201209216 六、發明說明: 【相關申請案交互參照】 本發明主張於2006年1 〇月1 〇日提出申請的美國臨時 專利申請案第60/850,886號之優先權,並且主張2〇〇〇7年 10月10日提出申請的申請案號第11/870,374號的優先權, 且本案是1 1/870,374的部分連續申請案。. 【發明所屬之技術領域】 本#明大體上有關半導體加工設備,且更特別地有關 用於輸送反應氣體到加工室的設備。 【先前技術】 化學蒸氣沉積(CVD )在半導體工業中係為習知的加 工’用於形成材質薄膜於像是石夕晶圓的基材上。在化學氣 相沉積中,具有不同反應物的反應氣體(在本文中亦稱為 「先質氣體」、、precursor· gases” )被輸送到反應室中的— 個或多個基材。在許多情況中’該反應室僅包含單一的基 材,其被支撐在一基材固持件上(例如是一基座),其中 該基材和基材固持件被維持在理想的加工溫度。該反應氣 體彼此反應以形成薄膜於基材上’其成長率由溫度或是反 應氣體來控制。 在某些應用中’反應氣體係以氣體形式被儲存在一反 應源容器中。在此種應用中’該反應蒸氣通常是在周圍(也 就疋正常)壓力和溫度的氣體。此種氣體的範例包含氮、 201209216 •Λ 氧、氫和氨。然而,在某些例子中,係使用來源化學物(先 .質)的蒸氣,該來源化學物在周圍壓力和溫度是液體或固 體(例如:氯化姶)。這些來源化學物可能需要被加熱以 產生用於反應程序的足夠的蒸氣量。對於某些固體物質而 言(在本文中稱為、、固體來源先質〃),在室溫的蒸氣壓 力很低’因此它們必須被加熱以產生足夠量的反應物蒸氣 和/或保持在相當低的壓力。一旦蒸發,很重要的是,蒸 氣相反應物經由加工系統而保持在蒸發溫度或高於蒸發溫 度,以便防止與輸送蒸氣相反應物到反應室有關的閥、過 濾器、導管和其它構件中不需要的凝結。來自此種天生固 體或液體物質的蒸氣相反應物係有益於用在多種其它工業 中的化學反應。 原子層沉積(ALD)是另一種用於形成薄膜於基材上的 習知程序。在多種應用中,原子層沉積使用如上所述的固 體或液體來源化學物。原子層沉積是一種蒸氣沉積的型 f ’其中薄膜係經由循環執行的自飽和反應建立。薄膜的 旱度係由所執行的循環次數決定。在—原子層沉積程序 中’氣體先質被交替地且重複地提供至基材或晶圓以形成 在曰曰圓上的材料薄膜。在一自限制程序中,一反應物吸收 於S曰圓上一不同的、隨後產生脈波的反應物與被吸收的 材料反以形成所需要的材料的單分子層。以^ f & g 擇的試劑,分解可能經由反應發生,例如在一配位基交換 (ligand exchange ) ^ ^ ^ ^ ^ t ( geUering reaction ) 〇 在典型的原子層沉積反應中,每—循環不會形成多於一單 5 201209216 分子層。較厚的薄膜係經由重複增長的循環而產生,直到 達到目標厚度。 的固體或液體來源先質輸送系統包含一固體或液 體來源先質各器和加熱機構(例如輻射加熱燈'電阻加熱 器等等)。容器包含固體(例如成粉末形式)或液體來源 先質。加熱機構加熱容器’以增加容器中的先質氣體的蒸 氣壓力。容器具有-人口和—出σ,用於讓―惰性載體氣 體(例如Ν2 )流動通過容器。該載體氣體將先質蒸器與其 掃除在一起,通過容器出口且最終到達一基材反應室。該 谷器典型地包含隔離閥,用於將容器的内容物與容器外部 机體地隔離《通常地,一個隔離閥係設在容器入口上游, 而另一隔離閥設在容器出口下游。先質來源容器一般係提 供有從入口和出口延伸的管路、位於管路上的隔離閥,以 及位於闕上的配件’該配借被建構成連接到剩餘的基材加 工設備的氣體流動管線。其經常須要提供數個額外的加熱 器’以用於加熱位於先質來源容器和反應室之間的多種閥 和氣體流動管線,以防止先質氣體凝結和沉積在這些構件 上。於是’介於來源容器和反應室之間的氣體輸送構件有 時稱為、、熱區域〃 ’其中溫度保持高於先質的蒸發/凝結 溫度。 已知提供一彎曲或蜿蜒流動路徑,用於載體氣體的流 動’同時其係暴露於一固體或液體先質來源。舉例而言, 美國專利第4,883,362號、7,122,085號’以及7,156,380號 各揭露此種婉誕路徑。 201209216 【發明内容】 在本發明的一態樣中,一先質來源容器係被提供。該 先質來源容器包含一蓋子,其具有一入口埠口、一出口槔 口和一打嗝埠口。該先質來源容器進一步包含一底座’其 可移除地附接至該蓋子。該底座包含形成於其中的一凹陷 區域。 在本發明的另一種態樣中,一先質來源容器係被提 供。該先質來源容器包含一底座,其具有形成於其中的一 凹陷區域。該凹陷區域建構成接收一先質材料。該先質來 源容器亦包含一蓋子,其可移除地附接至該底座。該蓋子 具有一入口琿口、一出口埠口,以及一打喝琿口。一打喝 閥係可運作地附接至該蓋子^該打嗝閥係可運作地連接至 該打喝蟑口。 在本發明的另一種實施例中,一先質來源容器係被提 供。該先質來源容器包含一底座,其具有一底部表面、一 接觸表面、一延伸於該接觸表面和底部表面之間的側表 面,以及一從該接觸表面延伸的内表面,以界定位於該底 座中的一凹陷區域。該先質來源容器亦包含一蓋子,其可 移除地附接至該底座。該蓋子包含一入口埠口、一出口埠 口 ’以及一打嗝埠口。 在本發明的另一種態樣中,一先質來源容器係被提 供。該先質來源容器包含一蓋子,其具有一第_埠口、一 第一埠口,以及一第三埠口。該先質來源容器亦包含一底 201209216 座,其可移除地附接至該蓋子。該底座包含形成於其中的 一凹陷區域。 在另-種態樣令,-用於連接一化學反應物來源容器 至用於基材的蒸氣加工的蒸氣相反應器的氣體界面組件的 設備係被提供。該設備包含一容器、蒸氣相反應器的一氣 體界面組件’以及用於將容器連接至氣體界面組件的連接 組件。該容n具有用於容納固體或液體化學反應物的容 室。該容器包含與該容室流體連通的一入口和一出口。贫 氣體界面組件具有一氣體入口,其用於連接至容器容室的/ 出口。該連接組件包含-執道構件和一舉升組件。該軌道 構件包含-個或多個長形的軌道,其用於可移動地耗合容 器的一個或多個軌道搞合元件。該舉升組件係建構成將該 轨道構件垂直地移動於一下方位置和一升起位置之間。當 容器的-個或多個軌道耦合元件耦合於軌道構件的一個^ 多個軌道時,並且當該舉升組件將該轨道構件移動到它的 升起位置時,該容器的出口變成定位成實質上與氣體界面 組件的氣體入口直接地流體連通。 為了總括本發明以其所達成超越先前技藝的優點的目 的,本發明的某些目的和優點已說明於上述文中。當然, 其可了解的是’根據本發明的任何特定實施例,並不是所 有的目標和優點都需要被達成。因此,舉例而言,在此技 術領域中具有通常知識者將可理解.,本發明可藉由達到或 最佳化本文中所教示的其中一優點或是-組優點,而不需 要達到文中所教示或建議的其它目標或優點的方式被實施 201209216 為 或實現。 所有的這些實施例係意圖涵蓋在本文所揭露的發明的 範圍中。經由以下參照附加圖式的較佳實施例的詳細說 明,本發明這些或其它實施例對於在此技術領域中具有通 令知識者將變得更為明顯,本發明不限於所揭露的任何特 定較佳實施例。 【實施方式】 用於申請專利的本申請案揭露改進的先質來源容器、 設備和方法,用於將該容器裝載和連接到一反應器,並且 干涉以將容器與蒸氣加工反應器使用。所揭露的實施例提 供出色的通達至反應蒸氣、反應器的氣體輸送系統的污染 減夕’以及先貝來源谷的改進的可維修性(例如,替換 或是再裝填)。 以下的較佳實施例和方法的詳細說明詳述了一些特定 的實施例,有幫助了解申請專利範圍,然而,在此技術領 域中具有通常知識者可以多種不同實施例和方法實現本發 明,如申請專利範圍所界定和涵蓋。 氣體輸送系統概要 圖1示意地繪示一種傳統的先質輸送系統6,用於將來 自固體或液體先質來源容器10所產生的氣相反應物進給至 —氣相反應室12中。在此技術領域中具有通常知識者將可 了解本發明的先質輸送系統可合併圖1的氣體輸送系統6 201209216 的許多態樣。因此,現在說明傳統的輸送系統6,以便能夠 更了解本發明。 請參照圖1,固體或液體來源容器1 〇含有固體或氣體 來源先質(圖中未顯示)。一固體來源先質是一來源化學 物’其在知?準條件下(也就是室溫和大氣壓力)為固體。 同樣地,一液體來源先質是一來源化學物,其在標準條件 下為液體。該先質在來源容器10之中汽化,其可被維持在 蒸氣溫度或高於蒸氣溫度。蒸發後的反應物隨後被進給至 反應室12之中β該反應物來源容器1 〇以及反應室12可被 分別地定位在一反應物來源櫃16和一反應室容器18之 中’其較佳地係個別地排氣和/或熱控制。此可藉由將這 些構件設有分開的冷卻和加熱裝置、隔熱、隔離閥和/或 相關的管路來達成,如此技術領域中所習知者。 所繪示的氣體輸送系統6特別適合用於輸送將被使用 在蒸氣相反應室中的蒸氣相反應物。該蒸氣相反應物可被 用於沉積(例如化學蒸氣沉積)或是原子層沉積(Ald)。 如顯示於圖1中,該反應物來源容器1 〇以及該反應室 12係適合經由一第一導管而20彼此選擇性流體連通,以便 將氣相反應物從反應物來源容器10進給至反應室12 (例如 一 ALD反應室)。第一導管20包含一個或多個隔離閥22a、 22b’其可用於在抽空和/或在反應物來源容器1〇和反應 室容器18的保養期間分開反應物來源容器10和反應室12 的氣體空間。 非活性或是惰性氣體較佳地被用於當作載體氣體,用 10 201209216 可經由一第二 該反應物來源 24的入口,以 於蒸發的先質。該惰性氣體(例如氮或氩) 導管24被進給至該先質來源容器1〇之中。 容器10包含至少一個用於連接至第二導管 及至少一個用於將氣體從容器1〇抽出的出口。容器丨〇的 出口係連接至第一導管20。容器10可以在超過反應室12 之壓力的壓力下運作。因此’該第二導管24包含至少一個 隔離閥26,其可用於在容器10的保養或替換期間流體地隔 離容器10的内部。一控制閥27較佳地位在第二導管24中, 於反應物來源櫃16的外側。 在另一種變化中(其可被使用於本發明的實施例中), 該先質蒸氣可藉由施加真空於反應物來源容器1〇而被抽出 至反應至12 ’而不需使用載體氣體。此種技術有時候稱作 「蒸氣抽出」(vapor draw )。 在另一種變化中(其亦可被使用於本發明的實施例 中)’該先質蒸氣可藉由一外部氣流從容器1 〇抽出,該外 部氣流在容氣的外部產生衩低的壓力,像是在一文土里效 應中(Venturi effect)。舉例而言,該先質蒸氣可藉由將一 載體氣體沿著容器10下游的路徑朝著反應室12流動而被 抽出。在某些情況下,這可產生容器10和載體氣體流動路 徑之間的壓力差。這個壓力差造成先質蒸氣朝著反應室12 流動。 . 當使用固體來源先質時,為了移除分散的固體顆粒, 氣體輸送系統6包含一淨化器2 8,該蒸發的反應物經由淨 化器被引導。該淨化器28可包含一個或多個廣泛多樣化的 11 201209216 淨化裝置,禮喜4ik „„ Afc 機械過濾器、陶瓷分子篩,以及靜電過濾 :二能夠將分散固體或顆粒或最小分子尺寸的分子從反應 1 /抓刀冑。亦被熟知的是,可提供額外的淨化器在容器 :特別地,美國公開專利申請案第2005/0000428A1號 揭::種各器’其包含一玻璃坩堝,該玻璃坩堝被封在一 ,今乱之中,該料含有反應物來源且具有附帶過滤器的 盖子。該蓋子與—容11蓋子分開,該容器蓋子附接至鋼容 繼續參照圖1,該反應物來源容器1G是被定位在反應 物來源櫃16之中。櫃16的内部空間3〇可保持在減少的壓 力下(例如ImTon 10T〇rr,且通常大約為5〇〇mT_), 以促進概16之中的構件的韓射加熱,並且將這些構件彼此 熱隔離以幫助均勾的溫度場。在其他變化巾,櫃沒有被排 空並且包含對流增進裝4 (例如風扇、交又流等等)。所 繪示的櫃16包含一個或多個加熱裝^ 像是輻射加埶 器。並且,可設有反射器薄片34,·其可建構成環繞櫃心 中的構件’以反射由加熱裝置32所產生的轄射熱。反射器 薄片34榧16的内壁40上,櫃的頂板7和底板9上。在所 繪示的設備中’第-導管20的實質長度係控制在反應物來 源櫃16之中。因此’該第一導管2〇將固有地接收一些熱 以防止反應物蒸氣的凝結。 該反應物來源概16可以包含—冷卻套36,其形成在植 的外壁38和内壁40之間。該冷卻套36可以含有水或其他 冷卻劑。該冷卻套36容許櫃16的外表面38保持在周圍溫 12 201209216 度或接近周圍溫度。 為了防止或減少在原子層沉積加工的交替脈波之間來 自反應物來源容器10的氣流,其可能在第一導管2〇中形 成非活性氣體障壁。此有時候亦稱作「惰氣閥調」(inert gas valving)或疋「擴散屏障」(.diffusion barrier),其在第 一導管20的一部位中,藉由形成一氣相障壁,藉由在第一 導管20中的正常反應物流的對立方向中流動氣體,以防止 來自反應物來源容器丨0的反應物流至反應室i h該氣體障 J可以經由一第二導管5〇進給非活性氣體到第一導管 之中而形成,第三導管50在連接點52連接至第一導管2〇。 邊第三導管50可以被連接至一惰氣源54,其供給第二導管 24。在介於來反應物來源容器1〇的蒸氣相脈波的進給之間 的時間間隔期間,非活性氣體較佳地係經由第三導管5〇被 被進給至第一導管20之中。此氣體可經由一第四導管58 被抽回,該第四導管在第二連接點6〇處連接至第一導管 2〇 ,該第二連接點60位在第一連接點52的上游處(也就 ^交接近反應物來源容器1G)。以此方式,正常反應物氣 的對2方向的惰氣流係實現於(介於反應物脈波之間) P導S 20之中,介於第一連接點52和第二連接點60之 曰。第四導管58可與-抽空源64連通(例如為冑空录)。 :可設有限制器61和閥56、63、7〇。氣體輸送系統6的進 步細節係繪示和說明在美國公開 2〇〇5/000〇428Al^t 〇 現有的固體或液體先質來源輸送“,諸如顯示在圖丄 13 201209216 中的糸統6’具有許多缺點和限制。其中一個缺點為,其有 些時候須要提供大量額外的加熱器以加熱介於先質來源容 :(諸如容器1〇)和反應室(諸如反應室12) <間的氣體 营線和閥。特別地,直通受彡s ^ , t 八通吊須要將這些中間氣體輸送構件 (例如閥223、22卜70,淨化器28,導管2〇)保持在高於 先質之凝結溫度的溫度,以防止先質蒸氣沉積在這些構件 上:典型地,這些中間構件藉由管線加熱器(Hne heaters)、 彈筒式加熱器(cartridge heaters )、加熱燈(⑽Umps ) 或類似物分別地加熱。某些系统(例如美國專利巾請案公 開號2005/0000428A1)利用這些額外的加熱器以迫使中間 構件的溫度上升至高於來源容器的溫纟。此種溫度偏移 〇emperature biasing )有助於防止先質在冷卻期間凝結在 中間構件中。因為來源容器典型地具有比中間氣體輸送構 件更高的熱質*,這些構件存在著比來源容器更快冷卻到 凝結溫度的風險。此可能導致不希望發生的狀況,其中來 原谷器仍在產生先質蒸軋,其可能流動到較冷的中間構件 並且况積於其上。該溫度偏移能夠克服此問題。然而,額 外的加熱器的需求增加设備的整體尺寸和運作成本。 再者’傳統的固體來源輸送系統典形地利用介在來源 容器出口和基質反應室之間的過濾器(例如圖丨的淨化器 28 ),以便防止固體先質顆粒(例如,挾帶在載體氣體流 中的粉末)進入反應室。此種過濾器亦增加設備的整體尺 寸,並且可能需要額外的加熱器以防止在其中的凝結。同 樣地*此種過濾器典型地位在來源容器出口的下游,其包 14 201209216 .3風險為,先質顆粒可能沉積在容器出口下游的氣體運輸 構件,諸如在氣體導管中或是容器出口閥本身之中。這些 顆粒可此損害像是閥的構件,其可能危及他們完全密封的 能力。 ^傳統的固體或液體來源輸送系統的另一個缺點為,通 爷很困難再褒填或是替換先質來源容器。ffi 2顯示典型的 先質來源容器31’其包含一容器本體33和一蓋子35。蓋 子35包含入口管路43a、4扑和出口管路45&、45b,其從 蓋子向上延伸。一隔離閥37係被插入在入口管路43&、4儿 之間,而一隔離閥39被插入在出口管路45a、45b之間。另 —個隔離閥41插入於連接管路43a和45a的氣體管線之 間。入口管路43a、43b和出口管路45a、45b提供惰性載體 氡體流動通過容器本體33。管路43a、45a典型地包含配件 :47,其建構成連接至反應物氣體輸送系統的其他氣體流管 線 Μ固體或液體來源先質耗盡且需要更換時,習慣上將 整個來源容器替換成新的來源容器,具有充滿的來源化 學物。替換來源容器31需要關閉隔離閥37和39、將配件 47與剩下的基材加工設備分離、完全地移除容器3ι、將新 的容器31安置在合適的位置,並且將新的容器31的配件 47連接至剩下的基材加工設備《通常,此程序亦包含拆卸 多種熱電耦、管線加熱器、夾具、以及類似者。這些程序 稍微費力。 傳統的固體或液體來源輸送系統的另一個缺點為,今 氣體輸送系統可能產生停滯流動區(亦稱為死水區、、 15 201209216 legs")。死水區易於發生在當來自,先質來源容器的氣體流 動路徑係較長且較為複雜時。用於來源容器的傳統式入口 和出口隔離閥(如上文所述)可能產生死水區。一般而言, 死水區增加在輸送系統的氣體輸送構件上的不需要的先質 沉積的風險。此種不需要的先質沉積可能因為與失效容積 有關的冷點的原因而產生,其中先質在低於昇華/炫化溫 度的溫度下凝固。此種不需要的先質沉積亦可能因為與失 效容積相關的熱點而產生,其中先質在高溫下分解。針對 此原因’通常希望將反應物氣流的停滯減少或最小化。其 通常亦希望減少欲被溫度控制的表面區域,以便減少產生 熱點或冷點的機會。 將死水區的量和體積最小化的另一個原因係為將插置 在先質來源容器和基材反應室之間的氣體輸送系統的整體 體積減少。當氣體輸送系統的整體體積增加,經常使最小 脈波時間倍化’且與ALD加工有關的最小清洗時間也增 加。該最小脈波時間係為,被注入的反應物將被加工的基 材的表面浸透(saturate )所需要的脈波時間。該小清洗時 間係為’在反應物脈波之間清洗基材反應室和氣體輸送系 統的過剩反應物所需的時間^當最小脈波時間和最小清洗 時間減少時,基材生產率(基材可被加工過的速率)係増 加。於是’其希望減少死水區的量和體積以增加生產率。 減少氣體輸送系統的整體體積的另一個優點係為改進 反應物氣體脈波的「脈波形狀」。脈波形狀係指,對於一 反應物氣體脈波,在反應物/載體混合物中的反應物的化 16 201209216 學濃度的曲線的形狀。圖3顯示一理想反應物濃度曲線8〇, 以及小於理想值的曲線82。兩個曲線包含反應物氣體脈波 84,其藉由實質上零反應物濃渡的時間週期86分開。理想 曲線80像是直線形波,例如方形波。實質上直線形波是較 佳的,因為對於每個反應物氣體脈波其高度需要在最少的 時間中輸送反應物形式到基材表面(飽和)上的所有可得 的反應站,以便將基材生產率最佳化。直線形的脈波形狀^ 例如在曲線80中’將生產率最佳化,因為每個脈波的持續 時間具有高漢度的反應物,因此隨後減少需要輸送足夠的 反應物形式到基材表面的脈波持續時間。同樣地直線的 脈波形狀的減少的分散減少了在不同先質的連續脈波之間 的、'脈波重疊,,的量,其減少了不希望的化學蒸氣沉積成 長模型的可能性。相對地,不理想的曲線82的每個脈波84 ;的脈波集中(Pulse c〇nCentration)需要更長的時間達到直 最大層級,其增加了需要完全地浸透基材表面的脈波持續 時間。因此,曲線80的頻率小於曲線82的頻率。當氣體 輸送系統的整體體積增加,脈波形狀便惡化。因此,理想 的是错由將死水區最小化而改進脈波形& (也就是,使其 更像方形波)。 〃 傳統的固體來源輸送系統的另一個缺點係為牽涉到在 加工之前將先質來源容器排氣之污染的風險。先質來源容 器典型地被供給在容器中氣體的頭壓。舉例而言,一填充 有先質粉末的來源容f + + 谷益逋㊉與氦或其他惰氣在稍微高於周 圍壓力的壓力(例如5 n P )下—起裝運。氦通常用於能夠 201209216 使用氦洩漏偵測器進行、、向外"(〇ut_b〇und)氦洩漏測試, 以便在裝運之前確保容器完整性。氦通常保留或以氮或其 他惰氣替換,因此如果存在少量洩漏,氣體從容器往外洩 漏,防止在容器中的先質的大氣污染。在容器被用於基材 力σ工之則,惰氣的頭壓一般會被移除。典型地,容器的内 部氣體經由容器的出口隔離閥被排出,經過反應物氣體輸 送系統,而最終通過反應器的排氣裝置/洗滌器。在某些 系統中,容器的内部氣體經由基材反應室被排出。其他的 系統利用與反應室並聯的氣體管線(也就是,從恰好在反 應至上游的一點處延伸至恰好在反應室的下游的點處)’ 使得容器的内部氣體可以被引導至排氣裝置/洗滌器,而 不會流過反應室。在任一種例子中,當容器被解除頭壓時, 現有的容器設計牽涉到顆粒產生的風險。此可導致先質粉 末變得被挾帶在排氣流之中(也就是容器的内部加壓氣體 的排出),其可污染且可能損害氣體輸送系統的下游元件, 包含容器出口本身。甚至在一般加工期間,先質材料(例 如粉末)可能被挾帶在流過先質來源容器的載體氣體之 中,其牵涉到在氣體傳輸系統之中不希望的先質沉積的風 險。 藉由利用用於將容器從輸送系統的其餘部分快速地連 接和分離的改進的先質來源容器和設備,前文所揭露的先 質輸送系統的實施例實質地克服了這些問題。 與來源容器緊密熱接觸的氣體板 201209216 • 圖4至圖6繪示三種不同的氣體板配置。氣體板典型 地包含一個或多個閥,其位在先質來源容器的下游,並且 亦可包含一個或多個在容器上游的閥。圖4繪示一傳統配 置,其中一來源化學物係被容納在一來源容器1 〇之中。_ 氣體板90包含數個閥,其可運作以從一載體氣體來源(圖 中未顯示)輸送載體氣體經過容器10並且進入一反應室之 中(未顯示)。一入口閥91係藉由管路93連接在容器 而—出口閥92係藉由管路94連接在容器10的下游。在此 傳統配置中,入口閥9丨、出口閥92,以及氣體板9〇的閥 和管路典型地並非與容器10成緊密熱接觸。 圖5繪示一種配置’相對於圖4的配置係稍微地改進。 在圖5的配置中,一先質來源容器1〇〇具有表面安裝的入 口閥108和一表面安裝的出口閥i丨〇。闊i 〇8和n〇係藉由 b路95和96與一傳統的氣體板90分離。在此配置中,闊 1〇8和11〇係與容器100緊密熱接觸,但未與氣體板9〇的 閥和管路緊密熱接觸。 圖6繪示一種配置,其相對於圖5的配置係稍微地改 進。在圖6的配置中,來源容器100具有大體上平坦的表 面’具有表面安裝的入口閥108和表面安裝的出口閥110。 此外’一氣體板97係被配置成使得氣體板的閥和管路係沿 著—平面定位,該平面大體上平行於容器1〇〇的大體上平 垣的表面。為了增加容器1 〇〇和氣體板閥和管路之間的熱 接觸’氣體板閥和管路的平面以及容器10〇的大體上平坦 的表面之間的距離較佳地係不大於約10.0公分,更佳地不 19 201209216 大於約7 _5公分,甚至更佳地不大於約5.3公分。 具有表面安裝的閥和蜿蜒路徑的來源容器 圓7顯示一改進的固體和液體先質來源容器1〇〇和一 快速連接組件1 02的實施例。該來源容器丨00包含一容器 本體104和一蓋子1〇6。蓋子1〇6包含表面安裝的隔離閥 10 8和1 1 〇 ’在下文將更詳細地說明。 圖8至圖1〇更詳細地顯示圖7的來源容器ι〇〇。圖8 係來源容器100的分解圖,而圖9和圖10係為來源容器1 〇〇 的後剖面圖。所繪示的容器1〇〇包含容器本體1〇4、一位在 本體104之中的蜿埏路徑插入件112,幾及蓋子構件ι〇6。 所繪示的組件係藉由緊固元件124緊固在一起,緊固元件 124諸如為螺絲和是螺帽和螺栓組合。緊固元件124係用於 延伸進入本體1〇4的凸緣126之中對齊的孔洞。在此技術 領域中具有通常知識者將可了解該組件可藉由多種替代方 法緊固在一起。 蜿蜒路徑插入件112較佳地界定一迂迴曲折或是蜿蜒 路徑111,當載體氣體流過容器丨〇〇時,其必須移動通過該 路私111。婉蜒路控112較佳地含有先質來源,例如是粉末 或是液體。蜿蜒路徑111遠長於在傳統先質來源容器之中 的載體氣體流動路徑。閥108和110 (在下文說明)和閥 210 (在下文參照圖26至圖28作說明)係承受到較不苛刻 的環境,藉此增加它們的可靠性。 較佳地設有一彈簧114以將蜿蜓路徑插入件1對著 20 201209216 蓋子106壓迫,以防止反應物氣體從插入件112和蓋子l〇6 之間的交界處逸出。換句話說,彈簧114傾向於減少氣體 繞過部分或全部的蜿蜒路徑的風險。合適的彈簧114包含 扁平線壓縮彈簧,像是由位在伊利諾州蘇黎士湖的Smalley Steel Ring公司販售的Spirawave®波形彈簣。 圖11A顯示改進的固體或液體先質來源容器400的另 一種實施例,其包含一容器底座4〇2、一密封件4〇4,和一 蓋子406。蓋子406包含複數個整合的氣閥,或是表面安裝 閱’在下文更詳細地說明。圖11B至圖hc繪示蓋子406 的不範性實施例。圖11D至圖11 g顯示來源容器400的底 座402的實施例。.圖11H至圖UI顯示來源容器400的底 座402的其他實施例。 如顯示於圖11A中’底座402係是由一實心元件形成, 其包含凹陷區域408 ’其係直接地加工在實心底座402之 中。當蓋子406可移除地附接至底座4〇2時,一密封件4〇4 在蓋子406被固定至底座4〇2之前被安置在其間,以確保 來源今器400之中的内容物封閉在其中。在一實施例中, 底座402和蓋子406係由相同的材料形成,使得這兩個元 件之間具有實質上相同的熱傳導性和相同的熱膨脹係數。 在另種實施财,底座4〇2係由不同於用於形成蓋子406 之材料的材料形成。在一實施例中,底座4〇2和蓋子俱 :、由不錄鋼形成。在其他實施例中,底座402和/或蓋子 406可由古力 ^ 问、〃 5金、鋁或是鈦形成。在此技術領域中具有通 吊知識者可了解的a 、疋,底座402和蓋子406可由任何其他 21 201209216 材料形成,其能夠容許足夠的熱傳遞以蒸發位在來源容器 400之中的先質’同時為惰性,或者不與來源容器4〇〇之中 的先質或内容物反應。 密封件404係被設在來源容器4〇〇的底座402和蓋子 406之間,如顯示於圖丨丨A中β在一實施例中,密封件4〇4 係一 0形環’其係配置在形成於底座402中的溝槽41〇之 中。在另一種實施例中,密封件404可以形成為金屬墊圈 或是V形密封件’其建構成可配置在底座402和蓋子4〇6 之間。在此技術領域中具有通常知識者可了解的是,密封 件404可以由足以在蓋子406係附接至底座402時提供密 封並且確保來源容器400之中的内容物封閉在其中的任何 升> 狀、尺寸或是構造形成。在一實施例中,密封件係 由彈性體形成’但在此技術領域中具有通常知識者可了解 的是,密封件404可以由足夠提供密封的任何其他材料形 成,像是,但不限制於,聚合物或金屬。 如繪示在圖11Α至圖11C中,其顯示來源容器400的 蓋子406的實施例。蓋子406形成為單一元件,具有上表 面412、下表面414,以及延伸於上表面412和下表面414 之間的滑動表面413 »在一實施例中,上表面412和下表面 414貫質上為平坦的表面β在此技術領域中具有通常知識者 可了解的是’平坦的上表面412和下表面414可進一步包 含形成於其中的壓痕、溝槽、孔洞或是插入部。在一實施 例中’該上表面412和下表面414實質上彼此平行,藉此 提供蓋子406具有橫越整個蓋子406的一致厚度Τ1。如顯 22 201209216 示=圖11B巾,上表面412可包含高公差區4i6,其被加工 以提供相對於上表面412其餘部位而言實質上平滑的表 面。XI些高公差區416容許閥組件418安裝成與蓋子406 、·表面412齊平,以辞保閥組件41 8和蓋子406之間的 同等程度的直接熱接觸。在這些構件之間構多的表面區域 接觸,這些構件之間的熱傳遞可被最大化,藉此減少對於 提供熱到閥組# 418以防止蒸發的先質凝結在其中的分開 的加熱器或加熱套的需求。 如顯示在圖11B中,該蓋子4〇6包含入口埠口 42〇、出 口崞口 422 ’以及—打嗔埠口似(burp p。")。入口淳口 420係建構成容許載體氣體,或是惰氣經由人口槔口侧 被導入至來源容器4〇〇之中。出口谭口 422被建構成容許 氣體經過出口埠口 422離開來源容器4〇〇。打嗝埠口斗以可 包含任何埠口,像是傳統入口/出口埠口,其可被建構成 在來源谷H 400的首次填充或安裝之後,或是在來源容器 4〇〇之後的再填充或安裝之後釋放來源容器4〇〇之中的頭 壓。通過打喝崞口 424之頭壓的釋放係在來源容器楊提 供蒸發的先質材料到反應室162 (圖25)以用於半導體基 材加工之前完成。在一實施例中,一界面構件似係可運 作地附接至蓋子406的上表面412,於每個埠口 424。每個界面構件426係建構成被連接至一閥组件· 在此技術領域中具有通常知識者可了解的《,每個關組件 41 8和界面構件426可以任何方式沉,笛从,L + 订万式可運作地連接至蓋子406 的上表面412。 23 201209216 如顯示在圖11A和11C中,閥組件41 8的其中之一包 含排氧閥’或是打°南閥428 ( burp valve ),其.係可運作地 連接至蓋子406的上表面41·2。打嗝閥428可以是氣動閥或 任何其他的閥,其調節進入和離開來源容器4〇〇的氣體的 流動。在一實施例中,打嗝閥428保持關閉,除了在半導 體加工系統中使用來源容器4〇〇之前為了釋放氣體以釋放 來源谷器400之中的頭壓而開啟。在來源容器4〇〇的製造 和初次填充先質的期間’或是在來源容器4〇〇係再次填充 先質之後,一惰氣係被導入至來源容器4〇〇之中,以便產 生來源容器400之中的頭壓。此頭壓係用於一旦來源容器 400係被填充(或再填充)容許執行洩漏測試,如上文所解 釋。當來源容器400係被安裝時,來源容器4〇〇之中產生 頭壓的氣體需要被移除和替換成惰性載體氣體,該載體氣 體將被用於在加工期間運載蒸發的先質。傳統地,在此技 術領域中習知,頭壓係藉由通過一出口琿口排出產生初始 頭壓的氣體而從來源容器釋放,t亥出口埠口與在基材的加 工期間先質材料通過離開的出口埠口是相同的。然而,靠 近出口埠口的過濾器通常變成被先質 程序或釋放期間係伴隨著氣體。雖然 口過濾器阻擋,一些顆粒能夠繞過過濾 粒在初始的'打喝 一些先質顆粒被出 器’或是由過濾器捕獲的顆粒 通往至反應室的管路之中。^ 反應室之中不均 間的氣體管線。 顆粒堵塞,該先質顆 隨後變成可移動,並且進入 些游走的先質顆粒可能造成 勻的沉積’或是堵塞來源容器和反應室之 游走的顆粒亦可能造成顆粒附著於正被加 24 201209216 工的半導體基材上,因而造成基材可產生的裝置、晶片或 電路的數量的減少。本發明的打嗝埠口 424和對應的打嗝 閥428容許在、、打隔夕程序期間釋放頭壓,其中離開打嗝 璋口 424的氣體和顆粒在被轉向通過一打喝氣體管線432 之前首先藉由一打嗝過濾器43〇被過濾,打嗝氣體管線432 係直接地連接至排氣管線466 (圖25),藉此繞過反應室 162,以便防止任何不希望的顆粒干涉反應室162之中的加 工〇 如顯示在圖1 1C中,一過濾設備434可運作地連接至 蓋子406的下表面414。過濾設備434,例如更詳細地險示 在圖18中且在下文說明,係建構成過濾被導入通過蓋子4〇6 進入來源容器400之中的載體氣體,以及通過打嗝埠口 424 和出口埠口 422離開來源容器4〇〇的氣體。在繪示的實施 例中,一過濾設備434係附接至蓋子4〇6的下方鄰近入口 埠口 420、出口埠口 422和打嗝埠口 424。該過濾設備434 係直接地附接至蓋子406以容許來自蓋子4〇6的足夠量的 熱傳遞以防止先質材料在每個過濾設備434之中凝結。每 個過濾設備434較佳地具有低外形,因為低外形的過濾設 備提供橫越過濾包媒介(圖17)良好的熱均勻性。 底座402的實施例係顯示在圖UE至圖nG。底座4〇2 包含一本體436和一凸緣438,凸緣438係整合地連接至本 體436並且從本體436延伸。在—實施例中,本體436和 凸緣438係由單件材料形成。如上文所解釋,溝槽4}〇係 形成在本體436之中’其中溝槽41〇係建構成接收密封件 25 201209216 404。凸緣438係建構成從本體心的上部分徑向地向外延 伸。底座402係藉由__上方接觸表面44〇、底部表面州、 側表面444和内表面446所界定,該内表面州界定和形 成凹陷區域408。接觸表面44〇實質上係為平坦表面,其形 成底座402的整個上表面。接觸表面44〇係建構成直接地 接觸蓋子406的下表面414c。 在一實施例中,底座402係一實心材料或金屬,凹陷 區域408係加工(或被移除)於底座4〇2之中,如繪示在 圖11D至圖11G中。在另一個實施例,底座4〇2形成為一 體缚件,其中凹陷區域彻係在鑄造或锻造期間形成在底 座402之中。該凹陷區域4〇8係建構成接收一固體或液體 先質於其t。於顯示在圖11D至圖1Π的實施例中,該凹 陷區域408係形成為長形、蜿蜒路徑,其從底座4〇2的接 觸表面440延伸》内表面446從接觸表面44〇延伸到本體 436的厚度之中。凹陷區域4〇8形成到本體436之中的深度 可以改變。J在此技術領域中具有通常知識者可以了解的 是,凹陷區域408的形狀、深度和寬度可以改變,只要凹 陷區域408容許在入口埠口 420和出口埠口 422之間延伸 的流動路徑,以增加設置於凹陷區域4〇8之中帶有先質材 料的氣體的停留時間。 在一實施例中,如顯示在圖UE至圖11(3,該凹陷區 域408包含一入口凹陷墊448、一出口凹陷墊45〇、一打嗝 凹陷墊452,以及一通道454,該通道454流體地連接凹陷 墊448、450、452。凹陷墊448、45〇、452大體上係為三角 26 201209216 形凹陷區域,其係從底座402的接觸表面440向下地延伸。 凹陷墊448、450、452的形狀與對應的過濾設備434的部 位實質上是相同形狀和尺寸,過濾設備434的部位係指由 蓋子406的下表面414延伸到底座4〇2之中,使得每個過 濾設備434的一部位係接收於對應的凹陷墊448、45〇、452 之中。凹陷墊448、450、452從接觸表面440向下地延伸 到一預定的深度。在一實施例中,所有凹陷墊448、45〇、 452的深度是相同的。在另一種實施例中,至少其中之一的 凹陷墊448、450、452的深度與其他凹陷墊的深度不同。 當底座402填充先質,每個凹陷墊448、450、452之中的 容積並未填充先質。當載體氣體係通過與蓋子406的入口 埠口 420相鄰的過濾設備434而被導入至底座402之中時, 在通過凹陷區域408的剩餘部位之前,該載體氣體接觸並 且係散佈於入口凹陷墊448之中。因為較佳地在任何凹陷 墊448、450、452之中不具有先質,導入載體氣體至入口 凹陷墊448之中防止載體氣體直接地接觸先質,其可能抑 制先質或是造成先質的顆粒與載體氣體混合。凹陷區域408 的每個凹陷墊448、450、452係藉由形成在本體436之中 的通道454流體地連接。 如繪示在圖11F至圖11G中,凹陷區域408的通道454 從接觸表面440延伸,其中通道454是一連續的路徑,氣 體可延著通道45 4在入口凹陷墊448和出口凹陷墊450之 間移動。在另一種實施例中,該凹陷區域408不包含凹陷 墊’使得通道454延伸於鄰近入口埠口 420的過濾設備434 27 201209216 和鄰近出口埠口 422及打嗝埠口 424的過濾設備434之間 的整個距離。通道454形成於本體436之中,使得通道45 4 具有之深度係大於凹陷墊448、450、452的深度。在一實 施例中’通道454的深度沿著介於入口凹陷墊448和出口 凹陷墊450之間的通道454的整個長度係為固定的。在另 一個實施例中,通道454的深度沿著在入口凹陷墊448和 出口凹陷墊450之間的通道454的長度改變。 當來源容器400係填充液體或固體先質材料(未顯示) 時,該先質材料較佳地只配置在形成於本體436中的凹陷 區域408的通道454之中。通道454應該填充至低於凹陷 墊448、450、452的底部表面的深度,以防止任何先質材 料被留置在凹陷墊448、450、452之中。再者,出口凹陷 墊450的底部表面係位於先質材料的上表面,使得任何先 質材料顆粒保持在通道4 5 4之中。 在顯示於圖11E的底座402的實施例中’通道454 伸於入口凹…48和出口凹陷墊45〇之間,並且且有 蜒的形狀。通道454形成介於入口埠口 420和出口蟑口 4, ,間的婉蜒路徑,載體氣體可沿著該婉蜒路徑移動。換f201209216 VI. INSTRUCTIONS: [Related application cross-references] The present invention claims priority to U.S. Provisional Patent Application No. 60/850,886, filed on the 1st of The priority of Application No. 11/870,374, filed on October 10, and this case is a partial application for 1 1/870,374. TECHNICAL FIELD OF THE INVENTION This invention relates generally to semiconductor processing equipment, and more particularly to apparatus for transporting reactive gases to a processing chamber. [Prior Art] Chemical vapor deposition (CVD) is a conventional process in the semiconductor industry for forming a material film on a substrate such as a stone wafer. In chemical vapor deposition, reactive gases having different reactants (also referred to herein as "precursor gases") are transported to one or more substrates in the reaction chamber. In the present case, the reaction chamber contains only a single substrate supported on a substrate holder (for example, a susceptor), wherein the substrate and substrate holder are maintained at a desired processing temperature. The gases react with each other to form a film on the substrate. The growth rate is controlled by temperature or reactive gas. In some applications, the 'reaction gas system is stored as a gas in a reaction source vessel. In this application' The reaction vapor is usually a gas at ambient (ie, normal) pressure and temperature. Examples of such gases include nitrogen, 201209216 • helium oxygen, hydrogen, and ammonia. However, in some instances, source chemicals are used ( First, the vapor of the source chemical is a liquid or solid at ambient pressure and temperature (eg, barium chloride). These source chemicals may need to be heated to produce enough for the reaction procedure. The amount of vapor. For some solid materials (referred to herein as, solid source precursors), the vapor pressure at room temperature is very low 'so they must be heated to produce a sufficient amount of reactant vapor and / Or at a relatively low pressure. Once vaporized, it is important that the vapor phase reactants are maintained at or above the evaporation temperature via the processing system in order to prevent valves associated with the delivery of vapor phase reactants to the reaction chamber, filtration Unwanted condensation in vessels, conduits, and other components. Vapor phase reactants from such natural solid or liquid materials are beneficial for chemical reactions used in a variety of other industries. Atomic Layer Deposition (ALD) is another Conventional procedures for films on substrates. In various applications, atomic layer deposition uses solid or liquid source chemicals as described above. Atomic layer deposition is a vapor deposited type f 'where the film is self-saturated via cycling The reaction is established. The degree of dryness of the film is determined by the number of cycles performed. In the atomic layer deposition procedure, the gas precursors are alternately and heavy. Providing a substrate or wafer to form a thin film of material on a circle. In a self-limiting procedure, a reactant is absorbed on a different, subsequently pulsed, reactant and absorbed The material is reversed to form a monolayer of the desired material. Decomposition with ^f & g may occur via reaction, for example, in a ligand exchange ^ ^ ^ ^ ^ t ( geUering reaction ) In a typical atomic layer deposition reaction, more than one single layer of 201209216 molecular layer is formed per cycle. Thicker films are produced through repeated growth cycles until the target thickness is reached. Solid or liquid source precursor The delivery system comprises a solid or liquid source precursor and a heating mechanism (eg radiant heat lamp 'resistance heater, etc.). The container contains a solid (for example in powder form) or a liquid source. The heating mechanism heats the vessel ' to increase the vapor pressure of the precursor gas in the vessel. The container has a population and - σ for flowing an "inert carrier gas (e.g., Ν2) through the container. The carrier gas sweeps the precursor vaporizer together, exits the vessel and eventually reaches a substrate reaction chamber. The trough typically includes an isolation valve for isolating the contents of the container from the exterior of the container. Typically, one isolation valve is disposed upstream of the container inlet and another isolation valve is disposed downstream of the container outlet. The precursor source vessel is typically provided with a conduit extending from the inlet and outlet, an isolation valve located on the conduit, and an accessory located on the crucible that is constructed to form a gas flow conduit connected to the remaining substrate processing equipment. It is often necessary to provide several additional heaters' for heating various valve and gas flow lines between the precursor source vessel and the reaction chamber to prevent condensation and deposition of precursor gases on these components. Thus, the gas delivery member between the source vessel and the reaction chamber is sometimes referred to as the hot zone ’ where the temperature is maintained above the evaporation/condensation temperature of the precursor. It is known to provide a curved or meandering flow path for the flow of carrier gas' while it is exposed to a source of solid or liquid precursor. For example, U.S. Patent Nos. 4,883,362, 7,122,085, and 7,156,380 each disclose such a singular path. 201209216 SUMMARY OF THE INVENTION In one aspect of the invention, a precursor source container is provided. The precursor source container includes a lid having an inlet opening, an outlet opening, and a smashing opening. The precursor source container further includes a base 'removably attached to the cover. The base includes a recessed region formed therein. In another aspect of the invention, a precursor source container is provided. The precursor source container includes a base having a recessed region formed therein. The recessed area is constructed to receive a precursor material. The precursor source container also includes a cover that is removably attached to the base. The lid has an inlet opening, an outlet opening, and a dozen mouthwashes. A dozen drinking valve is operatively attached to the lid. The snoring valve is operatively coupled to the sip. In another embodiment of the invention, a precursor source container is provided. The precursor source container includes a base having a bottom surface, a contact surface, a side surface extending between the contact surface and the bottom surface, and an inner surface extending from the contact surface to define the base A recessed area in the middle. The precursor source container also includes a lid that is removably attached to the base. The lid includes an inlet opening, an outlet opening ' and a smashing opening. In another aspect of the invention, a precursor source container is provided. The precursor source container includes a lid having a first opening, a first opening, and a third opening. The precursor source container also includes a base 201209216 seat that is removably attached to the lid. The base includes a recessed region formed therein. In another aspect, an apparatus for connecting a chemical reactant source vessel to a gas interface assembly of a vapor phase reactor for vapor processing of a substrate is provided. The apparatus includes a vessel, a gas interface assembly of the vapor phase reactor, and a connection assembly for connecting the vessel to the gas interface assembly. The volume n has a chamber for holding solid or liquid chemical reactants. The container includes an inlet and an outlet in fluid communication with the chamber. The lean gas interface assembly has a gas inlet for connection to the vessel compartment/outlet. The connection assembly includes an obstructing member and a lifting assembly. The track member includes one or more elongate tracks for engaging one or more track engaging elements of the container. The lifting assembly is configured to vertically move the track member between a lower position and a raised position. When the one or more track coupling elements of the container are coupled to one or more tracks of the track member, and when the lift assembly moves the track member to its raised position, the outlet of the container becomes positioned substantially The gas inlet is directly in fluid communication with the gas interface assembly. Some objects and advantages of the present invention have been set forth in the foregoing description in order to provide an understanding of the invention. Of course, it will be appreciated that not all of the objects and advantages need to be achieved in accordance with any particular embodiment of the invention. Thus, for example, those of ordinary skill in the art will understand that the present invention may achieve or optimize one of the advantages or advantages of the teachings herein. The way to teach or suggest other goals or advantages is implemented or implemented in 201209216. All of these embodiments are intended to be included within the scope of the invention as disclosed herein. These and other embodiments of the present invention will become more apparent to those of ordinary skill in the art in the <RTIgt; Example. [Embodiment] The present application for patent application discloses an improved precursor source container, apparatus and method for loading and connecting the container to a reactor and interfering with the use of the container with a vapor processing reactor. The disclosed embodiments provide excellent access to the reaction vapor, the gas delivery system of the reactor, and the improved maintainability (e.g., replacement or refilling) of the source. The following detailed description of the preferred embodiments and methods are described in detail with reference to the specific embodiments of the invention, and the scope of The scope of the patent application is defined and covered. Gas Delivery System Overview Figure 1 schematically illustrates a conventional precursor transport system 6 for future gas phase reactants produced from a solid or liquid precursor source vessel 10 to be fed to a gas phase reaction chamber 12. Those of ordinary skill in the art will appreciate that the precursor delivery system of the present invention can incorporate many aspects of the gas delivery system 6 201209216 of FIG. Therefore, the conventional delivery system 6 will now be described in order to be able to better understand the present invention. Referring to Figure 1, the solid or liquid source container 1 contains solid or gas source precursors (not shown). A solid source precursor is a source of chemicals. The quasi-conditions (ie room temperature and atmospheric pressure) are solid. Similarly, a liquid source precursor is a source chemical that is liquid under standard conditions. The precursor is vaporized in the source vessel 10, which can be maintained at or above the vapor temperature. The evaporated reactant is then fed to the reaction chamber 12 where the reactant source vessel 1 and the reaction chamber 12 can be positioned separately in a reactant source cabinet 16 and a reaction chamber vessel 18. The preferred system is individually vented and/or thermally controlled. This can be achieved by providing these components with separate cooling and heating means, thermal insulation, isolation valves and/or associated piping, as is known in the art. The illustrated gas delivery system 6 is particularly suitable for transporting vapor phase reactants to be used in a vapor phase reaction chamber. The vapor phase reactant can be used for deposition (e.g., chemical vapor deposition) or atomic layer deposition (Ald). As shown in Figure 1, the reactant source vessel 1 and the reaction chamber 12 are suitably in selective fluid communication with one another via a first conduit 20 to feed the gas phase reactant from the reactant source vessel 10 to the reaction. Room 12 (eg, an ALD reaction chamber). The first conduit 20 includes one or more isolation valves 22a, 22b' that can be used to separate the gases of the reactant source vessel 10 and the reaction chamber 12 during evacuation and/or during maintenance of the reactant source vessel 1 and the reaction chamber vessel 18. space. An inert or inert gas is preferably used as the carrier gas, and 10 201209216 can be passed through the inlet of a second reactant source 24 to evaporate the precursor. The inert gas (e.g., nitrogen or argon) conduit 24 is fed into the precursor source vessel 1〇. The container 10 includes at least one outlet for connection to the second conduit and at least one outlet for withdrawing gas from the container 1 . The outlet of the container is connected to the first conduit 20. The vessel 10 can operate at a pressure that exceeds the pressure of the reaction chamber 12. Thus the second conduit 24 includes at least one isolation valve 26 that can be used to fluidly isolate the interior of the container 10 during maintenance or replacement of the container 10. A control valve 27 is preferably positioned in the second conduit 24 outside of the reactant source cabinet 16. In another variation, which can be used in embodiments of the present invention, the precursor vapor can be withdrawn to the reaction by applying a vacuum to the reactant source vessel 1 without the use of a carrier gas. This technique is sometimes referred to as "vapor draw". In another variation (which may also be used in embodiments of the invention), the precursor vapor may be withdrawn from the vessel 1 by an external gas stream which produces a reduced pressure on the exterior of the gas. It is like a Venturi effect. For example, the precursor vapor can be withdrawn by flowing a carrier gas along the path downstream of the vessel 10 toward the reaction chamber 12. In some cases, this can create a pressure differential between the vessel 10 and the carrier gas flow path. This pressure differential causes the precursor vapor to flow toward the reaction chamber 12. When a solid source precursor is used, in order to remove the dispersed solid particles, the gas delivery system 6 includes a purifier 2 8, which is directed via a purifier. The purifier 28 may comprise one or more of a wide variety of 11 201209216 purification devices, Lixi 4ik „„ Afc mechanical filters, ceramic molecular sieves, and electrostatic filtration: two capable of dispersing solids or particles or molecules of the smallest molecular size from Reaction 1 / Grab the knife. It is also known that additional purifiers can be provided in the container: in particular, U.S. Patent Application Publication No. 2005/0000428 A1, the entire disclosure of which is incorporated herein by reference: In the middle of the mess, the material contained a source of reactants and had a lid with a filter attached. The lid is separated from the lid 11 and the lid of the container is attached to the steel. Referring further to Figure 1, the reactant source container 1G is positioned within the reactant source cabinet 16. The internal space 3 of the cabinet 16 can be maintained under reduced pressure (e.g., ImTon 10T rr, and typically about 5 〇〇 mT_) to facilitate the Han-Hang heating of the components in the 16 and heat the components to each other. Isolation to help the temperature field of the hook. In other variations, the cabinet is not emptied and contains convection enhancements 4 (eg fans, crossovers, etc.). The illustrated cabinet 16 contains one or more heating devices that are radiation dampers. Also, a reflector sheet 34 can be provided which can be constructed to surround the member in the cabinet to reflect the heat of nucleation generated by the heating device 32. The inner wall 40 of the reflector 34 榧 16 is on the top plate 7 and the bottom plate 9 of the cabinet. The substantial length of the first conduit 20 in the apparatus shown is controlled within the reactant source cabinet 16. Thus the first conduit 2 will inherently receive some heat to prevent condensation of reactant vapors. The reactant source 16 can include a cooling jacket 36 formed between the outer wall 38 and the inner wall 40 of the plant. The cooling jacket 36 can contain water or other coolant. The cooling jacket 36 allows the outer surface 38 of the cabinet 16 to remain at ambient temperature 12 201209216 degrees or near ambient temperature. In order to prevent or reduce the flow of gas from the reactant source vessel 10 between alternating pulse waves of the atomic layer deposition process, it is possible to form an inert gas barrier in the first conduit 2?. This is sometimes referred to as "inert gas valving" or "diffusion barrier", which is formed in a portion of the first conduit 20 by forming a gas barrier barrier. The gas flows in the opposite direction of the normal reactant stream in the first conduit 20 to prevent the reactant stream from the reactant source vessel 丨0 from flowing to the reaction chamber ih. The gas barrier J can feed the inert gas through a second conduit 5 to Formed in the first conduit, the third conduit 50 is connected to the first conduit 2 at a connection point 52. The third conduit 50 can be coupled to an inert gas source 54 that is supplied to the second conduit 24. The inert gas is preferably fed into the first conduit 20 via the third conduit 5〇 during a time interval between the feed of the vapor phase pulse waves from the reactant source vessel. This gas can be withdrawn via a fourth conduit 58 which is connected to the first conduit 2〇 at a second connection point 6〇, which is located upstream of the first connection point 52 ( That is, it is close to the reactant source container 1G). In this manner, the two-way inert gas flow of the normal reactant gas is achieved (between the reactant pulse waves) and the P-conductance S 20, between the first connection point 52 and the second connection point 60. . The fourth conduit 58 can be in communication with the evacuation source 64 (e.g., hollowed out). : A limiter 61 and valves 56, 63, 7〇 may be provided. The advancement details of the gas delivery system 6 depict and illustrate the delivery of existing solid or liquid precursor sources in the U.S. Patent 2,5/000,428, 428, 〇 ,, such as the 糸 6 6' shown in Figure 13 201209216 There are a number of disadvantages and limitations. One of the disadvantages is that it is sometimes necessary to provide a large number of additional heaters to heat the source of the precursor: (such as vessel 1) and the reaction chamber (such as reaction chamber 12) < between gas camp line and valve. In particular, the through-receiving s ^ , t eight-way slings are required to maintain these intermediate gas delivery members (eg, valves 223, 22, 70, purifier 28, conduit 2 〇) at a temperature above the condensation temperature of the precursor, Precursor vapor is prevented from depositing on these components: Typically, these intermediate members are separately heated by Hne heaters, cartridge heaters, heat lamps ((10) Umps) or the like. Some systems (e.g., U.S. Patent Application Serial No. 2005/0000428 A1) utilize these additional heaters to force the temperature of the intermediate member to rise above the temperature of the source container. This temperature shift 〇emperature biasing) helps to prevent the precursor from condensing in the intermediate member during cooling. Since the source container typically has a higher thermal mass* than the intermediate gas delivery member, these members present a risk of cooling to the condensation temperature faster than the source container. This may result in an undesired condition in which the granules are still producing precursors, which may flow to the cooler intermediate members and accumulate thereon. This temperature offset can overcome this problem. However, the need for additional heaters increases the overall size and operating cost of the equipment. Furthermore, the 'conventional solid source delivery system typically utilizes a filter (eg, purifier 28) between the source vessel outlet and the substrate reaction chamber to prevent solid precursor particles (eg, enthalpy in the carrier gas). The powder in the stream) enters the reaction chamber. Such filters also increase the overall size of the device and may require additional heaters to prevent condensation therein. Similarly* such a filter is typically located downstream of the outlet of the source vessel, and its risk is that the precursor particles may deposit on the gas transport member downstream of the outlet of the vessel, such as in the gas conduit or the vessel outlet valve itself. Among them. These particles can damage components such as valves, which can jeopardize their ability to completely seal. Another disadvantage of conventional solid or liquid source delivery systems is that it is difficult for the master to fill or replace the precursor source container. Ffi 2 shows a typical precursor source container 31' which comprises a container body 33 and a lid 35. The cover 35 includes inlet conduits 43a, 4 and outlet conduits 45&, 45b that extend upwardly from the cover. An isolation valve 37 is inserted between the inlet lines 43 & 4, and an isolation valve 39 is inserted between the outlet lines 45a, 45b. Another isolation valve 41 is inserted between the gas lines connecting the lines 43a and 45a. The inlet lines 43a, 43b and the outlet lines 45a, 45b provide an inert carrier body flow through the container body 33. The lines 43a, 45a typically comprise fittings: 47 which are constructed to form other gas flow lines connected to the reactant gas delivery system. When the solid or liquid source is depleted and needs to be replaced, it is customary to replace the entire source container with a new one. The source container has a full source of chemicals. Replacing the source container 31 requires closing the isolation valves 37 and 39, separating the fitting 47 from the remaining substrate processing equipment, completely removing the container 3, placing the new container 31 in place, and placing the new container 31 The fitting 47 is attached to the remaining substrate processing equipment. Typically, this procedure also includes the removal of various thermocouples, line heaters, clamps, and the like. These procedures are a little laborious. Another disadvantage of conventional solid or liquid source delivery systems is that current gas delivery systems may create stagnant flow zones (also known as dead water zones, 15 201209216 legs"). The dead water zone is prone to occur when the gas flow path from the precursor source vessel is long and complex. Conventional inlet and outlet isolation valves for source vessels (as described above) may create dead water zones. In general, the dead water zone increases the risk of unwanted precursor deposits on the gas delivery components of the delivery system. Such unwanted precursor deposition may result from a cold spot associated with the failure volume where the precursor solidifies at a temperature below the sublimation/decay temperature. Such unwanted precursor deposition may also result from hot spots associated with the volume of failure, where the precursor decomposes at elevated temperatures. For this reason, it is often desirable to reduce or minimize stagnation of the reactant gas stream. It is also often desirable to reduce the surface area to be temperature controlled in order to reduce the chance of creating hot spots or cold spots. Another reason for minimizing the amount and volume of the dead water zone is to reduce the overall volume of the gas delivery system interposed between the precursor source vessel and the substrate reaction chamber. As the overall volume of the gas delivery system increases, the minimum pulse time is often multiplied' and the minimum cleaning time associated with ALD processing is also increased. The minimum pulse time is the pulse time required for the injected reactant to saturate the surface of the substrate being processed. The small cleaning time is the time required to clean excess reactants in the substrate reaction chamber and the gas delivery system between reactant pulse waves. When the minimum pulse time and minimum cleaning time are reduced, the substrate productivity (substrate) The rate that can be processed) is added. Thus, it is desirable to reduce the amount and volume of the dead water zone to increase productivity. Another advantage of reducing the overall volume of the gas delivery system is to improve the "pulse shape" of the reactant gas pulse. The pulse shape refers to the shape of the curve of the reactant concentration in the reactant/carrier mixture for a reactant gas pulse wave. Figure 3 shows an ideal reactant concentration curve 8 〇 and a curve 82 less than the ideal value. The two curves contain reactant gas pulses 84 which are separated by a time period 86 of substantially zero reactant concentration. The ideal curve 80 is like a linear wave, such as a square wave. Substantially linear waves are preferred because the height of each reactant gas pulse requires the delivery of the reactant form to all available reaction sites on the substrate surface (saturation) in a minimum amount of time to Material productivity is optimized. The linear pulse shape ^ is optimized, for example, in curve 80, because the duration of each pulse has a high degree of reactants, thus subsequently reducing the need to deliver sufficient reactant form to the surface of the substrate. Pulse duration. Similarly, the reduced dispersion of the linear pulse shape reduces the amount of 'pulse wave overlap' between successive pulse waves of different precursors, which reduces the likelihood of undesired chemical vapor deposition into a long model. In contrast, the Pulse Centration of each pulse 84 of the undesired curve 82 takes longer to reach the maximum maximum level, which increases the duration of the pulse wave that needs to completely saturate the surface of the substrate. . Therefore, the frequency of curve 80 is less than the frequency of curve 82. As the overall volume of the gas delivery system increases, the pulse shape deteriorates. Therefore, it is desirable to improve the pulse waveform & (i.e., make it more like a square wave) by minimizing the dead zone. Another disadvantage of conventional solid source delivery systems is the risk of contamination of the precursor source vessel prior to processing. The precursor source container is typically supplied with the head pressure of the gas in the vessel. For example, a source filled with a precursor powder, f + + 谷益逋十, and other inert gases are shipped at a pressure slightly above ambient pressure (e.g., 5 n P).氦 is usually used to enable the 201209216 leak detection with the 氦 leak detector, and to “(〇ut_b〇und) 氦 leak test to ensure container integrity before shipment. The hydrazine usually remains or is replaced by nitrogen or other inert gas, so if there is a small amount of leakage, the gas leaks out of the container to prevent atmospheric contamination of the precursor in the container. When the container is used for the substrate, the head pressure of the inert gas is generally removed. Typically, the internal gas of the vessel is discharged via the outlet isolation valve of the vessel, through the reactant gas delivery system, and ultimately through the reactor vent/scrubber. In some systems, the internal gas of the vessel is discharged through the substrate reaction chamber. Other systems utilize a gas line in parallel with the reaction chamber (i.e., from a point just upstream of the reaction to the upstream to a point just downstream of the reaction chamber)' such that the internal gas of the vessel can be directed to the exhaust/ The scrubber does not flow through the reaction chamber. In either case, the existing container design involves the risk of particle generation when the container is relieved of head pressure. This can cause the precursor powder to become entrained in the exhaust stream (i.e., the discharge of pressurized gas inside the vessel), which can contaminate and potentially damage the downstream components of the gas delivery system, including the vessel outlet itself. Even during normal processing, precursor materials (e.g., powders) may be entrained in the carrier gas flowing through the precursor source vessel, which involves the risk of undesirable precursor deposition in the gas delivery system. Embodiments of the prior art delivery system disclosed above substantially overcome these problems by utilizing improved precursor source containers and apparatus for rapidly connecting and separating containers from the remainder of the delivery system. Gas plate in close thermal contact with the source container 201209216 • Figures 4 through 6 illustrate three different gas plate configurations. The gas plate typically contains one or more valves located downstream of the precursor source vessel and may also contain one or more valves upstream of the vessel. Figure 4 illustrates a conventional configuration in which a source chemical system is contained within a source container. The gas plate 90 contains a plurality of valves operable to deliver carrier gas from the carrier gas source (not shown) through the vessel 10 and into a reaction chamber (not shown). An inlet valve 91 is connected to the vessel by a line 93 - the outlet valve 92 is connected downstream of the vessel 10 by a line 94. In this conventional configuration, the inlet valve 9丨, the outlet valve 92, and the valves and tubing of the gas plate 9〇 are typically not in intimate thermal contact with the container 10. Figure 5 illustrates a configuration that is slightly modified relative to the configuration of Figure 4. In the configuration of Figure 5, a precursor source vessel 1 has a surface mounted inlet valve 108 and a surface mounted outlet valve. The wide 〇8 and n〇 are separated from a conventional gas plate 90 by the b-channels 95 and 96. In this configuration, the wide 〇8 and 11 〇 are in intimate thermal contact with the vessel 100, but are not in intimate thermal contact with the valves and piping of the gas plate 9〇. Figure 6 illustrates a configuration that is slightly modified relative to the configuration of Figure 5. In the configuration of Figure 6, source container 100 has a generally flat surface' having a surface mounted inlet valve 108 and a surface mounted outlet valve 110. Further, a gas plate 97 is configured such that the valve and tubing of the gas plate are positioned along a plane that is generally parallel to the substantially planar surface of the container 1〇〇. In order to increase the thermal contact between the vessel 1 〇〇 and the gas plate valve and the conduit, the distance between the plane of the gas plate valve and the conduit and the substantially flat surface of the vessel 10 较佳 is preferably no greater than about 10.0 cm. More preferably, 19 201209216 is greater than about 7 _5 cm, and even more preferably no greater than about 5.3 cm. Source container with surface mounted valve and helium path Round 7 shows an embodiment of a modified solid and liquid precursor source container 1 and a quick connect assembly 102. The source container 丨00 includes a container body 104 and a lid 1〇6. The lid 1 包含 6 contains surface mounted isolation valves 10 8 and 1 1 〇 ' which will be explained in more detail below. Figures 8 through 1 show the source container ι of Figure 7 in more detail. Figure 8 is an exploded view of the source container 100, and Figures 9 and 10 are rear cross-sectional views of the source container 1 。. The illustrated container 1A includes a container body 1〇4, a 蜿埏 path insert 112 in the body 104, and a cover member 〇6. The illustrated components are fastened together by fastening elements 124, such as screws and a combination of nuts and bolts. The fastening elements 124 are used to extend into the aligned holes in the flange 126 of the body 1〇4. Those of ordinary skill in the art will appreciate that the assembly can be secured together by a variety of alternative methods. The meandering path insert 112 preferably defines a meandering meandering or meandering path 111 through which the carrier gas must move as it flows through the container. The sputum path 112 preferably contains a precursor source such as a powder or a liquid. The crucible path 111 is much longer than the carrier gas flow path in a conventional precursor source vessel. Valves 108 and 110 (described below) and valve 210 (described below with reference to Figures 26-28) are subjected to less severe environments, thereby increasing their reliability. A spring 114 is preferably provided to urge the 蜿蜓 path insert 1 against the 20 201209216 cover 106 to prevent reactant gases from escaping from the interface between the insert 112 and the cover 〇6. In other words, the spring 114 tends to reduce the risk of gas bypassing some or all of the meandering path. A suitable spring 114 includes a flat wire compression spring, such as a Spirawave® wave magazine sold by Smalley Steel Ring, Inc., Lake Zurich, Ill. Figure 11A shows another embodiment of a modified solid or liquid precursor source container 400 comprising a container base 4, a seal 4, 4, and a lid 406. Cover 406 includes a plurality of integrated air valves, or surface mounts, as described in more detail below. 11B through hc illustrate an exemplary embodiment of a cover 406. Figures 11D through 11g show an embodiment of the base 402 of the source container 400. Figures 11H through UI show other embodiments of the base 402 of the source container 400. As shown in Figure 11A, the base 402 is formed from a solid element that includes recessed regions 408' that are directly machined into the solid base 402. When the cover 406 is removably attached to the base 4〇2, a seal 4〇4 is placed therebetween before the cover 406 is secured to the base 4〇2 to ensure that the contents of the source 400 are closed. In it. In one embodiment, base 402 and cover 406 are formed from the same material such that the two elements have substantially the same thermal conductivity and the same coefficient of thermal expansion. In another implementation, the base 4〇2 is formed of a different material than the material used to form the cover 406. In one embodiment, the base 4〇2 and the cover are: formed from unrecorded steel. In other embodiments, base 402 and/or cover 406 may be formed from Coulee, 〃 5 gold, aluminum, or titanium. A, 疋, base 402 and cover 406, which are known to those skilled in the art, can be formed from any other 21 201209216 material that can tolerate sufficient heat transfer to evaporate the precursors located in the source container 400. It is inert at the same time or does not react with the precursor or contents of the source container. The seal 404 is disposed between the base 402 of the source container 4 and the cover 406, as shown in Figure A. In one embodiment, the seal 4〇4 is an O-ring. It is formed in the groove 41〇 formed in the base 402. In another embodiment, the seal 404 can be formed as a metal washer or a V-shaped seal ′ that is configured to be disposed between the base 402 and the cover 〇6. It will be appreciated by those of ordinary skill in the art that the seal 404 can be provided with a seal sufficient to provide a seal when the cover 406 is attached to the base 402 and to ensure that the contents of the source container 400 are enclosed therein. Shape, size or structure. In an embodiment, the seal is formed from an elastomer 'but as will be appreciated by those of ordinary skill in the art, the seal 404 can be formed of any other material sufficient to provide a seal, such as, but not limited to, , polymer or metal. As shown in Figures 11A through 11C, an embodiment of a cover 406 of the source container 400 is shown. The cover 406 is formed as a single component having an upper surface 412, a lower surface 414, and a sliding surface 413 extending between the upper surface 412 and the lower surface 414. In one embodiment, the upper surface 412 and the lower surface 414 are qualitatively The flat surface β is well known in the art to that the 'flat upper surface 412 and lower surface 414 can further include indentations, grooves, holes or inserts formed therein. In an embodiment, the upper surface 412 and the lower surface 414 are substantially parallel to one another, thereby providing the cover 406 with a uniform thickness Τ1 across the entire cover 406. The upper surface 412 can include a high tolerance zone 4i6 that is machined to provide a substantially smooth surface relative to the remainder of the upper surface 412. These high tolerance zones 416 allow the valve assembly 418 to be mounted flush with the cover 406, surface 412 to reciprocate the same degree of direct thermal contact between the valve assembly 41 8 and the cover 406. With a plurality of surface area contacts between the members, heat transfer between the members can be maximized, thereby reducing the separation of the heaters that provide heat to the valve block #418 to prevent evaporation of the precursors or The need for a heating jacket. As shown in Fig. 11B, the cover 4〇6 includes an entrance port 42〇, an exit port 422', and a snoring port (burp p."). The inlet port 420 is constructed to allow carrier gas, or inert gas is introduced into the source container through the population side. The outlet Tankou 422 is constructed to allow gas to exit the source vessel 4 through the outlet port 422. The snoring can include any mouthpiece, such as a traditional inlet/outlet mouthpiece, which can be constructed after the first filling or installation of the source valley H 400, or refilling after the source container 4 或 or The head pressure in the source container 4〇〇 is released after installation. The release by pressing the head of the mouth 424 is carried out in the source container to supply the evaporated precursor material to the reaction chamber 162 (Fig. 25) for use in semiconductor substrate processing. In an embodiment, an interface member is operatively attached to the upper surface 412 of the cover 406 at each of the openings 424. Each interface member 426 is constructed to be coupled to a valve assembly. As will be appreciated by those of ordinary skill in the art, each of the closure assemblies 41 8 and interface members 426 can be sunken in any manner, flute, L + The genre is operatively coupled to the upper surface 412 of the cover 406. 23 201209216 As shown in Figures 11A and 11C, one of the valve assemblies 41 8 includes an oxygen venting valve 'or a circum valve 428 that is operatively coupled to the upper surface 41 of the cover 406. ·2. The snoring valve 428 can be a pneumatic valve or any other valve that regulates the flow of gas into and out of the source vessel. In one embodiment, the snoring valve 428 remains closed except for the release of gas to release the head pressure in the source sump 400 prior to use of the source container 4 in the semiconductor processing system. After the manufacture of the source container 4〇〇 and the initial filling of the precursor, or after the source container 4 is refilled with the precursor, an inert gas system is introduced into the source container 4 to produce the source container. The head pressure among 400. This head pressure is used to allow the leak test to be performed once the source container 400 is filled (or refilled), as explained above. When the source vessel 400 is installed, the gas that produces head pressure in the source vessel 4 needs to be removed and replaced with an inert carrier gas that will be used to carry the vaporized precursor during processing. Conventionally, it is known in the art that the head pressure is released from the source container by discharging the gas that produces the initial head pressure through an outlet port, and the precursor material is passed through during the processing of the substrate. The exit exits are the same. However, filters that are close to the exit vent often become precursors or are accompanied by gas during release. Although the mouth filter blocks, some of the particles can bypass the filter particles in the initial 'drinking some of the precursor particles to be discharged' or the particles captured by the filter leading to the line to the reaction chamber. ^ Uneven gas lines in the reaction chamber. When the particles are clogged, the precursor particles then become movable, and the particles that have migrated into the precursors may cause uniform deposition' or the particles that block the source container and the reaction chamber may also cause the particles to adhere to being added 24 On the semiconductor substrate of 201209216, the number of devices, wafers or circuits that can be produced by the substrate is reduced. The snoring port 424 of the present invention and the corresponding snoring valve 428 permit release of the head pressure during the circadian procedure, wherein the gases and particles exiting the snoring port 424 are first passed by being steered through the slap gas line 432. A helium filter 43 is filtered and the helium gas line 432 is directly connected to the exhaust line 466 (Fig. 25), thereby bypassing the reaction chamber 162 to prevent any undesirable particles from interfering with processing in the reaction chamber 162. As shown in FIG. 1C, a filter device 434 is operatively coupled to the lower surface 414 of the cover 406. Filtration device 434, for example in greater detail in FIG. 18 and described below, is constructed to constitute a carrier gas that is introduced into the source container 400 through the cover 4〇6, and through the snoring port 424 and the exit port. 422 leaves the gas from the source container. In the illustrated embodiment, a filter device 434 is attached to the underside of the lid 4〇6 adjacent the inlet port 420, the outlet port 422, and the snoring port 424. The filter device 434 is attached directly to the lid 406 to permit a sufficient amount of heat transfer from the lid 4〇6 to prevent the precursor material from condensing within each of the filter devices 434. Each filter device 434 preferably has a low profile because the low profile filter device provides good thermal uniformity across the filter bag media (Figure 17). An embodiment of the base 402 is shown in the figures UE to Figure nG. The base 4〇2 includes a body 436 and a flange 438 that is integrally coupled to and extends from the body 436. In the embodiment, body 436 and flange 438 are formed from a single piece of material. As explained above, the grooves 4} are formed in the body 436' wherein the grooves 41 are configured to receive the seal 25 201209216 404. The flange 438 is constructed to extend radially outward from the upper portion of the body. The base 402 is defined by an upper contact surface 44, a bottom surface state, a side surface 444, and an inner surface 446 that defines and forms a recessed region 408. The contact surface 44 is substantially a flat surface that forms the entire upper surface of the base 402. The contact surface 44 is configured to directly contact the lower surface 414c of the cover 406. In one embodiment, the base 402 is a solid material or metal and the recessed regions 408 are machined (or removed) into the base 4〇2 as shown in Figures 11D-11G. In another embodiment, the base 4〇2 is formed as a body member in which the recessed regions are formed in the base 402 during casting or forging. The recessed area 4〇8 is constructed to receive a solid or liquid prior to its t. In the embodiment shown in FIGS. 11D-1B, the recessed region 408 is formed as an elongate, meandering path extending from the contact surface 440 of the base 4"2 from the contact surface 44 to the body. Among the thickness of 436. The depth in which the recessed regions 4〇8 are formed into the body 436 may vary. It will be appreciated by those of ordinary skill in the art that the shape, depth and width of the recessed region 408 can be varied as long as the recessed region 408 allows a flow path extending between the inlet and outlet ports 420 and 422 to The residence time of the gas with the precursor material disposed in the recessed region 4〇8 is increased. In one embodiment, as shown in FIG. 1 to FIG. 11 (3, the recessed region 408 includes an inlet recess pad 448, an exit recess pad 45, a dove recess pad 452, and a channel 454, the channel 454 fluid The recessed pads 448, 450, 452 are connected to the ground. The recessed pads 448, 45A, 452 are generally triangular 26 201209216 shaped recessed regions that extend downwardly from the contact surface 440 of the base 402. The recessed pads 448, 450, 452 The shape is substantially the same shape and size as the portion of the corresponding filtering device 434, and the portion of the filtering device 434 is meant to extend from the lower surface 414 of the cover 406 into the base 4〇2 such that a portion of each filtering device 434 is Received in corresponding recessed pads 448, 45A, 452. The recessed pads 448, 450, 452 extend downwardly from the contact surface 440 to a predetermined depth. In one embodiment, all of the recessed pads 448, 45A, 452 The depth is the same. In another embodiment, at least one of the recessed pads 448, 450, 452 has a different depth than the other recessed pads. When the base 402 is filled with a precursor, each of the recessed pads 448, 450, 452 The product does not fill the precursor. When the carrier gas system is introduced into the base 402 through the filter device 434 adjacent the inlet port 420 of the cover 406, the carrier gas contacts prior to passing through the remainder of the recessed region 408. And dispersed in the entrance recessed pad 448. Since there is preferably no precursor among any of the recessed pads 448, 450, 452, the carrier gas is introduced into the inlet recessed pad 448 to prevent the carrier gas from directly contacting the precursor. It may inhibit the precursor or cause the precursor particles to mix with the carrier gas. Each recessed pad 448, 450, 452 of the recessed region 408 is fluidly connected by a channel 454 formed in the body 436. 11F-11G, the channel 454 of the recessed region 408 extends from the contact surface 440, wherein the channel 454 is a continuous path through which the gas can travel between the inlet recess pad 448 and the exit recess pad 450. In another embodiment, the recessed region 408 does not include a recessed pad' such that the channel 454 extends beyond the filter device 434 27 201209216 adjacent the inlet port 420 and adjacent the exit port 422 and the snoring port The entire distance between the filtering devices 434 of 424. The channels 454 are formed in the body 436 such that the channels 45 4 have a depth that is greater than the depth of the recessed pads 448, 450, 452. In one embodiment, the depth of the channel 454 The entire length of the passage 454 between the inlet recessed pad 448 and the outlet recessed pad 450 is fixed. In another embodiment, the depth of the channel 454 is between the inlet recessed pad 448 and the outlet recessed pad 450. The length of the channel 454 is changed. When the source container 400 is filled with a liquid or solid precursor material (not shown), the precursor material is preferably disposed only in the channel 454 formed in the recessed region 408 in the body 436. The passage 454 should be filled to a depth below the bottom surface of the recessed pads 448, 450, 452 to prevent any precursor material from being retained in the recessed pads 448, 450, 452. Further, the bottom surface of the exit recess pad 450 is located on the upper surface of the precursor material such that any precursor material particles remain in the channel 454. In the embodiment of the base 402 shown in Fig. 11E, the passage 454 extends between the inlet recess 48 and the outlet recess 45, and has a meandering shape. Channel 454 forms a meandering path between inlet port 420 and outlet port 4, along which the carrier gas can move. Change f
話說’介於入口凹陷執2 I 03陷塾448和出口凹陷墊45G之間的通£ 454在入口蜂口 420劣〇山n 車口 422之間並非直線狀。在身 示於圖11E至圖iig的普 …… 例中,通道454包含複數個』 丹者至V兩個㈣#直㈣ 此平行。通道454具有— — 貫桌上4 ,八芸直啓俨且由 寬度。在一貫施例中,通道45, ⑺者其整體長度具有固定 扪冤度在另一種實施例中,竭 28 201209216 道454的寬度沿者其長度改變。通道454的婉誕形狀將時 間量以及被導入至來源容器400之中的載體氣體與設置在 凹陷區域408之个.的先質材料接觸的距離最大化。 在來源谷器400的底座402的另一種實施例中,通道 454延伸於入口凹陷墊448和出口凹陷墊450之間,並且與 其流體連通’如緣示在圖11Η中。通道454包含複數個弧 形區段458。在一實施例中,通道454包含至少兩個弧形區 段458,其實質上相對於彼此是同心的。在另一實施例中, 通道454包含複數個弧形區段458而不是線性區段“^在 底座402的另一種實施例中(未顯示),通道454係為延 伸於入口凹陷墊448和出口凹陷墊45〇之間或是入口埠口 420和出口埠口 422之間的完全無規則、蜿蜒路徑。 圖11H繪示底座402的實施例,其進—步包含一加入 組件偏,其設置在底座4〇2.之中。在一實施例中加^且 件460係整合於底座4〇2的壁部之中,介於側表面州和 底部表面442以及内表面糾之間。該加熱組件偏係建 構成提供直接的熱給底座4G2,以便設置於其中的㈣先質 材料464。在一實施例中,加熱組件可以是整合地形成 ^底f之中的線材加熱器,或者是任何其他型.式的加熱機 冓’,、足以提供直接熱至底座撕,同時整合在盆中。在另 ^種實施例中,加熱組件46〇埋置在❹4〇2之中的電阻 底:二在其他的實施例中,加熱組件460可以是埋置在 知:者二之中的薄落加熱元件。在此技術領域中具有通常 夭口鐵者可知,加埶έ “、〜且件460可包含任何加熱手段,其提供 29 201209216 直接加熱給底座402的本體436,以便提供足夠的熱量以蒸 發先質材料464。 在來源容器400的底座402的另一種實施例中,一凹 陷區域408係形成在底座402之中,以提供底座4〇2之中 大體上的中空體積以接收先質材料,如顯示於圖nJ中。雖 然繪示在圖11J中的實施例並未包含類似於上述實施例的 通道或是蜿蜒路徑,該凹陷區域4〇8提供在底座4〇2之中 介於入口埠口 420和出口埠口 422之間的延伸非線性路 徑。 當來源容器400被組裝時,該蓋子4〇6係可移除地附 接至底座402,其中密封件404配置在其間。當蓋子4〇6係 被附接至底座402時,一内部容積468係被界定在形成底 座402中的凹陷區域408的内表面446以及蓋子406的下 表面414之間《蓋子406包含複數個孔洞462,該孔洞462 形成貫穿蓋子406的整個厚度T1,如顯示在圖11B中。形 成貫穿蓋子406的孔洞462係位於與蓋子4〇6的外邊緣相 鄰》底座402亦包含形成貫穿凸緣438的整體厚度的複數 個孔洞462,如顯示在圖11D中。蓋子4〇6係與底座4〇2 對齊,使得附接至蓋子406的每個過濾設備434係被接收 在底座402的對應的凹陷墊448、450、452之中。密封件 4〇4係被配置在形成於底座402中的溝槽410之中。當蓋子 406和底座402對齊時,形成在蓋子406中的孔洞462同樣 地與形成在底座402中的孔洞462對齊。一連接元件(未 顯示)係插入穿過底座402和蓋子406中的每對相對應的 30 201209216 孔洞462,使得蓋子406係可移除地密封至底座4〇2。在此 技術領域中具有通常知識者可知的是可使用任何形式的 連接元件以可移除地將蓋子4〇6附接至底座4〇2,包含,但 不限制於,螺絲、螺栓或夾具。當完整地組裝後,蓋子4〇6 的下表面414與底座402的接觸表面44〇成緊密接觸。蓋 子406與底座402的接觸表面440的接觸提供蓋子4〇6和 本體43 6直接地位於凹陷區域4〇8附近的部位之間的直接 熱傳遞’以便傳遞熱經過底座4〇2到配置在内部容積468 之中的先質材料。在此技術領域中具有通常知識者可了解 的是,蓋子406的下表面414以‘及底座402的接觸表面440 兩者皆實質上平坦的,使得當這些表面414、44〇彼此接觸 時,蓋子406和底座402之間的緊鄰關係提供通道454的 鄰近部位之間的密封(圖11E和圖1 11 ),因此載體氣體和 蒸發的先質材料藉著通過蓋子406和底座402之間而不會 繞過通道454的該部位。 在加工反應室162中的半導體基材的運作中(圖25), 一載體氣體係經過蓋子406中的入口埠口 420被導入至來 源容器400之中。一先質材料464係被配置在來源容器4〇〇 之中,且來源容器400被加熱,藉此蒸發先質材料。載體 氣體隨後通過位於入口埠口 420附近的過濾設備434,並且 隨後進入底座402藉由形成凹陷區域408的内表面446和 蓋子406的下表面414所界定的内部容積468之中。當進 入内部容積468時,載體氣體進入到入口凹陷墊448並且 隨後經由通道454散佈。當載體氣體移動通過内部容積 31 201209216 468,載體氣體與蒸發的先質材料464混合(圖丨丨H )以形 成一氣體混合物,其充滿蒸發的先質材料。載體氣體保持 在内部容積468之中的滯留時間越長,載體氣體變得更為 充滿蒸發的先質材料。在此技術領域中具有通常知識者可 知道的是,載體氣體被蒸發的先質材料充滿的飽和度是有 限制的,而内部容積468之間介在入口埠口 42〇和出口埠 口 422之間的路徑的長度係被最佳化,以將載體氣體的飽 和量最大化。此氣體混合物最後可藉由通過可運作地連接 至蓋子406且位於出口埠口 422附近的過濾設備434而離 開内部容積468。在通過過濾設備434之後,氣體混合物經 由出口埠口 422離開來源容器400並且進入出口氣體管線 470(圖25),該氣體管線47〇係與一反應室162流體連通。 在一打°南程序中,來源容器4〇〇的内部容積468之中 的氣體產生在其中的頭壓’其係在來源容器4〇〇的首次填 充或再填充被移除之後添加。在一打嗝程序中,如顯示在 圖25的示意圖中,打嗝閥428係被開啟以容許在來源容器 400之中的氣體經由打嗝埠口 424離開内部容積468 »頭壓 係通過可運轉地連接至與打嗝埠口 424相鄰的蓋子406的 打嗝過濾器430 »在通過打嗝過濾器430之後,頭壓氣體經 由打嗝埠口 424離開來源容器400並且進入一打嗝氣體管 線4 3 2,其繞過反應至16 2並且係流體地且可運作地連接至 一排氣管線466,來自反應室162的流出物流動通過該氣管 線466。一旦產生初始頭壓的氣體離開來源容器4〇〇,使得 在來源容器400之中的壓力均等,載體氣體係被引導通過 32 201209216 附接於蓋子406位於入口琿口 420附近的過遽設備434,並 且隨後進入底座402的内部容積468之中,以將凹陷區域. 4〇8填充載體氣體到預定的運作壓力。 在另一種替代實施例中,繪示在圖12至1 6,碗蜒路徑 插入件112包含複數個堆疊的托盤,其共同地界定一碗蜒 氣體流動路镡。舉例而言,圖12顯示複數個堆疊的托盤 230、240 ’其係建構成可移除地插入於一容器本體104 (圖 7至圖10 )之中,並且共同地界定一螺旋氣體流動路徑, 其包含容器100的蜿蜒路徑的至少一部分。在圖12至圖16 中’托盤230、240的高度被放大以清楚地顯示。其可了解 的是’托盤可以製成垂直上較薄,因此容器1〇〇具有遠大 於其整體高度的直徑。 在缯·示的實施例中,四個托盤被堆疊:三個上托盤23〇 和一個下托盤240。托盤的數量可以根據參數改變,像是揮 發率、載體流動等等。 請參照圖13和圖14,每個上托盤230包含一實心分隔 器231 ’其防止氣體流動通過並且延伸托盤23〇的整個高 度,以及一部分分隔器232,其容許氣體流動通過。較佳地, 該部分分隔器包含一濾網233,其建構成固持大的先質顆 粒,同時容許自由氣體流動通過。在繪示的實施例中,濾 網233延伸通過部分分隔器232的頂部部分,而一實心板 完成部f分隔器232的高度。一環狀緣234亦延伸上托盤 的同度實〜分隔器231和部分分隔器232 —起界定用 於保持固體來源材料(未顯示)的—主要隔間235和-外 33 201209216 通道隔間236 ’該外通道隔間236在托盤230的下表面係為 開放。所繪示的上托盤23〇具有一中央核心237,其包含一 中央通道238以容納輸送載體氣體到底部托盤24〇的氣體 入口管。所繪示的上托盤230在其上表面上亦具有複數個 釘椿239 ’且在其下表面上具有對應的複數個孔洞(未顯示) 以用於接收在其下方的其他的托盤的釘椿。罈於操作時將 可更詳細了解,如在以下說明,中央核心237的下表面上 的孔洞理想地可相對於上表面上的釘樁239旋轉地偏移, 作為正確地將複數個托盤對齊在另一托盤上,以界定彎曲 的流動路徑。在某些較佳實施例中,主要隔間中的流體會 暴露的角落係被倒成圓角,以便將在具尖銳角的角落的流 體停滯最小化。 請參照圖1 5和圖16,最下方的托盤240包含一實心分 隔器241和一部分分隔器242,實心分隔器241防止氣體流 動通過’並且延伸托盤的全部高度,部分分隔器242容許 氣體流動通過上方。較佳地,部分分隔器242僅提供通往 至重疊的上托盤230之中間處的中央通道238的開口,其 將參照圖12的說明有更詳細的了解。一環狀緣244亦延伸 下托盤240的高度。環狀緣244、實心分隔器241和部分分 隔器242 —起界定用於保持固體來源材料(未顯示)的主 要隔間245以及一外通道隔間246。在一較佳實施例中,該 固體來源材料僅填充主要隔間245高達外通道隔間246且 與外通道隔間246齊平。在替代實施例中,固體來源材料 填充至主要隔間的三分之一到三分之二的高度之間。所繪 34 201209216 示的下托盤240亦具有:一中央核心247 ’外通道隔間246 突伸至中央核心247之中;複數個釘樁249,位於下托盤 240的上表面;以及對應的複數個孔洞(未顯示)’位於下 托盤240的底部表面,用於接收從容器本體104(圖7至圖 1〇)的底層往上突伸的釘樁。 托盤230、240的堆疊係如顯示在圖12的分解圖中被 組裝。對於每個上托盤230和下托盤240的主要隔間235 ' 2 4 5係填載先質來源化學物,較佳地是粉末的形式。下托盤 240和複數個上托盤230彼此堆疊在上,並且裝進外容器本 體104之中。托盤230、240係藉由釘樁239、249以及對 應的孔洞對齊,使得氣體流進每個托盤之中,較佳地至少 流動環繞主要隔間200度到355度之間的一段行程,且隨 後上達重疊的上托盤230的外通道隔間236之中。容器蓋 子1〇6(圖7和圖8)隨後被關閉且密封在容器本體1〇4上, 且一中央管路215從蓋子向下延伸通過上托盤230的中央 通道238以開放至下托盤240的通道隔間246。圖12顯示 中央管路215而非蓋子1〇6。中央管路係建構成輸送被運送 至容器100的一入口的載體氣體。在特定較佳實施例中, 一彈簧或是其他壓迫機構(未顯示)通常係定位在下托盤 240下方以將所有托盤壓迫在一起,防止從中央核心到不同 尚度的)¾漏。 在運作中’惰氣較佳地係被輸送到托盤23〇、24〇的堆 疊,且水平地經歷長和捲繞的流動路線,較佳地在離開每 個托盤230、240之前,通過在每個托盤中的主要隔間的大 35 201209216 、’勺200度到350度的弧線。在繪示的實施例中,惰性載體 氣體係被提供通過一中央入口 215,其向下延伸通過上托盤 230之對齊的中央通道238以開放至下托盤μ。的通道隔間 246之中。惰氣蜿蜒通過在主要間隔245中的先質來源化學 物’直到碰到重叠的上托盤23〇的下表面中的一開口。此 開口容許該《氣體,Μ其所運載的蒸發的先f,通往 至重4的上托Μ 230的通道隔$ 236之中,從該處氣體通 過濾'網233(_ 13)並且進入主要隔間出之中。氣體婉 蜒通過在該主要隔Μ 235中的固體先質,較佳地在碰到重 疊的上托盤等的下表面中的開口之前通過大約2〇〇度至35〇 度的弧線在最上方的上托盤23〇,.氣體容許離開容器1〇〇, 較佳地通過在容器蓋子1()64的—表面安裝出(在 以下說明)。當然,其將可了解的是,如果需要的話,流 動路徑可以反向。&句話說,惰性載體氣體可以從一頂部 托盤開始,並且向下流動通過托盤的堆疊。 請再次參照圖8至圖10,在所繪示的實施例中,該容 器蓋子106包含-入口閥1〇8和一出口闊11〇。入口間1〇8 具有一入口末端,其經由導管121接收載體氣體。導管i2i 具有一配件122,用於連接至一氣體界面組件180 (在下文 說明)的一氣體管線133的配件131 (圖7)。入口閥1〇8 亦具有一出口末端,其較佳地與插入件丨丨2的蜿蜒路徑i i丄 的第一部分117 (諸如末端部分)流體連通。出口閥1丨〇具 有一入口末端,其較佳地與蜿蜒路徑U1的一第二部分ιΐ9 (諸如末端部分)流體連通,以及與蓋子1〇6的合適的氣 36 201209216 體出口流體連通的一出口末端,例如一孔口】28。在使用 中,載體氣體流進導管121之中,並且在離開孔口 128之 前通過入口閥108、蜿蜒路徑ιη,以及出口閥11〇。因此, 導致可藉由此實施例達成者包括安裝該隔離閥於蓋子1〇6 上,並且造成載體氣體沿著一蜿蜒或是彎曲的路徑流動, 同時其暴露於先質來源。在此技術領域中具有通常知識者 將可知道容器200可用不同方式建構。 如上文所解釋,傳統的固體或液體先質來源容器包含 分離的管路,其從容器本體或蓋子延伸,具有與此管路附 接在線内的閥。舉例而言,圖2中傳統的容器31包含分離 的管路43b和45b,其從蓋子35向上延伸,具有附接至此 ΐ路的閥3 7和3 9。各器3!的閥3 7和3 9並非直接地附接 至或與蓋子35接處。結果’來自容器31的反應物氣體流 出::出口管路45b且隨後進入出口閥39,其可能包含具有停 滯或失效的氣體容積的流動路徑。除此之外,傳統的容器 3!的隔離閥37、39和41係與容器蓋子35和本體33大量 :熱隔離。不管有沒有失效容積或是「死水區」的存在, 管路和閥兩者都非常困難u -祕;做, 吊田難以二維幾何結構有效地加熱。閥 具有比蓋子35和本體33更小的熱質量,且因此傾向於更 快速的加熱和冷卻。這也是為什麼,在m统中,額外 的,熱器(諸如管線加熱器、彈筒式加熱H,直接的加熱 等等“皮用來在系統冷卻期間特定地提供熱給閥以 及相關的管路,以防止這些構件比容器31更快的冷卻(其 可能造成不想要的情況,其中反應物蒸氣流到這些構件中 37 201209216 且沉積於其上)。伴隨著傳統的閥和管路的另一個問題為, 其可能比容器31更快的加熱。對於某些先質而言:此可能 造成-種情況,其中閥和管路比先質的分解溫度還要暖, 造成先質分解並沉積於其上。 相對地’來源容器100的隔離閥1〇8和11〇(圖7至圖 10)較佳地係直接地安裝於容器1〇〇的蓋子1〇6的表面。 此種表面安裝技術可以稱為一種整合式氣體系統。相:於 傳統的先質來源容器(例如圖2),表面安裝的_ 108和 11 〇可以藉由消除間和容器⑽之間的管路而減少在氣體輸 送系統中的死水區(停滯的反應物氣體流)的體積,這簡 化且縮短反應物氣體的移動路a。因為壓缩的幾何形狀和 改進的熱接觸,閥和管路更加容易被加熱,其減少了溫度 梯度。所繪示的表面安裝閥1()8 # 11G分別具有閥蜂:塊 118和12G,其較佳地包含閥座和可調整的流量限制器(例 如隔膜)用於選擇地控制氣體流動通過閥座。此種閱刚 和1H)藉由限制所有的氣體流動通過閥座而隔離容器⑽。 埠口塊118、m可與蓋子106整合地形成,或是可分開地 形成且安裝於其上。在任—種情況中H 118、12"交 佳地具有與容器蓋子106相當高度的熱接觸。此造成在容 器100的溫度改變期間,㈤1〇M 口 11〇的溫度保持接近於 蓋子106和容器本冑1()4的溫度。這種表面安裝閥結構可 2少需要用來防止蒸發的先質氣體凝結的加熱器的整體數 量。當容器100係高於先質來源化學物的汽化溫度時,蒸 發的先質可以自由地流動到閥1〇8和11〇。因為在溫度上^ 38 201209216 期間,閥1 0 8、110緊緊地跟耆谷器1 〇 〇的溫度’閥亦同樣 地高於汽化溫度,因此減少需要防止先質在閥中凝結的加 熱器的需求。縮短的氣體流動路徑亦較佳的適合於控制的 加熱。表面安裝的閥108和11 〇亦具有較小的裝配空間需 求。 在另一實施例中,埠口塊118、120 (圖8)的閥調元 件可以整合地形成在來源容器400的蓋子406之中,藉此 容許入口閥108和出口閥110以及打嗝閥428直接地附接 至蓋子406,使得入口閥108、打嗝閥428和出口閥11〇係 女裝成與蓋子406的上表面412齊平,如繪示在圖iij中。 直接地安裝閥且與蓋子406的上表面412齊平增加了他們 之間的熱傳遞,並且進一步減少惰氣和蒸發的先質混合物 必須從底座402的内部容積468移動到反應室162的距離 (圖25)。 每個閥108矛口 110較佳地包含一闊蜂口塊,閥淳口塊 3氣U通道’氣體流動通道可以藉由閥被限制或開 1牛例而s ,凊參照圖9和圖10,閥108的埠口塊1 i 8 佳地包含一内部氣體流動通道,其由導f 121延伸通過 埠口塊118的其中一伽〗 1 123到一區域113。區域U3較佳地 包含一内部設備(, 闊座和-可移動的用於限制氣體的流動,像是- & 、制器或隔膜。在一實施例中,可移動 的内部限制器或是p腺_ j秒勑 的較大上部分181=、σ以藉由旋轉一旋柄(例如,閥108 式。另一伽肉部Α而移動,可以用手動或是自動化的方 另 個内4氣體,*, 動通道較佳地從區域113延伸通過 39 201209216 埠口塊11 8的相對側125到一入口通道,該入口通道延伸 通过蓋子106到容器100之中。舉例來說,入口通道可以 延伸到由蜿蜒插入件112所界定的蜿蜒路徑111之中。閥 11 〇和排氣閥2 10 (在下文參照圖26至圖28說明)可以建 構成類似於閥108。在一實施例中,闊1 〇8和110為氣動閥。 特別地,較佳的是將閥埠口塊118和120與容器蓋子ι〇6 整合地形成。此消除了在它們之間的分離的密封件的需求。 在另一實施例中’閥108、110和210 (圖26至圓28) 係形成不具有埠口塊,像是埠口塊118、120,且較佳地與 容器100的一部分整合地形成,像是容器蓋子106。 過濾器 較佳地,該先質來源容器包含一過濾設備,用於過濾、 通過容器的氣體流動,以防止粒狀物質(例如,來源化學 物的粉末)離開容器。該過濾設備可以設在容器的一蓋子 中,較佳地係位在表面安裝閥11 8、110和/或210 (讀26 至圖28)的下方。較佳地’該過濾設備包含用於容器的每 個入口和出口的個別的過濾器。 圖17是過濾設備13 0的一實施例的剖面圖,其可被安 裝在一反應物來源容器的本體或蓋子中(例如圖8的蓋子 106 )。所繪示的設備130係一過濾器,其係由一凸緣1 3 2、 一過濾媒介134,以及一緊固器元件136形成。在此實施例 中,該過濾器130的尺寸和形狀係緊密地配接在容器的蓋 子(例如圖8的蓋子106)的一凹部138之中。凸緣132的 40 201209216 .f圍可以是圓形、矩形或是其他形狀,且該形狀較佳地緊 密地配合凹部138的周圍。該過滤材料134係建構成限制 附在乳體中大於-特定尺寸的顆粒通過由凸緣132的一環 狀内壁部14〇所界定的—開σ。該材# 134較佳地阻播由 壁部⑷所界定的整個開口。材料134可以包含任何多種 不同的材料,且在一實施例中是一高流動燒結錦纖維媒 介。在其他實施例中,該過遽媒介係由其他金屬(例如不 銹鋼)肖兗(例如氧化銘)、石英或是其他典型地包含 在氣體或液體過濾器中的材料製成。該材料134較佳地係 被焊接或黏接至環狀壁部14〇。在一實施例中,該過渡器 30已3表面安裝夾層過濾器,例如由在加州聖克拉拉的 ΤΕΜ Products公司所販售者。 ^在繪示的實施例中,該緊固器元件136包含一彈簧扣 %其’壓迫凸緣U2抵住蓋子106的一壁部146。環136較 佳地緊密地配接在凹部138的周圍中的一環狀凹部M2之 中該扣% 136可包含,例如,一扁平線壓縮彈脊,像是 由位在伊利諾州,蘇黎士湖的Smalley steel 一公司販售的 加咖㈣波形彈I。額外和丨同形式的緊固器元件可被 提供以將過據器130緊固至蓋子1〇6。較佳地,該緊固器元 件Π6防止載體氣體和反應物蒸氣的流動通過凸緣和 蓋子106之間的父界面,使得所有的氣體必須流過過滤材 料134。次凹部147可被提供用來界定位在過渡旨的出 口側上的一充氣部148 ,其可改進被過濾的氣體流的品質。 所繪不的過遽器130係可容易替換,單純地藉由將扣環⑽ 41 201209216 從環狀凹部142移除,將過濾器13〇從凹部138移除,插 入新的過濾器1 3 0,並且將扣環丨3 6再次插入於環狀凹部 142之中。 3亥過濾器凹部13 8較佳地係緊密地靠近先質來源容器 的其中一個隔離閥。在圖17的實施例中,該凹部1 3 8直接 地位於來源容器1〇〇的出口隔離閥11〇 (圖1)的閥埠口塊 12 0的下方。在此技術領域中具有通常知識者將可了解的 是’個別的過濾器1 3 0可結合容器的每個隔離閥設置,包 含入口閥108和排氣閥210 (圖26至圖28 )。一通道145 從充氣部148延伸到閥埠口塊12〇的一通道144。在繪示的 實施例中,該埠口塊120係與容器蓋子106分開地形成, 且較佳地一密封件係設在其間。在另一實施例中,塊12〇 係與蓋子1 06整合地形成,且通道144和1 45係在相同的 鑽孔作業中形成。 圖1 8係根據一實施例的一過濾材料丨34的表面部位的 放大剖面圖。在此實施例中,該過濾材料1 3 4包含一大顆 粒過濾層150和一小顆粒過濾層152。大顆粒過濾層150較 佳地過濾相當大的顆粒,而小顆粒過濾層1 52較佳地過濾 較小的顆粒。大顆粒過濾層150包含複數個孔隙1 5 1。在一 實施例中,大顆粒過濾層150係有大約20%到60%孔隙, 且更佳地有30%至50%孔隙。在一實施例中,該大顆粒過 遽層1 50係有大約42%孔隙。該大顆粒過濾層150可包含, 舉例來說,一不銹鋼材料。該大顆粒過濾層150較佳地包 含大部分的過濾材料134。因為孔隙15 1,過濾材料134產 42 201209216 生相當低的壓力降。一個或多個支樓管丨54可以被提供用 於改進大顆粒過濾層150的結構剛性。該小顆粒過濾層ι52 可具有0.05到〇_2微米的孔洞大小,且更佳地為大約〇1〇 微米。小顆粒過濾層1 52可具有大約5到20微米的厚度, 且更佳地為大約1 〇微米。該小顆粒過濾層丨5 2可包含,舉 例而言,氧化锆的塗層。大顆粒過濾層15〇的每一側可被 覆小顆粒過濾層152。合適的過濾材料係為類似於由Pall 公司所販售的AccuSep過濾器。 氣鱧界面組件 圖1 9係一氣體輸送系統16〇的示意圖,其可用於將載 體和反應物氣體流動通過先質來源容器丨〇〇和一蒸氣相反 應室162。輸送系統160包含該容器100、一載體氣體來源 164、一下游淨化器或過濾器166,以及複數個額外的閥, 如文中所描述者。隔離閥1〇8、u〇較佳地係表面安裝在容 器100上’如上文所述。該載體氣體來源丨64係可運作以 輸送一惰性載體氣體到一連接點168。一閥17〇係插置在連 接點168和容器入口閥1 〇8之間。一閥丨72係插置在連接 點1 68和一連接點i74之間。一閥i76係插置在連接點174 和容器出口閥110之間。淨化器166和一額外的閥178係 插置於連接點174和反應室162之間。如圖所示,容器1 〇〇 可具有合適的控制和警報界面、顯示器、面板或類似者。 當希望將載體氣體流動通過容器丨00並且流到反應室 162 時,閥 170、1〇8、110、176 和 178 被開啟,且閥 172 43 201209216 關閉。相反地,當需要讓載體氣體在其通往反應室i62的 路程上繞過容器1〇〇時,閥172和178開啟,且較佳地所 有的閥170、108、110和176關閉。閥m可用來將反應 室162與氣體輸送系統160隔離,例如,用於保養或修理。 請再次參照圖7 ’ 一先質氣體輸送系統(例如顯示在圖 19中者)可被實施在一氣體界面組件18〇中,其有助於控 制載體氣體和反應物蒸氣的流動通過容器丨〇〇和相關的蒸 氣相反應室。所繪示的氣體界面組件18〇包含複數個閥182 (其實質上可執行相同於圖19的閥17〇、172、176和178 的功能)、一下游淨化器或過濾器184,以及一加熱板186。 閥1 82可包含閥埠口塊丨88,其在原理上及操作上類似於閥 埠口塊118和120。 請參照圖7和圖19,一氣體管線133從其中一閥1 82 延伸,其接收來自一載體氣體來源164的載體氣體。舉例 而言’氣體管線133所延伸出的閥182可執行圖19的閥17〇 貫質上的功能。圖7並未顯示該氣體管線從載體氣體來源 延伸到此閥之中,但其將可了解的是可這樣設置。氣體管 線133包含一配件131 ’當該容器和氣體界面組件ι8〇連接 時’該配件13 1連接至容器1 〇〇的載體氣體入口配件丨22。 氣體界面組件180的一出口 135輸送氣體到反應室162。其 將可了解的是該來源容器的載體氣體入口可被建構成類似 於出口孔口 128。 請繼續參照圖7’加熱板186將閥182和容器1 〇〇加熱, 較佳地加熱到高於先質的汽化溫度的溫度。較佳實施例的 44 201209216 5的閥閥埠σ塊’以其氣體導管之間 以及加熱板186接折产此桃从 丄 ^ 接ι構件,減少了需要防止先質凝結 :谷::下游的氣體傳輸構件中所需的熱。加熱板186 二口、。猎,種不同形式的加熱器被加熱,諸如一彈筒式加 熱器或線加執5|〇兮士 …益該加熱板可以由多種材料形成,諸如鋁' 不、鈦,或是多種鑷合金。熱箔式(Themofoil-type) 加:、:亦可用於加熱加熱該加熱板186和閥埠口塊188。使 …、器了“可變的瓦特密度或多於-個的溫度 控制區0加飯;jg 1只& w 186上的可變瓦特密度的併入或多個溫度 控制區使其能夠引起沿荖 者氣體的流動路徑的溫度梯度。春 反應物蒸氣往下游務叙拉 田 ^ m 移動時,此可提供反應物蒸氣的逐漸加 '、、、’因此避免凝結。合適的熱料加熱器係由位於明 達州的明尼阿波里斯市的 *' (包含:線力…、彈“販售。額外的加熱器 …盗/、可破/供來加熱容器蓋子刚以及容器本體104。 某些實施例中’可提供專用的加熱器來加熱容器 100 °在一特定實施例中 ㈣明、 τ ..肩不在圖18中(在下文更詳細 =二’-Μ加熱裝置22G係被提供於容器的容器本 體104的下表面下方。 d二文所提及’先質蒸氣亦可藉纟「蒸氣抽取」和外 ^動方法從容器100抽出。在蒸氣抽取方法中,真 空係施加到容ϋ 100以抽出蒸氣 力 到反應室162的下游,苴 /、工了轭加 ”中闕 176和178開啟,而閥 70和Π2關㈣例而言,真空可藉由使用一真空 45 201209216 泵被施加。在外部氣體流動方法中,該先質蒸氣可藉由將 載體氣體從來源164流動到反應室1 62而從容器丨00被抽 出,其中閥110、172、176和178開啟,而閥ι〇8和ι7〇 關閉。在某些情況下’此可產生容器100和載體氣體的流 動路控之間的壓力差,其造成先質蒸氣朝向反應室流動。 快速連接組件 請繼續參照圖7,快速連接組件1 〇2較佳地幫助更快且 更容易的將先質來源容器1〇〇裝載、對齊、以及連接到氣 體界面組件1 80。該快速連接組件1 〇2係人體工學式的便 利,且有助於容器1 〇〇的替換、再填充以及可耐用性。多 種不同形式的快速連接組件可被提供,需牢記的是這些目 標,且在此技術領域中具有通常知識者將可了解的是,所 繪示的組件102僅僅為一種實施例。該快速連接组件1〇2 可被合併在真空罩之中,其中封裝有來源容器1〇〇和支援 控制硬體。 請參照圖7、圖20和圖21,繪示的快速連接組件1〇2 包含:一底座19〇’· 一托架192,其從底座19〇的一邊緣向 上延伸;一軌道構件194;以及一舉升組件196。該底座19〇 較佳地可被固疋至氣體輸送系、統6(目丄)的一下方内表面, 例如在反應物來源櫃16的底板9上。較佳地,該托架M2 係在底座190上方的一位置處連接至氣體界面組件⑽且 支撑該氣體界面組件18G。該執道構件194包含—平台198 以及兩個位於平自i 98相對置側上的滾輪軌道謂。具有對 46 201209216 齊的滾輪204的-對滾輪組件202較佳地係固定至容器1〇〇 的相對置的側邊。在此實施例中,滾㉟2()4的大小和構造 係作成在執道構件194的執道2〇〇之中滾動,因此容器· 可以簡單地和快速地定位在平台198上。 田谷器10〇以滾輪組件202與軌道200搞接而被安 裝於平口 198上時’出口 _ 11 〇的出口較佳地係垂直地對 齊氣體界面組件180的其中1182的入口。該舉升組件 196係建構成將平台198在下方位置(顯示於® 7中)和升 ::置(顯示於圖20至圖21中)之間垂直地移動。當該 办:1GG係裝載於平台198上且該平台舞動至其升起位 置時,出口閥UG的出口較佳地與其中—目182的入口直 接地或間接地連通。可能需要最小程度的手動調整以合適 地將出口 Μ "0的出口和_ 182的入口之間的交界面密 封。在繪示的實施例中,出口閥11〇的出口係為閥璋口塊 中的孔口 128。以此方式,該快速連接組件i 〇2能夠讓 先質來源容器100和氣體界面組件18〇快速的連接。 士 員不在圖20中,所繪示的舉升組件i %包含一舉升 把手195 可手動地致動剪形腳197以垂質地移動平台 198。舉例而言,把手195和腳197可以使用類似於某些現 有的自動千斤了貝的方式運作。在一實施例中,當該把手Μ 被旋轉料18G度時,該舉升組件196舉起平台198到它 的升起位置。然而,其將可了解的是’可另外設置其它形 式的舉升裝置。 該快速連接組件102使其更容易將一耗盡的容器1〇〇 47 201209216 的容器。除此之外’因為組請簡化了容器移 于女、’其也更容易地執行在容器丨⑻上的例行保養。 交佳地’容器100的重量使得其能夠由單一技術人員簡單 地處理。 圖22至圆24顯示快速連接組件1〇2的替代性實施例。 2繪示的組件102包含平台198和托架192。該平台198包 道200其用於接收附接在容器J 〇〇的相對置側邊的舌 狀件206。-個或多個舉升裝置鹰係被提供以舉起平台 198»在繪不的實施例中,該舉升裝置2〇8包含位於平台I% 下方的螺栓。螺栓可被旋轉以造成平台198上升到與容器 100聯結的連接位置…引導設備(未顯示)可被提供以保 持平台198的垂直對準。 排氣閥 如上所述,先質來源容器典形地以在容器中的惰氣(例 如氦)的頭壓供給。在此頭壓下降到典型加工壓力的排氣 期間(或是打°南”期間),固體先質顆粒變得氣懸且挾 帶在惰軋外流中。此可污染氣體輸送系統,因為此種氣體 典型地通過容器的出口隔離閥、反應物氣體輸送系統、以 及最後該反應器的排氣裝置/洗滌器被排出。之後,在基 材加工期間’氣體板與先質輸送路徑和排氣路徑共用而被 污染的部分可能在基材上的原子層沉積期間造成加工缺 陷。 圖26顯示一先質來源容器ι00的範例,其包含一排氣 48 201209216 閥210。在此實施例中’該排氣閥21〇係被定位在入口隔離 閥10 8和出口隔離閥11 〇的中間。然而,在此技術領域中 具有通常知識者將可了解,亦有可能其它的配置方式。較 佳地,該排氣閥210包含一閥埠口塊212 ,其可實質上類似 於閥埠口塊118和120。圖27顯示圖26的容器1〇〇連接至 圖22至圖24的氣體界面組件,如上文所述。 圖28是圖26的容器1〇〇的一實施例的剖面圖。如上 所述,容器1〇〇包含一容器本體104、一蜿蜒插入件ιΐ2、 一彈簧114,以及一容器蓋子106。該容器蓋子1〇6包含表 面安裝的隔離閥1〇8和U0,以及較佳地表面安裝的隔離閥 210。較佳地,閥108、210和11〇分別地包含閥埠口塊118、 12#12〇。圖28亦顯示閥埠口塊的内部氣體通道如 上所述,該閥埠口塊120包含一氣體出口 128,其供給先質 蒸氣和載體氣體到氣體界面組件18〇。 ° 一二過濾器較佳地與每個閥108、21〇和11〇聯結。在繪 例中,該容器蓋子1G6包含與每個閥聯結的過滤 ° (例如顯示在圖17中且在上文說明者)。盆脾 解的可使用多種不同形式的過遽器 顆粒離開容器100。 丨万止先邊 θ 發明的較佳實施例已經被說明,其應該了解 :点本發明並不如此限制,且可在不違背本發明的情況 -成修飾。本發明的範圍係由隨附 ’ :落在申請專利範圍之意義中的所有裝置、程 ‘、,、論是文義或是均等範圍,係企圖包含在其中。 1 49 201209216 【圆式簡單說明】 參考以上說明、隨附申請專利範圍以及從圖式中,本 叙月的這些和其它態樣對於在此技術領域中具有通常知識 者將更為明顯,圖式係用於說明而非限制本發明,其中: 圖1疋一傳統的先質來源組件和反應器室組件的示意 圖。 圖2是一傳統的固體先質來源容器的立體圖。 圖3疋用於原子層沉積的反應物氣體脈波中的理想來 源化千物濃度的理想圖以及低於理想圖的圖式。 圖4是傳統的先質來源容器和氣體板的示意圖。 圖5是具有表面安裝閥和氣體板的先質來源容器的示 意圖。 圓6是具有與容器緊密熱接觸的表面安裝間和 的先質來源容器的示意圖。 圖7是一先質來源容器、一用於與容器流體連通的氣 體界面組件,以及用於將容器連接至氣體界面組件和分離 的快速連接組件的一實施例的立體圖。 圖8是圖7之容器的分解立體圖。 圖9是圖7之容器的後立體剖面圖。 圖10是圖7之容器的後剖面圖。 圖11A是先質來源容器另一實施例的分解圖。 圖11B是用於顯示在圖UA中的先質來源容器的蓋子 的俯視立體圖。 50 201209216 圖lie是顯示在圖11B中的蓋子的仰視立體圖。 圖11D是用於顯示在圖11A中的先質來源容器的底座 的實施例的立體圖。 圖11E是顯示在圖11Γ)中的底座的俯視圖。 圖11F是顯示在圖丨1Ε中的底座沿剖面線Α-Α的剖面 圖。 圖11 G是顯示在圖丨丨Ε中的底座沿剖面線β_β的剖面 圖。 圖11Η是用於顯示在圖ηΑ中的先質來源容器的底座 的另一實施例的剖面圖。 圖111是用於顯示在圖11Α中的先質來源容器的底座 的再另一種實施例的俯視圖》 圖11J是來源容器另一種實施例的分解立體圖。 圖12是包含托盤堆疊的蜿蜒插入件之實施例的分解立 體圖。 圖13是圖12的蜿蜒插入件的一上堆疊托盤的立體圖。 圖14是圖13的上堆疊托盤的俯視圖。 圖15是圖12的蜿蜒插入件的下堆疊托磐的立體圖。 圖16是圖15的下堆疊托盤的俯視圖。 圖17是安裝於先質來源容器的蓋子上的過濾器的剖面 圖。 圖18是可使用於圖17的過濾器的過濾材料的—種實 施例。 圖19疋用於將載體和反應物氣體流動通過一先質來、源 51 201209216 容器和一蒸氣相反應室的氣體輪送系統的示意圖。 圖20和圖21是圖7的氣體界面組件的前視立體圖, 顯示成連接。 圖22是圖7先質來源容器和氣體界面組件的前視立體 圖,具有快速連接組件的另一種實施例。 圖23是圖22氣體界面組件的俯視立體圖,顯示成連 接。 圖24是圖22氣體界面組件的仰視前立體圖,顯示成 分離。 圖25是用於將載體和反應物氣體流動通過—先質來源 容器和一反應室的氣體輸送系統的示意圖。 圖26是具有排氣閥的先質來源容器的立體圖。 圖27是連接至圓22至圖24的氣體界面組件的圖 圖28是圖26的容器的剖面圖 的專用加熱裝置。 ,具有附加的肖 於容器 【主要元件符號說明】 無 52It is said that the pass 454 between the entrance recess 2 I 03 trap 448 and the exit recess pad 45G is not linear between the entrance bee port 420 and the inferior mountain n port 422. In the example shown in Fig. 11E to iig, the channel 454 includes a plurality of "Dan" to V two (four) # straight (four) parallel. Channel 454 has a table 4, a gossip and a width. In a consistent embodiment, channel 45, (7) has a fixed length for its overall length. In another embodiment, the width of the channel 454 is changed. The free shape of the channel 454 is the amount of time and the carrier gas introduced into the source container 400 and disposed in the recessed region 408. The distance of the precursor material is maximized. In another embodiment of the base 402 of the source trough 400, the channel 454 extends between and is in fluid communication with the inlet recess pad 448 and the outlet recess pad 450 as shown in Figure 11A. Channel 454 includes a plurality of arc segments 458. In one embodiment, the channel 454 includes at least two curved segments 458 that are substantially concentric with respect to each other. In another embodiment, the channel 454 includes a plurality of curved segments 458 instead of a linear segment "^ in another embodiment of the base 402 (not shown), the channel 454 extending through the inlet recess pad 448 and the outlet A completely irregular, meandering path between the recessed pads 45A or between the inlet opening 420 and the outlet opening 422. Figure 11H illustrates an embodiment of the base 402, the further step of which includes a component offset, which is set At the base 4〇2. Among them. In one embodiment, the member 460 is integrated into the wall of the base 4〇2 between the side surface state and the bottom surface 442 and the inner surface. The heating assembly is constructed to provide direct heat to the base 4G2 for placement of the (four) precursor material 464 therein. In an embodiment, the heating assembly may be a wire heater integrated into the bottom f, or any other type. The heater 冓', enough to provide direct heat to the base tear, is integrated into the basin. In another embodiment, the heating element 46 is embedded in the bottom of the resistor :4〇2: In other embodiments, the heating element 460 can be embedded in the thinner heating. element. It is known in the art that there is a conventional "iron", ", and the member 460 can include any heating means that provides 29 201209216 for direct heating to the body 436 of the base 402 to provide sufficient heat to evaporate the precursor. Material 464. In another embodiment of the base 402 of the source container 400, a recessed region 408 is formed in the base 402 to provide a substantially hollow volume of the base 4〇2 to receive the precursor material, such as a display. In the figure nJ, although the embodiment shown in Fig. 11J does not include a channel or a meandering path similar to the above embodiment, the recessed area 4〇8 is provided in the base 4〇2 between the inlet port 420 An extended non-linear path between the outlet port 422 and the outlet port 422. When the source container 400 is assembled, the cover 4〇6 is removably attached to the base 402 with the seal 404 disposed therebetween. When attached to the base 402, an interior volume 468 is defined between the inner surface 446 of the recessed region 408 forming the base 402 and the lower surface 414 of the cover 406. The cover 406 includes a plurality of apertures 462, the apertures 462The entire thickness T1 is formed through the cover 406 as shown in Figure 11B. The aperture 462 formed through the cover 406 is located adjacent the outer edge of the cover 4". The base 402 also includes a plurality of integral thicknesses that form the through flange 438. A hole 462, as shown in Figure 11D. The cover 4〇6 is aligned with the base 4〇2 such that each filter device 434 attached to the cover 406 is received in a corresponding recessed pad 448, 450 of the base 402, 452. The seal 4〇4 is disposed in the groove 410 formed in the base 402. When the cover 406 and the base 402 are aligned, the hole 462 formed in the cover 406 is similarly formed in the base 402. The holes 462 are aligned. A connecting element (not shown) is inserted through each pair of corresponding 30 201209216 holes 462 in the base 402 and the cover 406 such that the cover 406 is removably sealed to the base 4〇2. It will be appreciated by those of ordinary skill in the art that any form of connecting element can be used to removably attach the cover 4〇6 to the base 4〇2, including, but not limited to, screws, bolts or clamps. After assembly, cover 4 The lower surface 414 of 6 is in close contact with the contact surface 44 of the base 402. The contact of the cover 406 with the contact surface 440 of the base 402 provides a position between the cover 4〇6 and the body 43 6 directly adjacent the recessed area 4〇8. Direct heat transfer 'to transfer heat through the base 4〇2 to the precursor material disposed within the interior volume 468. It will be appreciated by those of ordinary skill in the art that the lower surface 414 of the cover 406 is 'and base The contact surface 440 of 402 is substantially flat such that when these surfaces 414, 44 are in contact with each other, the close relationship between the cover 406 and the base 402 provides a seal between adjacent portions of the passage 454 (Fig. 11E and Fig. 1 11 ), therefore, the carrier gas and the vaporized precursor material do not bypass the portion of the channel 454 by passing between the cover 406 and the base 402. In operation of the semiconductor substrate in process chamber 162 (Fig. 25), a carrier gas system is introduced into source container 400 through inlet port 420 in cover 406. A precursor material 464 is disposed in the source container 4, and the source container 400 is heated, thereby evaporating the precursor material. The carrier gas then passes through a filtering device 434 located adjacent the inlet port 420 and then into the base 402 by forming an interior volume 468 defined by the inner surface 446 of the recessed region 408 and the lower surface 414 of the cover 406. When entering the interior volume 468, the carrier gas enters the inlet recess pad 448 and is subsequently spread through the channel 454. As the carrier gas moves through the internal volume 31 201209216 468, the carrier gas is mixed with the vaporized precursor material 464 (Figure H) to form a gas mixture that is filled with the vaporized precursor material. The longer the residence time of the carrier gas remaining in the internal volume 468, the more the carrier gas becomes filled with the vaporized precursor material. It will be appreciated by those of ordinary skill in the art that the saturation of the carrier gas with the vaporized precursor material is limited, and the internal volume 468 is between the inlet port 42 and the outlet port 422. The length of the path is optimized to maximize the amount of saturation of the carrier gas. This gas mixture can ultimately be separated from the interior volume 468 by a filtering device 434 that is operatively coupled to the lid 406 and located adjacent the outlet port 422. After passing through the filtering device 434, the gas mixture exits the source vessel 400 via the outlet port 422 and enters an outlet gas line 470 (Fig. 25) that is in fluid communication with a reaction chamber 162. In a dozen South program, the gas in the internal volume 468 of the source container 4 is generated by the head pressure 'which is added after the first filling or refilling of the source container 4 is removed. In a snoring procedure, as shown in the schematic of Figure 25, the snoring valve 428 is opened to allow gas in the source container 400 to exit the internal volume 468 via the snoring port 424. The head pressure system is operatively coupled to The snoring filter 430 of the lid 406 adjacent to the snoring 424 » after passing through the snoring filter 430, the head gas exits the source vessel 400 via the snoring port 424 and enters a snoring gas line 433, which bypasses the reaction To 16 2 and fluidly and operatively connected to an exhaust line 466, the effluent from the reaction chamber 162 flows through the gas line 466. Once the gas that produced the initial head pressure exits the source container 4, such that the pressure within the source container 400 is equal, the carrier gas system is directed through 32 201209216 attached to the overrun device 434 located near the inlet port 420. And then into the internal volume 468 of the base 402 to the recessed area. 4〇8 fills the carrier gas to a predetermined operating pressure. In another alternative embodiment, illustrated in Figures 12 through 16, the bowl path insert 112 includes a plurality of stacked trays that collectively define a bowl of helium gas flow path. For example, Figure 12 shows a plurality of stacked trays 230, 240' that are structurally removably inserted into a container body 104 (Figs. 7-10) and collectively define a spiral gas flow path, It contains at least a portion of the meandering path of the container 100. The heights of the 'tray 230, 240 in Figs. 12 to 16 are enlarged to be clearly displayed. It will be appreciated that the tray can be made relatively thin in the vertical direction, so that the container 1 has a diameter that is much larger than its overall height. In the illustrated embodiment, four trays are stacked: three upper trays 23〇 and one lower tray 240. The number of trays can vary depending on parameters such as the rate of volatility, carrier flow, and the like. Referring to Figures 13 and 14, each upper tray 230 includes a solid divider 231' which prevents gas from flowing therethrough and extends the entire height of the tray 23, and a portion of divider 232 that allows gas to flow therethrough. Preferably, the partial divider comprises a screen 233 which is constructed to hold large precursor particles while allowing free gas to flow therethrough. In the illustrated embodiment, the screen 233 extends through the top portion of the partial divider 232, while a solid panel completes the height of the divider 232. An annular rim 234 also extends over the tray to the same extent divider 231 and a portion of the divider 232 to define a solid source material (not shown) - primary compartment 235 and - outer 33 201209216 channel compartment 236 The outer channel compartment 236 is open on the lower surface of the tray 230. The illustrated upper tray 23 has a central core 237 that includes a central passage 238 for receiving a gas inlet tube that carries carrier gas to the bottom tray 24A. The illustrated upper tray 230 also has a plurality of magazines 239' on its upper surface and a corresponding plurality of holes (not shown) on its lower surface for receiving staples of other trays thereunder. . The altar will be more fully understood during operation, as explained below, the holes in the lower surface of the central core 237 are desirably rotationally offset relative to the pegs 239 on the upper surface as a correct alignment of the plurality of trays On another tray to define a curved flow path. In some preferred embodiments, the exposed corners of the fluid in the primary compartment are rounded to minimize fluid stagnation at corners with sharp corners. Referring to Figures 15 and 16, the lowermost tray 240 includes a solid divider 241 and a portion of divider 242 that prevents gas from flowing through 'and extends the full height of the tray. Part of the divider 242 allows gas to flow through Above. Preferably, the partial divider 242 provides only an opening to the central passage 238 at the middle of the overlapping upper tray 230, which will be more fully understood with reference to the description of FIG. An annular rim 244 also extends the height of the lower tray 240. Annular edge 244, solid divider 241 and partial divider 242 together define a primary compartment 245 for retaining solid source material (not shown) and an outer channel compartment 246. In a preferred embodiment, the solid source material fills only the primary compartment 245 up to the outer channel compartment 246 and is flush with the outer channel compartment 246. In an alternate embodiment, the solid source material is filled between one third and two thirds of the height of the primary compartment. The lower tray 240 shown in Fig. 34 201209216 also has a central core 247 'outer channel compartment 246 protruding into the central core 247; a plurality of pegs 249 located on the upper surface of the lower tray 240; and corresponding plurality of A hole (not shown) is located on the bottom surface of the lower tray 240 for receiving the stud projecting upward from the bottom layer of the container body 104 (Fig. 7 to Fig. 1). The stack of trays 230, 240 is assembled as shown in the exploded view of Figure 12. The primary compartment 235' 245 for each of the upper and lower trays 230, 240 is filled with a precursor chemical, preferably in the form of a powder. The lower tray 240 and the plurality of upper trays 230 are stacked on each other and loaded into the outer container body 104. The trays 230, 240 are aligned by the pegs 239, 249 and corresponding holes such that gas flows into each of the trays, preferably at least a stroke of between 200 and 355 degrees around the main compartment, and subsequently The upper channel compartment 236 of the upper tray 230 is overlapped. The container lid 1〇6 (Figs. 7 and 8) is then closed and sealed to the container body 1〇4, and a central line 215 extends downwardly from the lid through the central passage 238 of the upper tray 230 to open to the lower tray 240 Channel compartment 246. Figure 12 shows the central line 215 instead of the cover 1〇6. The central piping system constitutes a carrier gas that conveys an inlet that is transported to the vessel 100. In a particularly preferred embodiment, a spring or other compression mechanism (not shown) is typically positioned below the lower tray 240 to force all of the trays together to prevent leakage from the central core to a different degree. In operation, the inert gas is preferably delivered to the stack of trays 23, 24, and horizontally through the long and winding flow paths, preferably before leaving each tray 230, 240, at each The main compartment of the tray is large 35 201209216, 'spoon 200 to 350 degrees arc. In the illustrated embodiment, the inert carrier gas system is provided through a central inlet 215 that extends downwardly through the aligned central passage 238 of the upper tray 230 to open to the lower tray. The channel compartment is 246. The inert gas passes through the precursor source chemical in the main interval 245 until it hits an opening in the lower surface of the overlapping upper tray 23〇. This opening allows the gas, the first f of the evaporation carried by it, to pass into the channel of the upper tray 230 of the weight 4, from which the gas passes through the filter 'net 233 (_ 13) and enters The main compartment is out. The gas enthalpy passes through the solid precursor in the primary barrier 235, preferably through an arc of about 2 to 35 degrees before the opening in the lower surface of the overlapping upper tray or the like. On the tray 23〇,. The gas is allowed to leave the container 1 , preferably by the surface of the container lid 1 () 64 (described below). Of course, it will be appreciated that the flow path can be reversed if needed. & In other words, the inert carrier gas can start from a top tray and flow down through the stack of trays. Referring again to Figures 8 through 10, in the illustrated embodiment, the container cover 106 includes an inlet valve 1〇8 and an outlet width 11〇. The inlet port 1〇8 has an inlet end that receives carrier gas via conduit 121. The conduit i2i has a fitting 122 for attachment to a fitting 131 (Fig. 7) of a gas line 133 of a gas interface assembly 180 (described below). The inlet valve 1 〇 8 also has an outlet end that is preferably in fluid communication with a first portion 117 (such as an end portion) of the 蜿蜒 path i i 插入 of the insert 丨丨 2 . The outlet valve 1 has an inlet end that is preferably in fluid communication with a second portion ι 9 (such as the end portion) of the weir path U1 and in fluid communication with a suitable gas 36 201209216 body outlet of the cover 1〇6 An outlet end, such as an orifice. In use, the carrier gas flows into the conduit 121 and passes through the inlet valve 108, the 蜿蜒 path i, and the outlet valve 11 前 before exiting the orifice 128. Thus, the result that can be achieved by this embodiment includes installing the isolation valve on the cover 1〇6 and causing the carrier gas to flow along a meandering or curved path while it is exposed to the precursor source. Those of ordinary skill in the art will recognize that container 200 can be constructed in different ways. As explained above, conventional solid or liquid precursor source containers contain separate tubing that extends from the vessel body or lid and has a valve attached to the tubing in the line. For example, the conventional container 31 of Figure 2 includes separate conduits 43b and 45b that extend upwardly from the cover 35 with valves 37 and 39 attached to the bypass. The valves 3 7 and 39 of each of the devices 3! are not directly attached to or joined to the cover 35. The result 'reactant gas from vessel 31 flows out:: outlet line 45b and then into outlet valve 39, which may contain a flow path with a stagnant or failed gas volume. In addition to this, the conventional container 3! isolation valves 37, 39 and 41 are thermally insulated from the container lid 35 and the body 33 in large quantities. Regardless of the presence or absence of a failure volume or the presence of a "dead water zone", both the piping and the valve are very difficult. It is difficult for the hanging field to effectively heat the two-dimensional geometry. The valve has a lower thermal mass than the cover 35 and body 33 and therefore tends to heat and cool more quickly. This is also why, in the m system, additional heat exchangers (such as line heaters, cartridge heating H, direct heating, etc.) are used to specifically provide heat to the valve and associated piping during system cooling. To prevent these components from cooling cooler than the container 31 (which may cause unwanted conditions where reactant vapors flow into these components 37 201209216 and deposit thereon). Another with the traditional valves and piping The problem is that it may heat up faster than the container 31. For some precursors: this may result in a situation where the valve and the line are warmer than the decomposition temperature of the precursor, causing the precursor to decompose and deposit The isolation valves 1〇8 and 11〇 (Figs. 7 to 10) of the 'source container 100' are preferably directly mounted on the surface of the lid 1〇6 of the container 1〇〇. It can be referred to as an integrated gas system. Phase: In conventional precursor source containers (eg Figure 2), surface mounts _ 108 and 11 〇 can be reduced in gas delivery by eliminating tubing between the chamber and the vessel (10) Dead water zone in the system The volume of the reactant gas stream) simplifies and shortens the mobile path a of the reactant gas. Because of the compressed geometry and improved thermal contact, the valves and tubing are more easily heated, which reduces the temperature gradient. The surface mount valves 1() 8 #11G have valve bee: blocks 118 and 12G, respectively, which preferably include a valve seat and an adjustable flow restrictor (e.g., a diaphragm) for selectively controlling the flow of gas through the valve seat. The sample and 1H) isolate the container (10) by restricting all of the gas flow through the valve seat. The mouthpieces 118, m may be formed integrally with the cover 106, or may be separately formed and mounted thereon. In the case where H 118, 12 " has a high degree of thermal contact with the container lid 106. This causes the temperature of the (5) 1 〇 M port 11 保持 to remain close to the lid 106 and the container 胄 1 during the temperature change of the container 100 ( The temperature of 4. This surface mount valve structure can reduce the overall number of heaters used to prevent evaporation of precursor gases. When the vessel 100 is higher than the vaporization temperature of the precursor chemical, the evaporation first Quality Flow freely to valves 1〇8 and 11〇. Because the temperature of the valve 1 0 8, 110 is tightly higher than the temperature of the decanter 1 在 during the temperature of ^ 38 201209216, the valve is also higher than the vaporization temperature. Reducing the need to prevent heaters that are condensed in the valve. The shortened gas flow path is also better suited for controlled heating. Surface mounted valves 108 and 11 〇 also have less assembly space requirements. In an embodiment, the valve regulating elements of the mouthpiece blocks 118, 120 (Fig. 8) may be integrally formed in the cover 406 of the source container 400, thereby allowing the inlet valve 108 and the outlet valve 110 and the snoring valve 428 to be directly attached. To the cover 406, the inlet valve 108, the snoring valve 428, and the outlet valve 11 are flush with the upper surface 412 of the cover 406, as shown in Figure iij. Directly mounting the valve and flushing with the upper surface 412 of the cover 406 increases heat transfer therebetween and further reduces the distance that the inert gas and vaporized precursor mixture must move from the interior volume 468 of the base 402 to the reaction chamber 162 ( Figure 25). Each valve 108 spear 110 preferably includes a wide bee block, and the valve port 3 gas U channel 'gas flow passage can be restricted or opened by a valve, s, see FIG. 9 and FIG. The mouthpiece block 1 i 8 of the valve 108 preferably includes an internal gas flow passage that extends from the guide f 121 through one of the gantry blocks 123 to a region 113 of the mouthpiece block 118. Zone U3 preferably includes an internal device (, wide seat and - movable for restricting the flow of gas, such as - &, or a diaphragm or a diaphragm. In one embodiment, the movable internal limiter is either The larger upper part of the p gland _ j seconds 181 =, σ is moved by rotating a handle (for example, the valve 108 type. Another gamma part moves, can be manually or automatically squared inside another 4 The gas, *, moving passage preferably extends from region 113 through the opposite side 125 of the 201209216 cornice block 11 8 to an inlet passage that extends through the lid 106 into the container 100. For example, the inlet passage can Extending into the meandering path 111 defined by the weir insert 112. The valve 11 and the exhaust valve 2 10 (described below with reference to Figures 26-28) may be constructed similar to the valve 108. In an embodiment In the middle, the widths 1 and 8 are pneumatic valves. In particular, it is preferred to integrally form the valve jaw blocks 118 and 120 with the container cover ι6. This eliminates the separation of the seals between them. In another embodiment, 'valves 108, 110, and 210 (Fig. 26 to circle 28) are formed There is no mouthpiece block, such as a mouthpiece block 118, 120, and is preferably formed integrally with a portion of the container 100, such as a container lid 106. Filter Preferably, the precursor source container comprises a filtration device, For filtering, gas flow through the container to prevent particulate matter (eg, powder of source chemicals) from leaving the container. The filtration device can be disposed in a lid of the container, preferably in a surface mount valve 11 8 , 110 and/or 210 (read 26 to Figure 28). Preferably the filter device contains individual filters for each inlet and outlet of the container. Figure 17 is an embodiment of a filtration device 130 A cross-sectional view that can be mounted in a body or lid of a reactant source container (e.g., lid 106 of Figure 8). The illustrated device 130 is a filter that is attached by a flange 1 3 2 Filter media 134, and a fastener element 136 are formed. In this embodiment, the filter 130 is sized and shaped to fit snugly within a recess 138 of the lid of the container (e.g., lid 106 of Figure 8). Flange 132 of 40 201209216 . The circumference may be circular, rectangular or other shape, and the shape preferably fits tightly around the recess 138. The filter material 134 is constructed to limit the particles larger than - of a particular size attached to the milk body by the opening σ defined by an annular inner wall portion 14 of the flange 132. This material #134 preferably blocks the entire opening defined by the wall portion (4). Material 134 can comprise any of a variety of different materials, and in one embodiment is a high flow sintered brocade medium. In other embodiments, the ruthenium medium is made of other metals (e.g., stainless steel), such as oxidized, quartz, or other materials typically contained in a gas or liquid filter. The material 134 is preferably welded or bonded to the annular wall portion 14A. In one embodiment, the transitioner 30 has been surface mounted with a sandwich filter, such as that sold by ΤΕΜ Products, Inc. of Santa Clara, California. In the illustrated embodiment, the fastener element 136 includes a spring retainer member that presses the flange U2 against a wall portion 146 of the cover 106. The ring 136 is preferably closely fitted in an annular recess M2 in the periphery of the recess 138. The buckle % 136 may comprise, for example, a flat line compression ridge, such as in Lake Zurich, Illinois. The Smalle Steel sold by the company is a Canadian-made (four) wave bomb I. Additional and different forms of fastener elements can be provided to secure the passer 130 to the cover 1〇6. Preferably, the fastener element Π 6 prevents the flow of carrier gas and reactant vapor through the parent interface between the flange and the cover 106 such that all of the gas must flow through the filter material 134. The secondary recess 147 can be provided with an inflator 148 that is positioned to be positioned on the exit side of the transition, which can improve the quality of the filtered gas stream. The painted damper 130 can be easily replaced by simply removing the buckle (10) 41 201209216 from the annular recess 142, removing the filter 13 〇 from the recess 138, and inserting a new filter 1 3 0 And the buckle 丨36 is inserted again into the annular recess 142. The 3 liter filter recess 13 8 is preferably in close proximity to one of the isolation valves of the precursor source container. In the embodiment of Figure 17, the recess 138 is located directly below the valve port block 120 of the outlet isolation valve 11 (Fig. 1) of the source vessel 1〇〇. It will be appreciated by those of ordinary skill in the art that the 'individual filter 130 can be combined with each isolation valve arrangement of the container, including the inlet valve 108 and the exhaust valve 210 (Figs. 26-28). A passage 145 extends from the plenum 148 to a passage 144 of the valve port block 12A. In the illustrated embodiment, the mouthpiece block 120 is formed separately from the container lid 106, and preferably a seal is disposed therebetween. In another embodiment, the block 12 is integrally formed with the cover 106 and the channels 144 and 145 are formed in the same drilling operation. Figure 18 is an enlarged cross-sectional view showing a surface portion of a filter material crucible 34 according to an embodiment. In this embodiment, the filter material 134 includes a large particle filter layer 150 and a small particle filter layer 152. The large particle filter layer 150 preferably filters relatively large particles, while the small particle filter layer 152 preferably filters smaller particles. The large particle filter layer 150 includes a plurality of pores 151. In one embodiment, the large particle filter layer 150 has from about 20% to about 60% porosity, and more preferably from 30% to 50% porosity. In one embodiment, the large particle ruthenium layer 150 has about 42% porosity. The large particle filter layer 150 can comprise, for example, a stainless steel material. The large particle filter layer 150 preferably contains a majority of the filter material 134. Because of the pores 15, the filter material 134 produces a relatively low pressure drop. One or more branch pipe sills 54 may be provided for improving the structural rigidity of the large particle filter layer 150. The small particle filter layer ι52 may have 0. The pore size of 05 to 〇 2 μm, and more preferably about 〇 1 μm. The small particle filter layer 152 can have a thickness of about 5 to 20 microns, and more preferably about 1 inch. The small particle filter layer 丨52 can comprise, by way of example, a coating of zirconia. Each side of the large particle filter layer 15 can be coated with a small particle filter layer 152. A suitable filter material is similar to the AccuSep filter sold by Pall Corporation. Gas Chamber Interface Assembly Figure 9 is a schematic illustration of a gas delivery system 16A that can be used to flow a carrier and reactant gas through a precursor source vessel and a vapor reaction chamber 162. Delivery system 160 includes the vessel 100, a carrier gas source 164, a downstream purifier or filter 166, and a plurality of additional valves, as described herein. Isolation valves 1〇8, u〇 are preferably surface mounted on container 100' as described above. The carrier gas source 64 is operable to deliver an inert carrier gas to a junction 168. A valve 17 is inserted between the connection point 168 and the container inlet valve 1 〇8. A valve port 72 is interposed between the connection point 1 68 and a connection point i74. A valve i76 is interposed between the connection point 174 and the container outlet valve 110. Purifier 166 and an additional valve 178 are interposed between connection point 174 and reaction chamber 162. As shown, the container 1 can have a suitable control and alarm interface, display, panel or the like. When it is desired to flow the carrier gas through the vessel 丨00 and to the reaction chamber 162, the valves 170, 1〇8, 110, 176 and 178 are opened and the valve 172 43 201209216 is closed. Conversely, when it is desired to bypass the vessel 1 on the path of the carrier gas to the reaction chamber i62, the valves 172 and 178 are opened and preferably all of the valves 170, 108, 110 and 176 are closed. Valve m can be used to isolate reaction chamber 162 from gas delivery system 160, for example, for maintenance or repair. Referring again to Figure 7 'a precursor gas delivery system (e.g., as shown in Figure 19) can be implemented in a gas interface assembly 18, which helps control the flow of carrier gas and reactant vapor through the vessel. 〇 and related vapor phase reaction chambers. The illustrated gas interface assembly 18A includes a plurality of valves 182 (which may perform substantially the same functions as valves 17A, 172, 176, and 178 of FIG. 19), a downstream purifier or filter 184, and a heating Board 186. Valve 1 82 can include a valve port block 88 that is similar in principle and operation to valve block blocks 118 and 120. Referring to Figures 7 and 19, a gas line 133 extends from one of the valves 1 82 that receives carrier gas from a carrier gas source 164. For example, the valve 182 from which the gas line 133 extends can perform the function of the valve 17 of Fig. 19. Figure 7 does not show that the gas line extends from the carrier gas source into the valve, but it will be appreciated that this can be set. The gas line 133 includes an accessory 131' when the container is coupled to the gas interface assembly ι8 ’. The fitting 13 1 is coupled to the carrier gas inlet fitting 22 of the container 1 。. An outlet 135 of the gas interface assembly 180 delivers gas to the reaction chamber 162. It will be appreciated that the carrier gas inlet of the source vessel can be constructed to resemble the outlet orifice 128. The heating of the valve 182 and the vessel 1 is continued with reference to Figure 7' heating plate 186, preferably to a temperature above the vaporization temperature of the precursor. The valve valve 埠σ block of the preferred embodiment of the invention is closed by the gas conduit between the gas conduits and the heating plate 186, thereby reducing the need to prevent the condensation of the precursor: valley:: downstream The heat required in the gas transmission member. The heating plate 186 has two ports. Hunting, different types of heaters are heated, such as a cartridge heater or wire plus 5 | gentleman... the heating plate can be formed from a variety of materials, such as aluminum 'no, titanium, or a variety of tantalum alloys . Themofoil-type is added:: It can also be used to heat and heat the heating plate 186 and the valve block 188. Incorporating a variable watt density or more than one temperature control zone 0; the incorporation of variable watt density on jg 1 & w 186 or multiple temperature control zones enables it to cause The temperature gradient along the flow path of the gas. When the spring reactant vapor moves to the downstream Vaula field, this can provide a gradual addition of the reactant vapor, ', ', thus avoiding condensation. Suitable hot heater It is made by the *' in Minneapolis, Minda (including: line force..., bomb "sold. Extra heater... stolen/, smashable/supply heating container lid just and container body 104. Some In the examples, a dedicated heater can be provided to heat the vessel 100 ° in a particular embodiment (4), τ. . The shoulder is not shown in Fig. 18 (more details below = two '-Μ heating device 22G is provided below the lower surface of the container body 104 of the container. d mentioned in the second article, 'the precursor vapor can also be borrowed from the "vapor extraction" And the external method is extracted from the container 100. In the vapor extraction method, a vacuum system is applied to the volume 100 to extract the vapor force to the downstream of the reaction chamber 162, and the yoke and the yoke 176 and 178 are opened. For example, in the case of valve 70 and Π2 (4), the vacuum can be applied by using a vacuum 45 201209216. In the external gas flow method, the precursor vapor can be flowed from the source 164 to the reaction chamber 1 62 by the carrier gas. The container 丨00 is withdrawn, wherein the valves 110, 172, 176 and 178 are open and the valves ι 8 and ι7 〇 are closed. In some cases this can create a pressure between the container 100 and the flow path of the carrier gas. Poor, which causes the precursor vapor to flow toward the reaction chamber. Quick Connect Assembly Referring to Figure 7, the quick connect assembly 1 较佳 2 preferably helps to load, align, and align the precursor source container 1 faster and easier. Connect to gas interface component 1 8 0. The quick connect assembly 1 〇 2 is ergonomically convenient and contributes to the replacement, refilling and durability of the container 1. Many different forms of quick connect components can be provided, it is important to bear in mind Those objects, and those of ordinary skill in the art will appreciate that the illustrated assembly 102 is merely one embodiment. The quick connect assembly 201 can be incorporated into a vacuum enclosure in which the package is The source container 1 支援 and the support control hardware. Referring to FIG. 7 , FIG. 20 and FIG. 21 , the quick connection component 1 〇 2 includes: a base 19 〇 '· a bracket 192 which is smashed from the base 19 An edge extends upwardly; a track member 194; and a lift assembly 196. The base 19 is preferably secured to a lower inner surface of the gas delivery system, such as a reactant source cabinet Preferably, the bracket M2 is coupled to the gas interface assembly (10) and supports the gas interface assembly 18G at a location above the base 190. The obstruction member 194 includes a platform 198 and two Flat on i 98 opposite side The roller track means that the pair of roller assemblies 202 having the rollers 204 of 46 201209216 are preferably secured to opposite sides of the container 1 。. In this embodiment, the size and configuration of the roller 352() 4 The system is made to roll in the way of the obstruction member 194, so that the container can be simply and quickly positioned on the platform 198. The field device 10 is mounted on the flat mouth with the roller assembly 202 engaged with the rail 200. The outlet of the 'outlet _ 11 上 is preferably vertically aligned with the inlet of the gas interface assembly 180 1182. The lifting assembly 196 is constructed to position the platform 198 in the lower position (shown in the ® 7) and liter :: Set (shown in Figures 20 to 21) to move vertically. When the office: 1GG is loaded on the platform 198 and the platform is galloped to its raised position, the outlet of the outlet valve UG is preferably in direct or indirect communication with the inlet of the head 182 therein. A minimal manual adjustment may be required to properly seal the interface between the exit of the outlet quot "0 and the entrance of _ 182. In the illustrated embodiment, the outlet of the outlet valve 11 is the orifice 128 in the valve block. In this manner, the quick connect assembly i 〇 2 enables rapid connection of the precursor source container 100 and the gas interface assembly 18 . The clerk is not in Fig. 20, and the illustrated lifting assembly i% includes a lift handle 195 that can manually actuate the scissor foot 197 to move the platform 198 vertically. For example, handle 195 and foot 197 can be operated in a manner similar to some existing automatic jacks. In one embodiment, the lift assembly 196 lifts the platform 198 to its raised position when the handle is rotated 18 degrees G. However, it will be appreciated that other types of lifting devices can be additionally provided. The quick connect assembly 102 makes it easier to place a depleted container 1 〇〇 47 201209216 container. In addition to this, because the group simplifies the movement of the container to the female, it is also easier to perform routine maintenance on the container (8). The weight of the container 100 is such that it can be easily handled by a single technician. 22 through circle 24 show an alternative embodiment of the quick connect assembly 1〇2. The depicted component 102 includes a platform 198 and a cradle 192. The platform 198 includes a tongue 200 for receiving a tongue 206 attached to the opposite side of the container J 。. One or more lifting device eagle is provided to lift the platform 198. In the depicted embodiment, the lifting device 2〇8 includes a bolt located below the platform I%. The bolts can be rotated to cause the platform 198 to rise to a connection position with the container 100. A guiding device (not shown) can be provided to maintain vertical alignment of the platform 198. Exhaust valve As described above, the precursor source container is typically supplied with a head pressure of an inert gas (e.g., helium) in the container. During this period of exhaust gas pressure drop to typical processing pressure (or during the south), the solid precursor particles become aerosolized and entrained in the outflow of the idler. This can contaminate the gas delivery system because of this The gas is typically discharged through the outlet isolation valve of the vessel, the reactant gas delivery system, and finally the venting/scrubber of the reactor. Thereafter, during the processing of the substrate, the gas plate and the precursor transport path and the exhaust path The shared and contaminated portion may cause processing defects during atomic layer deposition on the substrate. Figure 26 shows an example of a precursor source container ι00 that includes an exhaust gas 48 201209216 valve 210. In this embodiment, the row The gas valve 21 is positioned intermediate the inlet isolation valve 108 and the outlet isolation valve 11 。 However, it will be appreciated by those of ordinary skill in the art that other configurations are possible. The exhaust valve 210 includes a valve port block 212 that can be substantially similar to the valve port blocks 118 and 120. Figure 27 shows the container 1 of Figure 26 connected to the gas interface assembly of Figures 22-24, as above Figure 28 is a cross-sectional view of an embodiment of the container 1 of Figure 26. As described above, the container 1 includes a container body 104, a cassette insert 2, a spring 114, and a container lid 106. The container lid 1 〇 6 includes surface mounted isolation valves 1 〇 8 and U0, and preferably surface mounted isolation valves 210. Preferably, valves 108, 210 and 11 包含 respectively include valve 块 block 118, 12#12. Figure 28 also shows the internal gas passage of the valve port block as described above. The valve port block 120 includes a gas outlet 128 that supplies precursor vapor and carrier gas to the gas interface assembly 18A. The two filters are preferably coupled to each of the valves 108, 21A and 11A. In the illustrated example, the container lid 1G6 contains a filtration phase associated with each valve (e.g., as shown in Figure 17 and described above). The pelvic spleen can exit the container 100 using a plurality of different forms of sputum granules. The preferred embodiment of the invention has been described, it should be understood that the invention is not so limited and can be Modifications are made without departing from the invention. The scope of the invention is By the accompanying ': all devices, procedures, and articles that fall within the meaning of the scope of the patent application are textual or equivalent, and are intended to be included. 1 49 201209216 [Circular Simple Description] Refer to the above description, with These and other aspects of the present invention will become more apparent to those skilled in the art of the invention. Schematic diagram of a conventional precursor source component and reactor chamber assembly. Figure 2 is a perspective view of a conventional solid precursor source vessel. Figure 3 is an ideal source of reactant gas pulse waves for atomic layer deposition. An ideal map of the concentration of the substance and a pattern below the ideal figure. Figure 4 is a schematic illustration of a conventional precursor source vessel and gas plate. Figure 5 is a schematic illustration of a precursor source container having a surface mount valve and a gas plate. Circle 6 is a schematic representation of a surface mount container having a surface mount and a close thermal contact with the container. Figure 7 is a perspective view of a precursor source container, a gas interface assembly for fluid communication with the container, and an embodiment for connecting the container to the gas interface assembly and the separate quick connect assembly. Figure 8 is an exploded perspective view of the container of Figure 7. Figure 9 is a rear perspective view of the container of Figure 7. Figure 10 is a rear cross-sectional view of the container of Figure 7. Figure 11A is an exploded view of another embodiment of a precursor source container. Figure 11B is a top perspective view of the lid of the precursor source container for use in Figure UA. 50 201209216 Figure lie is a bottom perspective view of the cover shown in Figure 11B. Figure 11D is a perspective view of an embodiment of a base for the precursor source container shown in Figure 11A. Figure 11E is a top plan view of the base shown in Figure 11A). Figure 11F is a cross-sectional view of the base shown in Figure 1 along the section line Α-Α. Figure 11G is a cross-sectional view of the base shown in Figure 沿 along the section line β_β. Figure 11A is a cross-sectional view of another embodiment of a base for displaying a precursor source container in Figure η. Figure 111 is a plan view of still another embodiment of the base of the precursor source container shown in Figure 11A. Figure 11J is an exploded perspective view of another embodiment of the source container. Figure 12 is an exploded perspective view of an embodiment of a cassette insert including a stack of trays. Figure 13 is a perspective view of an upper stacking tray of the cymbal insert of Figure 12; Figure 14 is a top plan view of the upper stacking tray of Figure 13 . 15 is a perspective view of the lower stacking tray of the cymbal insert of FIG. Figure 16 is a top plan view of the lower stacking tray of Figure 15 . Figure 17 is a cross-sectional view of the filter attached to the lid of the precursor source container. Figure 18 is an illustration of a filter material that can be used in the filter of Figure 17. Figure 19 is a schematic illustration of a gas transfer system for flowing a carrier and reactant gases through a precursor, source 51 201209216 vessel and a vapor phase reaction chamber. 20 and 21 are front perspective views of the gas interface assembly of Fig. 7, shown in connection. Figure 22 is a front perspective view of the precursor source container and gas interface assembly of Figure 7, with another embodiment of a quick connect assembly. Figure 23 is a top perspective view of the gas interface assembly of Figure 22, shown in a connection. Figure 24 is a bottom front perspective view of the gas interface assembly of Figure 22, shown separated. Figure 25 is a schematic illustration of a gas delivery system for flowing a carrier and reactant gases through a precursor source vessel and a reaction chamber. Figure 26 is a perspective view of a precursor source container having an exhaust valve. Figure 27 is a view of the gas interface assembly connected to the circle 22 to Figure 24. Figure 28 is a dedicated heating device of the cross-sectional view of the container of Figure 26. , with additional Xiao Yu container [Main component symbol description] None 52