[go: up one dir, main page]

TW201208196A - A multi-loop antenna system and a electronic device having the multi-loop antenna system - Google Patents

A multi-loop antenna system and a electronic device having the multi-loop antenna system Download PDF

Info

Publication number
TW201208196A
TW201208196A TW99127106A TW99127106A TW201208196A TW 201208196 A TW201208196 A TW 201208196A TW 99127106 A TW99127106 A TW 99127106A TW 99127106 A TW99127106 A TW 99127106A TW 201208196 A TW201208196 A TW 201208196A
Authority
TW
Taiwan
Prior art keywords
antenna
loop
loop antenna
radiator
radiating section
Prior art date
Application number
TW99127106A
Other languages
Chinese (zh)
Other versions
TWI449264B (en
Inventor
Saou-Wen Su
Original Assignee
Silitek Electronic Guangzhou
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silitek Electronic Guangzhou, Lite On Technology Corp filed Critical Silitek Electronic Guangzhou
Priority to TW099127106A priority Critical patent/TWI449264B/en
Publication of TW201208196A publication Critical patent/TW201208196A/en
Application granted granted Critical
Publication of TWI449264B publication Critical patent/TWI449264B/en

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A multi-loop antenna system includes an antenna module and a system module. The antenna module includes an antenna board, a plurality of first loop antennas and second loop antennas. The first loop antennas and second loop antennas are disposed on the antenna board. Each of the first loop antennas includes a first radiating portion with a first feed-in end and a first ground end. The first feed-in end and the first ground end are adjacent to each other so that each of the first radiating portions is formed into a loop. Each of second loop antennas includes a second radiating portion with a second feed-in end and a second ground end. The second feed-in end and the second ground end are adjacent to each other so that each of the second radiating portions is formed into a loop. The system module is separated from the antenna board and includes at least one ground plane, which can be used for reflecting the radiation of the antenna module.

Description

201208196 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種天線系統,特別是指一種高增益 的多迴圈天線系統。 【先前技術】 由於目刖的無線網路產品多以輕薄短小方便為訴求, 因此如何設計出符合使用需求的小型天線已成為目前無線 網路產品是否得以有效縮小體積的關鍵技術之一;尤其, 小型天線的設計對於無線網路產品,例如:無線網路橋接 器(access point,AP)的訊號接收能力以及品質有著最直接 的關係’使得如何在無線網路產品有限的空間配置下,能 夠得到應有的天線性能表現,一直是相關產業首要解決的 課題。 S知的至外用無線網路橋接器的天線大都為印刷式微 帶(microstrip)天線與平板(patch)天線,例如:中華民國專利 第M357719號所揭露的一印刷式微帶陣列天線,其中係以 微帶線饋入網路的方式連接每一陣列輻射單元,其中每一 輻射單元為半波長共振結構。 然而,在無線網路產品的有限空間中,天線的面積尺 寸會受限其半波長共振的物理特性影響,並不容易整合多 數個獨立的天線單元,特別是在同步雙頻操作的天線設計 上更是困難。且,習知的印刷式微帶天線與平板天線的饋 入方式係為探針饋入(piObe_pin feed),使得無線網路產品中 的-系統電路板的線路佈局(lay〇ut)需要配合天線的訊號饋 201208196 入點’如此當更換其他天線於無線網路產品中時,將無法 使用同一系統電路板,使用上並不彈性。 【發明内容】 因此,本發明之目的,即在提供一種可達到同步雙頻 操作且具有高指向性及高增益的多迴圈天線系統。 本發明之另一目的,即在提供一種體積小、低姿勢 (l〇w-profile)的,且可應用在小型室外用無線網路橋接器之 内藏式同步雙頻多迴圈天線系統。 於是,本發明多迴圏天線系統,包含:一天線模組及 一系統模組,且天線模組包括一天線基板、至少一個第一 迴圈天線及至少一個第二迴圈天線。 天線基板具有一第一表面和一相反於第一表面的第二 表面;第一迴圈天線佈設於該天線基板的第一表面上且 第一迴圈天線包括有一第一輻射體及分別位於該第一輻射201208196 VI. Description of the Invention: [Technical Field] The present invention relates to an antenna system, and more particularly to a high gain multi-loop antenna system. [Prior Art] Since the wireless network products that are witnessed are mostly demanding in terms of lightness, thinness and convenience, how to design a small antenna that meets the needs of use has become one of the key technologies for effectively reducing the size of wireless network products; in particular, The design of the small antenna has the most direct relationship to the wireless network products, such as the wireless network bridge (access point (AP) signal receiving capability and quality], so how to get the limited space configuration of the wireless network products, The performance of the antenna should always be the primary issue for related industries. The antennas of the known external wireless network bridges are mostly printed microstrip antennas and patch antennas, for example, a printed microstrip array antenna disclosed in the Republic of China Patent No. M357719, in which Each array of radiating elements is connected in a manner that is fed into the network with a line, wherein each radiating element is a half-wavelength resonant structure. However, in the limited space of wireless network products, the area size of the antenna is limited by the physical characteristics of its half-wave resonance, and it is not easy to integrate many independent antenna units, especially in the antenna design of synchronous dual-frequency operation. It is even more difficult. Moreover, the conventional printed microstrip antenna and the flat antenna are fed by a probe feed (piObe_pin feed), so that the line layout of the system board in the wireless network product needs to be matched with the antenna. Signal Feed 201208196 Entry Point [When replacing other antennas in wireless network products, the same system board will not be used, and it is not flexible in use. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a multi-loop antenna system that achieves synchronous dual frequency operation and has high directivity and high gain. Another object of the present invention is to provide a built-in synchronous dual-frequency multi-loop antenna system that is small in size and low in profile and that can be applied to a small outdoor wireless network bridge. Therefore, the multi-loop antenna system of the present invention comprises: an antenna module and a system module, and the antenna module comprises an antenna substrate, at least one first loop antenna and at least one second loop antenna. The antenna substrate has a first surface and a second surface opposite to the first surface; the first loop antenna is disposed on the first surface of the antenna substrate, and the first loop antenna includes a first radiator and is respectively located First radiation

—姐认々仍m於场弟二輻射體兩端的—Sister’s acknowledgment is still at the ends of the two radiators.

极々矛一衣囬干忭相間隔一距離, ’且系統模組與天線基 可用以反射該第一迴圈 201208196 天線及該第二迴圈天線的輻射。 較佳地’第一迴圈天線及第二迴圈天線的數量為二, 而該等第一迴圈天線分別佈設於天線基板的兩相對侧邊, 該等第二迴圈天線分別佈設於天線基板的另兩相對側邊, 且兩個第一迴圈天線的幾何中心連線與兩個第二迴圈天線 的幾何中心連線相互垂直β更進一步地,該等第一迴圈天 線的幾何中心分別與該等第二迴圈天線的幾何中心的距離 相同。 較佳地,每個第一輻射體皆包括一沿一方向延伸的第 一輻射段、一由第一輻射段的末端沿垂直於第一輻射段的 延伸方向延伸的第二輻射段、一由第二輻射段的末端沿平 行於第一輻射段的延伸方向延伸的第三輻射段,及一由第 三輻射段的末端沿平行於第二輻射段的延伸方向延伸的第 四軲射奴,且第一輻射段與連接第二輻射段的末端相反的 另—端為第一接地端,第四輻射段與連接第三輻射段的末 端相反的另一端為第一饋入端。 較佳地,第一迴圈天線與第二迴圈天線的形狀相同但 面積不同,因此,各個第二輻射體包括一沿一方向延伸的 第五輻射段、一由第五輻射段的末端沿垂直於第五輻射段 的延伸方向延伸的第六輻射段、一由第六輻射段的末端沿 平仃於第五輻射段的延伸方向延伸的第七輻射段,及一由 第七輻射段的末端沿平行於第六輻射段的延伸方向延伸的 $八輕射段’且第五||射段與連接第六輻射段的末端相反 的另一端為第二馈入端,第八輻射段與連接第七輻射段的 201208196 末端相反的另一端為第二接地端β 較佳地,天線基板的面積小於或等於系統模組的面 積。 本發明之功效一在於,第一迴圈天線與第二迴圈天線 可以同步共振出不同頻段的頻率,且透過系統模組上的至 少一接地面來反射第一迴圈天線與第二迴圈天線的輻射, 可使天線模組的輻射場型具有高指向性及高天線增益的特 性,可提升通訊涵蓋範圍。 鲁 本發明之功效二在於,能更有效利用單一天線介質基 板上的有限空間,植入更多的迴圈天線,提升天線的性 能。 本發明之功效二在於,迴圏天線係使用印刷式電路板 製作’製作簡單且成本低’並具有低姿勢(1〇wpr〇file)的外 型與平面式(planar)的結構,非常適合應用在小型室外用的 無線網路橋接器上。 【實施方式】 鲁 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之三個較佳實施例的詳細說明中將可 清楚的呈現。 參閱圖1,為本發明多迴圈天線系統1〇〇之第一較佳實 施例,其為可同步(concurrent)操作在雙頻無線區域網路 WLAN(2400-2484/5150-5350MHz)之多迴圈天線系统 1〇〇, 在本實施例中’多迴圈天線系統1〇〇包含一天線模組1〇及 一與天線模組1〇平行間隔設置的系統模組2〇。 201208196 配合參閱圖2,天線模組10包括一天線基板 (substrate)3、複數個第一迴圈天線1及複數個第二迴圈天線 2 °天線基板3係為長方形或是任意的多邊形,且係由絕緣 材質(例如:玻璃纖維,FR4)所製成。其中,該天線基板3 具有一第一表面31及一相反於該第一表面31的第二表面 32 ° 在本實施例中’第一迴圈天線1與第二迴圈天線2的 數量分別為二’且皆為全波長共振的金屬製迴圈天線(〇ne_ wavelength loop antenna) ’該等第一迴圈天線1佈設於天線 基板3的第一表面31上且分別鄰近於天線基板3相對的兩 短側邊,其中各自包括有一第一輻射體u及分別位於第一 輻射體11兩端的一第一接地端(gr〇und p〇int)丨2及一第一饋 入端(feed P〇int)13。以其中一個第一輻射體u來說,第一 輻射體11具有一佈設於天線基板3的一短側邊且沿該短側 邊延伸(即Y軸)的第一輻射段m、一由該第一輻射段m 的末端沿垂直於第一輻射段lu的延伸方向(即2軸)延伸的 第二輕射段112、-由該第二輻射段112的末端沿平行於第 一輻射段ill的延伸方向延伸的第三輻射段113,及一由該 第三輻射段113的末端沿平行於第二輻射段112的延伸方向 延伸的第四輻射段114。第一輻射段lu與連接第二輻射段 112的末端相反的另一端為第一接地端12,第四輻射段ιι4 與連接第三H射段113的末端相反的另—端為第__饋入端 13,且第-接地端12與第一饋入端】"皮此相鄰且相間 隔,使得第一輻射段111、第二輻射段丨12、第三輻射段 201208196 113及第四輻射段114相互連接形成一矩形迴圈,並且提供 一第一操作頻帶,但迴圈形狀並不以矩形為限。另外,值 仔注意的是’該等第—迴圈天線1的第-饋人端13相互對 稱於兩第一迴圈天線1的幾何中心(相角i 180度),位於兩 者間最遠的距離,此時天線之間的隔離度會最佳。 該等第二迴圈天線2佈設於天線基板3的第一表面Η 上且分別鄰近於天線基板3的兩長側邊,其中各自包括有 一第二輻射體21及分別位於第二輻射體21兩端的一第二 饋入端22及一第二接地端23。每個第二輻射體21皆具有 一佈設於天線基板3的一長側邊且沿該長側邊延伸(即z軸) 的第五輻射段215、一由該第五輻射段215的末端沿垂直於 第五輻射段215的延伸方向(即γ軸)延伸的第六輻射段 216、一由§亥第六輻射段216的末端沿平行於第五輻射段 215的延伸方向延伸的第七輻射段217,及一由該第七輻射 段217的末端沿平行於第六輻射段216的延伸方向延伸的 第八輻射段218。第五輻射段215與連接第六輻射段216的 末端相反的另一端為第二饋入端22,第八輻射段218與連 接第七輻射段217的末端相反的另一端為第二接地端23’ 且第二饋入端22與第二接地端23彼此相鄰且相間隔,使 得第五輻射段215、第六輻射段216、第七輻射段217及第 八輕射段218相互連接形成一矩形迴圈,並且提供一第二 操作頻帶,而迴圈的形狀同樣並不以矩形為限。 在本實施例中’第一輻射體11與第二輻射體21的面積 不同,使得第一迴圈天線1與第二迴圈天線2將可分別同 201208196 時、振出不同的頻率’以實現本發明同步(⑶ηα⑽加)雙頻 的功效且每-個第一迴圈天線i(或第二迴圈天線2)的訊 號傳輸線(圖未示)長度相同,使得第-迴圈天線1(或第二迴 圈天線2)的接收與發射訊號的振輕(咖沖⑴心)與相位(沖奶6) 相同。本發明迴圈天線結構簡單,可使用於印刷電路板 〇>CB)製作完成,製作成本低,並可在相同的無線網路橋接 器裝置内,比傳統平板陣列天線增加更多的迴圈天線,提 高天線性能,增加整體系統資料傳輸頻寬。 此外,在本實施例中,兩個第一迴圈天線丨的幾何中The poles and the clothes are separated by a distance, and the system module and the antenna base are used to reflect the radiation of the first loop 201208196 antenna and the second loop antenna. Preferably, the number of the first loop antennas and the second loop antennas is two, and the first loop antennas are respectively disposed on opposite sides of the antenna substrate, and the second loop antennas are respectively disposed on the antennas. The other two opposite sides of the substrate, and the geometric center lines of the two first loop antennas and the geometric center lines of the two second loop antennas are perpendicular to each other β, the geometry of the first loop antennas The centers are respectively the same distance from the geometric center of the second loop antennas. Preferably, each of the first radiators includes a first radiating section extending in one direction, and a second radiating section extending from an end of the first radiating section in a direction perpendicular to the extending direction of the first radiating section, a third radiating section of the second radiating section extending in a direction parallel to the extending direction of the first radiating section, and a fourth radiating slave extending from the end of the third radiating section in a direction parallel to the extending direction of the second radiating section, And the other end of the first radiating section opposite to the end connected to the second radiating section is a first grounding end, and the other end of the fourth radiating section opposite to the end of the third radiating section is a first feeding end. Preferably, the first loop antenna has the same shape but different area as the second loop antenna. Therefore, each of the second radiators includes a fifth radiating section extending in one direction and an end edge of the fifth radiating section. a sixth radiating section extending perpendicularly to the extending direction of the fifth radiating section, a seventh radiating section extending from the end of the sixth radiating section in a direction extending in a direction of the fifth radiating section, and a seventh radiating section extending from the fifth radiating section The other end of the end is parallel to the extending direction of the sixth radiating section and the fifth ||throw segment is opposite to the end connected to the sixth radiating section, and the eighth radiating end is The other end opposite to the end of 201208196 connecting the seventh radiating section is the second grounding end β. Preferably, the area of the antenna substrate is less than or equal to the area of the system module. The first effect of the present invention is that the first loop antenna and the second loop antenna can synchronously resonate with different frequency bands, and reflect the first loop antenna and the second loop through at least one ground plane on the system module. The radiation of the antenna can make the radiation pattern of the antenna module have high directivity and high antenna gain, which can enhance the communication coverage. The second effect of Lu invention is that it can more effectively utilize the limited space on a single antenna dielectric substrate, implant more loop antennas, and improve the performance of the antenna. The second effect of the present invention is that the retroreflective antenna system uses a printed circuit board to produce a 'simple and low cost' and has a low profile (1 〇 wpr 〇 file) shape and planar structure, which is very suitable for application. On a small outdoor wireless network bridge. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to FIG. 1, a first preferred embodiment of a multi-loop antenna system in accordance with the present invention is capable of concurrent operation in a dual-band wireless local area network WLAN (2400-2484/5150-5350 MHz). In the loop antenna system, in the present embodiment, the multi-loop antenna system 1 includes an antenna module 1A and a system module 2〇 disposed in parallel with the antenna module 1〇. 201208196 Referring to FIG. 2, the antenna module 10 includes an antenna substrate 3, a plurality of first loop antennas 1 and a plurality of second loop antennas. The antenna substrate 3 is rectangular or an arbitrary polygon. It is made of insulating material (eg fiberglass, FR4). The antenna substrate 3 has a first surface 31 and a second surface 32° opposite to the first surface 31. In the embodiment, the numbers of the first loop antenna 1 and the second loop antenna 2 are respectively The first loop antennas 1 are disposed on the first surface 31 of the antenna substrate 3 and are adjacent to the antenna substrate 3, respectively, and are respectively 金属ne_wave loop antennas. Two short sides, each of which includes a first radiator u and a first ground end (2) and a first feed end (feed P〇) respectively located at opposite ends of the first radiator 11 Int) 13. In the case of one of the first radiators u, the first radiator 11 has a first radiant section m disposed on a short side of the antenna substrate 3 and extending along the short side (ie, the Y-axis), a second light-emitting section 112 extending at an end of the first radiating section m in a direction perpendicular to the extending direction of the first radiating section lu (ie, 2 axes), - the end of the second radiating section 112 is parallel to the first radiating section ill The third radiating section 113 extending in the extending direction, and a fourth radiating section 114 extending from the end of the third radiating section 113 in a direction parallel to the extending direction of the second radiating section 112. The other end of the first radiating section lu opposite to the end connected to the second radiating section 112 is the first grounding end 12, and the fourth radiating section ιι4 is opposite to the end connected to the end of the third H-segment 113. The input end 13 and the first ground end 12 are adjacent to and spaced apart from the first feed end such that the first radiating section 111, the second radiating section 丨12, the third radiating section 201208196 113 and the fourth The radiant sections 114 are interconnected to form a rectangular loop and provide a first operating frequency band, but the loop shape is not limited to a rectangle. In addition, it is noted that the first-feeder terminals 13 of the first-loop antennas 1 are symmetrical to each other at the geometric center of the two first loop antennas 1 (phase angle i 180 degrees), which is the farthest between the two The distance between the antennas at this time will be optimal. The second loop antennas 2 are disposed on the first surface Η of the antenna substrate 3 and adjacent to the two long sides of the antenna substrate 3, respectively, each of which includes a second radiator 21 and two of the second radiators 21 respectively. A second feed end 22 and a second ground end 23 of the end. Each of the second radiators 21 has a fifth radiating section 215 disposed on a long side of the antenna substrate 3 and extending along the long side (ie, the z-axis), and an end edge of the fifth radiating section 215 a sixth radiating section 216 extending perpendicular to the extending direction of the fifth radiating section 215 (i.e., the γ-axis), and a seventh radiating extending from the end of the sixth radiating section 216 in a direction parallel to the extending direction of the fifth radiating section 215 Section 217, and an eighth radiant section 218 extending from the end of the seventh radiant section 217 in a direction parallel to the direction of extension of the sixth radiant section 216. The other end opposite to the end of the sixth radiating section 215 and the sixth radiating section 216 is the second feeding end 22, and the other end of the eighth radiating section 218 opposite to the end connected to the seventh radiating section 217 is the second grounding end 23 And the second feeding end 22 and the second grounding end 23 are adjacent to each other and spaced apart, such that the fifth radiating section 215, the sixth radiating section 216, the seventh radiating section 217 and the eighth light-emitting section 218 are connected to each other to form a The rectangle loops and provides a second operating band, and the shape of the loop is also not limited to a rectangle. In the present embodiment, the areas of the first radiator 11 and the second radiator 21 are different, so that the first loop antenna 1 and the second loop antenna 2 can respectively be different from the frequency of 201208196, to achieve the present. Invented the synchronization ((3) ηα (10) plus) dual-frequency effect and the signal transmission line (not shown) of each first loop antenna i (or second loop antenna 2) has the same length, so that the first loop antenna 1 (or The reception of the two loop antennas 2) is the same as the vibration of the transmitted signal (the coffee (1) heart) and the phase (the milk 6). The loop antenna of the invention has a simple structure, can be used for the production of a printed circuit board (CB), has low production cost, and can add more loops than the conventional flat panel array antenna in the same wireless network bridge device. Antennas improve antenna performance and increase overall system data transmission bandwidth. In addition, in the embodiment, the geometry of the two first loop antennas

心位在天線基板3兩短側邊的中心連線上,而兩個第二堤 圈天線2㈣何“、則位在天線基板3兩長側邊的中心連 線上’使得兩個第一迴圈天線i的幾何中心連線會與兩個 第二迴圈天線2的幾何中心連線相互垂直(呈正交),且兩個 第-迴圈天線1的幾何中心分別與每—個第二迴圈天線2 的幾何中心的距離相同,即L1=L2且U=L4,如此對稱式 結構(Symmetrical structure)的天線,讓多迴圈天線系統在空 間中具有更對稱的訊號覆蓋空間。The heart position is on the center line of the two short sides of the antenna substrate 3, and the two second bank antennas 2 (four) are "on the center of the two long sides of the antenna substrate 3" so that the two first backs The geometric center line of the loop antenna i and the geometric center line of the two second loop antennas 2 are perpendicular to each other (orthogonal), and the geometric centers of the two first-loop antennas 1 are respectively associated with each second The geometric center of the loop antenna 2 has the same distance, that is, L1=L2 and U=L4. The antenna of the Symmetrical structure allows the multi-loop antenna system to have a more symmetrical signal coverage space in space.

备热,孩等第 、口乂寸示〜叫八冰 同步等距平移’如圖3所示,兩個第一迴圈天線工可 別沿天線基板3的短側邊左右對稱平移,而兩個第二 天線2絲合地分靡天線純3的長側紅下平移 保持各個第一迴圈天線丨的幾何中心分別與每—個第 圈天線2的幾何中心的距離相同(即U,=L2,且u,心 可,但並不以本實施例為限。再者,本實施例之兩個彳 10 201208196 迴圈天線1及兩個第二迴圈天線2也可以為圓形迴圈,如 圖4所不’同樣可以達到本發明同步共振出雙頻的功效。 特別注意的是,參閱圖2、圖3及圖4,該等第一迴路 天線1的第一接地端12與第一饋入端13,以及該等第二迴 路天線2的第二饋入端22與第二接地端23皆位於天線基 板3的側邊,以避免訊號傳輸線(圖未示)壓到第一迴路天線 1及第二迴路天線2而導致天線訊號與系統電路干擾的問 題。 參閱圖1,系統模組20係為一系統電路板,其上具有 至少一相向於天線基板3之第二表面32的接地面201(例 如:金屬面),該接地面201可視為一反射板(reflect〇r),用 以反射該等第一迴圈天線丨及第二迴圈天線2的輻射,藉 此不但可使天線模組1 〇具有高度的指向性外,也可以提升 天線模組10在單一方向(正χ軸方向)的天線增益。其中, 該系統模組20可為多層結構,最上層是薄的金屬層,下層 則是介質基板,或者可以是包含更多層的電路層。又,接 地面(又可做為一反射面)2〇1與第二表面32間存在一間距, 作為系統模組20上電子元件(圖未示)擺設之有效空間利 用。此外,本實施例之天線基板3的面積小於或等於系統 模組20的面積,以確保系統模組2〇能完全反射每個第一 迴圈天線1及第二迴圈天線2的輻射。 此外,參閱圖5,本實施例之多迴圈天線系統1〇〇係裝 設於如室外的無線網路橋接器(access p〇int,AP)等電子裝 置200的一殼體210中,且藉由小型同軸線 11 201208196 cable)作為訊號傳輸線(圖未示),將訊號饋入第一饋入端13 及第二饋入端22,使得多迴圈天線系統1〇〇可配合不同應 用的系統模組(即系統電路板),提高多迴圈天線系統1〇〇使 用上的彈性。當然,訊號傳輸線的種類並不因本實施例而 受限制。 參閱圖6至圖9,為本實施例之多迴圈天線系統1 〇〇的 實際尺寸示意圖,其中圖6為天線基板3及第一迴圈天線1 與第二迴圈天線2之間的俯視圖;圖7及圖8分別為第一 迴圈天線1及第二迴圈天線2的俯視圖;圖9為天線基板3 與系統模組20之間的側視圖,各圖中數字的單位為mm, 可參閱圖中各項數據以得知本實施例的實際規格尺寸,但 不以本實施例為限。 由圖7及圖8可知,第一輻射段U1、第二輻射段 112、第二輪射段Π3及第四輻射段114長度相同,使第一 輕射體11形成一正方形迴圈;第五輻射段215、第六輻射 段216、第七輻射段217及第八輻射段218長度相同,使第 二輻射體21形成一正方形迴圈。在本實施例中,第一輕射 體11的面積約為第二輕射體21的面積的四倍,因此第一輕 射體11與第二輻射體21可分別共振出2 4GHz及5GHz的 頻率。此外,由圖9可知,天線基板3與系統模組2〇之間 的間距需大於5公厘(mm),以供更多種類的電子元件置放 於系統模組(系統電路板)20上,而本實施例之間距為54公 厘(mm)將獲得較佳的天線增益。 參閱圖10,為各個第一迴圈天線丨及第二迴圈天線2 12 201208196 的反射係數(Reflection Coefficient)量測數據圖,其中及 δη分別為兩個第一迴圈天線丨各自的反射係數;I〕及 刀別為兩個第二迴圈天線2各自的反射係數。經實驗可得 知,第一迴圈天線1提供的第一操作頻帶的中心頻率為 2.4GHz,第二迴圈天線2提供的第二操作頻帶的中心頻率 為5GHz ’且兩者分別在2_4GHz及5GHz的反射係數皆小 於負ΊΟ-dB,符合2.4GHz及5GHz無線區域網路頻帶的規 範’因此本實施例的確是可應用在無線區域網路中。 • 參閱圖11,為第一迴圈天線1及第二迴圈天線2彼此 之間的隔離度(Isolation)量測數據圖,其中S21為兩個第一 迴圈天線1之間的隔離度;呂:^及Sm為兩個第二迴圈天線2 分別與其中一個第一迴圈天線丨之間的反射係數;S43為兩 個第二迴圈天線2之間的反射係數。經實驗可得知,第一 迴圈天線1及第一迴圈天線2之間的隔離度平均約在負3〇_ dB以下,具有良好的隔離度。 參閱圖12,為本實施例之第一迴圈天線1操作在 # 2442MHz及第二迴圈天線2操作5250MHz的2-D輻射場型 量測結果圖。參閱圖13及圖14,圖13為多迴圈天線系統 100工作在頻率2400MHz、2442MHz及2484MHz時的全向 輻射場型圖;圖14則為多迴圈天線系統100工作在頻率 5150MHz、5250MHz及5350MHz的全向輻射場型圖。於 是,由圖12〜圖14可知’藉由天線模組1〇與系統模組2〇 的相互配合,使得多迴圈天線系統1 〇〇在正X轴方向具有 較高的天線增益,即高度的指向性,可適用於無線網路橋 13 201208196 接器(AP)。 圖15為本實施例之多迴圈天線系、统100的輻射效率 (radiation efficiency)/天線增益_頻率曲線圖。由圓可知天 線最大增益在2.4 GHz與5 GHz頻帶内分別約為4仙與5 dBi,具有高天線增益的特性。天線的輻射效率亦分別大於 約50%與70%,為良好的印刷式天線效率。 參閱圖16,為本發明多迴圈天線系統1〇〇之第二較佳 實施例,大致與第一較佳實施例相肖,其+同之處在於第 -迴圈天線1與第二迴圈天線2係分別佈設於天線基板3 的不同表面。在本實施例中,該等第一迴圈天線i係佈設 於天線基板3的第-表面31,而該等第二迴圈天線2係佈 設於天線基板3的第二表面32,如此同樣可㈣步接收或 發射雙頻的訊號,並達到高天線增益的特點。 參閱圖17,為本發明多迴圈天線系統1〇〇之第三較佳 實施例,多迴圈天線系統1〇〇也可以僅有一個第一迴圈天 線1及一第二迴圈天線2,且在本實施例中,第一迴圈天線 1及第一迴圈天線2係分別佈設於天線基板3相對的兩短侧 邊上,如此同樣能達到本發明同步雙頻操作的功效。 綜上所述,本發明多迴圈天線系統1〇〇藉由在天線基 板3上佈設複數個第一迴圈天線丨及第二迴圈天線2,來達 到同步接收或發射多個不同頻段的訊號,且該等第一迴圈 天線1的幾何中心分別與每一個第二迴圈天線2的幾何中 心之間的距離相同,使多迴圈天線系統1〇〇的第一迴圈天 線1與第二迴圈天線2之間隔離度相同,等迴圈天線亦具 14 201208196 有相同的輻射場型與、訊號覆蓋範圍。此外,多迴圈天線 系統1〇〇還與系統模組20整合,並藉由該系統模組2〇上 的至少一接地面來反射第一迴圈天線1及第二迴圈天線2 的輻射,不但可使天線模組1〇具有高度的指向性,也可以 提升天線模組10在單一方向(正χ軸方向)的天線增益,故 確實能達成本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 • 冑圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是說明本發明多迴圈天線系統的第一較佳實施 例; 圖2是說明第一較佳實施例中該等第一迴圈天線與該 等第二迴圈天線佈設於天線基板的一種態樣; 圖3是說明第一較佳實施例中該等第一迴圈天線與該 • 等第二迴圈天線佈設於天線基板的另一種態樣; *圖4《說明第一較佳實施财該等第一迴圈天線與該 等第二迴圈天線佈設於天線基板的另一種態樣; 圖5疋說明内藏式多迴圈天線系統的電子裝置; 圖6是說明帛一較佳實施例中天線基板及第—迴圈天 線與第二迴圈天線之間的實際規格尺寸·, 圖7是說明第-較佳實施例中第一迴圈天線的實際規 15 201208196 圖8是說明第一較佳實施例中第二迴圈天線的實際規 格尺寸; 圆9是說明第一較佳實施例中天線基板與系統模組之 間的實際規格尺寸; 圖10是說明第一較佳實施例中各個第一迴圈天線與第 二迴圈天線的反射係數量測數據圖; 圖11是說明第一較佳實施例中第一迴圈天線與第二迴 圈天線彼此之間的隔離度量測數據圖; 圖12是說明第一較佳實施例之第一迴圈天線在 2442MHz及第二迴圈天線在525〇MHz的2 D輻射場型量測鲁 結果圖; 圖13是說明第一較佳實施例之多迴圈天線系統分別在 頻率2400MHz、2442MHz及2484MHz的全向輻射場型圖; 圖14是說明第一較佳實施例之多迴圈天線系統分別在 頻率5150MHz、5250MHz及5350MHz的全向輻射場型圖; 圖15是說明第一較佳實施例之多迴圈天線系統的輻射 效率/天線增益-頻率曲線圖; 圖16是說明本發明多迴圈天線系統的第二較佳實施籲 例;及 圖Π是說明本發明多迴圈天線系統的第三較佳實施 例。 16 201208196 【主要元件符號說明】 100 •…多迴圈天線系統 13…… •…第 饋入端 200 ··· …電子裝置 2 ....... •…第二迴圈天線 210 .... •…殼體 21…… 弟—幸田射體 10…… 天線模組 215… •…第五輻射段 20…… …系統模組 216… 第/、幸W射段 201 …. …系統接地面 217… …·第七輻射段 1 ....... …第一迴圈天線 218… 第八輪射段 11…… …·第一輻射體 22…… 弟一謂入端 111 ·.·. …第一輻射段 23…… •…第二接地端 112 ···· …第二輻射段 3 ....... …天線基板 113 ···. …第三輻射段 31…… —第 表面 114 ··· …第四輻射段 32…… —第一表面 12…… …第一接地端 17Hot, child, etc., 乂 乂 〜 叫 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八The second antenna 2 is meshed with the antenna. The long side red lower translation of the pure 3 keeps the geometric center of each first loop antenna 相同 the same as the geometric center of each of the second loop antennas 2 (ie, U, = L2, and u, can be, but not limited to this embodiment. Furthermore, the two 彳10 201208196 loop antennas 1 and the two second loop antennas 2 of the present embodiment may also be rounded back. The circle, as shown in FIG. 4, can also achieve the same effect of the synchronous resonance dual frequency of the present invention. It is particularly noted that, referring to FIG. 2, FIG. 3 and FIG. 4, the first ground end 12 of the first loop antenna 1 and The first feeding end 13 and the second feeding end 22 and the second grounding end 23 of the second loop antenna 2 are located on the side of the antenna substrate 3, so as to prevent the signal transmission line (not shown) from being pressed to the first side. Loop antenna 1 and second loop antenna 2 cause interference between the antenna signal and the system circuit. Referring to Figure 1, the system module 20 A system board having at least one ground plane 201 (eg, a metal surface) facing the second surface 32 of the antenna substrate 3, the ground plane 201 being regarded as a reflector 用以The radiation of the first loop antenna 丨 and the second loop antenna 2 can not only increase the directivity of the antenna module 1 ,, but also raise the antenna module 10 in a single direction (positive axis direction) Antenna gain, wherein the system module 20 can be a multi-layer structure, the uppermost layer is a thin metal layer, the lower layer is a dielectric substrate, or can be a circuit layer containing more layers. There is a gap between the second surface 32 and the second surface 32, which is used as an effective space for the electronic components (not shown) on the system module 20. In addition, the area of the antenna substrate 3 of the present embodiment is smaller than or It is equal to the area of the system module 20 to ensure that the system module 2 can completely reflect the radiation of each of the first loop antenna 1 and the second loop antenna 2. Further, referring to FIG. 5, the multi-loop antenna of this embodiment System 1 is installed in the room a wireless network bridge (AP), such as a housing 210, and a small coaxial line 11 201208196 cable) as a signal transmission line (not shown), the signal is fed into the first The feed end 13 and the second feed end 22 enable the multi-loop antenna system to cooperate with system modules of different applications (ie, system board) to improve the flexibility of the multi-loop antenna system. Of course, the type of signal transmission line is not limited by this embodiment. Referring to FIG. 6 to FIG. 9 , FIG. 6 is a schematic diagram showing the actual size of the multi-loop antenna system 1 , wherein FIG. 6 is a top view between the antenna substrate 3 and the first loop antenna 1 and the second loop antenna 2 . 7 and 8 are top views of the first loop antenna 1 and the second loop antenna 2, respectively; FIG. 9 is a side view between the antenna substrate 3 and the system module 20, and the numbers in each figure are in mm, Referring to the data in the figure, the actual size of the embodiment is known, but it is not limited to this embodiment. As can be seen from FIG. 7 and FIG. 8, the first radiating section U1, the second radiating section 112, the second rounding section Π3, and the fourth radiating section 114 have the same length, so that the first light projecting body 11 forms a square loop; The radiating section 215, the sixth radiating section 216, the seventh radiating section 217, and the eighth radiating section 218 are of the same length such that the second radiator 21 forms a square loop. In this embodiment, the area of the first light projecting body 11 is about four times the area of the second light projecting body 21, so that the first light projecting body 11 and the second radiator body 21 can respectively resonate at 24 GHz and 5 GHz. frequency. In addition, as shown in FIG. 9, the distance between the antenna substrate 3 and the system module 2〇 needs to be greater than 5 mm (mm) for more types of electronic components to be placed on the system module (system circuit board) 20. However, a distance of 54 mm (mm) between the embodiments will result in a better antenna gain. Referring to FIG. 10, the reflection coefficient of each of the first loop antenna 丨 and the second loop antenna 2 12 201208196, wherein δη is the reflection coefficient of each of the two first loop antennas. ; I] and the knife are the reflection coefficients of the two second loop antennas 2 respectively. It can be known from experiment that the center frequency of the first operating band provided by the first loop antenna 1 is 2.4 GHz, and the center frequency of the second operating band provided by the second loop antenna 2 is 5 GHz ' and both are at 2_4 GHz and The reflection coefficient of 5 GHz is less than minus ΊΟ-dB, which conforms to the specifications of 2.4 GHz and 5 GHz wireless local area network bands. Therefore, this embodiment is indeed applicable to wireless local area networks. Refer to FIG. 11 , which is an Isolation measurement data diagram between the first loop antenna 1 and the second loop antenna 2, wherein S21 is an isolation between the two first loop antennas 1; Lu: ^ and Sm are the reflection coefficients between the two second loop antennas 2 and one of the first loop antennas ;; S43 is the reflection coefficient between the two second loop antennas 2. It can be known from experiments that the isolation between the first loop antenna 1 and the first loop antenna 2 is on average about minus 3 〇 _ dB, which has good isolation. Referring to FIG. 12, a measurement result of the 2-D radiation field type of the first loop antenna 1 operating at #2442 MHz and the second loop antenna 2 operating at 5250 MHz is shown in FIG. Referring to FIG. 13 and FIG. 14, FIG. 13 is an omnidirectional radiation pattern of the multi-loop antenna system 100 operating at frequencies of 2400 MHz, 2442 MHz, and 2484 MHz; and FIG. 14 is a multi-loop antenna system 100 operating at frequencies of 5150 MHz, 5250 MHz, and 5350MHz omnidirectional radiation pattern. Therefore, it can be seen from FIG. 12 to FIG. 14 that the multi-loop antenna system 1 has a high antenna gain in the positive X-axis direction, that is, the height, by the cooperation of the antenna module 1〇 and the system module 2〇. The directionality is applicable to the wireless bridge 13 201208196 connector (AP). Fig. 15 is a graph showing radiation efficiency/antenna gain_frequency of the multi-loop antenna system 100 of the present embodiment. It can be seen from the circle that the maximum gain of the antenna is about 4 sen and 5 dBi in the 2.4 GHz and 5 GHz bands, respectively, and has high antenna gain characteristics. The radiation efficiency of the antenna is also greater than about 50% and 70%, respectively, which is a good printed antenna efficiency. Referring to FIG. 16, a second preferred embodiment of the multi-loop antenna system of the present invention is substantially similar to the first preferred embodiment, and the same is in the first-loop antenna 1 and the second back. The loop antennas 2 are respectively disposed on different surfaces of the antenna substrate 3. In the present embodiment, the first loop antennas i are disposed on the first surface 31 of the antenna substrate 3, and the second loop antennas 2 are disposed on the second surface 32 of the antenna substrate 3, so that the same (4) Steps to receive or transmit dual-frequency signals and achieve high antenna gain characteristics. Referring to FIG. 17, a third preferred embodiment of the multi-loop antenna system 1 of the present invention may also have only one first loop antenna 1 and one second loop antenna 2 In the present embodiment, the first loop antenna 1 and the first loop antenna 2 are respectively disposed on opposite short sides of the antenna substrate 3, so that the same effect of the synchronous dual-frequency operation of the present invention can be achieved. In summary, the multi-loop antenna system 1 of the present invention achieves synchronous reception or transmission of multiple different frequency bands by arranging a plurality of first loop antennas 第二 and second loop antennas 2 on the antenna substrate 3. a signal, and the geometric centers of the first loop antennas 1 are respectively the same distance from the geometric center of each of the second loop antennas 2, so that the first loop antenna 1 of the multi-loop antenna system 1〇〇 The isolation between the second loop antenna 2 is the same, and the loop antenna also has the same radiation field type and signal coverage. In addition, the multi-loop antenna system 1 is also integrated with the system module 20, and the radiation of the first loop antenna 1 and the second loop antenna 2 is reflected by at least one ground plane on the system module 2 In addition, the antenna module 1 can be highly directional, and the antenna gain of the antenna module 10 in a single direction (positive axis direction) can be improved, so that the object of the present invention can be achieved. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent change of the patent application and the description of the invention is Modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a first preferred embodiment of a multi-loop antenna system of the present invention; FIG. 2 is a diagram illustrating the first loop antenna and the second loop in the first preferred embodiment. FIG. 3 is a view showing another aspect of the antenna substrate disposed on the antenna substrate in the first preferred embodiment; FIG. 3 is another embodiment of the first loop antenna and the second loop antenna disposed on the antenna substrate in the first preferred embodiment; "Description of the first preferred embodiment of the first loop antenna and the second loop antenna disposed on the antenna substrate; Figure 5A illustrates the electronic device of the built-in multi-loop antenna system; 6 is a description of the actual size of the antenna substrate and the first loop antenna and the second loop antenna in the preferred embodiment. FIG. 7 is a diagram illustrating the actual configuration of the first loop antenna in the first preferred embodiment. Figure 15 is a diagram showing the actual size of the second loop antenna in the first preferred embodiment; the circle 9 is an actual size between the antenna substrate and the system module in the first preferred embodiment; It is a description of each of the first loop antennas in the first preferred embodiment. FIG. 11 is a diagram illustrating isolation measurement data between the first loop antenna and the second loop antenna in the first preferred embodiment; FIG. 12 is a diagram illustrating 2D radiation field type measurement results of the first loop antenna of the first preferred embodiment at 2442 MHz and the second loop antenna at 525 〇 MHz; FIG. 13 is a multi-loop of the first preferred embodiment. The omnidirectional radiation pattern of the antenna system at frequencies of 2400 MHz, 2442 MHz, and 2484 MHz, respectively; FIG. 14 is a diagram showing the omnidirectional radiation pattern of the multi-loop antenna system of the first preferred embodiment at frequencies of 5150 MHz, 5250 MHz, and 5350 MHz, respectively; Figure 15 is a graph showing the radiation efficiency/antenna gain-frequency curve of the multi-loop antenna system of the first preferred embodiment; Figure 16 is a second preferred embodiment of the multi-loop antenna system of the present invention; A third preferred embodiment of the multi-loop antenna system of the present invention is illustrated. 16 201208196 [Explanation of main component symbols] 100 • Multi-loop antenna system 13... •...feeding terminal 200 ··· ...electronic device 2 ....... •...second loop antenna 210 .. .. •...Shell 21... Brother-Kyoada Projector 10... Antenna Module 215... •...Fifth Radiation Section 20...System Module 216... No., Fortunately, W-segment 201 .... ...system connection Ground 217...·Seventh radiant section 1 . . . ... first loop antenna 218... Eighth shot section 11... The first radiator 22... The first one is the end 111. The first radiating section 23...the second grounding end 112...the second radiating section 3...the antenna substrate 113···....the third radiating section 31... - the first surface 114 ... ... ... the fourth radiating section 32 ... - the first surface 12 ... ... the first grounding end 17

Claims (1)

201208196 七、申請專利範圍: 1. 一種多迴圈天線系統,包含: 一天線模組,包括: 一天線基板,其具有一第一表面和一相反於該 第一表面的第二表面; 至少一第一迴圈天線,佈設於該天線基板的該 第一表面上’該第一迴圈天線包括有一第一輻射體 及分別位於該第一輻射體兩端的一第一饋入端及一 第一接地端,且該第一饋入端與該第一接地端相鄰 且相間隔,使該第一輻射體形成-迴圈,並且該帛 籲 一迴圈天線提供一第一操作頻帶;及 至少一第二迴圈天線,佈設於該天線基板的該 第一表面或該第二表面上,該第二迴圈天線包括有 一第二輻射體及分別位於該第二輻射體兩端的一第 一饋入端及一第二接地端,且該第二饋入端與該第 二接地端相鄰且相間隔,使該第二輻射體形成一迴 圈,並且該第二迴圈天線提供一第二操作頻帶;及 一系統模組,其上具有至少一相向於該天線基板之 籲 該第二表面的接地面,且該系統模組與該天線基板之該 第二表面平行相間隔一距離,用以反射該第一迴圈天線 及該第二迴圈天線的輻射。 2. 依據申請專利範圍第1項所述之多迴圈天線系統,其 中’該第一迴圈天線及該第二迴圈天線的數量皆為二, 而該等第一迴圈天線分別佈設於該天線基板的兩相對側 18 201208196 邊’該等第二迴圈天線分別佈設於該天線基板的另兩相 對側邊且§亥專第一迴圈天線的幾何中心連線與該等第 一迴圈天線的幾何中心連線相互垂直。 3·依據申請專利範圍第2項所述之多迴圈天線系統,其 中,忒等第一迴圈天線的幾何中心分別與該等第二迴圈 天線的幾何中心的距離相同。 4·依據申請專利範圍第1項所述之多迴圈天線系統,其中 该第一輻射體及第二輻射體係形成一矩形迴圈。 鲁5.依據申請專利範圍帛丨項所述之多迴圈天線系統其中 該第一輻射體及第二輻射體係形成一圓形迴圈。〃 6. 依據申請專利範圍第i項所述之多迴圈天線系統,其中 該第一迴圈天線及該第二迴圈天線數量分別為一,且分 別佈設於該天線基板相對的兩側邊上。 7. 依據申請專利範圍第4項所述之多迴圈天線系統,其 中,該第一輻射體包括一沿一方向延伸的第一輻射段、 -由該第一輻射段的末端沿垂直於該第一輻射段的延伸 ® 方向延伸的第二輻射段、—由該第二辖射段的末端沿平 行於該第一輻射段的延伸方向延伸的第三輻射段,及— 由該第三輻射段的末端沿平行於該第二輻射段的延伸方 向延伸的第四輻射段,且該第一輻射段與連接該第二輻 射段的末端相反的另一端為該第一接地端,該第四輻射 段與連接該第三輻射段的末端相反的另_端為該第: 入端。 謂 8_依據申請專利範圍帛7 g所述之多迴圈天線系統其 19 201208196 中該第一輻射體包括一沿一方向延伸的第五輻射段、 由《亥第五幸田射#又的末端沿垂直於該第五輕射段的延伸 方向延伸的第六輻射段、一由該第六輻射段的末端沿平 仃於該第五輻射段的延伸方向延伸的第七輻射段,及一 由該第七輕射段的末端沿平行於該第六輕射&的延伸方 向延伸的第八輻射段,且該第五輻射段與連接該第六輻 射段的末端相反的另一端為該第二饋入端,該第八輻射 段與連接該第七幸I射段的末端相反的另一端為該第二接 地端。 9 ·依據申凊專利範圍第丨項所述之多迴圈天線系統,其 中,該天線基板的面積小於或等於該系統模組的面積。 10. —種具有多迴圈天線系統的電子裝置,包含: 一殼體; 一天線模組,裝設於該殼體中,該天線模組包括: 一天線基板,其具有一第一表面和一相反於該 第一表面的第二表面; 至少一第一迴圈天線,佈設於該天線基板的該 第一表面上,該第一迴圈天線包括有一第一輻射體 及分別位於該第一輻射體兩端的一第一饋入端及一 第一接地端,且該第一饋入端與該第一接地端相鄰 且相間隔,使該第一輻射體形成一迴圈,並且該第 一迴圈天線提供一第一操作頻帶;及 至少一第二迴圈天線,佈設於該天線基板的該 第一表面或該第二表面上,該第二迴圈天線包括有 20 201208196 -:二輻射體及分別位於該第二賴射體兩端的一第 一饋入知及一第二接 -桩祕姑“ "細^亥第-饋入端與該第 -接地'相鄰且相間隔’使該第二輕射體形成一迴 圈;並且该第二迴圏天線提供一第二操作頻帶·及 一系統模組,裝設於該殼體中,其上具有至少一相 向於該天線基板之該第二表面的接地面,且該系統模組 與該天線基板之該第二表面平行相間隔一距離,可用以 反射該第一迴圈天線及該第二迴圈天線的輪射。201208196 VII. Patent application scope: 1. A multi-loop antenna system, comprising: an antenna module, comprising: an antenna substrate having a first surface and a second surface opposite to the first surface; at least one a first loop antenna disposed on the first surface of the antenna substrate. The first loop antenna includes a first radiator and a first feed end and a first end respectively located at the ends of the first radiator a grounding end, and the first feeding end is adjacent to and spaced apart from the first grounding end, so that the first radiator forms a loop, and the looping antenna provides a first operating frequency band; and at least a second loop antenna disposed on the first surface or the second surface of the antenna substrate, the second loop antenna includes a second radiator and a first feed respectively located at two ends of the second radiator An input end and a second ground end, and the second feed end is adjacent to and spaced apart from the second ground end, so that the second radiator forms a loop, and the second loop antenna provides a second Operating frequency band; and a system module Having at least one ground plane facing the second surface of the antenna substrate, and the system module is spaced apart from the second surface of the antenna substrate by a distance for reflecting the first loop antenna and The radiation of the second loop antenna. 2. The multi-loop antenna system according to claim 1, wherein the number of the first loop antenna and the second loop antenna is two, and the first loop antennas are respectively disposed on The opposite sides of the antenna substrate 18 201208196 side 'the second loop antennas are respectively disposed on the other two opposite sides of the antenna substrate and the geometric center connection of the first loop antenna and the first back The geometric centerlines of the loop antennas are perpendicular to each other. 3. The multi-loop antenna system according to claim 2, wherein the geometric center of the first loop antenna of the first loop antenna is the same as the geometric center of the second loop antenna, respectively. 4. The multi-loop antenna system of claim 1, wherein the first radiator and the second radiation system form a rectangular loop. 5. The multi-loop antenna system according to the scope of the patent application, wherein the first radiator and the second radiation system form a circular loop. 〃 6. The multi-loop antenna system of claim 1, wherein the number of the first loop antenna and the second loop antenna are respectively one, and are respectively disposed on opposite sides of the antenna substrate. on. 7. The multi-loop antenna system of claim 4, wherein the first radiator comprises a first radiant section extending in a direction, - the end of the first radiant section is perpendicular to the a second radiating section extending in the direction of the extension of the first radiating section, a third radiating section extending from the end of the second radiating section in a direction parallel to the extending direction of the first radiating section, and - by the third radiating a fourth radiating section extending in a direction parallel to an extending direction of the second radiating section, and the other end of the first radiating section opposite to an end connected to the second radiating section is the first grounding end, the fourth The other end of the radiant section opposite to the end connected to the third radiant section is the first: ingress. Said 8_ according to the patent application scope 帛 7 g of the multi-loop antenna system of the 19 201208196, the first radiator includes a fifth radiant section extending in one direction, and the end of the "Hai No. 5 Koda Shot # a sixth radiant section extending perpendicularly to an extending direction of the fifth light-emitting section, a seventh radiant section extending from an end of the sixth radiant section in a direction extending in a direction of the fifth radiant section, and a An end of the seventh light-emitting segment extends along an eighth radiant section extending parallel to the extending direction of the sixth illuminating section, and the other end of the fifth radiant section opposite to the end of the sixth radiant section is the first The second feeding end is the second ground end opposite to the end of the eighth radiating section connected to the seventh antenna. The multi-loop antenna system according to the invention, wherein the area of the antenna substrate is less than or equal to the area of the system module. 10. An electronic device having a multi-loop antenna system, comprising: a housing; an antenna module mounted in the housing, the antenna module comprising: an antenna substrate having a first surface and a first surface opposite to the first surface; at least one first loop antenna disposed on the first surface of the antenna substrate, the first loop antenna includes a first radiator and respectively located at the first surface a first feeding end and a first ground end of the radiator, and the first feeding end is adjacent to and spaced apart from the first ground end, so that the first radiator forms a loop, and the first a loop antenna provides a first operating frequency band; and at least one second loop antenna is disposed on the first surface or the second surface of the antenna substrate, and the second loop antenna includes 20 201208196 -: 2 The radiator and a first feed located at each end of the second ray body know a second splicing-pitch " " fine hai hai - feed end adjacent to the first ground - and spaced apart 'Making the second light body to form a loop; and the second back The antenna provides a second operating band and a system module mounted in the housing, having at least one ground plane facing the second surface of the antenna substrate, and the system module and the antenna substrate The second surfaces are parallel apart by a distance and can be used to reflect the first loop antenna and the second loop antenna. 21twenty one
TW099127106A 2010-08-13 2010-08-13 A multi-loop antenna system and a electronic device having the multi-loop antenna system TWI449264B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099127106A TWI449264B (en) 2010-08-13 2010-08-13 A multi-loop antenna system and a electronic device having the multi-loop antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099127106A TWI449264B (en) 2010-08-13 2010-08-13 A multi-loop antenna system and a electronic device having the multi-loop antenna system

Publications (2)

Publication Number Publication Date
TW201208196A true TW201208196A (en) 2012-02-16
TWI449264B TWI449264B (en) 2014-08-11

Family

ID=46762414

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099127106A TWI449264B (en) 2010-08-13 2010-08-13 A multi-loop antenna system and a electronic device having the multi-loop antenna system

Country Status (1)

Country Link
TW (1) TWI449264B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531882A (en) * 2012-07-06 2014-01-22 宏碁股份有限公司 Electronic device
TWI493787B (en) * 2012-06-25 2015-07-21 Acer Inc Electronic device
TWI612727B (en) * 2016-04-20 2018-01-21 Array dipole antenna device
TWI628853B (en) * 2017-02-10 2018-07-01 捷訊科技股份有限公司 Multi-band multi-antenna integrated antenna module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583297B (en) * 2014-12-11 2017-05-11 Kuang Ying Computer Equipment Co Ltd Isolate the signal to interfere with the circuit board structure
TWI725594B (en) * 2019-10-30 2021-04-21 緯創資通股份有限公司 Antenna array

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI270235B (en) * 2005-07-08 2007-01-01 Ind Tech Res Inst High-gain loop antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493787B (en) * 2012-06-25 2015-07-21 Acer Inc Electronic device
CN103531882A (en) * 2012-07-06 2014-01-22 宏碁股份有限公司 Electronic device
TWI612727B (en) * 2016-04-20 2018-01-21 Array dipole antenna device
TWI628853B (en) * 2017-02-10 2018-07-01 捷訊科技股份有限公司 Multi-band multi-antenna integrated antenna module

Also Published As

Publication number Publication date
TWI449264B (en) 2014-08-11

Similar Documents

Publication Publication Date Title
US8269682B2 (en) Multi-loop antenna module with wide beamwidth
US8344950B2 (en) Dual-loop antenna and multi-frequency multi-antenna module
CN103915678B (en) omnidirectional antenna
US8723751B2 (en) Antenna system with planar dipole antennas and electronic apparatus having the same
US9287633B2 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
US8786509B2 (en) Multi polarization conformal channel monopole antenna
CN102386482B (en) Multi-loop antenna system and electronic device with same
JP5956582B2 (en) antenna
US8791865B2 (en) Multi-loop antenna system and electronic apparatus having the same
CN103367877A (en) Mobile device
KR20120086838A (en) Broad-band dual polarization dipole antenna on PCB type
JP2006508610A (en) Multilayer electrostatic coupling in phased array antennas.
US8648762B2 (en) Loop array antenna system and electronic apparatus having the same
TW201208196A (en) A multi-loop antenna system and a electronic device having the multi-loop antenna system
TWI485927B (en) Multi-loop antenna module with widebeam width
TWI462394B (en) A multi-loop antenna system and an electronic device having the same
US6897811B2 (en) Broadband antenna apparatus
TWI462392B (en) Multi-antenna system and an electronic device having the same
TW201112497A (en) Dual-loop antenna and multi-frequency multi-antenna module
TWI451632B (en) High gain loop array antenna system and electronic device
JP2011130002A (en) Circularly polarized antenna
TWI307566B (en)
CN117638466A (en) Antenna modules, antenna arrays and electronic equipment
TWI464962B (en) Hybrid multi-antenna system and wireless communication apparatus using the same
JP2004312628A (en) Double resonance diversity antenna system