201209344 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明有關一種光學系統,特別關於一種可產生非轴對 稱光束之光學系統。 【先前技術】 [0002] 數位光處理(digital Ught processing, DLP)投影 機的組件大致可分成光學系統(opticalsyMem)、數位 微鏡裝置(digital miCr〇mirror device, DMD)及投 景夕透鏡組(projection iens assembiy)。其中,光學 系統可產生一入射光束,照射於數位微鏡裝置;數位微 鏡裝置包括多個微反射鏡,照射於微反射鏡上的入射光 束會被反射;藉由控制每一個微反射鏡的偏轉角度,可 決定入射光束的哪些部份可被反射入投影透鏡組中而投 影出。 [0003] 進一步地說明,請參閱第1圖,數位微鏡裝置的每一個微 反射鏡7可具有兩種狀態:亮狀態(on)及暗狀態(0ff), 分別以微反射鏡7的旋轉角度來區分。在亮狀態時,微反 射鏡7約旋轉12度;在暗狀態時,微反射鏡7約旋轉-12度 。不同狀態下,光學系統產生的入射光束81會被微反射 鏡7反射成不同方向的第一反射光束71及第二反射光束72 〇 [0004] 此外,入射光束81也會照射到數位微鏡裝置的平面結構( ,例如兩微反射鏡7之間的平面,圖未示),然後被該平 面結構反射成另一反射光束,稱為雜光(stray 1ight)73 。 100117916 表單編號A0101 第4頁/共33頁 1002030178-0 201209344 [0005] 在理想情況下,只有亮狀態的第一反射光束71可通過投 ❹ [0006] 影透鏡組9的光圈91而進入投影透鏡組9中,然後再由投 影透鏡組9投射出’而第二反射光束72及雜光73不會通過 光圈91。但實際上,雜光73會部分地進入投影透鏡組9中 。此原因為,雜光73在垂直微反射鏡7的轉軸74的方向75 上,有過大的擴散角度α,使得雜光73在方向75上,會 進入至光圈91中;此舉會降低投影透鏡組9投射出的影像 的對比度(contrast)。 為了改善此缺失,有些方案被提出,例如美國專利公告 號1^ 7,246,923及118 7,101,050所揭露者。該些方案 中,光學系統可產生一非韩對稱(non-radially sym-metrical)之光束來照射於數位微鏡裝置上,使得微反 射鏡所反射出的反射光束、及平面結構反射出的雜光皆 呈非軸對稱;此時,投影透鏡組的光圈的形狀也為非轴 對稱。 [0007] 〇 非轴對稱的反射光束及雜光在垂直微反射鏡的轉軸方向( 例如第1圖的方向75)上,皆有較小的擴散角。如此,雜 光較不會進入到投影透鏡組的光圈中,使得投影透鏡組 投射出的影像的對比度可被提升。 [0008] 另一方面,在平行微反射鏡的轉軸的方向上,非軸對稱 的反射光束會有較大的擴散角,使得反射光束可有較大 的光展量(Etendue)。因此,在亮狀態下,較大光展亮 的反射光束可進入到光圈中,使得投影透鏡組投射出的 影像的亮度可被提升。 100117916 表單編號A0101 第5頁/共33頁 1002030178-0 201209344 [0009] [0010] [0011] [0012] [0013] 奐σ之曰光學系統所產生的光束為非軸對稱時,對於 投影透鏡組投射出的影像㈣比度及亮度,皆有助益。 ' ''述方案中,光學系統會利用到一些較特殊的光學 元件’例如聚光器(collected或積分器(lntegrat〇r) 等,可能會使光學系統的製造成本提高。 有鑑於此’提供—種可改善上述缺失的光學系統,乃為 此業界亟待解決的問題。 【發明内容】 本發月之目的在於提供一種光學系統,其可產生—非 軸對稱錐形崎構叙以,錢無❹_殊的 元件。 為達上述目的,本發明所揭露的光學系統,包括:_光 源模組;—第—透鏡陣列,位於該光源模組的-側,且 包含多個第一透鏡’該些第-透鏡依照-第-圖案排列 ’該第一圖案呈現非軸^稱且具有-第-長轴;以及— 第二透鏡陣列,位於該第—透鏡陣列的—側而與該光源 模組相對,該第二透鏡陣列包含多個第二透鏡,該些 一透鏡依照-第二圖案排列且第二透鏡的先㈣齊第— 透鏡的光軸’該第m現非軸對稱且具有—第二: 轴’其中’該第二長轴相對該第—長轴偏轉_第—角声 [0014] 藉此,光源模組可產生一遠心(㈤⑽价⑷光 束中每-條輕由-_稱光錐⑴咖⑶ 一透鏡陣列及第二透構成。第 透知陣列可將該遠心光束轉換成—束 100117916 表單编號A0I01 第6頁/共33 頁 ^02030178-0 201209344 [0015] 卜輪對稱光錐構成之光線照射於-目標區域。 Y讓上述目的、技術特徵及優點能更明顯易懂,下文係 从較佳之實施例配合所附圖式進行詳細說明。 【實施方式] [0016] #閲第⑽4本發明的光學系統的第—較佳實施例與 1目標區域的示意圖。該光學系統丨可包括:_光源模組 11、一第一透鏡陣列12及一第二透鏡陣列13。 [0017]201209344 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to an optical system, and more particularly to an optical system that can generate a non-axis symmetrical beam. [Prior Art] [0002] The components of a digital light processing (DLP) projector can be roughly divided into an optical system (opticalsyMem), a digital micro-mirror device (DMD), and a projection lens group ( Projection iens assembiy). Wherein, the optical system generates an incident beam that is illuminated by the digital micromirror device; the digital micromirror device includes a plurality of micromirrors, and the incident beam that is incident on the micromirror is reflected; by controlling each of the micromirrors The deflection angle determines which portions of the incident beam can be projected into the projection lens group for projection. [0003] Further, referring to FIG. 1, each micromirror 7 of the digital micromirror device can have two states: a bright state (on) and a dark state (0ff), respectively, with the rotation of the micromirror 7. Angle to distinguish. In the bright state, the micro mirror 7 is rotated by about 12 degrees; in the dark state, the micro mirror 7 is rotated by about -12 degrees. In different states, the incident beam 81 generated by the optical system is reflected by the micromirror 7 into the first reflected beam 71 and the second reflected beam 72 in different directions. [0004] In addition, the incident beam 81 is also irradiated to the digital micromirror device. The planar structure (for example, the plane between the two micromirrors 7, not shown) is then reflected by the planar structure into another reflected beam, called stray 1ight 73. 100117916 Form No. A0101 Page 4 of 33 1002030178-0 201209344 [0005] In an ideal case, only the first reflected beam 71 in the bright state can enter the projection lens by throwing the aperture 91 of the lens group 9 In the group 9, then the projection lens group 9 is projected 'with the second reflected beam 72 and the stray light 73 not passing through the aperture 91. In reality, however, the stray light 73 will partially enter the projection lens group 9. The reason for this is that the stray light 73 has an excessive diffusion angle α in the direction 75 of the rotating shaft 74 of the vertical micromirror 7, so that the stray light 73 enters the aperture 91 in the direction 75; this will lower the projection lens. The contrast of the image projected by group 9 is (contrast). In order to improve this deficiency, some solutions have been proposed, such as those disclosed in U.S. Patent Publication Nos. 1,037,923 and 1,197,101,050. In these solutions, the optical system can generate a non-radially sym- metrical beam to illuminate the digital micromirror device, so that the reflected beam reflected by the micromirror and the reflected structure of the planar structure The light is non-axisymmetric; at this time, the shape of the aperture of the projection lens group is also non-axisymmetric. [0007] 〇 Non-axisymmetric reflected beams and stray light have a small spread angle in the direction of the axis of rotation of the vertical micromirror (for example, direction 75 in FIG. 1). Thus, the stray light does not enter the aperture of the projection lens group, so that the contrast of the image projected by the projection lens group can be improved. On the other hand, in the direction of the axis of rotation of the parallel micromirrors, the non-axisymmetric reflected beam has a large diffusion angle, so that the reflected beam can have a large etendue. Therefore, in the bright state, the reflected light beam of a large light spread can enter the aperture, so that the brightness of the image projected by the projection lens group can be improved. 100117916 Form No. A0101 Page 5 of 33 1002030178-0 201209344 [0010] [0013] [0013] When the beam generated by the 奂σ optical system is non-axisymmetric, for the projection lens group The projected image (4) ratio and brightness are helpful. In the scheme, the optical system utilizes some special optical components such as a collector or an integrator, which may increase the manufacturing cost of the optical system. An optical system that can improve the above-mentioned defects is an urgent problem to be solved in the industry. SUMMARY OF THE INVENTION The purpose of this month is to provide an optical system that can generate non-axisymmetric pyramidal textures, and no money In order to achieve the above objective, the optical system disclosed in the present invention comprises: a light source module; a first lens array located on a side of the light source module and including a plurality of first lenses The first lens is arranged in a -first pattern, the first pattern exhibits a non-axis and has a -first-long axis; and - a second lens array is located on a side of the first lens array and the light source module In contrast, the second lens array includes a plurality of second lenses, the lenses are arranged in a second pattern, and the optical axis of the first lens of the second lens is non-axisymmetric and has - Two: Axis 'where' The second long axis is deflected relative to the first long axis _ first angle sound [0014] whereby the light source module can generate a telecentric ((5) (10) valence (4) light beam per light strip by - _ light cone (1) coffee (3) a lens Array and second transparent structure. The transparent array can convert the telecentric beam into a beam 100117916 Form No. A0I01 Page 6 of 33 ^02030178-0 201209344 [0015] The light formed by the wheel symmetrical light cone is illuminated - The target area. The above-mentioned objects, technical features and advantages can be more clearly understood. The following is a detailed description of the preferred embodiment in conjunction with the drawings. [Embodiment] [0016] #阅第(10)4 The optical of the present invention A schematic diagram of a preferred embodiment of the system and a target area. The optical system can include: a light source module 11, a first lens array 12, and a second lens array 13. [0017]
光源模組11可產生—遠心光束,光束中每-條光線由-對稱光錐(light cone)構成;第一透鏡陣列12及第二 透鏡陣列13可將該遠心光束重新分佈(redistribute) 及重叠(overlap) ’形成一非轴對稱光錐構成的光束。 為簡潔說明之目的’ r非軸對稱光錐構成的光束』在後 文中,可簡稱為非軸對稱的光束。The light source module 11 can generate a telecentric beam, each light beam of the light beam is composed of a -symmetric light cone; the first lens array 12 and the second lens array 13 can redistribute and overlap the telecentric beam (overlap) 'Forms a beam of non-axisymmetric light cones. For the purpose of brevity, the light beam formed by the 'r non-axisymmetric light cone' may be simply referred to as a non-axisymmetric light beam hereinafter.
[0019]光源模組11構成方式有多種,本實施例中,光源模組u 包括一發光二極體陣列Π丨及一準直透鏡陣列112。請參 閱第3圖’為第2圖的光學系統的光源模組的示意圖。發 光二極體陣列111包括多個發光二極體〗ιη,每個發光二 極體1111皆有一個矩形的發光面丨丨丨丨儿,用以發射出光 線L1 (如第2圖所示)。 [0020]發光面111 1Α發出的光線L1之最大發散角可達90度(視發 光二極體的種類而定),為了易於將發出的光線準直,發 光面1111Α可覆蓋一層角度選擇膜(angle selective film) ’使得發散角小於4〇度的光線[丨才可通過角度選 100117916 表單編號A0101 第7頁/共33頁 1002030178-0 201209344 擇膜。 [0021] [0022] [0023] [0024] [0025] 準直透鏡陣列112位於該些發光二極體1111的一側,也就 是位在發光二極體1111發射出的光線L1的光路上。準直 透鏡陣列112包括多個準直透鏡1121,該些準直透鏡 1121分別光學地(optically)耦合該些發光二極體mi ,也就是指’該些發光二極體1111發出的光線可通過至 該些準直透鏡1121。當光線L1通過準直透鏡Π21後,即 會形成具有方向性的光線L2(如第2圖所示)。 值得一提的是,每個準直透鏡1121的截面可為六角型(較 接近圓形),以較佳地涵蓋發光二極體1U1發射出的光線 L1,減少光損失。此外,發光二極體lln的數目可不用 與準直透鏡1121的數目相同,發光二極體丨丨丨丨可只為一 個。 雖然本實施例是以單個光源模組n為例,但本發明並不 侷限於此。於其他實施例(圖未示)中,光學系統可包括 多個(例如三個)光源模組,每個光源模組可分別產生不同顏色(例如紅、黃及綠)的遠心光束。該些遠心光束可 透過一合光元件(combining optical c〇mp〇nent)15 結合,然後傳遞至第一透鏡陣列丨2。換言之,如果只有 單個光源模組11,則合光元件15為可省略的。 請復參閱第2圖’第—透鏡陣列12位於光源模組U(準直 透鏡陣列112)的-侧’用以將光源模組n產生的遠心光 束匯聚至第二透鏡陣列13中。 第-透鏡陣列12包含多個第—透鏡121,其種類可為平凸 100117916 表單編號A0101 第8頁/共33頁 1002030178-0 201209344 [0026] Ο [0027] Ο [0028] 100117916 透鏡或雙凸透鏡等可聚光之透鏡。請參閱第4圖,為第2 圖的光學系統的第一透鏡陣列的示意圖。該些第一透鏡 121各具有一矩形的第—截面121Α,且該些第一透鏡121 依照一第一圖案122排列,也就是指,該些第一透鏡121 會相互地並排(或鄰接),以使得該些第一透鏡12ι的第一 截面121Α共同地構成該第一圖案122。 該第一圖案122呈現非轴對稱,意指該第一圖案122可為 長方形或橢圓形等非圓形之圖案《因此,該些第一透鏡 121的第一截面121Α會共同地構成類似長方形或橢圓形的 圖案。此外,由於為非軸對稱,第一圖案122會具有一第 一長轴1221。第一長軸1221表示第一圖案122較長尺寸 的方向,且第一長軸1221跟第一透鏡121的第一截面 121A的其中一邊平行。 請參閱第5圖,為第2囷的準直透鏡陣列及第一透鏡陣列 的位置關係示意圖1文提及’第—透鏡陣肋是用以 將光源模組11產生的遠心光束匯聚至第二透鏡陣列13。 因此,為了減少遠心光束未通過第_透_龍而造成 的光損失’準直透鏡陣列112的準直透鏡ll2i可排列接近 於第-圖案122 ’以使得準直透鏡陣列112所發射出的遠 心光束大都可進入第一透鏡陣列12。 值得-提的是,準直透鏡1121_目可不需與第一透鏡 121的數目一致。 請復參閱第2圖’第二透鏡陣列13位於第一透鏡陣列_ -側而與光賴組1U目對;換言之,第—透鏡陣列⑶立 表單編號Α0101 第9頁/共33頁 1002030178-0 [0029] 201209344 於第二透鏡陣列13及光源模組n之間。第二透鏡陣列13 用以將匯聚至第二透鏡陣列13中的光線,重新分佈及重 疊’以形成非轴對稱的光束。 [0030] [0031] [0032] [0033] 第二透鏡陣列13包含多個第二透鏡131,其可為平凸透鏡 或是雙凸透鏡等可聚光之透鏡。該些第二透鏡131的數目 與第一透鏡121的數目一致,且該些第二透鏡131分別光 學地(optically)耦合該些第一透鏡121,意指,該些第 一透鏡121發射出的光可進入該些第二透鏡131中;或是 指,第一透鏡131的光軸可對齊第一透鏡的光軸。 請參閱第6圖,為第2圖的光學系統的第二透鏡陣列的示 意圖。該些第二透鏡131各具有一矩形的第二截面131A, 且該些第二透鏡131依照一第二圖案132排列,也就是, 該些第二透鏡131會相互地並排(或鄰接)’以使得該些第 二透鏡131的第二截面131A共同地構成該第二圖案132。 與第一圖案122相似,該第二圖案132也呈現非軸對稱, 因此該些第二透鏡131的第二截面131A會構成類似長方形 或橢圓形的圖案。此外,第二圖案132具有一第二長軸 1321,來表示第二圖案132較長尺寸的方向;且此第二長 轴1321與第二透鏡131的第二截面131八的其中一邊平行 〇 请參閱第7圖,為第2圖的第一透鏡陣列及第二透鏡陣列 的位置關係示意圖。第二圖案132的第二長軸1321相對於 第一長軸1221偏轉一第一角度6^,使得每個第一透鏡 121也相對第二透鏡131偏轉該第一角度0工。 100117916 表單編號A0101 第10頁/共33頁 1002030178-0 201209344 [0034] 請參閱第8圖,為第2圖的第一透鏡及第二透鏡的尺寸關 係不意圖。為了減少第一透鏡丨2丨及第二透鏡丨31光耦合 時的光損失’第一透鏡121的第一截面121A之面積及第二 透鏡131的第二截面131A面積可設置成實質上相同(可能 因為製造公差或誤差而有些差異);第一截面12^的長χ1 與寬yl ’與第二截面131A的長x2與寬y2,將符合方程式(1): [0035] Ο [0036]The light source module 11 includes a plurality of light emitting diode modules 11 and a collimating lens array 112. In this embodiment, the light source module u includes a light emitting diode array and a collimating lens array 112. Please refer to Fig. 3' for a schematic diagram of the light source module of the optical system of Fig. 2. The light emitting diode array 111 includes a plurality of light emitting diodes, each of which has a rectangular light emitting surface for emitting light L1 (as shown in FIG. 2). . [0020] The maximum divergence angle of the light ray L1 emitted by the light-emitting surface 111 1 can be up to 90 degrees (depending on the type of the light-emitting diode), in order to easily collimate the emitted light, the light-emitting surface 1111 can cover an angle selection film ( Angle selective film) 'A light that makes the divergence angle less than 4 degrees [丨 can be selected by angle 100117916 Form No. A0101 Page 7 / Total 33 Page 1002030178-0 201209344. [0025] [0025] The collimating lens array 112 is located on one side of the light-emitting diodes 1111, that is, on the optical path of the light L1 emitted from the light-emitting diode 1111. The collimating lens array 112 includes a plurality of collimating lenses 1121. The collimating lenses 1121 respectively optically couple the light emitting diodes mi, that is, the light emitted by the light emitting diodes 1111 can pass through. To the collimating lenses 1121. When the light L1 passes through the collimating lens Π21, the directional light L2 is formed (as shown in Fig. 2). It is worth mentioning that each of the collimating lenses 1121 may have a hexagonal shape (closer to a circle) to preferably cover the light L1 emitted from the light-emitting diode 1U1, thereby reducing light loss. Further, the number of the light-emitting diodes 11n may not be the same as the number of the collimator lenses 1121, and the number of the light-emitting diodes may be only one. Although the present embodiment is exemplified by a single light source module n, the present invention is not limited thereto. In other embodiments (not shown), the optical system can include a plurality (e.g., three) of light source modules, each of which can produce a telecentric beam of a different color (e.g., red, yellow, and green). The telecentric beams can be combined by a combining optical element (15) and then transmitted to the first lens array 丨2. In other words, if there is only a single light source module 11, the light combining element 15 can be omitted. Referring to Fig. 2, the first lens array 12 is located on the side of the light source module U (collimation lens array 112) for concentrating the telecentric light beams generated by the light source module n into the second lens array 13. The first lens array 12 includes a plurality of first lenses 121, the type of which may be plano-convex 100117916. Form No. A0101 Page 8 / Total 33 pages 1002030178-0 201209344 [0026] [0028] Ο [0028] 100117916 Lens or lenticular lens A lens that can be concentrated. Please refer to FIG. 4, which is a schematic diagram of the first lens array of the optical system of FIG. 2. Each of the first lenses 121 has a rectangular first section 121 Α, and the first lenses 121 are arranged according to a first pattern 122, that is, the first lenses 121 are adjacent to each other (or adjacent). The first section 121 of the first lenses 12 ι is commonly configured to form the first pattern 122 . The first pattern 122 is non-axisymmetric, meaning that the first pattern 122 can be a non-circular pattern such as a rectangle or an ellipse. Therefore, the first sections 121 of the first lenses 121 collectively form a rectangle or Oval pattern. Moreover, since it is non-axisymmetric, the first pattern 122 will have a first major axis 1221. The first major axis 1221 indicates the direction in which the first pattern 122 is longer, and the first major axis 1221 is parallel to one of the first sections 121A of the first lens 121. Please refer to FIG. 5 , which is a schematic diagram of the positional relationship between the collimating lens array and the first lens array of the second cymbal. The first lens rib is used to converge the telecentric beam generated by the light source module 11 to the second. Lens array 13. Therefore, in order to reduce the light loss caused by the telecentric beam not passing through the first lens, the collimating lens 112i of the collimating lens array 112 may be arranged close to the first pattern 122' to cause the telecentricity emitted by the collimating lens array 112. Most of the light beam can enter the first lens array 12. It is worth mentioning that the collimating lens 1121_m does not need to coincide with the number of the first lenses 121. Please refer to FIG. 2 'the second lens array 13 is located on the side of the first lens array _ - and is opposite to the ray group 1U; in other words, the lenticular lens array (3) forms the number Α 0101 page 9 / page 33 1002030178-0 [0029] 201209344 is between the second lens array 13 and the light source module n. The second lens array 13 serves to redistribute and overlap the rays concentrated in the second lens array 13 to form a non-axisymmetric beam. [0033] The second lens array 13 includes a plurality of second lenses 131, which may be plano-convex lenses or condensable lenses such as lenticular lenses. The number of the second lenses 131 is the same as the number of the first lenses 121, and the second lenses 131 are optically coupled to the first lenses 121, that is, the first lenses 121 are emitted. Light may enter the second lenses 131; or the optical axis of the first lens 131 may be aligned with the optical axis of the first lens. Please refer to Fig. 6, which is a schematic view of the second lens array of the optical system of Fig. 2. The second lenses 131 each have a rectangular second section 131A, and the second lenses 131 are arranged according to a second pattern 132, that is, the second lenses 131 are adjacent to each other (or adjacent) The second section 131A of the second lenses 131 is configured to collectively constitute the second pattern 132. Similar to the first pattern 122, the second pattern 132 also exhibits non-axisymmetric, so that the second section 131A of the second lenses 131 will form a pattern resembling a rectangle or an ellipse. In addition, the second pattern 132 has a second long axis 1321 to indicate the direction of the longer dimension of the second pattern 132; and the second long axis 1321 is parallel to one of the second sections 131 of the second lens 131. Referring to FIG. 7, FIG. 7 is a schematic diagram showing the positional relationship between the first lens array and the second lens array of FIG. 2. The second major axis 1321 of the second pattern 132 is deflected by a first angle 6^ relative to the first major axis 1221 such that each first lens 121 also deflects the first angle 0 relative to the second lens 131. 100117916 Form No. A0101 Page 10 of 33 1002030178-0 201209344 [0034] Referring to Fig. 8, the dimensional relationship between the first lens and the second lens of Fig. 2 is not intended. In order to reduce the light loss when the first lens 丨2 丨 and the second lens 丨 31 are optically coupled, the area of the first section 121A of the first lens 121 and the area of the second section 131A of the second lens 131 may be set to be substantially the same ( There may be some differences due to manufacturing tolerances or errors; the length χ 1 and width yl ' of the first section 12^ and the length x2 and width y2 of the second section 131A will conform to equation (1): [0036]
[0037] ❹ [0038] 100117916 如此’當第一載面121 A的長xl與寬yl已知時,可透過方 程式(1),來求得第二截面131A的長X2與寬y2。 當方程式(1)符合後,第一透鏡陣列12的行(r〇w)會偏移 一第一偏移量si,第二透鏡陣列13的列(column)則偏移 一第二偏移量S2。第一偏移量sl、第一截面ι21Α的寬yl 及第一角度關係為:sl=yletan8l,第二偏移量S2 、第二截面131A的長x2及第_角度0之關係為: 1s2 = x2.tan9 l 〇 晴參閲第9圖’為第2圖的第一透鏡陣列及第二透鏡陣列 的另一位置關係示意圖。另一方面,當方程式(1)符合後 ’第一透鏡陣列12的第一透鏡121之中心1211,會對齊 第二透鏡陣列13的第二透鏡131之中心1311,以進一步 減少光損失。 表單編號A0101 第II頁/共33頁 1002030178-0 201209344 [0039] [0040] [0041] [0042] 100Π7916 4參閱第2圖’藉由第-透鏡陣列12及第 _互偏轉,光源模組11所產生的遠 ^ f113 非細對稱光錐椹成之光臾。㈣ 九束即:轉換成 中_ 光學系統1可藉由多個 、'透鏡(relay lenS)14’將非軸對稱 照射於目標區域2上。 先束 ,參閱第_,為第2圖的目標區域的示意圖。目標區域 2可為任何被非軸對稱之光束照射時,可產生有益效果的 ^域。本實施例中,目標區域2是由—微數位微鏡裝置的 夕個微反射鏡21所形成,或^之,該些微反射鏡21分佈 於該目標區域2中。該些微反射鏡21各沿—轉軸211進行 偏轉(擺動),以選擇是否將非軸對稱之光束反射至一投 影透鏡組3中。 目標區域2的形狀為一矩形,且定義有一延伸方向22,延 伸方向22與目標區域2的其中一邊平行,且轉軸211 (或轉 轴211的假想延伸線)相對於延伸方向22偏轉一第二角度 θ2。請配合參閱第7圖,第一圖案122與第二圖案132所 夾的第一角度實質上可與二角度相等,以使得入射 到目標區域2的非軸對稱之光束的發散角較大之方向,能 沿者微反射鏡21的轉轴211。這樣,非轴對稱之光束在目 標區域2上反射出的雜光,較不會進入到投影透鏡組3中 請復參閱第2圖,值得一提的是,鑑於該些第一透鏡121 透過該些第二透鏡131成像於目標區域2上,第一透鏡121 的第一截面121Α之形狀可對應目標區域2之形狀,以減少 光損失。同理,鑑於該些發光二極體111!透過該些第一 表單編號A0101 第12頁/共33頁 1002030Π8-0 201209344 201209344 [0043] [0044] Ο [0045][0038] 100117916 Thus, when the length x1 and the width yl of the first carrying surface 121 A are known, the length X2 and the width y2 of the second section 131A can be obtained by the equation (1). When the equation (1) is met, the row (r〇w) of the first lens array 12 is offset by a first offset si, and the column of the second lens array 13 is offset by a second offset. S2. The first offset s1, the width yl of the first section ι21Α, and the first angular relationship are: sl=yletan8l, the relationship between the second offset S2, the length x2 of the second section 131A, and the _angle 0 is: 1s2 = X2.tan9 l 〇 参阅 Refer to FIG. 9 ' is a schematic diagram showing another positional relationship between the first lens array and the second lens array of FIG. 2 . On the other hand, when the equation (1) conforms to the center 1211 of the first lens 121 of the rear lens array 12, the center 1311 of the second lens 131 of the second lens array 13 is aligned to further reduce the light loss. Form No. A0101 Page II / Total 33 Page 1002030178-0 201209344 [0040] [0042] [0042] 100Π7916 4 Referring to FIG. 2', the light source module 11 is provided by the first lens array 12 and the _ mutual deflection. The resulting far ^ f113 is a non-fine symmetrical light cone. (4) Nine beams: converted into medium _ The optical system 1 can illuminate the target area 2 by a plurality of 'relay lenS' 14'. The first beam, see the _, is a schematic diagram of the target area of Figure 2. The target area 2 can be a ^ domain that can produce a beneficial effect when illuminated by a non-axisymmetric beam. In the present embodiment, the target area 2 is formed by the illuminating mirror 21 of the micro-micro-mirror device, or the micro-mirrors 21 are distributed in the target area 2. The micromirrors 21 are each deflected (oscillated) along the axis 211 to select whether or not to reflect the non-axisymmetric beam into a projection lens group 3. The shape of the target area 2 is a rectangle, and defines an extending direction 22, which is parallel to one side of the target area 2, and the rotating shaft 211 (or an imaginary extension line of the rotating shaft 211) is deflected with respect to the extending direction 22 by a second Angle θ2. Referring to FIG. 7 , the first angle between the first pattern 122 and the second pattern 132 may be substantially equal to two angles, so that the divergence angle of the non-axisymmetric beam incident on the target region 2 is larger. It can follow the rotating shaft 211 of the micromirror 21. Thus, the stray light reflected by the non-axisymmetric beam on the target area 2 does not enter the projection lens group 3. Please refer to FIG. 2, it is worth mentioning that, in view of the first lens 121, The second lens 131 is formed on the target area 2, and the shape of the first section 121 of the first lens 121 may correspond to the shape of the target area 2 to reduce light loss. In the same way, in view of the light-emitting diodes 111! through the first form number A0101, page 12 / page 33 1002030 Π 8-0 201209344 201209344 [0043] [0044] Ο [0045]
GG
[0046] 透鏡121成像於第二透鏡131上,發光二極體η】1的發光 面111 1Α之形狀可對應第二透鏡131的第二截面ί31Α之形 狀。 因此’只要知道目標區域2的長寬比,即可得到較佳的第 一截面121Α的長寬比;爾後再配合方程式(1),可得到較 佳的第二截面131Α的長寬比’以及第二截面131Α所對應 的發光面1111Α的長寬比。 舉例而言,若目標區域2的長寬比為16 : 9(既1. 77 : 1) ,第一截面121Α的長寬比會對應地為16 : 9 ;然後依據方 程式(1),在第一角度6^為45度下,第二截面131Α的長 寬比可得到约為:1· 125 : 1 *發光二極體丨丨丨丨的發光面 1111Α的長寬比也對應地為:1 125 : 1。 在某些情況下,依據方程式(1)所求得的特定長寬比,並 無法輕易尋找符合的發光二極體1111,可能市場上沒有 販賣或是難以製造。較佳地的解決方法為,以接近的長 寬比來替代;例如所求得的特定長寬比為h 125 :】時, 可用具有長寬比為1 : 1的發光面丨丨丨丨人的發光二極體 1111來替代。 而當發光二極體1⑴的發millA長寬比被替代後, 第一透鏡131的第二截面131A長寬比可隨之改變。在此情 況下,第二戴面131A的面積與第一截面12U的面積將變 為不相同。 4參閱第11圖’為第2圖的第一透鏡與第二透鏡在主光軸 偏移後的示意圖。為了使面積不同的第二透鏡131與第- 100117916 表單編號A0101 第13頁/共33頁 1002030178-0 [0047] 201209344 透鏡丨21先耦合時的光損失降低,第二透鏡131的主光軸 會偏移,不位於第二透鏡131的中心1311 ;第一透鏡121 的主光細也是。 [0048] [0049] [0050] [0051] 詳言之,第二透鏡131的主光軸會偏移至第二透鏡131的 頂點1312,且頂點1312會對齊第一透鏡121的中心1211 :第—透鏡121的主光軸會偏移至第一透鏡121的頂點 1212 ’且頂點1212會對齊第二透鏡131的中心1311。如 此’從第一投鏡121投射來的不同方向之光線L3在通過第 —透鏡131後,可變成同方向之光線L3。 晴參閱第12圖,為第2圖的第二透鏡陣列在主光軸偏移前 與後的比較示意圖。為方面說明,主光轴偏移後的第二 透鏡陣列及第二透鏡另標號為13’及131, ’且另加上剖 面線°每一個第二透鏡131’的主轴偏移量幾乎不相同, 通常位於較外圍的第二透鏡131,會有較大的偏移量。請 參閱第13圖’為第12圖的第二透鏡陣列在主光軸偏移後 的所產生的非軸對稱之光束的示意圖。第二透鏡陣列13 t 所產生的非軸對稱之光束的形狀,會對應第二透鏡陣 列13的形狀。 縱上所述,本發明的光學系統可具有至少以下特點: 1.藉由偏轉的第一透鏡陣列及第二透鏡陣列,光學系 統即可產生非軸對稱之光束,光學系統不需較特殊 的光學元件。 2·第—透鏡的截面形狀與目標區域的形狀可相對應, 而第二透鏡的截面形狀與光源楔組的發光面的形狀 100117916 表單編號A0101 第14頁/共33頁 1002030178-0 201209344 可相對應,藉此減少光損失。 3. 第一透鏡的主光軸及第二透鏡的主光輛可偏移,以 減少第一透鏡的截面與第二透鏡的截面面積不—致 時,所造成的光損失。 4. 第一透鏡的主光轴及第二透鏡的主光軸可偏移,以 減少第一透鏡的截面與第二透鏡的截面面積不一致 時,所造成的光損失。The lens 121 is formed on the second lens 131, and the shape of the light-emitting surface 111 1 of the light-emitting diode η1 can correspond to the shape of the second section ί31 of the second lens 131. Therefore, as long as the aspect ratio of the target region 2 is known, a preferred aspect ratio of the first section 121Α can be obtained; and then the equation (1) can be matched to obtain a preferred aspect ratio of the second section 131Α and The aspect ratio of the light-emitting surface 1111Α corresponding to the second section 131Α. For example, if the aspect ratio of the target region 2 is 16:9 (1. 77:1), the aspect ratio of the first section 121Α will be correspondingly 16:9; then according to equation (1), at the When an angle 6^ is 45 degrees, the aspect ratio of the second section 131Α can be obtained: about 1.125:1 * The aspect ratio of the light-emitting surface 1111 of the light-emitting diode 也 is also correspondingly: 1 125 : 1. In some cases, depending on the specific aspect ratio obtained by equation (1), it is not easy to find a suitable light-emitting diode 1111, which may not be commercially available or difficult to manufacture. A preferred solution is to replace the aspect ratio with a close aspect ratio; for example, when the specific aspect ratio is h 125 :], a light-emitting surface having an aspect ratio of 1:1 can be used. The light-emitting diode 1111 is replaced. When the aspect ratio of the hair meter of the light-emitting diode 1 (1) is replaced, the aspect ratio of the second section 131A of the first lens 131 can be changed accordingly. In this case, the area of the second wearing surface 131A and the area of the first section 12U will become different. 4] Fig. 11 is a schematic view showing the first lens and the second lens of Fig. 2 shifted from the main optical axis. In order to make the second lens 131 having different areas and the -100117916 form number A0101, page 13 / page 33, 1002030178-0 [0047] 201209344, the light loss when the lens 丨 21 is first coupled is reduced, and the main optical axis of the second lens 131 is The offset is not located at the center 1311 of the second lens 131; the main light of the first lens 121 is also thin. [0049] In detail, the main optical axis of the second lens 131 is offset to the apex 1312 of the second lens 131, and the apex 1312 is aligned with the center 1211 of the first lens 121: The main optical axis of the lens 121 will be offset to the apex 1212 ' of the first lens 121 and the apex 1212 will align with the center 1311 of the second lens 131. Thus, the light L3 of different directions projected from the first projection mirror 121 passes through the first lens 131, and can become the light L3 of the same direction. Refer to Fig. 12 for a comparison of the second lens array of Fig. 2 before and after the main optical axis shift. For the sake of illustration, the second lens array and the second lens after the main optical axis shift are further labeled 13' and 131, 'and the hatching is added. The spindle offset of each second lens 131' is almost different. The second lens 131, which is usually located at the outer periphery, has a large offset. Please refer to Fig. 13' for a schematic diagram of the non-axisymmetric beam generated by the second lens array of Fig. 12 after the main optical axis is shifted. The shape of the non-axisymmetric beam generated by the second lens array 13 t corresponds to the shape of the second lens array 13. In the longitudinal direction, the optical system of the present invention can have at least the following features: 1. By deflecting the first lens array and the second lens array, the optical system can generate a non-axisymmetric beam, and the optical system does not need to be special. Optical element. 2. The cross-sectional shape of the first lens corresponds to the shape of the target area, and the cross-sectional shape of the second lens and the shape of the light-emitting surface of the light source wedge group 100117916 Form No. A0101 Page 14 / Total 33 Page 1002030178-0 201209344 Correspondingly, thereby reducing light loss. 3. The main optical axis of the first lens and the main light of the second lens are offset to reduce the light loss caused by the cross-sectional area of the first lens and the cross-sectional area of the second lens. 4. The main optical axis of the first lens and the main optical axis of the second lens are offset to reduce the light loss caused by the cross-sectional area of the first lens being inconsistent with the cross-sectional area of the second lens.
Ο 上述之實施例僅用來例舉本發明之實施態樣,以及闡釋 本發明之技術特徵,並非用來限制本發明之保護範疇。 任何熟悉此技術者可輕易完成之改變或均等性之安排均 屬於本發明所主張之範圍,本發明之權利保護範圍應以 申請專利範圍為準。 【圖式簡單說明】 [0052] 第1圖為習知的光學系統、微反射鏡及投影透鏡組的示意 圖; [0053] 第2圖為本發明的光學系統的第一較佳實施例與目標區域 的意圖, [0054] 第3圖為第2圖的光學系統的光源模組的示意圖; [0055] 第4圖為第2圖的光學系統的第一透鏡陣列的示意圖; [0056] 第5圖為第2圖的準直透鏡陣列及第一透鏡陣列的位置關 係示意圖; [0057] 第6圖為第2圖的光學系統的第二透鏡陣列的示意圖; [0058] 第7圖為第2圖的第一透鏡陣列及第二透鏡陣列的位置關 係示意圖; 100117916 表單編號 Α0101 第 15 頁/共 33 頁 1002030178-0 201209344 [0059] 第8圖為第2圖的第一透鏡及第二透鏡的尺寸關係示意圖 f [0060] 第9圖為第2圖的第一透鏡陣列及第二透鏡陣列的另一位 置關係示意圖; [0061] 第10圖為第2圖的目標區域的示意圖; [0062] 第11圖,為第2圖的第一透鏡與第二透鏡在主光軸偏移後 的示意圖。 [0063] 第12圖為第2圖的第二透鏡陣列在主光轴偏移前與後的比 較示意圖。 [0064] 第13圖為第12圖的第二透鏡陣列在主光軸偏移後的所產 生的非軸對稱之光束的示意圖。 【主要元件符號說明】 [0065] [本發明] [0066] 1光學系統 [0067] 11光源模組 [0068] 111發光二極體陣列 [0069] 1111發光二極體 [0070] 1111A 發光面 [0071] 112準直透鏡陣列 [0072] 1121準直透鏡 [0073] 12第一透鏡陣列 100117916 表單編號A0101 第16頁/共33頁 1002030178-0 201209344 ❹ [0074] 121 第一透鏡 [0075] 1211 中心 [0076] 1212 頂點 [0077] 121A 第一載面 [0078] 122 第一圖案 [0079] 1221 第一長轴 [0080] 13 ' 13,第二 [0081] 131、 13Γ 第 [0082] 1311 中心 [0083] 1312 頂點 [0084] 131A 第二截面 [0085] 132 第二圖案 [0086] 1321 第二長軸 [0087] 14中繼透鏡 [0088] 15合光元件 [0089] 2 a 標區域 [0090] 21微反射鏡 [0091] 211 轉軸 [0092] 2 2延伸方向 100117916 表單編號A0101 第17頁/共33頁 1002030178-0 201209344 [0093] [0094] [0095] [0096] [0097] [0098] [0099] [0100] [0101] [0102] [0103] [0104] [0105] [0106] 3投影透鏡組 "i第一角度 G 2第二角度 LI ' L2 ' L3 光線 [習知] 7微反射鏡 71第一反射光束 72第二反射光束 7 3雜光 74轉軸 75方向 81入射光束 9投影透鏡組 91光圈 100117916 表單編號A0101 第18頁/共33頁 1002030178-0The above embodiments are only intended to illustrate the embodiments of the present invention, and to explain the technical features of the present invention, and are not intended to limit the scope of protection of the present invention. It is intended that any change or equivalents that can be easily made by those skilled in the art are within the scope of the invention. The scope of the invention should be determined by the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS [0052] FIG. 1 is a schematic view of a conventional optical system, a micro mirror, and a projection lens group; [0053] FIG. 2 is a first preferred embodiment and object of the optical system of the present invention [0054] FIG. 3 is a schematic diagram of a light source module of the optical system of FIG. 2; [0055] FIG. 4 is a schematic diagram of a first lens array of the optical system of FIG. 2; [0056] 2 is a schematic diagram showing the positional relationship between the collimating lens array and the first lens array of FIG. 2; [0057] FIG. 6 is a schematic diagram of the second lens array of the optical system of FIG. 2; [0058] FIG. 7 is the second FIG. 8 is a view showing a positional relationship between a first lens array and a second lens array of FIG. 2; FIG. 9 is a schematic view showing another positional relationship between the first lens array and the second lens array of FIG. 2; [0061] FIG. 10 is a schematic diagram of a target area of FIG. 2; [0062] Figure 11 is a first lens and a second lens of the second figure in the main light Schematic view of the shift. Fig. 12 is a schematic view showing the comparison of the second lens array of Fig. 2 before and after the main optical axis shift. Fig. 13 is a view showing the non-axisymmetric beam generated by the second lens array of Fig. 12 after the main optical axis is shifted. [Main component symbol description] [0065] [Invention] [0066] 1 optical system [0067] 11 light source module [0068] 111 light emitting diode array [0069] 1111 light emitting diode [0070] 1111A light emitting surface [ 0071] 112 Collimating Lens Array [0072] 1121 Collimating Lens [0073] 12 First Lens Array 100117916 Form No. A0101 Page 16 of 33 1002030178-0 201209344 ❹ [0074] 121 First Lens [0075] 1211 Center 1212 Vertex [0077] 121A First Carrier [0078] 122 First Pattern [0079] 1221 First Long Axis [0080] 13 '13, Second [0081] 131, 13Γ [0082] 1311 Center [ 0083] 1312 vertex [0084] 131A second section [0085] 132 second pattern [0086] 1321 second long axis [0087] 14 relay lens [0088] 15 light combining element [0089] 2 a standard area [0090] 21 micro mirror [0091] 211 shaft [0092] 2 2 extension direction 100117916 form number A0101 page 17 / page 33 1002030178-0 201209344 [0093] [0095] [0097] [0098] [0102] [0106] [Projection lens group "i first angle G 2 second angle LI ' L2 ' L3 ray [conventional] 7 micro mirror 71 first reflected beam 72 second reflected beam 7 3 stray light 74 axis 75 direction 81 incident beam 9 projection lens group 91 aperture 100117916 Form No. A0101 Page 18 of 33 1002030178- 0