step near-side mode includes the following steps: Φ Step 12Q: Turn on the close-contact mode of the capacitive touch panel. Step 122: According to the working sequence, the sensing signal generated by the debt detecting object enters the space sensing area of the electrode. Step 124: Generate multi-level sensing data according to the working timing and the sensing signals output by the electrodes. Step 125: Calculate the relative space coordinates of the X-axis and the Ζ-axis of the object according to the multi-level sensing data corresponding to each electrode of the X-axis. Xin Step 127: Calculate the relative space coordinates of the x-axis and the x-axis of the object according to the multi-level sensing data corresponding to each electrode of the x-axis. Step 129: According to each sequence, the X-axis, the γ-axis and the x-axis are Relative to the space coordinates, the X, γ axis and the Ζ axis move trend. Step 130: Generate a flat gesture command according to the X axis and the x axis moving trend. Step 132: Generate a three-dimensional gesture instruction according to the X-axis, the Υ-axis, and the Ζ-axis movement trend. That is, according to the steps of FIG. 16, the basic coordinates of the X-axis, the γ-axis, and the ζ-axis can be obtained, and the moving tendency of the object can be obtained, thereby obtaining a 29-201216139 dimension gesture command of the plane gesture command or the space command. The step of obtaining a vertical gesture instruction may also be added in the step. In addition, the method of this embodiment can be applied to the electrode configurations of the different capacitive touch panels described above. Figure 17 is a schematic diagram of the proximity control mode of the present invention. The embodiment of the proximity detection mode includes the following steps: Step 140: Turn on the proximity detection mode of the capacitive touch panel. Step 142: According to the working sequence, the sensing signal generated by the object sensing component enters the spatial sensing area of the selected electrode. Step 144: The multi-level sensing data is generated by the singularity of the singularity. Step 146: Calculate the moving tendency of the object on the X-axis and the Z-axis according to the multi-level sensing data corresponding to each selected electrode of the X-axis of the plurality of working timings. Step 148: According to the multi-order sensing data of each selected electrode of the γ-axis in the plurality of power timings, the juice calculates the moving tendency of the object on the γ-axis and the z-axis. Step 150: Generate a planar gesture instruction according to the X axis and the γ axis moving trend. Step 152: Generate a three-dimensional gesture command according to the X-axis, γ-axis, and z-axis movement trends. That is, according to the steps in Figure 17, the most basic can obtain the moving trend of the parent axis, the 丫 axis, and the z-thick object, and then the three-dimensional gesture command in the plane + potential command or space can be obtained, and in addition, the step can be increased. Stunts are intended to make a search. Saki, the method of this complement can be applied to the electrode configurations of the different capacitive touch panels described above. Figure 18 is a flow chart of the capacitive proximity sensing and touch detection method of the present invention. Another embodiment for selecting the proximity detection mode includes the following steps: Step 140 · Opening the selection of the capacitive touch panel mode. 201216139 Step 142. According to the rainbow timing, the side object enters the sensing signal generated by the space sensing area of the electrode. Step 144·· Generate multi-level sensing data according to the working sequence and the sensing signals output by the selected electrodes. Step 145: Calculate the X-axis and 2-axis relative space coordinates of the object according to the multi-level sensing data corresponding to each selected electrode of the X-axis. Step 147: Calculate the relative space coordinates of the γ-axis and the Z-axis of the φ object according to the multi-level sensing data corresponding to the selected electrodes of the γ-axis. Step 149: According to the relative space coordinates of the X-axis, the γ-axis and the z-axis, the χ, 丫 and Ζ axis movement trends are generated. Step 150: Generate a planar gesture instruction according to the X axis and the γ axis moving trend. Step 152: Generate a three-dimensional gesture command according to the X axis, the γ axis, and the Ζ axis movement trend. #即'According to the steps in Figure 18, the most basic can obtain the relative coordinates of the X-axis, the 丫-axis, and the ζ-axis, and the migrating direction of the object, and then the three-dimensional gesture gesture in the plane gesture age or space can be obtained. The step of obtaining a vertical gesture instruction may also be added in the step. In addition, the method of this embodiment can be applied to the electrode configurations of the different capacitive touch panels described above. In addition, in the embodiment of the 16th to 18th embodiment, if the touch panel is a triangular electrode, the calculation object generates a sensing signal generated by the two electrodes of the Wei (10) at the working timing. The positioning method calculates the Υ axis coordinates. Although the invention of the present invention is as described above, it is to be understood that the present invention may be modified and retouched by the skilled person without departing from the spirit and scope of the invention. The scope of protection shall be subject to the definition of the patent application scope 31 201216139 attached to this specification. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a functional block diagram of a capacitive proximity sensor and touch detection device of the present invention; FIG. 1B is a capacitive proximity sensor of the present invention. The function block diagram of the touch control device is a schematic diagram of selecting the proximity detection mode in the first embodiment; FIG. 2 is a touch panel electrode sensing range in the capacitive proximity sensor and the touch test device of the present invention. Schematic diagram, which is an embodiment in which the output is a near-order data; Lu 3A is a schematic diagram of detecting the object through different axes at the time of using the capacitive proximity sensing and touch detection device of the present invention. The embodiment along the schematic diagram of the Α·Α section and the output is the first-order proximity data; the third diagram is the proximity (four) of the output of the object through the Υ axis at different timings using the capacitive proximity sensing and touch side device of the present invention. Lai, which is an embodiment in which the output is a near-order data; the fourth diagram is a schematic diagram of detecting the object through the _X-axis at different timings by using the capacitive proximity sensing and touch-spot in the present invention. The embodiment is a schematic diagram along the Β_Β section and the output is a close-to-order data. The fourth diagram is a schematic diagram of the proximity of the object through the X-axis at different timings using the capacitive proximity sensing and touch detection device of the present invention. The embodiment is an embodiment in which the output is a near-order data; the fifth diagram is a schematic diagram of detecting the object through different axes at the time of using the capacitive proximity sensing and touch detecting device of the present invention, which is along the Α-示意 之 之 且 且 且 且 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 The schematic diagram of the proximity data that is rotated is an embodiment in which the output is a first-order proximity data and is close to the panel; Figure 6A shows the sensing range of the touch panel electrode in the capacitive proximity sensing and touch detection device of the present invention. A schematic diagram of the axis of the axis, which is a schematic diagram along the AA profile and outputted as multi-stage proximity data; • Figure 6B is a capacitive proximity sensor and touch detection using the present invention The touch panel electrode sensing range in the device is a schematic diagram of the X-axis, which is an example of a cross-section of the Japanese seven-section and outputted as multi-step near-connected data; the seventh embodiment is a capacitive proximity sensing and touch detection using the present invention. In the device, the object passes through the Y-axis at different timing side views, which is a schematic diagram along the A_A cross-section and the output is a multi-stage close-contact data; the 7B is a capacitive proximity sensing and touch detection device using the present invention. In the middle, the object is outputted by the ♦ axis at different timings, which is a schematic diagram of the output of the multi-step near-data; the 7C is the application of the capacitive proximity sensor and touch detection device of the present invention. The schematic diagram of the close-up data outputted by the object through the Y-axis at 1Ί and T2; the 7D diagram is the proximity of the output of the object through the Y-axis at T3 and T4 in the capacitive proximity sensing and touch detection device of the present invention. Figure 7E is a schematic diagram of the proximity data outputted by the Y-axis at T5 and T6 in the capacitive proximity sensor and touch detection device of the present invention; 33 201216139 8A is an embodiment of the capacitive proximity sensor and touch detection device of the present invention, wherein the object passes through the X-axis at different timings, and is an embodiment along the Α_Α· and the round-out is a multi-step contiguous data; The 8th Tuo County uses the capacitive proximity sensor and the touch Detective Positioning of the present invention, and the object is outputted by the X-axis at different timings, and the riding is a multi-stage close-in data embodiment; the 8C is By using the capacitive proximity sensor and the touch detection device of the present invention, the close-up data of the object output through the X-axis at Τ1 and Τ2 is used; the 8D image is the capacitive proximity sensor and touch device in the present invention. The schematic diagram of the close-up data outputted by the object passing through the X-axis at Τ3 and Τ4; the eighth diagram is the proximity of the output of the object through the X-axis at Τ5 and Τ6 in the capacitive proximity sensing and touch picking device of the present invention. The schematic diagram of the data is the second embodiment of the functional block diagram of the capacitive proximity sensing and touch detection device of the present invention; the ninth aspect is the capacitive proximity sensing and touch picking of the present invention. Measuring device FIG. 9C is a third embodiment of a functional block diagram of the capacitive proximity sensing and touch detecting device of the present invention; It is a schematic diagram of selecting a proximity detection mode in the third embodiment of the capacitive proximity sensing and touch detection device of the present invention; the 10th diagram is a capacitive proximity sensing and touch of the present invention in the 9Cth embodiment. A schematic cross-sectional view of the Y electrode layer in the third embodiment of the control device, which is a schematic view along the A_A profile; 34 201216139 10B is a capacitive proximity sensor and touch detection device of the present invention in FIG. 9C. 2 is a schematic cross-sectional view of the 丫 electrode layer in the second embodiment, which is a schematic view along the B_B cross section; FIG. 10C is a second embodiment of the capacitive proximity sensing and touch detecting device of the present invention. FIG. 10D is a schematic cross-sectional view of the electrode layer; FIG. 10D is a cross-sectional view of the X electrode layer in the second embodiment of the capacitive proximity sensing and touch detecting device of the present invention in FIG. 9D. , which is a schematic diagram along the AA section; FIG. 11A is a schematic diagram of the object in the capacitive proximity sensing and touch detection device of the present invention, with the trajectory 101 passing through the touch panel 17; FIG. 11B is the 11th ®中健1〇1 is a schematic cross-sectional view of a Υ-electrode layer in a third embodiment of the capacitive proximity sensing and touch-sensing device of the present invention, which is a schematic view along the Α-Α section; 11 Β 运用 运用 运用 运用 运用 运用 运用 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容 电容Schematic diagram of the data; _ 11th is the 11C chart in the 3 and 4 riding 丨 丨 近 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 11G is a schematic cross-sectional view of the χ electrode layer in the third embodiment of the capacitive proximity sensing and touch control device of the present invention using the trajectory 1〇1 in the mth diagram, which is a schematic diagram along the Β_day cross section; The first map is to use the trace 1 in the m map. The schematic diagram of the detection of the X electrode layer in the second embodiment of the capacitive proximity sensing and touch control device of the present invention is not intended to follow the cross section; e 35 201216139 111 is the application of the 11G and 11H In the capacitive proximity sensor and touch detection device, the multi-stage close-up data of the object is outputted at different timings on the X-axis; the 11th figure is the close-in data outputted by the D1 and D2 in the 111th figure. Schematic diagram; Fig. 11K is a schematic diagram of the close-up data outputted by Ding 3 and Ding 4 in the UI diagram; The first graph is the schematic diagram of the close-up data outputted in Ding 5 and Ding 6 in the first graph; The 12-turn circle is a schematic diagram of the detection of the 丫 electrode layer in the third embodiment of the sensible proximity proximity sensing and touch-sensing device of the present invention using the track 〇1 in the iiAgj, which is a schematic view along the AA section. And adopting the proximity detection mode; the 12th day is a schematic diagram of the multi-step proximity data outputted by the object in the Y-axis at different timings by using the capacitive proximity sensing and touch detection device of the present invention in FIG. 12A; 12C picture is 12B _ in T1 and T2 The schematic diagram of the proximity data output is shown in Fig. 12D is the schematic diagram of the proximity data outputted in the case of Ding 3 and Ding 4 in Fig. 12B; the 12ED is the close data outputted in Ding 5 and Ding 6 in Fig. 12 FIG. 12F is a schematic cross-sectional view of the χ electrode layer in the third embodiment of the capacitive proximity sensing and touch sensing device of the present invention using the trajectory 1〇1 in the 11Ai], which is along the Β- The schematic diagram of the Β section is selected and the proximity detection mode is adopted; the 12th figure is the χ electrode layer of the third embodiment of the capacitive proximity sensing and touch detection device of the present invention by using the track 1〇1 in the 11th drawing. The schematic diagram of the detection profile is a schematic diagram along the Α-Α profile and adopts the selected proximity detection mode; the 12th diagram is the 12F and 12G diagrams using the capacitive proximity sensing and touch detection device of the present invention. Schematic diagram of the multi-order proximity data outputted by the X-axis at different timings; Figure 2 is the schematic diagram of the close-in data of the output of the D1 and T2B in the 12th H; 36 201216139 The 12J is the 12H in T3 and Schematic diagram of the proximity data output at T4 The 12th image is a schematic diagram of the proximity data outputted at the D5 and Τ6 in the 12th image; the 13th is the mobile trend detected by the capacitive proximity sensing and touch detection device of the present invention. The schematic diagram of the gesture is determined by the movement trend; « Figure 14 is a flow chart of the capacitive proximity sensing and touch detection method of the present invention, one embodiment of the first-order proximity detection mode; Figure 15 is the invention Flowchart proximity sensing and touch detection method flow chart, one embodiment of multi-step near φ connection detection mode; Figure 16 is a flow chart of capacitive proximity sensing and touch detection method of the present invention, multi-step proximity Another embodiment of the detection mode; FIG. 17 is a flow chart of the capacitive proximity sensing and touch detection method of the present invention, and an embodiment of the proximity detection mode is selected; and FIG. 18 is the capacitance of the present invention. Another embodiment of the proximity detection and touch detection method is to select a proximity detection mode. • [Main component symbol description] I, 3, 4 Capacitive proximity sensing and touch detection device 2 Object II, 12, 17 Touch panel 13 X-axis electrode 14 Touch detection circuit 15 X-axis electrode 16 Proximity detection Circuit 37 201216139 18 Control circuit 19 Y-axis electrode 20-1-20-20 Electrode 21 X-axis electrode 22 Control unit 24 Connection plate sensing range 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 51 52 sensing range 53, 54 center of gravity 61, 62, 63, 64, 71, 72 sensing range sensing range sensing range 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 101, 102, 103, 105 Track D1 ~ D5 Distance D21 ~ D22 Distance P1, P2, P3, P4, P5, P6 Movement Trend T1 ~ T6 Timing 38