[go: up one dir, main page]

TW201214716A - Back contact structure for solar cell and fabrication method thereof - Google Patents

Back contact structure for solar cell and fabrication method thereof Download PDF

Info

Publication number
TW201214716A
TW201214716A TW099132127A TW99132127A TW201214716A TW 201214716 A TW201214716 A TW 201214716A TW 099132127 A TW099132127 A TW 099132127A TW 99132127 A TW99132127 A TW 99132127A TW 201214716 A TW201214716 A TW 201214716A
Authority
TW
Taiwan
Prior art keywords
transparent conductive
conductive layer
solar cell
granular
layer
Prior art date
Application number
TW099132127A
Other languages
Chinese (zh)
Other versions
TWI437713B (en
Inventor
Chuang-Chuang Tsai
Cheng-Hang Hsu
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW099132127A priority Critical patent/TWI437713B/en
Publication of TW201214716A publication Critical patent/TW201214716A/en
Application granted granted Critical
Publication of TWI437713B publication Critical patent/TWI437713B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A back contact structure for solar cell applications disclosed. The solar cell device sequentially includes a first transparent conducting oxide (TCO) layer, a solar cell unit and a back contact structure. The first transparent conducting oxide layer is disposed on one side of the solar cell unit, and the back contact structure is disposed on the other side of the solar cell unit. The back contact structure includes a granular structure, a transparent conductive oxide and an electrode. The granular structure is disposed on the surface of the first TCO layer, and the transparent conductive oxide layer is then disposed on said surface. The electrode is eventually fabricated on the granular structure and the transparent conductive oxide. The feature is that the height of the transparent conductive oxide is equal to or smaller than the diameter of the granular structure, so the granular structure is at the interface between the transparent conductive oxide and the electrode.

Description

201214716 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種背電極結構,特別是一種應用於太陽 能電池中背電極結構及其製作方法,藉由改善背電極結構, 以增加光學的使用效率,來提昇太陽能電池之光電轉換效率。 【先前技術】 目如商業化的太1%此產απ ’多使用具有織構化((⑶加;*ed)201214716 VI. Description of the Invention: [Technical Field] The present invention relates to a back electrode structure, and more particularly to a back electrode structure for use in a solar cell and a method of fabricating the same, which can improve optical use by improving the structure of the back electrode Efficiency to improve the photoelectric conversion efficiency of solar cells. [Prior Art] As for commercialization, too much 1% of this production απ' has been used for texture (((3) Plus; *ed)

之透明導電層(Transparent Conductive Oxide, TCO)的玻璃作 為太1W此電池之光入射面,具有織構化(textured)之透明導電 層除了能夠有效增加太陽光的入射效率,亦能增加太陽光在 太1¾能電池中的光捕捉(light-trapping)效應。 然而’隨著太陽能電池的改善加工,其厚度亦隨之成長, 因此’位於太陽能電池之最上層的薄膜表面粗縫度亦隨之下 降。根據研究,除了作為光入射面的具有織構化之透明導電 層可有效增加太陽光在太陽能電池巾的光捕捉效應,背電極 部分的光舰效果亦可有_提升太陽能電池的光電轉換效 率。因此’藉由增加背電極之表面的粗糙度,亦可增加未被 吸收的光的散射效果,進而增加光的路徑以利再吸收,而有 轉換效率’甚至可減少吸收層的厚度而降低成 本及減少光裂化。 蓉,出二製作背電極的結構包括1 虫刻法、壓印法 池上也ί均二 成=及汙染,在大面積的太陽能電 鈿太陽能電池之光電轉換效 能=:效結構,達到提升太陽 201214716 率,是本技術領域亟欲解決之問題。 【發明内容】 .程’也具有較低生產成本 結構作方法來改善背電極 的優勢。 本發明的其他目的和優广从 特徵中得職—步的了解。了μ本發騎揭露的技独 之-魏㈣,本發明 陽能電池包括-第-翻導=電極結構,其中太 二透明導電層及背電極結 電池單元之-側,第二透明導電置於太陽能 相對於關之-人射糊m场能電池單元之 層之姆於太陽能電池單元;;構⑤置於第—透明導電 粒狀結構設置於第一透明導電層之:面:電=構包括:-不透光材料,—第三透明導^/…粒狀結構為 導電層上,一電極設置於粒狀及第一透明 特徵為第三透明導電層之高—日 月導電層上;其 使得粒狀結構位故_===構之直徑, 其厚度範圍為0至2000奈米。—上3有摻雜物所構成, 屬、化:狀:構之材料由高分子材料、金 材料所構成,並且粒狀結構或^上含有摻雜物之 顆粒的直徑乾圍為10至1000【 201214716 奈米。 電声fr紐實樹科,綠結射絲,使料三透明導 形有複數空氣泡,電極材料可填補此孔洞 ,達上述之-或雜絲部目喊是魏目的,本發明 =施例的—種應用於太陽能電池中背電極結構之製作方 複餘狀結構於第—透明導電層上;桃積一 電層於粒狀結構及第-透明導電層上,並且第: 透明導電層之高度等於或祕餘結 電極於此結構上。 取後形成- 之另-為之一或部份或全部目的或是其他目的,本發明 方:匕包括:形成一第一金屬層於一第 ?: 使得第一金屬層聚集成-第-粒狀結構;形: 合眉^屬層於第—粒狀結構上;執行退火處理,使得第二 二屬層轉成H狀結構;形成—第三透 一粒狀結構、第二粒狀結構及第 曰j 透明導電声 您月導電層上,亚且第三 狀灶構之^ 料―_轉之餘及第二粒 層上。1,以及形成1極於粒狀結構及第三透明導電 【實施方式] 下配fri發明之前述及其他技術内容、特點與功效,在以 i現1:下實施财所提到的方向用語,例如..上的 右、喊後等,僅是參考附加賦的方向。因此,使用^方 201214716 向用°°是用來說明並制來限制本發明。 參照第一圖,係為本發明之第一實施例中一種應用於 ς電池1〇〇中背電極結構2〇〇。其中太陽能電池1〇〇包 透明透明導電層ι〇1、一太陽能電池單元102及一第二 元I!:二03透明導電層101設置於太陽能電池單 元102 側,第二透明導電層103則設置於太陽能電池單 之相對於該側之一入射光側,而背電極結構200設置 側。:&透明導電層ι〇1之相對於太陽能電池單元102之另— 中’太陽能電池⑽可以鱗晶或微晶太陽能電池之 明道:、销、碳化石夕之單層或多接面太陽能電池,第二透 电層1〇3係為—朗基板或—塑膠基板之 其總厚度約3至4釐米。 月電極結構200包括複數粒狀結構2〇卜一第三 读日2及一電極2〇3。其中’第一透明導電層101及第三 有換雜f層2G2之材料係由金屬氧化物、魏化物或以上含 〇至t Γ構成,例如廳〇或F:Sn0,並且其厚度範圍為 rnn ’而電極2〇3之材料可為鋅(Zn)、鎮陶、華)、 、又g)、銅(Cu)、鎳(Ni)或上述之合金等金屬材料。 ,複數 =狀結構2()1設置於第一透明導電層而之表面 ^亚且複數粒狀結構係為不透光材料,第三透明導電層逝 =於複數粒狀結構201及第一透明導電層101 ±,二备一 =極203設置於粒狀結構2〇1及第三透明導電声加:· t 特徵為第三透明導電層202之高度h 上, 2〇1之直徑R,使得這些粒狀結構於結構 加及_203之界面。 位於弟二透明導電層 201214716 在一較佳實施例中,粒狀結構201之顆粒的直徑範圍為 10nm至i〇〇〇nm ’並且其材料由南分子材料、金屬、金屬合 金、金屬氧化物、矽氧化物或以上含有摻雜物所構成,例如 導電性奈米球或金屬奈米球,使得背電池結構200之表面粗 才造化。 因此,太陽光之光線如圖中虛線所示,當太陽光進入太 陽能電池100之背電池結構200後,由於這些粒狀結構201 可以有效將太陽光之光線反射回太陽能電池1〇〇之太陽能電 池單元102,並且增加未被吸收之太陽光之光線的散射效 果,進而增加太陽光之光線的路徑以利再吸收,而能夠提高 太陽fb電池1〇〇之光捕捉效果,亦可有效的提升太陽能電池 的光電轉換效率。 如第二圖所示,係為本發明之第一實施例中一種應用於 太陽能電池100中背電極結構200之製作流程。首先,提供 製備完成之太陽能電池100,太陽能電池1〇〇包括一第一 透明導電層1G1、-太陽能電池單元1G2及―第二透明導電 層1〇3,第一透明導電層101設置於太陽能電池單元1〇2 : 之一側,第二透明導電層103貝1m置於太陽能電池單元102 之相對於該側之-人射光側,而背電極結構細設置於第一 ^明導電層101之另—側。接著,可柯同方法沉積複數粒 ^結構加於第-透明導電層1〇1上,例如塗佈法、旋鑛法、 播1等於帛透明導電層101上升)成均勻分布的粒狀結 .01 ’例如導電性奈米球或金屬奈米球;再沉積-第三透 明導電層2〇2於這些粒狀結構2〇1及第一透明導電層取 上’並且第三透明導電層2〇2之高度h等於或小於粒^吉構 201214716 層202及電極203之二板構2〇1位於第三透明導電 _及該第三透明導=:形f,203於粒狀結 的表= 上/上述完成之背電極結構 的效能。 把化’而可進一步提升太陽能電池100 口月 > 照第二圖,係為本發明 趣 太陽能電池_ 弟一4例中—種應用於The Transparent Conductive Oxide (TCO) glass serves as the light incident surface of the battery. The transparent conductive layer has a textured transparent conductive layer, which can effectively increase the incident efficiency of sunlight and increase the sunlight. The light-trapping effect in a battery. However, as the solar cell is improved in processing, its thickness is also increased, so that the rough surface of the film on the uppermost layer of the solar cell is also lowered. According to the research, in addition to the textured transparent conductive layer as the light incident surface, the light capturing effect of sunlight on the solar cell towel can be effectively increased, and the light ship effect of the back electrode portion can also improve the photoelectric conversion efficiency of the solar cell. Therefore, by increasing the roughness of the surface of the back electrode, it is also possible to increase the scattering effect of the unabsorbed light, thereby increasing the path of the light for resorption, and the conversion efficiency can even reduce the thickness of the absorption layer and reduce the cost. And reduce photocracking. Rong, the second structure to make the back electrode includes 1 insect engraving method, embossing method on the pool is also 二 二 = = = and pollution, in a large area of solar cell solar cell photoelectric conversion efficiency =: effective structure, to enhance the sun 201214716 The rate is an issue that the technical field is eager to solve. SUMMARY OF THE INVENTION The process also has a lower production cost structure as a method to improve the advantages of the back electrode. Other objects and advantages of the present invention are obtained from the features. The technology of the present invention is disclosed in Wei (4). The solar battery of the present invention comprises a -first-turning-electrode structure, wherein the side of the solar transparent conductive layer and the back electrode junction battery unit, the second transparent conductive The solar cell is disposed on the first transparent conductive layer of the first transparent conductive granular structure in the solar cell unit; the surface is electrically connected to the surface of the solar cell; The method includes: - an opaque material, - a third transparent conductive layer / ... the granular structure is on the conductive layer, an electrode is disposed on the granular and the first transparent feature is a high-surface conductive layer of the third transparent conductive layer; It allows the granular structure to have a diameter of _=== and a thickness ranging from 0 to 2000 nm. - The upper 3 is composed of dopants, and belongs to: genus: the material of the structure is composed of a polymer material and a gold material, and the granular structure or the particles containing the dopant have a diameter of 10 to 1000. 【 201214716 Nano. Electroacoustic fr New Zealand tree, green knotting wire, the material three transparent guides have a plurality of air bubbles, the electrode material can fill the hole, up to the above - or the wire part is the purpose, the invention = example The method for applying the back electrode structure in the solar cell is to form a remnant structure on the first transparent conductive layer; the peach layer is formed on the granular structure and the first transparent conductive layer, and the height of the transparent conductive layer is equal to Or the secret junction electrode is on this structure. After the formation - the other - for one or part or all of the purpose or other purposes, the present invention: 匕 includes: forming a first metal layer in a first: to make the first metal layer aggregate - the first - Shape-like structure; shape: the eyebrows layer on the first-granular structure; performing annealing treatment to convert the second two-layer layer into an H-like structure; forming a third-transparent-granular structure, a second granular structure and The third layer of transparent conductive sound on your monthly conductive layer, the third and third-shaped stove structure of the material - _ turn and the second layer. 1, and forming the first pole in the granular structure and the third transparent conductive [embodiment] with the above-mentioned and other technical contents, features and effects of the fri invention, in the implementation of the direction language mentioned in the current 1: For example, on the right, after shouting, etc., only refer to the direction of the additional assignment. Therefore, the use of 2012方 201214716 is used to illustrate and limit the invention. Referring to the first figure, a first embodiment of the present invention is applied to a back electrode structure 2 of a tantalum battery. The solar cell 1 is provided with a transparent transparent conductive layer ι〇1, a solar cell unit 102 and a second element I!: 203 transparent conductive layer 101 is disposed on the side of the solar cell unit 102, and the second transparent conductive layer 103 is disposed. The side of the solar cell is incident on the light side with respect to one of the sides, and the back electrode structure 200 is disposed on the side. : & transparent conductive layer ι 〇 1 relative to solar cell unit 102 - solar cell (10) can be squam or microcrystalline solar cell Mingdao:, pin, carbon stone single layer or multi-junction solar cell The second dielectric layer 1〇3 is a lan substrate or a plastic substrate having a total thickness of about 3 to 4 cm. The moon electrode structure 200 includes a plurality of granular structures 2, a third reading day 2, and an electrode 2〇3. The material of the first transparent conductive layer 101 and the third alternating impurity layer 2G2 is composed of a metal oxide, a ferulide or the like containing yttrium to t ,, such as a chamber or F:Sn0, and the thickness thereof is rnn 'The material of the electrode 2〇3 may be a metal material such as zinc (Zn), Zhentao, Hua), g), copper (Cu), nickel (Ni) or the above alloy. , the complex structure 2 () 1 is disposed on the surface of the first transparent conductive layer and the plurality of granular structures are opaque materials, and the third transparent conductive layer is in the plural granular structure 201 and the first transparent The conductive layer 101±, the second preparation one=pole 203 is disposed on the granular structure 2〇1 and the third transparent conductive sound plus:· t is characterized by the height h of the third transparent conductive layer 202, and the diameter R of 2〇1, so that These granular structures are added to the interface of the structure _203. Located in the second transparent conductive layer 201214716 In a preferred embodiment, the particles of the granular structure 201 have a diameter ranging from 10 nm to i 〇〇〇 nm ' and the material thereof is composed of a southern molecular material, a metal, a metal alloy, a metal oxide, The tantalum oxide or the like contains a dopant, such as a conductive nanosphere or a metal nanosphere, such that the surface of the back cell structure 200 is coarse. Therefore, the light of the sunlight is as shown by the broken line in the figure. When the sunlight enters the back battery structure 200 of the solar cell 100, the granular structure 201 can effectively reflect the sunlight light back to the solar cell of the solar cell. The unit 102 increases the scattering effect of the unabsorbed sunlight, thereby increasing the path of the sunlight to facilitate re-absorption, thereby improving the light capturing effect of the solar fb battery and effectively improving the solar energy. The photoelectric conversion efficiency of the battery. As shown in the second figure, it is a manufacturing process of the back electrode structure 200 applied to the solar cell 100 in the first embodiment of the present invention. First, a solar cell 100 is prepared. The solar cell 1A includes a first transparent conductive layer 1G1, a solar cell unit 1G2, and a second transparent conductive layer 1〇3. The first transparent conductive layer 101 is disposed on the solar cell. Unit 1〇2 : one side, the second transparent conductive layer 103 1m is placed on the human light side of the solar cell unit 102 opposite to the side, and the back electrode structure is finely disposed on the first conductive layer 101 -side. Next, a method of depositing a plurality of particles is applied to the first transparent conductive layer 1〇1, for example, a coating method, a spin method, and a broadcast 1 is equal to the rise of the transparent conductive layer 101 to form a uniformly distributed granular knot. 01 'eg conductive nanosphere or metal nanosphere; redeposited - third transparent conductive layer 2〇2 is taken on the granular structure 2〇1 and the first transparent conductive layer' and the third transparent conductive layer 2〇 The height h of 2 is equal to or less than that of the grain layer 201214716 layer 202 and the electrode plate 203 of the second plate structure 2〇1 is located at the third transparent conductive _ and the third transparent guide =: shape f, 203 on the table of the granular knot = / The performance of the completed back electrode structure described above. It can further enhance the solar cell 100 month month > According to the second picture, it is the invention of the solar cell _ brother a 4 cases - application

第-透明導電層:=:: : _電層1G1設置於太陽能電池單元搬 之相對透明導電層103則設置於太陽能電池單元102 读明道:則之―人射光側,而背電極結構21G設置於第一 晶咬汽日:二3—側。其中,太陽能電池⑽可以為非 "背電極結構210包括複數粒狀結構2〇la、一第三透明導 =1°2及一電極203。其中’第一透明導電層101及第三 電層202之材料係選自由金屬氧化物、石夕氧化物及以 含^摻雜物所構成的群組,例如Α1:Ζη〇或F:Sn〇,並且其 :度1&圍為0至2_nm ’而電極2〇3為鋅㈣、鎂攸)、銘 1)銀(Ag)、鋼(cu)、鎳㈣或上述之合金等金屬材料。 ♦複數粒狀結構2〇la設置於第一透明導電層1〇1之表面 ^ ’第三透明導電層2〇2設置於粒狀結構2Qla及第一透明導 電層1〇1上,並且電極203設置於上述粒狀結構2〇la及第三 ,月導电層202上;其特徵為第三透明導電層2〇2之高度h 等於或小於粒狀結構2Gla之餘R,使得這些粒狀結構2〇ia 201214716 位於第三透明導電層202及電極203之界面,並且粒狀結構 201a於第二實施例中可去除,因此電極2〇3之金屬材料將會 填滿去除之粒狀結構201a的空隙。其中,粒狀結構2〇1&之 顆粒的直徑範圍為10至1000nm_。 由於运些粒狀結構2〇la位於第三透明導電層202及電 極203之界面,則太陽光之光線如圖中虛線所示,當太陽光 進入太陽能電池100之背電池結構21〇前,這些填滿空隙 之金屬材料可以有效將太陽光之光線反射回太陽能電池ι〇〇 之太陽能電池單元102,增加未被吸收之太陽光之光線的散 射效果,進而增加太陽光之光線的路徑以利再吸收,而提高 太陽能電池1〇〇之光捕捉效果,因此有效的提升太陽能電池 1〇〇的光電轉換效率。 丨 口如第四圖所示,係為本發明之第二實施例中一種應用於 太^電池100中背電極結構21〇之製作流程。首先,提供 一製備完成之太陽能電池100,太陽能電池丨⑻包括一第一 透明導電層101、一太陽能電池單元观及一第二透明導電 層1〇3,第一透明導電層1〇1設置於太陽能電池單元102: 之側,第二透明導電層103則設置於太陽能電池單元102 之相對於该側之—人射光側,而背電極結構勘設置於第一 KU之另-侧。接著,可以不同方法沉積複數粒 構加於第一透明導電層101上,例如塗佈法、旋艘法、 2墨法等,於第—透明導電層而上形成均勻分布的粒狀結 、烈1,例如高分子奈米球等;再沉積一第三透明導電層2〇2 於^些粒狀結構201及第一透明導電層101上,並且第:透 电s ϋ2之高度等於或小於粒狀結構201之高度(未標 201214716 二it!;關方法除去這錄狀結構观,例如震盈法、 法等’則使得第三透明導電層施及電極2〇3 德面具有複數粒狀結構鳩,而粒狀結構2〇ia為空隙。 =’形成-電極2〇3於粒狀結構咖及第三透明導電層 表面因αΓ且填滿空隙施。上述完成之背電極結構210的 能。口為㈣粗链化,而可進—步提升太陽能電池卿的效The first transparent conductive layer: =:: : _ The electrical layer 1G1 is disposed on the solar cell, and the transparent conductive layer 103 is disposed on the solar cell 102. The solar cell unit 102 is read: the human light side, and the back electrode structure 21G is disposed. The first crystal bite day: two 3 - side. Wherein, the solar cell (10) may be a non-"back electrode structure 210 comprising a plurality of granular structures 2?la, a third transparent guide = 1[deg.] 2 and an electrode 203. Wherein the materials of the first transparent conductive layer 101 and the third electrical layer 202 are selected from the group consisting of metal oxides, stone oxides, and dopants, for example, Α1:Ζη〇 or F:Sn〇 And it is: 1 & 0 to 2_nm ' and the electrode 2〇3 is zinc (four), magnesium strontium), Ming 1) silver (Ag), steel (cu), nickel (four) or the above-mentioned alloys and other metal materials. ♦ The plurality of granular structures 2〇1a are disposed on the surface of the first transparent conductive layer 1〇1. The third transparent conductive layer 2〇2 is disposed on the granular structure 2Q1a and the first transparent conductive layer 1〇1, and the electrode 203 Provided on the granular structure 2〇1a and the third, monthly conductive layer 202; characterized in that the height h of the third transparent conductive layer 2〇2 is equal to or smaller than the R of the granular structure 2Gla, such that the granular structure 2〇ia 201214716 is located at the interface between the third transparent conductive layer 202 and the electrode 203, and the granular structure 201a can be removed in the second embodiment, so that the metal material of the electrode 2〇3 will fill the removed granular structure 201a. Void. Among them, the particles of the granular structure 2〇1& have a diameter ranging from 10 to 1000 nm. Since the granular structure 2〇la is located at the interface between the third transparent conductive layer 202 and the electrode 203, the light of the sunlight is shown by a broken line in the figure, and when the sunlight enters the back battery structure 21 of the solar cell 100, these The metal material filled with the gap can effectively reflect the sunlight light back to the solar cell unit 102 of the solar cell, increasing the scattering effect of the unabsorbed sunlight, thereby increasing the path of the sunlight light to facilitate Absorption, and improve the light-trapping effect of the solar cell, thus effectively improving the photoelectric conversion efficiency of the solar cell. As shown in the fourth figure, the port is a manufacturing process for applying the back electrode structure 21 in the battery 100 in the second embodiment of the present invention. First, a prepared solar cell 100 is provided. The solar cell cartridge (8) includes a first transparent conductive layer 101, a solar cell unit and a second transparent conductive layer 〇3. The first transparent conductive layer 〇1 is disposed on On the side of the solar cell unit 102, the second transparent conductive layer 103 is disposed on the human light side of the solar cell unit 102 opposite to the side, and the back electrode structure is disposed on the other side of the first KU. Then, a plurality of granular structures may be deposited on the first transparent conductive layer 101 by different methods, such as a coating method, a spin-on method, a 2-ink method, etc., to form a uniformly distributed granular knot on the first transparent conductive layer. 1, for example, a polymer nanosphere or the like; a third transparent conductive layer 2 〇 2 is deposited on the granular structure 201 and the first transparent conductive layer 101, and the height of the first permeable s ϋ 2 is equal to or less than the particle size The height of the structure 201 (not labeled 201214716 two it!; the method of removing the recorded structure, such as the earthquake method, the method, etc.) causes the third transparent conductive layer to apply the electrode 2〇3 to have a plurality of granular structures鸠, and the granular structure 2〇ia is a void. = 'Formation-electrode 2〇3 is applied to the surface of the granular structure coffee and the third transparent conductive layer due to αΓ filling the void. The energy of the completed back electrode structure 210. The mouth is (4) thick chain, but can further improve the efficiency of solar cells

第五圖’係為本發明之第三實 .二3電極結構之製作流程。首先,提供—製^^: —^ 〇,太陽能電池觸包括一第-透明導電層101、 池單元繼及一第二透明導電層⑽,太陽能電 層1〇Γ之m透明導電層103依序設置於第一透明導電 貞1而肖電極結構220設置於第一透明導電層1〇1 】m側、’接著形成一第一金屬層Μ於第一透明導電層 狀或理’使得第-金屬層Μ聚集成島嗅 厂;' 第一粒狀結構201b ;再形成一第二金屬層 於上述第H轉雇上,並且執行退火處理,使得 :金屬層Μ聚集成島錄或顆粒狀複數第二粒狀結構 雷射退H处她罐嫩、紐退火製程或 上述步驟中’形成第一金屬層Μ及第二金屬層Μ,於 第-透明導電層1G1上後,執行退火處理而形成第—粒狀結 構201b及第二粒狀結構雇,之步驟,可重複執行,則於 弟-透明導電層1〇丨上可⑽成不同大小的金制粒以對應 不同波長的政射政應,職祕化絲面結構可增強太陽光 201214716 於太陽能電池100巾的光捕捉效應。其中,第一金屬層M及 第二金屬層M,皆為低熔點金屬薄膜,第一金屬層M及第二 金屬層M,皆係選自由鋅(Zn)、鎮(Mg)、銘(A1)、銀(Ag)、銅 (Cu)及鎳(Ni)所構成的群組。此外,第一金屬層M之厚度範 圍為5至l_nm’第二金屬層M,之厚度範圍為$又至 lOOOnm’Ji且第二金制M,之厚度小料—金屬層 厚度。 々接著’沉積一第三透明導電層202於第一粒狀結構2〇lb、 第二粒狀結構201b,及第一透明導電層101上,並且第三透 明=電層202之高度等於或小於第一粒狀結構鳩之^度 (未私不)及第二粒狀結構2〇11?,之高度(未標示);然後,形成 -電極203於第-粒狀結構雇、第二粒狀結構鳩,及 第三透明導電層202上。 上述實施例中背電極結構200、210及220,由於這些粒 狀、、、。構201、2〇la及201b之設置’使得其表面粗糙化,因此 可以^效增加未被吸收之太陽光之光線的散射效果,進而增 加太陽光之光線的路徑以利再吸收,達到提升太陽能電池 100之光吸收效率’而可進一步提升太陽能電池議的效能。 此外,月笔極結構2〇〇、210及22Θ可以相容於任何太陽能 電池之原本薇商設備的製程,並且具有較低生產成本的優勢。 惟以上所述者,僅為本發明之較佳實施例而已,當不能 以此限j本發明實施之範圍,即大凡依本發明申請專利範圍 及4明犮明内谷所作之簡單的等效變化與修飾,皆仍屬本發 =專利涵蓋之範圍内。另外本發明的任-實施例或ί請專利 範圍不猶縣發明所揭露之全部目的或伽或特點。此 201214716 外’摘要部分和標難是料補助直& 用來限制本發明之權利範圍。 文件搜尋之用,並非 【圖式簡單說明】The fifth figure is the third embodiment of the invention. The fabrication process of the two-electrode structure. First, the solar cell contacts include a first transparent conductive layer 101, a cell unit and a second transparent conductive layer (10), and the solar conductive layer 1 m transparent conductive layer 103 is sequentially The first transparent conductive layer 1 is disposed on the first transparent conductive layer 1〇1]m side, and then a first metal layer is formed on the first transparent conductive layer or the first layer The layered ruthenium is integrated into the island scenting plant; 'the first granular structure 201b; a second metal layer is formed on the above-mentioned H-th transfer, and an annealing treatment is performed, so that the metal layer is aggregated into the island or the granular second The structure is laser-removed, and the first metal layer and the second metal layer are formed on the first transparent layer 1G1, and then the annealing treatment is performed to form the first particle. The step 201b and the second granular structure are employed, and the steps can be repeated. On the younger-transparent conductive layer 1 可, (10) can be made into gold granules of different sizes to correspond to political wavelengths of different wavelengths. The silk surface structure can enhance the sunlight 201214716 in solar power 100 towel light trapping effect. The first metal layer M and the second metal layer M are both low-melting metal films, and the first metal layer M and the second metal layer M are selected from the group consisting of zinc (Zn), town (Mg), and Ming (A1). ), a group of silver (Ag), copper (Cu), and nickel (Ni). Further, the first metal layer M has a thickness ranging from 5 to 1 nm-second metal layer M, and has a thickness ranging from $100 to 100 nm and a thickness of the metal layer of the second gold. Then, a third transparent conductive layer 202 is deposited on the first granular structure 2〇1b, the second granular structure 201b, and the first transparent conductive layer 101, and the height of the third transparent=electric layer 202 is equal to or less than The height of the first granular structure (not private) and the height of the second granular structure 2〇11?, (not shown); then, forming the electrode 203 in the first granular structure, the second granular The structure is on the third transparent conductive layer 202. The back electrode structures 200, 210, and 220 in the above embodiments are due to these grains, and. The arrangement of the structures 201, 2〇la and 201b makes the surface roughened, so that the scattering effect of the unabsorbed sunlight can be increased, thereby increasing the path of the sunlight to facilitate re-absorption to achieve solar energy enhancement. The light absorption efficiency of the battery 100 can further enhance the performance of the solar cell. In addition, the monthly pen structure 2〇〇, 210 and 22Θ can be compatible with the process of any original solar cell equipment of solar cells, and has the advantage of lower production cost. However, the above is only the preferred embodiment of the present invention, and it is not limited to the scope of the present invention, that is, the simple equivalent of the patent application scope and the 4 Changes and modifications are still within the scope of this issue = patent coverage. Further, any of the objects or singularities or features of the invention disclosed in the present invention. This 201214716 external 'summary section' and the standard's difficulty are intended to limit the scope of the invention. File search is not [simplified description]

實施例中一種應用於太陽能 種應用於太陽能One of the embodiments is applied to solar energy for solar energy

第二圖’係為本發明之第—實施例中 電池中背電極結構之製作流程。 第四®,係為本發明之第二實施例巾—種顧於太陽能 黾池中背電極結構之製作流程。 第五圖,係為本發明之第三實施例中一種應用於太陽能 電池中背電極結構之製作流程。 【主要元件符號說明】 太陽能電池100 第一透明導電層 太陽能電池單元102 第二透明導電層103 背電極結構2〇〇、210、220 粒狀結構 2〇1、2〇la、201b 第三透明導電層202 電極203 (第三透明導電層之)高度h 201214716The second diagram is the fabrication flow of the back electrode structure in the battery in the first embodiment of the present invention. The fourth® is the second embodiment of the present invention, which is a manufacturing process for the back electrode structure in the solar cell. The fifth drawing is a manufacturing process for applying the back electrode structure in a solar cell according to a third embodiment of the present invention. [Description of main component symbols] Solar cell 100 First transparent conductive layer solar cell unit 102 Second transparent conductive layer 103 Back electrode structure 2〇〇, 210, 220 Granular structure 2〇1, 2〇la, 201b Third transparent conductive Layer 202 electrode 203 (the third transparent conductive layer) height h 201214716

(粒狀結構之)直徑R(grain structure) diameter R

1414

Claims (1)

201214716 七、申請專利範圍: •種應用於太陽能電池中# -第-伽㈣Γ ^電極結構,其中該太陽 太陽能電池單元及一第 電池包括一第一透明導電層 :導:設置於該“ 側之一入射細,該對於該 粒狀結構設置於該第結構包括一 構係為不透絲料,粒狀結 該第-透明導電層上,—電層《置於麵狀結構及 明導電層上;其特徵為該第三透明導電層之高透 構之餘,使_粒狀結構係錄鄕三透明導ΐ 層及該電極之界面。 Aav电 2. 如中請專利範圍第丨項所述之應用於太陽能電池中北 1極結構’其中該第—翻導電層及該第三透明導電層之二 =係選自由金屬氧化物、錄化物及社含有_物所構= 的群組’其具有透光及導電之躲,並且其厚度 = 2000 奈米。 n I 3. 如申明專利範圍第!項所述之應用於太陽能電池中 屯極結構’其中該粒狀結構之顆粒的直徑範圍為1〇至_ 奈米。 4. 如申請專概圍第丨項所述之朗於太陽能電池中背 電極結構,其中該粒狀結構之材料係選自由高分子材料、金 屬、金屬合金、金屬氧化物、⑪氧化物及以上含有摻雜 構成的群組。 201214716 5J巾β專利範圍第4項所述之蘭於太陽能電池中背 電極結構,其中該粒狀結構可去除。 6·種翻於太陽能電池巾背電極結構的製作方法,包 提供一第一透明導電層; 沉積複數粒狀結構於該第-透明導電層上; /儿積第二翻導電層於該絲狀結構及該第一透明201214716 VII. Patent application scope: • Applied to a solar cell #-第-伽(四)Γ^electrode structure, wherein the solar solar cell unit and a first battery comprise a first transparent conductive layer: a guide: disposed on the side A fine incident, the arrangement of the granular structure in the first structure comprises a structure which is impervious to the filament, and the granular layer is on the first transparent conductive layer, and the electrical layer is placed on the planar structure and the conductive layer. The feature is that the high transparent structure of the third transparent conductive layer allows the granular structure to be recorded on the interface of the transparent conductive layer and the electrode. Aav electricity 2. As described in the scope of the patent application The utility model relates to a north pole structure of a solar cell, wherein the second conductive layer and the third transparent conductive layer are selected from the group consisting of metal oxides, recording materials and social substances. It has a light-transmissive and conductive hiding, and its thickness = 2000 nm. n I 3. As described in the scope of the claim, it is applied to a drain structure of a solar cell, wherein the particle diameter of the granular structure is 1〇 to _ nano. 4. Applying the back electrode structure of the solar cell described in the above paragraph, wherein the material of the granular structure is selected from the group consisting of polymer materials, metals, metal alloys, metal oxides, 11 oxides and above The group is composed of the back electrode structure of the solar cell, wherein the granular structure can be removed. The method for manufacturing the back electrode structure of the solar cell towel is packaged. Providing a first transparent conductive layer; depositing a plurality of granular structures on the first transparent conductive layer; forming a second turned conductive layer on the filamentary structure and the first transparent SI上亩ί且該第三透明導電層之高度等於或小於該些粒 狀、'Ό構之直從,以及 形成-電極於該些粒狀結構及該第三透明導電層上。 7.一種應用於太陽能電池中背電極結構的製作方法,包 提供一第一透明導電層; 形成一第一金屬層於該第一透明導電層上;The height of the third transparent conductive layer is equal to or smaller than the grain shape, the direct structure of the structure, and the formation of the electrode on the granular structure and the third transparent conductive layer. A method for fabricating a back electrode structure in a solar cell, comprising: providing a first transparent conductive layer; forming a first metal layer on the first transparent conductive layer; 構; 執行退火處理,使_第—金屬層聚集成-第-粒狀結 形成一第二金屬層於該第一粒狀結構上; 構執行退火處理,使得該第二金屬層聚集成一第二粒狀結 形成-第三透明導電層於該第一粒狀結構、該第 結構及該第-透明導電層上,並且該第三透明導電層之古 等於或小於該第—粒狀結構之直徑及該第二粒狀結構^ 徑;以及形成一電極於該第一粒狀結構、該第二粒結構^ 201214716 該第三遷明導電層上。 ^ 8.如申請專利範圍第7項所述之應用於太陽能電池中背 电極、'°構,其中依序地形成該第一金屬層於該第一透明導電 1上;執行退火處理,使得該第一金屬層聚集成該第一粒狀 結構,形成該第二金屬層於該第一粒狀結構上;執行退火處 理,使得該第二金屬層聚集成該第二粒狀結構之步驟,可重 複上述步驟。 ^ 9·如申請專利範圍第7項所述之應用於太陽能電池中背 電極結構,其中該第一金屬層之厚度範圍為5至1_奈米, 亥第—金屬層之厚度範圍為5至1〇〇〇奈米,並且該第二金屬 層之厚度小於該第一金屬層之厚度。 10.如申請專利範圍第7項所述之應用於太陽能電池中 背電極結構’其中該第-金屬層及該第二金屬層皆係為低溶 點材料’並且該第-金屬層及鶴二金屬層皆係選自由辞、 鎂、鋁、銀、銅、鎳及上述合金所構成的群組。Performing an annealing process to cause the _th-metal layer to be integrated into a first-grained junction to form a second metal layer on the first granular structure; and performing an annealing treatment to integrate the second metal layer into a second a granular junction forming a third transparent conductive layer on the first granular structure, the first structure and the first transparent conductive layer, and the third transparent conductive layer is equal to or smaller than a diameter of the first granular structure And the second granular structure is formed; and an electrode is formed on the first granular structure, the second granular structure ^201214716. 8. The back electrode according to claim 7 of the invention, wherein the first metal layer is sequentially formed on the first transparent conductive 1; and an annealing treatment is performed, so that an annealing process is performed Disposing the first metal layer on the first granular structure to form the second metal layer on the first granular structure; performing an annealing process to cause the second metal layer to aggregate into the second granular structure, The above steps can be repeated. [9] The back electrode structure for solar cells according to claim 7, wherein the first metal layer has a thickness ranging from 5 to 1 nm, and the sea-metal layer has a thickness ranging from 5 to 1 nanometer, and the thickness of the second metal layer is less than the thickness of the first metal layer. 10. The back electrode structure used in a solar cell according to claim 7, wherein the first metal layer and the second metal layer are both low melting point materials and the first metal layer and the second layer The metal layers are selected from the group consisting of rhodium, magnesium, aluminum, silver, copper, nickel, and the above alloys.
TW099132127A 2010-09-23 2010-09-23 Back contact structure for solar cell and fabrication method thereof TWI437713B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099132127A TWI437713B (en) 2010-09-23 2010-09-23 Back contact structure for solar cell and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099132127A TWI437713B (en) 2010-09-23 2010-09-23 Back contact structure for solar cell and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201214716A true TW201214716A (en) 2012-04-01
TWI437713B TWI437713B (en) 2014-05-11

Family

ID=46786551

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099132127A TWI437713B (en) 2010-09-23 2010-09-23 Back contact structure for solar cell and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI437713B (en)

Also Published As

Publication number Publication date
TWI437713B (en) 2014-05-11

Similar Documents

Publication Publication Date Title
CN115274875B (en) Solar cells and photovoltaic modules
TW200816502A (en) Solar battery module
TW201044614A (en) Photovoltaic cells and methods to enhance light trapping in semiconductor layer stacks
TW200834943A (en) Solar cell module
CN102893408B (en) Photovoltaic device conductive layer
TW200924202A (en) Solar cell and manufacturing method thereof
TW200952199A (en) Solar module and system composed of a solar cell with a novel rear surface structure
TW201128786A (en) Dye-sensitized solar cell and method for manufacturing the same
CN110611030A (en) Perovskite solar cell with array structure electron transport layer and preparation method thereof
CN110148636A (en) A kind of solar battery and preparation method thereof, photovoltaic module
TW201205843A (en) Wafer type solar cell and method for manufacturing the same
TW201242043A (en) Screen and method for manufacturing solar cell
CN103531647B (en) Heterojunction solar battery and preparation method thereof
CN106129249B (en) A kind of perovskite-quantum dot double absorption layer solar battery and preparation method thereof
CN105845761A (en) Contacting passivation crystalline silicon solar cell structure and preparation method
CN101459201A (en) Solar cell and manufacturing method thereof
CN205846019U (en) A perovskite solar cell with a composite structure electron transport layer
CN207542252U (en) A kind of crystal silicon solar energy battery structure
CN102751096B (en) A kind of transparent two sides dye-sensitized solar cell anode
Song et al. Dye-sensitized solar cells based on TiO2 nanotube/nanoparticle composite as photoanode and Cu2SnSe3 as counter Electrode
TW201214716A (en) Back contact structure for solar cell and fabrication method thereof
JP2014503129A (en) Solar cell and manufacturing method thereof
TWI469380B (en) Heterojunction solar cell structure
TWI378566B (en)
CN222051780U (en) A solar cell and photovoltaic module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees